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EXTENDED EQUIVARIANT PICARD COMPLEXES
AND HOMOGENEOUS SPACES

MIKHAIL BOROVOI AND JOOST VAN HAMEL

ABSTRACT. Letk be a field of characteristic 0 and letbe a fixed algebraic
closure ofk. Let X be a smooth geometrically integrialvariety; we seiX =
X xk and denote by# (X) the field of rational functions oX. In [BvH2] we
defined theextended Picard complex ofaé the complex of Gét/k)-modules

UPIg(X) 1= (%(Y)X/EX v, Div(Y)),

where ¢ (X)* /k* is in degree 0 and D{X) is in degree 1. We computed the
isomorphism class of UP{G) in the derived category of Galois modules for a
connected lineak-groupG.

Here we compute the isomorphism class of URicin the derived category
of Galois modules wheK is a homogeneous space of a connected likeggoup
G with Pi¢(G) = 0. Letx € X(k) and letH denote the stabilizer ofin G. Itis
well known that the character grodffH) of H has a natural structure of a Galois
module. We prove that

UPic(X) = (X(é) Tes, X(ﬁ))

in the derived category, where res is the restriction homrphiem. The proof is
based on the notion of the extended equivariant Picard eooglaG-variety.

INTRODUCTION

In this paperk is always a field of characteristic 0, akds a fixed algebraic
closure ofk. A k-variety X is always a geometrically integr&tvariety, we set
X = X xxk. We write ©(X) for the ring of regular functions oX, and ¢ (X)
for the field of rational functions oX. By Div(X) we denote the group of Cartier
divisors onX, and by Pi¢X) the Picard group oX. By ak-group we mean bnear
algebraic group ovek.

Theextended Picard compleéxPic(X) of a smooth geometrically integral vari-
ety X over a fieldk was introduced in the research announcemient [BvH1] and the
paper [BvH2]. It is an object of the derived category of diderGalois modules
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(i.e. a complex of Galois modules) with cohomology

A°(UPic(X)) =U (X) := 0(X)” /K*,
A (UPig(X)) = Pic(X),
A (UPic(X)) = 0if i #£0,1.
This object UPi¢X) is given by the complex of Galois modules
[%(X)X/EX v, Div(Y)>,

that is, the complex of length 2 witk¢"(X)* /k* in degree 0 and DiX) in degree
1; the differential div is the divisor map, associating te tass|f] of a rational
function f € ¢ (X)* the divisor di\ f) € Div(X). This complex plays an im-
portant role in understanding arithmetic invariants suglha so-calledlgebraic
part Bra(X) of the Brauer group BiX) and the elementary obstruction of Colliot-
Thélene and Sansuc [CS] to the existenck-pbints inX.

In [BvH2, Cor. 3] it was shown that wheX is ak-torsor under a connected
k-group G, there is a canonical isomorphism (in the derived categbr@alois
modules)

1) UPIgX) 2 [X(T) — X(T°9),

where[X(T) — X(T°°)) is a certain complex constructed fraBusing a group-

theoretic construction (see Theorém]6.4 below for the peestatement). In this
way, a straightforward explanation was given why this campK(T) — X(T°°))
played such an important role in the study of Picard grouplsBrauer groups and
also of the Brauer-Manin obstruction for torsors underdimagebraic groups.

The main result of the present paper is the following thecaanounced in [BvH1,
Theorem 3.1] concerning not necessarily principal homegaa spaces under a
connected-group over a fielk of characteristic 0.

Main Theorem 1 (TheorenT5.B) Let X be a right homogeneous space under a
connected (linear) k-group G witRic(G) = 0. LetH C G be the stabilizer of
a geometric poink € X(k) in G (we do not assume that is connected). Then
we have a canonical isomorphism in the derived category ofptexes of Galois
modules

UPic(X) = [X(G) — X(H)),
which is functorial in G and X.

HereX(G) andX(H) are the character groups@fandH, resp. Itis well-known
thatX(H) has a natural structure of a Galois module. In the presertrpa@ actu-
ally get this Galois structure in a natural way by using V.bpBv's identification
X(H) = Picg(X), where the right hand side is tleguivariant Picard groumf X.
By [X(G) — X(H)) we denote the complex of Galois modules WEKG) in de-
gree 0 and witfX(H) in degree 1; the differentiak(G) — X(H) is the restriction
of characters fronG to H.

From Main Theoreral1 we derive the main result of [BYH2], i.e €lomorphism
(@) for a principal homogeneous spaef a connecte#-groupG. Thus we obtain
a new, more conceptual, and less computational proof ofdisigit.

We mention some applications and further results arisirigobthe main theo-
rem.
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Picard and Brauer groups

Theorem 2 (TheorenZI1) Let X be a homogeneous space under a connected k-
group G withPic(G) = 0. LetH be the stabilizer of a geometric pokt X (k) (we
do not assume thad is connected). Then there is a canonical injection

Pic(X) — H(k, [X(G) — X(H))),
which is an isomorphism if k) # 0 or Br(k) = 0.
HereH?* denotes the first hypercohomology.

Theorem 3(TheorenZ.R2) Let X, G, andH be as in Theoreml 2. Then there is a
canonical injection

Bra(X) < H(k, [X(G) — X(H))),

which is an isomorphism if §) # 0 or H3(k,Gn,) = 0 (e.g., when k is a number
field or ap-adic field).

This proves the conjecture [Bo3, Conj. 3.2] of the first-nenaithor about

the subquotient B(X) := ker[Br(X) — Br(X)]/im [Br(k) — Br(X)] of the Brauer
group BI(X) of a homogeneous spaie

Remarks.(1) C. Demarchel[De] computed the group,B¢,G) (introduced in
[BD]) for a homogeneous spacéwith connectedyeometric stabilizers of a con-
necteck-groupG with Pic(G) = 0, whenX (k) # 0 orH3(k, Gry) = 0. Here Bi(X,G) =
Br1(X,G)/Br(k), where Bi(X,G) is the kernel of the composed homomorphism
Br(X) — Br(X) — Br(G).

(2) In [Bo4] the first-named author uses Theofém 3 of the pitgsaper in order
to find sufficient conditions for the Hasse principle and weapkroximation for
a homogeneous space ofjaasi-trivial k-group over a nhumber field, with con-
nected or abelian geometric stabilizér in terms of the Galois modul&(H), see
[Bo4, Corollaries 2.2 and 2.6]. As a consequence, he findieguit conditions for
the Hasse principle and weak approximationgancipal homogeneous spaces of
a connected linear algebraiegroupG (whereG is not assumed to be quasi-trivial
or such that PigG) = 0) in terms of the Galois modulg (G), see[Bo#, Corollar-
ies 2.9 and 2.10]. Herm (G) is the algebraic fundamental group ®fintroduced
in [Bo2].

Comparison with topological invariants. In [BvH2] the complex UPi¢G) of a
connectedk-group G was shown to be dual (in the derived sense) to the algebraic
fundamental group dB introduced in([Bo2]. In particular, if we fix an embedding
k — C and an isomorphismi (C*) = Z, then we have a canonical isomorphism
in the derived category

UPic(G)P = i (G(C)),

where we denote by URIG)P the dual object (in the derived sense) to UBE
Also for homogeneous spaces we have a topological intatpyetof UPi¢X)P.

Theorem 4 (Theorem 8.b) Let X be a homogeneous space under a connected
(linear) k-group G with connected geometric stabilizergt us fix an embedding
k — C and an isomorphisnm (C*) = Z.
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() We have a canonical isomorphism of groups
#°(UPic(X)P) = m(X(C)).
(i) We have a canonical isomorphism of abelian groups
A7 HUPI(X)P) 2 15(X(C)) /(X (C) ors
whereTs (X (C))wors is the torsion subgroup ak(X(C)).

Remarks.(1) We see from Theoreil 4(i) that for a homogeneous spaeéth
connected geometric stabilizers, the topological fundaelegrouprs (X(C)) has

a canonical structure of a Galois module. This is closelgtesl to the fact that
any element of Horfrn (C*), s (X(C)) is algebraig i.e. can be represented by a
regular magG,, i — X, cf. [BoZ, Rem. 1.14].

(2) The assum’ption in Theorem 4(ii) that the geometric Biados are connected
can be somewhat relaxed, see Propositioh 8.6, but sometioondiust definitely
be imposed, see Example8.7.

The elementary obstruction. In [BvH2] it was shown that for any smooth ge-
ometrically integrak-variety X the elementary obstructiofto the existence of a
k-point in X) as defined by Colliot-Théléene and Sansuc![CS, Déf. P(8de also
[BCS, Introduction]) may be identified with a clasgX) € Ext!(UPic(X),k*) nat-
urally arising from the construction of URX). With X, G andH as above, we
have for every integera canonical isomorphism

Ext (UPic(X),k*) 22 H' (k, (H™(k) — G"(k)])

(Corollary[9.3). HereG"" andH™ are thek-groups of multiplicative type with
character groupX(G) andX(H), resp., andH™(k) — G''(k)] is the complex
of Galois modules wittH™(k) in degree—1 andG'(k) in degree 0, dual to the
complex[X(G) — X(H)). B

The complex(H™(k) — G''(k)] already appeared in earlier work by the first-
named author. In_[Bo3] the first-named author defined (by medmexplicit co-
cycles) an obstruction clasgG,X) € H* (k, (H™(k) — G"(k)]) to the existence
of a rational point orX, see als@ 915 below. The results of the present paper en-
able us to show that this obstruction clapss, X) coincides, up to sign, with the
elementary obstruction.

