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Summary. Let Y(gl
n
) be the Yangian of the general linear Lie algebra gl

n
. Let Y(sp

n
) and

Y(son) be the twisted Yangians corresponding to the symplectic and orthogonal subalgebras
in the Lie algebra gl

n
. These twisted Yangians are one-sided coideal subalgebras in the Hopf

algebra Y(gl
n
) . We give realizations of irreducible modules of the algebras Y(sp

n
) and Y(son) ,

as certain quotients of tensor products of symmetic and exterior powers of the vector space
C

n. For the Yangian Y(gl
n
) such realizations have been known, but we give new proofs of

these results. For the twisted Yangian Y(sp
n
) , we realize all irreducible finite-dimensional

modules. For the twisted Yangian Y(son) , we realize all those irreducible finite-dimensional
modules, where the action of the Lie algebra son integrates to an action of the complex special
orthogonal Lie group SOn . Our results are based on the theory of reductive dual pairs due to
Howe, and on the representation theory of Mickelsson algebras.

0. Preface

0.1. Brief introduction

Mickelsson algebras are natural objects used for the study of Harish-Chandra modules
of real reductive Lie groups. They appeared in [M] first. Their detailed study was later
undertaken by Zhelobenko [Z1, Z2] who employed the theory of extremal projectors for
reductive Lie algebras due to Asherova, Smirnov and Tolstoy [AST]. The Mickelsson
algebras were further studied by Ogievetsky and the first named author of this article
[K, KO]. In particular, these works dealt with the extremal cocycle on the Weyl group
of any reductive Lie algebra, introduced in [Z1].

In [Z1] a Mickelsson algebra was defined by a finite-dimensional complex Lie algebra
a and its reductive subalgebra g . Following [K, KO] we define Mickelsson algebras in a
more general setting. Let us take any associative algebra A over the complex field C ,
containing the universal enveloping algebra U(g) as a subalgebra. Suppose there is a
vector subspace V ⊂ A, invariant and locally finite under the adjoint action of g , such
that the multiplication map U(g)⊗V → A is bijective. Choose a Borel subalgebra of g
with the Cartan subalgebra t and the nilpotent radical n . Take the right ideal J = nA
of the algebra A and consider the normalizer NormJ ⊂ A of this ideal. Our Mickelsson
algebra R is the quotient of the algebra NormJ by its two-sided ideal J. In the case
when A = U(a) , our R becomes the Mickelsson algebra considered in [Z1].

http://arxiv.org/abs/0912.1101v4
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Consider the ring of fractions Ā of the algebra A relative to the set of denominators
(1.3). Take the right ideal J = nĀ of the algebra Ā and its normalizer NormJ ⊂ Ā.
Then define the algebra R̄ as the quotient of NormJ by J. Unlike R, the algebra R̄
admits a rather nice description. Let n ′ be the nilpotent subalgebra of g opposite to
n . Let J ′ = An ′ and J ′ = Ān ′ be the corresponding left ideals of A and Ā. Consider
the quotient vector space Z̄ = Ā/(J + J ′) . Taking the elements of R̄ modulo J ′ defines
a map R̄ → Z̄ . This map is bijective. The multiplication in R̄ can be described in
terms of the vector space Z̄ , by using the extremal projector for g ; see Subsection 1.