Theorem 5 (Theorem 9.6) Let X be a homogeneous space under a connected
(linear) k-group G withPic(G) = 0. LetH be the stabilizer of a geometric point

x € X(k) (we do not assume that is connected). Ther(%) € Ext!(UPic(X),k*)
coincides with-n (G, X) € H1 (k, (H™ — G'°7) under the canonical identification

Ext'(UPic(X), k*) = H(k, (H™ — G1).

The results of the present paper were partially announcekeimesearch an-
nouncement [BvH1].

Acknowledgement§.he authors are very grateful to Cyril Demarche for cargfull
reading the paper and making helpful comments, and to J@epistein and Ofer
Gabber for proving Lemma 9.4. We are grateful to Pierre Deljgserd Faltings,
Daniel Huybrechts, and Thomas Zink for most useful disaumssi We thank the
referee for a thorough review and useful remarks. The fisted author worked
on the paper, in particular, while visiting the Max-Plaraktitut fur Mathematik,
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Bonn; he thanks the Institute for hospitality, support, ardellent working condi-
tions.

1. PRELIMINARIES

1.1. Let X be a geometrically integral algebraic variety over a fletf character-
istic 0. We denote by/(X) the ring of regular functions oK, and by.# (X) the
field of rational functions oiX. We denote by’ (X)* and.#"(X)* the correspond-
ing multiplicative groups. We denote by OX) the group of Cartier divisors on
X, and by Pi¢X) the Picard group oX (i.e. the group of isomorphism classes of
invertible sheaves oK). We have an exact sequence
0— O(X)* /K< — # (X)* /k* -2 Div(X) — Pig(X) — 0.
We set
U(X)=0(X)"/k*.

We setX = X xyk. In [BvH2] we defined an object UR) in the derived

category of discrete G@d/k)-modules with the property that

#°(UPic(X)) = U (X), 2 (UPic(X)) = Pic(X), 2" (UPic(X)) = 0 if i # 0, 1.
This object is given by the complex
) 2 (X)* k¢ -2 Div(X)

with 7 (X)* /k* in degree 0 and DiX) in degree 1. (cf. [[BvH2, Cor. 2.5,
Rem. 2.6]).

1.2. Let X be a geometrically integrdd-variety, G a connected linear algebraie
group, andv: X xxG — X aright action ofG on X: (x,g9) — Xg, wherex € X, g €
G. Forg € G(k) we writewg: X — X for the mapx— xg. We denote byX(G) the
character group d&, i.e. X(G) = Homy(G,Gp).

We denote by Pig(X) the group of isomorphism classes @fequivariant in-
vertible sheave$.Z,3) on X, where.Z is an invertible sheaf oiX and 3 is a
G-linearizationof ., see [[MEK, Ch. 1,83, Def. 1.6] or Definitior_ 3.2 below.
We say that twadG-linearizations and 3’ of an invertible sheaf? are equiva-
lentif (£,B) and(.%, ') areG-equivariantly isomorphic. The group structure on
Picg(X) is given by the tensor product. We have a canonical homongrpbf
abelian groups

Pics(X) — Pic(X)
taking the clas§Z, B] of (.Z, B) to the clasg.Z] of .Z.

Note that the set dB-linearizations of an invertible sheaf may be empty. In pthe
words, the homomorphism R§€X) — Pic(X) need not be surjective. The set of
equivalence classes &-linearizations of an invertible sheaf is either empty or a
coset in Pig(X) of the subgroup of equivalence classesdinearizations of the
trivial invertible sheax (i.e. a coset of the kernel of the map £i&X) — Pic(X)).

We define

Oc(X) = 0(X)®,
Ua(X) = (0(X)®)" /k*,

whered(X)€ denotes the ring dB-invariant regular functions oX.
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1.3. Cones and fibred.et f: P — Q be a morphism of complexes of objects of an
abelian category?. We denote byP — Q] theconeof f, and by[P — Q) thefibre

(or co-cone) off, seel[BvH2§ 1.1]. Note thatP — Q) = (P — QJ|[—1]. Note also
that if f: P — Qis a morphism obbjectsof our abelian category, théR — Q) is

the complexP LN Q with P in degree 0, andP — Q)] is the complexP 1 Q
with Q in degree 0.

2. THE EXTENDED EQUIVARIANT PICARD COMPLEX

2.1. Let X and G be as in§1.2. Forn > 0 we write Cglg(é,ﬁ(f)x) for the

Galois moduleg’(X x G")* of invertible regular functions oX x G . For f €
ag(G O(X)*) we write fg, ... g, = flxx(gy....q,) € O(X)* for the restriction to the
fibre over(gs,...,gn) € G"(k). As the notation suggests, we reg@%(@, O0(X)*)

as the group oélgebraic n-cochains of G with coefficientsdr(X)*. The assign-
ment

f ( (gla s ,gn) = fglf“vgn )

defines a canonical injection &f,(G, ¢(X)*) into the groupC"(G(k), &(X)*)
of ordinary cochains of the abstract groGygk) with coefficients in&’(X)*. The
usual construction gives rise to a cochain complex

0 /'~ Y X d° 1~ Y X ! 2~ Y X d?
Calg(G7 ﬁ(X) ) — Calg(G7 ﬁ(X) ) E— Calg(Gv ﬁ(X) ) —

(which we may identify with a subcomplex of the standard @dcttomplex
C"(G(k),0(X)*)). We denote the corresponding cocycles Ziy (G, 0'(X)*),
the coboundaries nglg(G 0(X)*) and the cohomology bmglg(é, O(X)*). In
fact, we shall mainly be interested in the first two degreethefcomplex. Here
d°: 6(X)* = C34(G, 0(X)*) is given by

fr (fow)/(fopx),ie f— ((x0)+— f(xg)/f(x)),

wherew: X xx G — X is the action ofG on X, andpx: X xxG — X is the first
projection. Note thaZ,(G, 0(X)*) C C34(G, &(X)*) consists of those invertible
regular functiong on X x G for which

) Co10, (x) = Cq, (x) - Co, (Xqn)-

We also define the complex@,(G, 7 (X)*) andC;,(G, Div(X)) by taking
alg(G; # (X)) (resp.C44(G, Div (X)) to be the group of invertible rational func-
tions (resp. divisors) oX x G". The differentials of the complexes are defined as

above.

2.2. We write KDiv(X) for the 2-term complex{c}if(f)X N Div(Y)> (asin
[BvH2]). Recall that#'(X) is in degree 0 and D) is in degree 1. We define
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G,KDiv (X)) to be the total complex associated to the double complex

1. o,
CLy(G.# (X)) 2o CLy(G,Div(X))

Td,o%/ ngiv

(G, (X)*) - (G, Div(X)).

alg(

0
Calg

In other words,C;lg(G,KDiv(Y)) is the total complex associated to the double
complex
Tlev

_—
N
AN

—>
9
<

H(X)* | —— Div(X)
Here._# (X)* is in bidegreg0,0). We wrlteHz'ﬂg(G KDiv (X)) for
" (Cj14(G,KDiv (X))).

Definition 2.3. Let X andG be as in§1.2. We define thextended equivariant
Picard complex of G and Xo be the complex

UPica(X) = 1<1C}4(G, KDiv (X)) /k*.
In other words, UPig(X) is the complex
o)

(%) [l 24 {(2.D) ) € Zay(G, (X)) ®Div(X): divi(z) = d5y, (D)},
whered9, ([f]) = (f ow)/(f o px) andd3,, (D) = w*D — pxD. Clearly we have
#9(UPics (X)) = alg(G KDiv (X))/k*, #*(UPicg(X)) = a|g(G KDiv (X)).
We have

Hag(G,KDiv (X)) = {f € 7 (X)*: div(f) =0 andfow= fopx} = (0(X)*)C,
whence _
A°(UPics(X)) = (6(X)*)¢/k* = Ug(X).
It turns out that
*(UPicg(X)) = Picg(X),

see Corollary 4]1 below.
Note that by slight abuse of notation we write UgX), Ug(X), Pics(X) rather

than UPigs(X), Ug(X), Picg(X).

2.4. The complex UPig(X) can be regarded as an equivariant version of the ex-

tended Picard complex URX) = [ji/( )< /K v, Div(X )> (indeed, ifG =1,
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thenZg,(G,.# (X)*) = 1 and UPig(X) = UPic(X)). We have an obvious natural

morphism of complexes of Galois modules
v: UPicg(X) — UPic(X),
wherev® = id and
v(z,D) =D for (z,D) € UPics(X)" C Z34(G,.# (X)) & Div(X).

2.5. Functoriality.
Let X andG be as infI.2. It is clear that a homomorphis@® — G of linear
algebraic groups ovdeinduces a pull-back homomorphism

x ([~ x (~/
aIg(Gv _) — Calg(G 7_)
for any of the coefficients considered, and also a pull-baskdmorphism
UPicg(X) — UPicy (X).
Functoriality inX is a bit more subtle. For dominant Gequivariant morphism
f: X' =X,
from anotheiG-variety X’ as in Section 1]2 tX, we clearly have a pull-back mor-
phism of complexes UP{X) — UPic(Y’) and a pull-back morphism of complexes
UPicg(X) — UPicg(X).

However, for aG-equivariant morphisnf as above that is not dominant, we
need to modify our complexes. We assume that botind X’ are smooth. We
choose an arbitrar@-invariant scheme-theoretic poixte X’, which need not be
closed. In more geometric terms this amounts to taking tmeme point of an

irreducible, but not necessarily geometrically irredieiG-orbit on X’. Taking
x = f(X), we then consider the subcompléxDiv (X) c KDiv (X) given by
P div

(ﬁx,x% k)* —— Div(X)x,

where Ox x C 2 (X) is the local ring atx and Di(X)x consists of the divisors
whose support does not containUsing a moving lemma for divisors on a smooth
variety (cf. [Sh], Vol. 1, II1.1.3, Thm. 1 and the remark aftee proof), we see that
the inclusionDiv (X) — KDiv (X) is a quasi-isomorphism, and so is the induced
inclusion &yDiv (X) /k* — UPic(X). We shall denote’Div (X)/k* by UPigX)x.
Similarly, we define

UPica(X)x = T<1Cj4(G, G,Div (X)) /k*

and we see that the canonical inclusion WRK)x — UPicg(X) is a quasi-isomorphism.
By construction, &-equivariant morphisnf as above now induces pull-back
homomorphisms of complexes

£ UPic(X)x — UPic(X )y
and
f2: UPicg(X)x — UPicg (X )x,
hence morphisms in the derived category
f*: UPic(X) — UPic(X)
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and
(4) f*: UPicg(X) — UPicg(X).

For UPid —) this morphism coincides with the morphism we obtain fromdie
rived functor construction of UPic in [BvH 2, 2.1], so it isdapendent of the choice
of X € X’. In the case of UPigwe shall have to verify this directly by an auxiliary
construction.

For this, we generalize the above construction from a poiéi to a finite set
S= {Xq,...,%} of G-equivariant points irX by replacingd’x x ® k by

Oxsok= () Oxx2kC # (X)
XeS

and replacing Di¢X)x by

Div(X)s = NxesDiv(X)x C Div(X),

etc. We then see from the diagram below, in which every ilgaadf complexes
is a quasi-isomorphism, that the morphidm (4) in the deriva@gory does not
depend on the choice &f € X':

fx

UPics(X)x, UPicg(X)y,
ot o 7
UPics(X) (x, ) - UPica(X') )
. \
UPics(X)x, i UPica(X )y,

We shall call any modification where we replagé (X)* by (Ox x @« k)* and
Div(X) by Div(X)y, etc. alocal modification

3. G-LINEARIZATIONS OF INVERTIBLE SHEAVES

3.1. Let G be an algebraic group (not necessarily linear) over an edigily
closed fieldk of characteristic 0. LeX be ak-variety with a right actiorw of G.
This means that we are given a morphism of varieties

W X xG—= X, (X0)— Wg(X) =Xg,
satisfying the usual conditions.

Definition 3.2 ([MEK] Ch. 1, §3, Def. 1.6]) Let .Z be an invertible sheaf on a
G-variety X. A G-linearization of.Z is an isomorphism

B:wW.Y¥ — piZ

of invertible sheaves oK x G satisfying the following cocycle condition:

Let m: G x G — G be the group law. Consider the projectipr: X x G —
X. We have morphismsv and px from X x G to X. Consider the projection
px.c1: X x GxG— X x Gtaking(x,91,92) to (X,91). We have morphismgx c1, 1x x
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m, andw x 1g from X x G x Gto X x G. The cocycle condition is the commuta-
tivity of the following diagram:

o (wx 1g)]*.¢ — P

[px o (Wx 1g)]".Z

(Px.c1)"B
Wo px c1]"-Z BLLAS [Px © Px.G,|*-Z

(Ixxm)*B

[Wo (1x x m)]*.Z [px o (1x x M)]*.Z.

This is the same as to say that for eaghg, € G(k) we have the cocycle condition

(5) Bglgz = Bgl © V\fgkl (Bgz)>

where forg € G(k) we write 3y for the inverse image o8 under the maX —
X% G, X+ (X,0).

Definition 3.3. Let G be ak-group andX be aG-variety overk. By an invertible
G-sheaf we mean a paitZ,3), where.Z is an invertible sheaf anf is a G-
linearization of.#. We denote by Pig(X) the group of isomorphism classes of
invertible G-sheaves on &-variety X. We denote by.Z, ] the class of the pair

(&, B) in Picg(X).

We wish to compute this group Ri¢X) in terms of divisors and rational func-
tions (see Theorefm 3.113 below).

3.4. From now on we assume th& is a connected linear dgroup andX is an
integral G-variety. We denote by the structure sheaf oK, and by.#% the sheaf
of total quotient rings o¥x. Thend'(X) =T (X, Ox) and.# (X) =T (X, #%).

By an invertible_#x-sheaf% on X we mean a locally free sheaf of modules of
rank one over the sheaf of ringgx. Note that if an invertible#x-sheaf# has a
non-zero global sectiog thenZ is isomorphic ta#x as a_#x-module.

Let . be an invertible sheaf oX. We set.?” = ¥ ®4, #x. Note that
£ has a non-zero global section, becaidnas a non-zero rational section. If
Y: £ — % is a morphism of invertible sheaves #nthen we have an induced
morphism

2 4

Let f: X — Y be adominantmorphism of integrak-varieties. Then we have a

morphism of ringed spaces

(X, %) = (Y, 7).
If Zy is a sheaf of#,,-modules orY, then we define
%y = 1 %y @ -1 X,
cf. [H4, Ch. Il, Section 5, p. 110]. f4 is a sheaf o’y -modules orY, then
(R @, Hy) = (T K) @, S

Definition 3.5. A G-linearization of an invertible#x-sheaf# on aG-variety X is
an isomorphism of invertible#x . g-sheaves oX x G

V:W'Z — px#
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such that the following diagram commutes:

(wx1g)*y

Wo (wx 1g)]*% [px o (Wx 1)[*Z

(px.c1)"Y

[Wo px c1]*Z# [Px © Px.G, )" #

Wo (1x x m)]* % (bomy [ox o (1 x M)]*Z.

Note that the diagram of Definitidn_3.5 is just the diagram efibition[3.2 with
Z instead ofZ and withy instead off3.

Lemma 3.6. Let.Z be an invertible sheaf on X, and IBt w*.Z — px.Z be an
isomorphism. Thef is a G-linearization ofZ if and only if

is a G-linearization ofZ”* .

Proof. Itis clear that if3 is aG-linearization of an invertible shed? on X, then

is aG-linearization ofZ” . Conversely, assume that= 3 is aG-linearization
of Z := ¢ . We compare the isomorphisms

(lx X m)*B, (pX,Gl)*B o (WX lg)*B: [WO (lx X m)]*.i” — [px o (lx X m)]*.i”
from the diagram of Definition 312. We may write
(Ix xm)*B=-(pxc1) Bo(wx1ls)B
for somey € 0(X x G x G)*. We substituteZ = . andy= B in the diagram
of Definition[3.5, and we obtain that
(Ixxm)y= - (px,c1) Yo (Wx 1g)"y.
But by assumptiory is aG-linearization of.Z , hencey makes commutative the
diagram of Definitio 35, i.e.
(Ix xm)*y = (px,c1) Yo (Wx 1)*y.
We see thaty = 1, therefore
(Ix xm)*B = (px.c1)"Bo(wx 1g)*B,

henceB makes commutative the diagram of Definition| 3.2. TRus aG-linearization
of Z. O

Definition 3.7. Let X be aG-variety. As in[2.1, we definé&lg(G,Ji/(X)X) to
be the group of nonzero rational functions .7 (X x G)* satisfying the cocycle
condition

(6) (Ix xm)*z= (px.c1)"z- (Wx 1g)"z
Of course, this is the same as to say that
Zy10, (X) =1y (X) "2y, (Xgl)

for all triples(x,91,92) € X(k) x G(k) x G(k) for which all the three valueg, g,(X), Zg, (X),
andzg, (xg1) are different from 0 ancb.
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Lemma 3.8. LetZ be an invertible #x-sheaf on a G-variety X having a nonzero
section s. Then there exists a canonical bijection

{G-linearizations o2} — Z4(G,# (X)*)
y — z
such thaty(w*s) = z- pxs.
Proof. Let a: % — % be the isomorphism of sheaves.#f-modules such that
a(1) =s where 1 I (X, #%) = 2% (X) is the unit element. The isomorphism
Y:W'Z — px#

gives, viaa, an automorphism

Y': Hxxc = HxxG

and this automorphisny is given by multiplication by a rational function e
(X x G)*. The cocycle condition of commutativity of the diagram offib&ion
[3.5 writes then as

(Ix x m)*z= (px,c1)*2- (Wx 1g)*Z
We see that € Zglg(G,,)i/(X)X). Note thaty/(1) = z, and we can write it as
Y (W l) = z- px1. Returning to our original shea¥ and sections, we obtain
that
Y(W'S) = Z- s
It is easy to see that our map— zis bijective. a
Lemma 3.9(cf. [KKV], 2.1). Consider the trivial invertible shea¥#’ = 0x on a
G-variety X. There exists a canonical isomorphism of abedjeups
{G-linearizations oftx } — Z34(G, (X))
B —~ ¢
such thaf3(1) =c.
Proof. Similar to that of Lemma318. O

3.10. Let A1,.% be two invertible sheaves on a variefy and lets be a nonzero
rational section of% (i = 1,2). Lety: %/ — %" be an isomorphism. Then
there exists a unique rational functidpe %" (X)* such that

V(s1) = fy .

Conversely, itis clear that for arfyc .7 (X)* there exists an isomorphisyn %% —
#5 such thatf, = f.

Lemma 3.11. An isomorphisny: % — 5 as above comes from some iso-
morphism of invertible sheavés 4 — % if and only if

div(fy) =div(sy) —div(sp).
Proof. Assume thaty = B for some isomorphism (of sheaves @%-modules)
B: 44— %. Then
B(s1) = fy .
Sincef is an isomorphism of sheaves @%-modules, we have
div(B(s1)) = div(sy).
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Thus
div(f,) = div(B(s)) — div(sz) = div(sy) — div(sp).
Conversely, assume that
div(fy) =div(sy) —div(sp).
Then di(s;) — div(sz) is a principal divisor, hence the classes.#f and %5 in

Pic(X) are equal. It follows that there exists an isomorph3in.#; — %. We
obtain as above a rational functidp such that

B'(s1) = fp - .
As above, we have
div(fg) = div(sy) —div(sz).
We see that diifg ) = div(f,), hencef, = ¢ fz for some¢ € O(X)*. Setp =

0B /A — 2, thenfs = ¢ fp = 1, hencey = B* . Thusy comes from the
isomorphismB of sheaves o’x-modules. O

Definition 3.12. Let X be aG-variety, whereG is connected ani is integral. We
define

Z3iy(G,KDiv (X)) =
{(zD) | ze Zalug(G,%/(X)), D € Div(X), div(z) =w*'D — pxD}.
We define a homomorphism
d: #(X)* —>Z§lg(G,KDiv(X)), f—= (w(f)/px(f),div(f)).
We setB},(G,KDiv (X)) = im d and
Haig(G, KDiv (X)) = Z34(G,KDiv (X)) /B}4(G,KDiv (X)),

asin2.2.
Theorem 3.13. There is a canonical isomorphism

Picg(X) = Hag(G, KDiv(X)).
Proof. We construct a map

» Picg(X) — Hgjg(G,KDiv (X)).
Let [.Z, B] € Picg(X), where.Z is an invertible sheaf oX and
B:wW.Y¥ — piZ
is aG-linearization. Tensoring with#x we obtain aG-linearization of.Z*
BYw L = pr
Choose a rational sectionof .#, i.e. a section of”. By Lemma[3.838*
corresponds to a cocycies Zeldg(G,ji/ (X)*) such that
B (W's) = z- pis.

Sincef” comes from an isomorphism of sheavesif, c-modulesf: w*.Z —
px-Z, by Lemmd_3.1l1 we have

div(z) = div(w*s) — div(pxS).
SetD = div(s), then

div(z) =w'D — pxD.
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We see thafz D) € Z;,(G,KDiv (X)). We set

»([£,B]) = [2.D] € Hay(G,KDiv (X)).

An easy calculation shows thatis a well defined homomorphism.
We construct a map

A 1 Hiig(G,KDiv (X)) — Pic(X).

Let (zD) € Zglg(G,KDiv (X)). Then the divisoD defines an invertible shea¥

together with a nonzero rational sectisf .Z (i.e a section ofZ*") such that
div(s) = D. By Lemmé&_ 3.8 defines &G-linearization

y: Wt s prg”

such that

() y(W's) =z- pxs.

Since(z,D) € Z3,(G,KDiv (X)), we have diyz) = w*D — pxD, hence
(8) div(z) = div(w*s) — div(pxs).

By Lemma 3.1l it follows from[{[7) and18) thgtcomes from an isomorphism of
Oxxg-modules
B:wW.Y¥ — piZ,
that is,y = B . Sincey is aG-linearization of.Z* ", by Lemm& 3.8 is a G-
linearization of.Z. We set
A([z D)) =[Z,B] € Picg(X).

Easy calculations show thatis a well defined homomorphism and that&and A
are mutually inverse. Thus is an isomorphism. O

4. RELATIONS BETWEEN UPicg(X) AND UPic(X)

We return to the assumptions and notatiodfbfl. Theoreni 3.13 says that we
have a canonical isomorphism of Galois modules

Haig(G, KDiv (X)) = Picg (X).

Corollary 4.1. Let X and G be as ifl.2. We have a canonical isomorphism of
Galois modules

A (UPics (X)) = Picg(X).
Proof. This follows immediately from Theorem 313, sincé&*(UPics(X)) =
H,iy(G, KDiv (X)). O
Question 4.2. What is a geometric interpretation of the cohomology groups
Ha4(G, KDiv (X)) for n > 1?

Lemma 4.3([KKV]Lemma 2.2]) Let X and G be as ifl.2 and assume that X
is normal. Then the canonical homomorphiBiag (X) — Pic(X) fits into an exact
sequence

(9) 0— Hz4(G, 0(X)*) — Picg(X) — Pic(X) — Pic(G).
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From now on we shall assume that the natural mag®i¢ — Pic(X) is surjec-
tive. By Lemmd4.B this condition is satisfied wh¥ris normal and Pi@G) =0
(which can be forced for homogeneous spaces of connecteghgras we shall
see below). Examples étgroups that satisfy P{G) = 0 are algebraic tori, sim-
ply connected semisimple groups, and quasi-trivial groups

Lemma 4.4. Let X and G be as iffL.2. If Picg(X) — Pic(X) is surjective, we
have a short exact sequence of complexes

0 244(G. 6(X)*)[~1] = UPics(X) — UPie(X) — O,
which is functorial in X and G. Here is the morphism of2.4, and for cc
Z3y(G,0(X)*) we set

pt(c) = (¢ 1,0) € UPicg(X)' € Z34(G, .2 (X)*) @ Div(X).
Proof. Consider the canonical morphism of complexesUPicg(X) — UPic(X)
of §2.4. An easy diagram chase in the commutative diagram wihte»ws

H (X)* /k* — UPicg(X)! — Picg(X) — 0

| o

A (X)* /k* —— Div(X) —— Pic(X) — 0

shows that if the map PigX) — Pic(X) is surjective, then the magh: UPics(X)! —
Div(X) is surjective and hence the morphism of complexe$JPics (X) — UPic(X)
is surjective. On the other hand, the kernel of the morphisooincides with the

complexZ,(G, 0(X)*)[-1] = im p. O

In the rest of this section we derive consequences of Lem#aMe consider a
more general setting.

4.5. Let
(10) 0 A LB YsCc >0

be a short exact sequence of complexes in an abelian categgrin the category
of discreteg-modules whergy is a profinite group. By a morphism of exact
sequences we mean a commutative diagram

0 A B° cC 0
l oa l (0 l bc
0 A* B" (0 0.

We say thatp is a quasi-isomorphism of exact sequencegaf ¢g and ¢c are
quasi-isomorphisms.

Lemma 4.6 (well known). Consider a short exact sequence of complexes as in
(10). Define a morphism of complexes

A (A= B]—C by A'@*Lb)=v(b).

ThenA is indeed a morphism of complexes and is a quasi-isomorpliisratorial
in the exact sequend@d).
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Proof. Seel[GM, Ch. 1ll1,53, Proof of Prop. 5] or [We, 1.5.8] for a proof thatis
a morphism of complexes and a quasi-isomorphism. The fuafitg is obvious.

U
Lemma 4.7 (well known) Assume we have a commutative square of complexes
P—>Q
”’l E
pP—aQ

where all the arrows are morphisms of complexes and the tw@akarrows yp
and yg are quasi-isomorphisms. Then the induced morphism of cones

(P—Q == (P =Q|
is a quasi-isomorphism.
Proof. The lemma follows easily from the five-lemma. a
Construction 4.8. Let
(S) 0—[0— Al 25 B BY Y [c®—»Cl —0
be a short exact sequence of complexes in an abelian cat&gemyrite
A=[0-AY, B =[B-2,BY C=[c-,cY,
so we have an exact sequence of complexes
oA 5B Ysc =0
Assume that the following condition is satisfied:
(0 #9(B") =0.

Then we have a canonical quasi-isomorphBm- #1(B*)[—1]. By Lemmd4.y
the induced morphism of cones

(A" — B — (A" — (B[~ 1]]
is a quasi-isomorphism. Sinée = Al[—1], we obtain a quasi-isomorphism
g (A — B — Al T (),
whereo(al) = —pt(al) +im dg € #1(B") foral € AL.
We write formulae fore:
@) =al, &ib')=b'+imds.
Corollary 4.9. (a) Let(S) be an exact sequence of complexes as in Construction

[4.8, satisfying conditiorf.2#°). Then there is a canonical, functorial {{8) iso-
morphism in the derived category

At B > C
given by the diagram
AL %, (B —— (A B -

wheree is the quasi-isomorphism of Construct[on]4.8 anid the quasi-isomorphism
of Lemma 4J6.
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(b) Let¢: (S) — (S) be a quasi-isomorphism of exact sequences as in Con-
struction[4.8, and assume that bat®) and (S) satisfy the conditiorf.z#°). Then
in the commutative diagram

(AL )y S (A B

|

|:A/1 a jfl(B”)> ¢ (A"—)B/'] )‘/E C

all the vertical arrows are quasi-isomorphisms.

Proof. The assertion (a) follows from Lemnia 4.6 and Construdii@) 4nd the
assertion (b) follows from Lemnia 4.7. O

Now we apply Corollary 419 to the exact sequence of Lermla 4.4.

Theorem 4.10.Let X and G be as if1.2. Assume that the m&icg(X) — Pic(X)
is surjective and that g(X) = 0. Then there is a canonical isomorphism in the
derived category

(11) 744G, 0(X)) — PicG(Y)> ., UPiG(X).
This isomorphism is functorial in X and G.

We specify the majw and the isomorphism in the derived category. The map
o takes a cocycle € Zalllg(G, 0(X)*) to the class of the trivial invertible sheéf;

on X with the G-linearization given by, see Lemm&a_3]9. The isomorphisin(11)
is given by the commutative diagram

(12) ZL4(G,0(X)*) < ZL4(G, (X)) & A (X)* /K< — 7 (X)* /K"

: - -

Picg(X) UPics(X)? Div(X)

where the arrowp is given by
@(c,[f]) = (c-d% (f),div(f)) € UPica(X)* C Z34(G, 2 (X)*) @ Div(X),
and all the unlabeled arrows are the obvious ones.

Proof. The isomorphism of the theorem is the isomorphism of Corpfagd(a)
applied to the exact sequence of Lemima 4.4. Functorialithencase of a domi-
nant morphismf : X’ — X is evident. In the case of a non-domin&@morphism
f: X’ — X we use local modifications as §2.5. O

5. EXTENDED PICARD COMPLEX OF A HOMOGENEOUS SPACE

Let X be a homogeneous space under a conndetgrdupG. In generalX may
have nok-rational points, hence not be of the fo&qYH. The results of Sectidd 4
give a nice description of UP(X) as long as Pi&G) = 0. Fortunately, the latter
assumption does not give any serious loss of generality tiyevof Lemmd 616
below.
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First let G be a connecte#i-group acting on a geometrically integtalariety
X. The character groufi(G) canonically embeds intﬁa{lg(ﬁ, O (X)*). We show

thatZ3,(G, 0(X)*) = X(G) using Rosenlicht's lemma.

Lemma5.1. Let X be a geometrically integral variety over an arbitragiéi k, and
G be a connected k-group. Then every &@(X xG)* can be uniquely written in
the form ux,g) = v(x)x(g), where ve &(X)* andx € X(G). O

Proof. The lemma follows easily from Rosenlicht's lemma, see €Sa, Lemme
6.5]. O

Proposition 5.2. Let G be a connected k-group acting on a geometrically iratlegr
k-variety X. Then (G, 0(X)*) = X(G).

Proof. Letc € Z34(G, 0(X)*). By Lemmd5.]L we may write
cg(X) = V(X)X (g) for somev e 0(X)*, x € X(G).
Writing the cocycle conditior {3) df2.1, we obtain

V(X)X (9182) = V(X)X (91)V(X01) X (G2),

whencev(xg) = 1. Substitutingg; = 1, we obtainv(x) = 1. Thuscy(x) = x(9)
andc=x. O

Now let X be a homogeneous space under a conndetgdupG. We compute
Ugs(X) and (following Popov) Pig(X).
Lemma 5.3. Let X be a homogeneous space under a connected k-group G. Then

Us(X) =0.
Proof. By definition, Ug(X) = (¢(X)*)€/k*. SinceG acts transitively, the only
G-invariant functions are the constant functions, and thante follows. O

5.4. Let X be a homogeneous space under a connéetgdupG, and letx € X (k)
be ak-point. LetH c G be the stabilizer ok in G. We define a homomorphism
& Picg(X) — X(H) as follows. Let(.#,B) be an invertible sheaf oX with a
G-linearization. Consider the embeddingH — X x G, h+ (X, h). Thenwoi =
px oi: H < X, hence

(Woi)*Z = (pxol)*Z.
We see that th&-linearizationf3: w*.Z — ps.Z gives an automorphism of the
(trivial) invertible sheaf(px oi)*.# on H, and this automorphism is given by an
invertible regular functiory on H. The cocycle condition{5) of Definitiop_3.2
readily givesy (hihy) = x(hy)x(h2), hencey is a character oH. We obtain a
homomorphisnTx: Picg(X) — X(H), ®&([L,B]) = X.

LetX € X(k) be another point anHl’ its stabilizer. We may writ& = Xg for
someg € G(k). ThenH' = g~'Hg, and we obtain an isomorphiskh — H': h—
gthg. The induced isomorphisrg, : X(ﬁ') — X(H) does not depend on the
choice ofg, and so we obtain a canonical identificationsofH) with X(H'). By
Lemmal5.b below, under this identification the homomorphigm Picg(X) —
X(H) does not depend on

Lemma 5.5. Let G, X X, X, and g be as above, in particulax, = Xg. Then for
h € H(k) and B8 < Picg(X) we haver, (8)(g~*hg) = &(B)(h).
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Proof. Omitted (it uses only the cocycle conditidd (5) of Definit@&). O

Proposition 5.6([Pa, Thm. 4]) Let X be a homogeneous space under a connected
k-group G, and lek € X (k) be ak-point. LetH C G be the stabilizer ok. Then

the canonical homomorphism of abelian grougs Picg(X) — X(H) of §5.4 is

an isomorphism.

Sketch of proofLet x € X(H). We define an embedding
6:H—GxGpi, hw—(hx(h)™).

SetY = 6(H)\(G x G,x), this is a quotient space of a linear algebraic group by an
algebraic subgroup. The gro@acts onY on the right. By Hilbert's Theorem 90
the principale‘g-bundIeV — X admits a rational section, and, sinGeacts tran-
sitively onX, this bundle is locally trivial in the Zariski topology. Ugj transition
functions for the bundl®¥ — X, we define an invertible shea® on X. The action

of G onY defines aG-linearizationf of .#. We setr?(x) = [.Z, B] € Pics(X).

We obtain a homomorphisnt' : X(H) — Picg(X), which is inverse tax, hence

T& is an isomorphism. a

Remarksb.7. (1) Since the Galois group acts on g{X), using Popov’s isomor-
phism 1% of Propositior 5.6, we can enda¥(H) with a canonical structure of a
Galois module. This structure was earlier constructed oyl va [Bo1].

(2) We have a canonical homomorphisiiG) — Picg(X) taking a character
X € X(G) to the trivial invertible sheaf? = 0 with the G-linearizationBy(x) =
X(9): Ox.c — Ox.g- Clearly this homomorphism is a morphism of Galois mod-
ules. On the other hand, under Popov’s identificatiors P{¢ = X(H) this homo-
morphism corresponds to the restriction map &§G) — X(H) taking a character
x of G to its restriction toH. We see that the restriction map res is a morphism of
Galois modules.

(3) LetX € X(k) andH' C G be as ir§5.4. If we identifyX(H) andX(H') as in
§5.4, then the map resX(G) — X(H) does not depend on the choice of the base
pointX.

The following theorem is the main result of this paper.

Theorem 5.8. Let X be a homogeneous space under a connected k-group G with
Pic(G) = 0. LetH be a geometric stabilizer. We have a canonical isomorpliism
the derived category of Galois modules

UPio(X) 2 [X(@) res, X(ﬁ)>

which is functorial in G and X. Her&(H) has the Galois module structure given
by the Popov’s isomorphism, anelsis the restriction map.

Note that the complex of Galois modul&%(G) — X(H)) and the isomor-

phism of Theoreri 518 do not depend on the choice of the basg pQip to the
canonical identification 0§5.4). IndeedX(H) does not depend o seef5.4. By
RemarkK5.77(3) neither does the homomorphism 8&5) — X(H). The Galois
action onX(H) is given by Popov’s isomorphism, hence does not deperxein
ther. One can easily see from the proof of Theotemh 5.8 thaistivaorphism of

this theorem does not dependfwe use LemmB35l5).



20 MIKHAIL BOROVOI AND JOOST VAN HAMEL

Proof of Theorerh 518By Lemmal5.8Ug(X) = 0. By Theoren{4.10 there is a
canonical isomorphism in the derived category of Galois el

Z34(G, 6(X)*) — Pics(X)) —— UPic(X).

By Propositiori 5.123,(G, 0/(X)*) = X(G). By Propositior 56 Pig(X) = X(H).
The mapo of Theoren[4.10 corresponds to the homomorphism [& (96) —
X(H)), and the theorem follows. O

6. EXTENDED PICARD COMPLEX OF AK-GROUP

Notation 6.1. Let G be a connectell-group. Then:
GY is the unipotent radical dg;
G'®d=G/GY, itis a reductive group;
GSSis the derived group dB"Y, it is semisimple.
Gr = G'®4/G®S it is a torus;
G3Cis the universal covering @&*s, it is simply connected.

Remarl6.2 Itis easy to see that RiG) = Pic(G™). We have Pi(G>") = X (keflG>* —
G™), seel[Pb, Theorem 3] dr [FI, Corollary 4.6]. It follows that ) = 0 if and
only if G®%is simply connected.

6.3. We have a canonical homomorphism
o: GSC¢ _, GSS Gred

(Deligne’s homomorphism), which in general is neither @ti\@ nor surjective.
Let T c G™®be a maximal torus. L&t = p—(T) be the corresponding maximal
torus of TSC. By abuse of notation we denote the restrictionpadb TS¢ again by
p: T3¢ — T. We have a pullback morphism

' X(T) — X(T°°.
The following theorem is the main result of our paper [BYH2].
Theorem 6.4([BvH2, Thm. 1]) Let G be a connected k-group. LetTG™be a
maximal torus. Then there is a canonical isomorphism in #wived category

UPic(G) = |X(T) o, X(T )>,

which is functorial in the pai(G,T).

At the core of the proof in [BvH2] were concrete but rathelided calculations.
Our present results allow us to give a new, more conceptoalf of this theorem.

Definition 6.5. An mrextension of a connectddgroupG is a central extension
1-M=-G—=G-1

where Pi¢€') = 0 andM is ak-group of multiplicative type.

Lemma 6.6(well known). Any connected k-group G admits an m-extension.

Proof. We give a simple proof. We use Notatibn16.1. 1&iG™®%° denote the
identity component of the cent&@(G"9) of G'% it is a k-torus. SelG” = G*¢ x
Z(G'"9%°. We have an epimorphism

¢: G- G"® (g,2) — p(g)z for geG*zez(G™Y°.
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Sincek is a field of characteristic 0, there exists a splitting ofdixéension
156" 5GG® 51

(see[Mo, Theorem 7.1]). Such a splitting defines an actioB®fon GY, and we
have an isomorphis® = G" x G™ (Levi decomposition). The grou@” acts on
G" via G™d. SetG' = G! x G”. We have an epimorphism

idxc¢: G —G.
Since(G)%S= (G")%5= G*¢, we see thatG')sSis simply connected, hence P& ) =
0. ClearlyM :=ker[G' — G] is a central, finite subgroup of multiplicative type in
G. O
Note that a much stronger assertion than Lernmh 6.6 is knaven,.esmma& 6]7
below. According to Colliot-Thélene [CT, Prop. 2.2], aagirtrivial k-group is
an extension of a quasi-triviéddtorus by a simply connectddgroup. Recall that

a simply connectedt-group is an extension of a simply connected semisirkple
group by a (connected) unipotekgroup.

Lemma 6.7(Colliot-Théléne) Let G be a connected k-group. Then there exists a
central extension
1-T—-G =-G—=1,

where Gis a quasi-trivial k-group and T is a k-torus.
Proof. Seel[[CT, Prop.-Déf. 3.1]. O

Lemma 6.8. Let G; — G, be a homomorphism of connected k-groups, and let
G| — Gj (i = 1,2) be m-extensions. Then there exists a commutative diagram

G&<—Gé—>G’2

L

G <% G ——>G,

in which G; — G is an m-extension.
Proof. Similar to [Kg, Proof of Lemma 2.4.4]. d

The following theorem gives an alternative description &it/G) for a con-
nectedk-groupG.

Theorem 6.9. Let G be a connected k-group and let X be a k-torsor (a priricipa
homogeneous space) under G. Let

1-M—-G->G—1

be an m-extension. Then there is a canonical isomorphismatdtial in the triple
(GG, X),

UPic(X) = [X(@) &X(M»
in the derived category of discrete Galois modules. Hese X(G’) — X(M) is
the restriction homomorphism.

Proof. The groupG’ acts onX via G, andX is a homogeneous space @f with
geometric stabilizeM. Since Pia@@') = 0, the theorem follows from Theorem
5.8. O
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6.10. New proof of Theorerh_6.4By [BvH2, Lemma 4.1] the canonical epi-
morphismr: G — G"¢ induces a canonical isomorphism in the derived category
r: UPic(Gred) = UPic(G), and therefore we may assume ti@iis reductive.
Choose am-extension
1-M—-G —=G—1,
thenG' is reductive as well. By Theoreim 6.9 there is a canonicalgtual in G
andG’ isomorphism
UPic(G) = [X(G) — X(M)).

Let T C G be a maximal torus. L€E’ denote the preimage df in G/, thenT’

is a maximal torus in the reductive gro@. Consider the commutative diagram

(13) X(G) X(M)

o

X(T) —=X(M) & X(T™)

| |

X(T) X(T)

with obvious arrows. Itis easy to check that this diagranegiguasi-isomorphisms
[X(G) = X(M)) — [X(T) = X(M) & X(T>%)
[X(T) = X(T%) — [X(T') = X(M) & X(T™)),

hence we obtain an isomorphism

~

X(G) = X(M)) —— [X(T) = X(T>)
in the derived category. Thus we obtain an isomorphism
UPIc(G) = [X(T) — X(T%))

in the derived category. Using Leminal6.8, one can easilyhséttis isomorphism
does not depend on the choice of timeextensionG’' of G and is functorial in
(G,T). O

7. PICARD AND BRAUER GROUPS

Theorem 7.1. Let X be a homogeneous space under a connected k-group G with
Pic(G) = 0. LetH be the stabilizer of a geometric poe X (k) (we do not assume
thatH is connected). Then there is a canonical injection

Pic(X) < H(k, [X(G) — X(H))),
which is an isomorphism if ¢k) # 0 or Br(k) = 0.

Proof. This follows immediately from Theorem 5.8 and the exact sege

(14)

0— Pic(X) — HY(k, UPic(X)) — Br(k) — Bry(X) — H?(k, UPic(X)) — H3(k, Gp)
established in[BvH2, Prop. 2.19] for an arbitrary smootbrgetrically integral va-
riety. Note that the homomorphisrhi (k, UPic(X)) — Br(k) andH?(k, UPic(X)) —
H3(k,Gm) in this exact sequence are zerXifk) # 0, see[[BvH2, Prop. 2.19]. 00
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We also prove a conjecturie [Bo3, Conj. 3.2] of the first-namngitior concerning

the subquotient BfX) = ker[Br(X) — Br(X)]/im [Br(k) — Br(X)] of the Brauer
group of a homogeneous spaxe

Theorem 7.2. Let X, G, andH be as in Theorei 7.1. Then there is a canonical
injection

Bra(X) < H?(k,[X(G) — X(H))),
which is an isomorphism if %) # 0 or H3(k,Gn,) = 0 (e.g., when k is a number
field or ap-adic field).

Proof. This follows immediately from Theorem 5.8 and exact seqadid). O

7.3. We consider the special case whens aprincipal homogeneous space of a
connectek-groupG (we do not assume that P@) = 0). Let

1-M—-G->G—1

be anm-extension. Then, assuming that eitiéhas ak-point or Br(k) = 0, we
obtain from Theorern 711 that

(15) PigX) = H(k, [X(G) — X(M))).

Let T ¢ G andTS¢ ¢ GS¢ be as in Notatiofi 61 Using the isomorphism in the
derived category given by diagram {13)46.10, we obtain fron{(15) that

(16) PigX) = HY(k, [X(T) = X(T°9)).

Similarly, assuming that eithex has ak-point or H3(k,Gp,) = 0 (and not as-
suming that Bfk) = 0), we obtain from Theoref 4.2 that

(17) Bra(X) = H2(k, [X(G') — X(M)))
and
(18) Bra(X) =2 H2(k, [X(T) — X(T°)).

The formulae[(16) and_(18) are versions of our previous te$§BVH2, Cor. 5
and Cor. 7] and results of Kottwitz [Ko, 2.4]. Note that whéris ak-torus or a
semisimplek-group, formulae for Pi@S) and Bg(G) were earlier given by Sansuc
[S&, Lemme 6.9].

8. COMPARISON WITH TOPOLOGICAL INVARIANTS

8.1. For ak-groupG, the main result of [BvH2] and the comparison between the al-
gebraic and the topological fundamental group of complesdr algebraic groups
in [Bo2], imply that the derived dual object

UPic(G)P := RHomy (UPic(G), Z)
is represented by a finitely generated Galois module coratedt in degree 0
which, as an abelian group, is isomorphic to the fundamemntalp of the complex
analytic spac&(C) for any embedding — C of k into the complex numbers. For
later use, let us make the further observation that in fact

U(G)° =X(G)° = m(G(C))/m(G(C))wrs,
(Pic(G)[~1])° =Extz (Pic(G),Z) = Hom(Pic(G),Q/Z) = m(G(C))ors,

see [(20) below, wher®ls denotes the torsion subgroup of a finitely generated
abelian groupM.
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For a homogeneous spa¥eunder ak-groupG, the derived dual object in gen-
eral is not representable by a single group concentrateelgree 0, as we see from
the following lemma.

Lemma 8.2. Let X be a homogeneous space with geometric stabiizender a
connected k-group G witRic(G) = 0. We have a long exact sequence of finitely
generated Galois modules

(19) 0— 7 1(UPic(X)P) — Homz (X(H),Z) — Homz (X(G),Z) —
A°(UPic(X)P) = Homgz (X (H)tors, Q/Z) —
and.#' (UPic(X)P) = Ofori # 0, —1.
Proof. It follows from Theoreni 5J8 that we have an exact triangle
X(H)[~1] — UPic(X) — X(G) — X(H)

in the derived category of Galois modules. ApplyiR¢lomz(—,Z), we get the
dual triangle

RHomy (X(H),Z) — RHomy (X(G),Z) — UPic(X)P — RHom, (X(H),Z)[1].
Taking cohomology yields the exact sequence

0 — #1(UPic(X)P) — R°Homy (X(H),Z) — RPHomy (X(G),Z) —

A#°(UPig(X)P) — RtHomy (X(H),Z) — RtHomy (X(G), 2),
which coincides with exact sequen€el(19), since
Homz(M,Z) ifi=0,
(20) RHomz(M,Z)={ Extt(M,Z)  ifi=1,
0 otherwise

and Ext (M, Z) = Homy (Myors, Q/2) for any finitely generated abelian grotyp.
0

8.3. LetH be aE—group, not necessarily connected. We denotﬁl?i’/" the largest
quotient group of multiplicative type dfl, thenX(H m”'t) = X(H). We setH; =

kerH — HmUIt] thenH; = Nyex(m) ker x. We consider the following condition on
H:
(21) H; is connected an&(H;) = 0.

Note that this condition is satisfiedHf is connected.

Lemma 8.4. Let H be aC-group satisfying the conditio@1). Then there is a
canonical, functorial in H epimorphism

m(H°(C)) - Hom(X(H),Z)
inducing an isomorphism
m(H°(C))/m(H°(C))tors — HOM(X(H), Z),

where we denote by Hhe identity component of H.
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Proof. We have
Hom(X(H),Z) = Hom(X(H™"), Z) = Hom(X((H™"°),Z) = m((H™"Y°(C)).
SinceH satisfies the conditioi_(21), we have an exact sequence ofctedC-
groups
1—Hp— H® — (H™h° 1
and a homotopy exact sequence
m(H1(C)) — 1a(H°(C)) — m((H™")°(C)) — mo(H1(C)) = 1.
From this exact sequence we obtain an epimorphism
m(H°(C)) — m((H™")°(C)) = Hom(X(H),Z).
Sincerg(H1(C)) is a finite group and HofX(H ), Z) is torsion free, we obtain an
isomorphism
m(H°(C))/m(H°(C))tors — HOM(X(H), Z).
O
Theorem 8.5. Let X be a homogeneous space under a connected k-group G with
connected geometric stabilizers. Let us fix an embedkling C and an isomor-
phismrg (C*) — Z.
(i) We have an isomorphism of groups
#°°(UPIic(X)P) = m (X(C)).
(i) We have an isomorphism of abelian groups
A~ HUPIe(X)P) = 1(X(C))/T(X(C) ors.

Proof. By Lemmd6.Y we can represeXtas a homogeneous space of a connected
k-group G’ with Pic(@’) = 0 with connected geometric stabilizers, see é&lso [Bol,
Lemma 5.2]. Therefore we may and shall assume thagi@ie- 0. After base
change taC we may assumX = G/H. Sincern(G(C)) = 0 (Elie Cartan, for the
case of compact Lie groups see |Brl]), the long exact sequehlsomotopy groups

of a fibration gives us an exact sequence

0— m(X(C)) — m(H(C)) —» m(G(C)) — m(X(C)) — 1.
Proof of (i). We have a commutative diagram with exact top row
m(H(C)) ——— m(G(C)) ——m(X(C)) —1

| |

Hom(X(H),Z) —— Hom(X(G),Z)

where by Lemm&38l4 both vertical arrows are epimorphismaceSPi¢G) = 0,
the groupr (G(C)) is torsion free, and by Lemnia 8.4 the right vertical arrow is
an isomorphism. Thus the diagram gives an exact sequence

Hom(X(H),Z) - Hom(X(G),Z) — m(X(C)) — 1.
From this exact sequence and Lenima 8.2 we obtain an isonsatphi
8 (X(C)) = #°(UPic(X)P)
because HoX (H )ors, Q/Z) = 0 for a connected groud.
Proof of (ii). See Proposition 8.6 below. d
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Proposition 8.6. Let X be a homogeneous space under a connected k-group G
with Pic(G) = 0. LetH be a geometric stabilizer, and assume tHasatisfies the
condition 21). Let us fix an embedding— C and an isomorphisnig (C*) —

Z.

() We have an isomorphism of abelian groups
27 HUPIEX)P) = 1B(X(C)) /(X (C) ors
(i) If, moreover,Pic(ﬁo) =0, then we have
2~ HUPIg(X)P) = p(X(C)).
Proof. (i) By Lemma[8.4 we have

Hom(X(H),Z) = m(H"(C))/m(H"(C))tors

SinceG is connected and RiG) = 0, we have

Hom(X(G),Z) = m(G(C)).
We obtain from the fibration exact sequence
(22) 0= m(X(C)) = m(H*(C)) = m(G(C)) = m(X(C)) = m(H(C)) — 1
that
15(X(C))/ (X (C))iors = kerHom(X(H),Z) — Hom(X(G), Z)],

hences#~1(UPic(X)P) = 1(X(C)) /(X (C))tors by LemmeB.2.
(ii) If Pic (H") = 0, thenr (H°(C)) is torsion free, hence so i(X(C)) by the
fibration exact sequence (22). O

Note that some condition on stabilizers in Theollen 8.5 masiniposed, as
shown by the following example:

Example 8.7. TakeG = SLk, takeT to be the group of diagonal matrices®)
and takeH = N to be the normalizer of in G. We haveH° =T. SetX = H\G.
Then

TB(X(C))/TR(X(C))tors= M (H(C))/8(H°(C))tors = m(T(C)) = Z" %

On the other hand, it follows from the next Leminal8.8 that K& ),Z) = 0,
hences#~1(UPic(X)P) = 0.

Lemma 8.8 (well-known). Let G= SL,x, where n> 2, let T be the group of

diagonal matrices in G, and let N to be the normalizer of T inThenX(N) =
z/27.

Proof. Lett = diagiz,z'1,1,...,1) € T(k) wherez € k*, and lets € N(k) be a
representative of the transpositioh, 2) € S, = N/T. Thensts! =t~1, hence
tst1s! =t? = diagZ,z 2,1,...,1). It follows easily thafT c N9, whereN%"
denotes the derived group df. We see thalX(N) = X(N/T) = X(S,). Since
(Sh)%" = A, we see thaK(S,) = X(S/An) = Z/2Z, henceX(N) =z /2Z. O
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9. THE ELEMENTARY OBSTRUCTION

9.1. Recall that in[[BvH2, Def. 2.10] thelementary obstructiofto the existence

of a k-point in a smooth geometrically integrilvariety X) was defined as the
classe(X) € Ext'(UPic(X),k*) associated to the extension of complexes of Galois
modules

0k = (%(Y)X = Div(Y)) = (%(Y)X/EX - Div(Y)) 0.
It is a variant of the original elementary obstructior(lﬁb)_of Colliot-Thélene and
Sansucl[CS, Déf. 2.2.1] which lives in Bxtz (X)” /kX k*). In fact, we have a

canonical injection EXUPic(X),k*) — Ext'(# (X) ™ /k*,k*) which sends(X)
to ob(X) (see[BvH2, Lemma 2.12]).

—mult

9.2. Recall thatH denotes the largest quotient groupHbfthat is a group of
multiplicative type. We havi(H™") = X (H). The Galois action of(H) defines
a k-form H™ of H™". Since we have a morphism of Galois module&s) —
X(H), we obtain ak-homomorphismi,.: H™ — G’ (related to the embedding
iiH—=G).

SetGsU= ker|G — G'°, it is an extension of a semisimple group by a unipotent
group. Setl; = kerfH — H™"]. The embeddingi — G gives a homomorphism
H— Gtor, andH; is contained in the kernel of this homomorphism (because the
restriction of any character &f to Hy is trivial). ThusH; Cc G . Itis clear that
i,: H™ — G'' is an embedding if and only i; =HNG ™"

Proposition 9.3. Let X be a homogeneous space under a connected k-group G
with Pic(G) = 0. LetH be a geometric stabilizer. For every integer i we have a
canonical isomorphism

Ext (UPic(X), k™) 2 H' (k, (H™ — G'1),
which is functorial in G and X.
We need a lemma.

Lemma 9.4. Let g be a profinite group. Let ¥be a bounded complex of discrete
g-modules with finitely generated (ov&) cohomology.

(i) There exists a quasi-isomorphigfn M* — Y*, where M is a bounded com-
plex of finitely generated (ovét) torsion freeg-modules.

(if) For any two such resolutions (quasi-isomorphisrgg) M; — Y*andyyr: M5 —
Y of Y*, there exists a third such complex nd quasi-isomorphismg;: M3 —
M; (j = 1,2), such that the following diagram commutes up to a homotopy:

M3 — M3

M2 l l U
1)

M2—>Y'

Proof. Assume thaY' =0 fori > n. We choose a finite set of generatbis. . ., hg
(over Z) of s#"(Y*). We lift eachh; for j =1,...,k toy; C kerlY" — Y"1},
Let h; C g denote the stabilizer of; in g, it is an open subgroup (hence of finite
index) ing. We have a canonica-morphismZ[g/h;] — kerlY" — Y"™1] taking
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the image of the unit elemeetc g in g/hj to y;. SetA" =P, Z[g/h;], thenA"
is a finitely generated (ovet) torsion freeg-module. We have a morphism gf
modulesA” — kerlY" — Y™1] such that the induced morphis#ft — J#"(Y*) is
surjective. We consider the complé®[—n]| (with one g-moduleA" in degreen).
We have a morphism of complexg¢s A"[—n] — Y*. We setYy) = (A"[—n] = Y°]
(the cone ofp). It is easy to see tha%ﬂ”(Y('l)) = 0. Then we apply this procedure

to Y¢;, for n—1 to obtainY, with ji””‘l(Y@) —0, and so on.

Assume tha¥' = 0 fori < n—mfor some integem > 0. ThenY(im) =0fori <
n—m, andY(rr‘Tj)m is finitely generated and torsion free. By constructitfi (Y('m)) =
0 fori > n—m. Moreover, since((’r‘n‘)m‘1 =0, we have

A (Vi) = ke ™ = Y ™.

SetA = ji””‘m(Y('m)), thenA' is finitely generated and torsion free, because it is
a subgroup of the finitely generated torsion free abeliampgf(j‘n;)m. We have
an injective morphism ofg-modulesA’ — Y(’r‘;)m and a morphism of complexes
¢ Aln—m| — Y(m- As before, se¥; ;) = (Aln—m) — Y(m) (the cone ofp’).
One can easily see that the compml) is acyclic.

One can check thé(FmH) is the cone of some morphism of complexgsM* —
Y, whereM* is a bounded complex of finitely generated torsion fgemodules.
Since the coné’('mH) of g is acyclic, we see thap is a quasi-isomorphism.

(ii) Let N* == [M; &My —2=%2 5 v+) (the fibre of g — ), then we have

morphisms
Ai:N* = MieM; - M2, j =12
From the short exact sequence of complexes

0= [M; =Y =N 25 M; 50

where[M3; — Y*) is acyclic becausg,: M5 — Y* is a quasi-isomorphism, we see
thatA; is a quasi-isomorphism, and similarkg is a quasi-isomorphism. An easy
calculation shows that the following diagram commutes up bhmmotopy:

Ne 2 My

Az l l yn
Y2

M5 ——Y-.

Now we apply (i) to the complel* and obtain a quasi-isomorphisga: M5 —
N°, whereM; is a bounded complex of finitely generated (owgrtorsion free
g-modules. We sgfj = Ajos: M3 — M;. O
Proof of Propositiori . 9.3 Since the complex UP{X) is bounded and, foX as in
the proposition, has finitely generated cohomology, by Laf®hd(i) there is a
bounded resolutiogy: M* — UPic(X) consisting of finitely generated torsion free
Galois modules. We have a canonical isomorphism

W*: Ext (UPI(X), k™) = Ext (M*, k).
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It is well known (see for example [BvH2, Lem. 1.5]) that thésea canonical
isomorphism
Ext'(M*,k*) = H(k, Homg (M*,k¥)),
hence we obtain an isomorphism
Ext (UPic(X),k*) 5 Hi (k, Rs#omy (UPic(X), kX)),

which does not depend on the choice of the resolutjonM* — UPic(X) by
Lemmal[9.4(ii). It now follows from Theorein 5.8 that we haveamanical iso-
morphism

Ext (UPic(X),k*) 22 H' (k, Ro#omy ([X(G) — X(H)),k¥)).
Sincek* is divisible,

R#omy ([X(G) — X(H)), k") = (Homg (X(H).k") — Homg (X(G), k")
= (H"(k) = G (k).

Thus we obtain a canonical isomorphism
Ext (UPic(X), k) 2 H' (k, (H™ — G'1).
O

9.5. In [Bo3] the first-named author defined (by means of explioitycles) an
obstruction class to the existence of a rational poinKoiVe recall the definition.

Fix X € X (k). LetH C G be the stabilizer ok. For eacho € Gal(k/k) choose
0o € G(k) such thafx =X-gs. We may assume that the map- g, is continuous
(locally constant) on Gé&k/k). We denote bygs; € G°'(k) the image ofg, in
G°"(k). We obtain a continuous map & ~ §g-.

Let o, 1 € Gal( (k/K). Setusr = gor(9s%0r) L € G(k), then it is easy to check
thatu,.; € H(k). We denote byis; € H™(k) the image ofu,,; in H™(k) . We
obtain a continuous mag {a, 1) ~ (g ;. One can check thdé, §) € Z(k, H™ —
G'"). We denote by) (G, X) € HY{(H™ — G°") the hypercohomology class of the
hypercocycle(d,§), seel[Bo3] for details.

Theorem 9.6. Let X be a homogeneous space under a connected k-group G with
Pic(G) = 0. LetH be a geometric stabilizer. Ther(>¢) € Ext'(UPic(X), k)
coincides with-n (G, X) € H(k, (H™" — G'°) under the identification

Extt(UPic(X),k*) = H(k, (H™ — G1)
of Propositior 9.B.
We shall prove Theorein 9.6 ligvissagen three steps, using an idea of [Bo1].

9.7. We prove Theoremn 9.6 whe is a torus. The geometric stabilizer of a point
x € X (k) does not depend ohand is defined ovek; we denote the corresponding
k-group byH. We haveG"®" = G, H™ = H. SetT = G/H, it is ak-torus, andX is
atorsor undef. We have a canonical morphism of complexes of abédtgroups
A: (H — G] — T, which is a quasi-isomorphism.
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We have a commutative diagram

Ext'(UPic(X), k) Fox H(k,(H — G])

| X

Ext(UPIC(X), k<) 22~ H(k,T)

in which all the arrows are isomorphisms. Simpé, X) is functorial in(G, X), we
see that\,(n (G, X)) = n(T,X). By [BvH2, Thm. 5.5]Br x (&(X)) = —n(T,X). It
follows thatfg x (e(X)) = —n (G, X) (becauseé\, is an isomorphism). O

9.8. Now we prove Theorein 9.6 assuming that the p@irX) satisfies the follow-
ing condition:

(23) H™ embeds inta'".

SetY = X/G*® see[[Bol, Lemma 3.1] for a proof that this quotient exists.
Then the torusG®" acts transitively orY, and it follows from our condition[(23)
that the stabilizer il6"" of any pointye Y is H™". We have a morphism of pairs

t: (G,X) — (G'",Y), which gives rise to a commutative diagram

Eth(UPi (Y),E ) ﬂ Hl(k7 <Hm - Gtor])

|t |t

ExE(UPIG(Y), k) —= Hi(k, (H™ — G)).

SinceG™ is a torus, by 917 we havBgery (e(Y)) = —n(G'",Y). The right hand
vertical mapt, is the identity map. It follows from the functoriality @&{X) and

(G, X) that B x (e(X)) = —11(G.X). O

In order to complete the proof we need a construction_of [EReGtion 4], see
also [BCS, Proof of Thm. 3.5].

Proposition 9.9. Let X be a homogeneous space of a connected k-group G over a
field k of characteristic 0. Then there exists a morphism akpa@, n): (F,Z) —
(G, X), where Z is a homogeneous space of a k-group F, with the foltpprop-
erties:

(@ F=GxP,and¢: Gx P— G is the projection, where P is a quasi-trivial
k-torus;

(b) m: Z — X is a torsor under P, where P acts on Z through the injection
P—GxP=F;

(c) the pair(F, Z) satisfies the conditio23) of §9.8.

Proof. (cf. [BCS, Proof of Thm. 3.5].) Lex € X (k) be ak-point with stabilizeH.

Letu: H —> Hmult be the canonical surjection. L&te H2(k,H™) be the image of
n(G,X) € HY(k, (H™ — G'°). By [BCS, Lemma 3.7] there exists an embedding
j: H™— P of HMinto a quasi-trivial toru$ such thatj, (&) = 0.

Consider th&k-groupF = G x P, and the embedding

H—F givenby h~ (h j(u(h))).
SetZ = H\F. We have a right actioa: Z x F — Z and anF-equivariant map
mZ—X, H-(g,p)—H-g wheregeG, pecP.
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ThenZ is a homogeneous space Bfwith respect to the actios, and the map
7. Z — X is a torsor undeP. The homomorphistM — F'" is injective.

In [Bol], 4.7] it was proved that Aﬁ!ﬂy(i) = P(k). By [Bol, Lemma 4.8] the el-
ementj, (&) € H2(k, P) is the only obstruction to the existence dé-form (Z,a, )
of the triple (Z,a,7): there exists such kform if and only if j.(¢) = 0. In our
case by construction we haje(§) = 0, hence there existskaform (Z,a, 1) of
(Z,a, 7). This completes the proof of the proposition.

Note that in[[Bol] and[[BCIS] we always assumed tHatwas connected and
had no nontrivial characters, but this assumption was ned urs the cited con-
structions. O

9.10. We prove Theorern 9.6 in the general case. Consider a morpifipairs

(¢,m): (F,Z2) = (G,X)
as in Propositiofi9]9. Since P&) = 0 andF = G x P, we have PiF) = 0. We
have a commutative diagram

Brz

Ext'(UPic(Z),k*) ——= HL(k, (H™ — F))

J{m . ltb*
Ext!(UPic(X),k*) —= HL(k,(H™ — G°1]).

Since the pait(F,Z) satisfies the conditiori_(23), by 9& 7(e(Z2)) = —n(F,Z).
It follows easily from the functoriality of(X) and n(G,X) that BGx( ( ) =
—n (G, X). This completes the proof of Theorém19.6. O

Using Theorem 916 we can give new proofs for the followingitessof [BCS].

Corollary 9.11 ([BCS, Theorem 3.5]) Let k be a p-adic field. Let X be a ho-
mogeneous space under a connected (linear) k-group G withezded geometric
stabilizers. Then X) # 0 if and only if €X) =0

Proof. By [Bol, Lemma 5.2] we may assume that (@¢ = 0. If X(k) # 0, then
clearlye(X) = 0. Conversely, ie(X) = 0, then by Theorein 9.6(G, X) =0, hence
by [Bo3, Thm. 2.1]X (k) # 0. O

Corollary 9.12 ([BCS, Theorem 3.10])Let k be a number field. Let X be a ho-
mogeneous space under a connected (linear) k-group G withemied geometric
stabilizers. Assume (X,) # O for every real place v of k. Then(K) # 0 if and

only if &X) =

Proof. Similar to the proof of Corollariy 9.11, but using [Bo3, Cor3Rinstead of
[Bo3, Thm. 2.1]. O
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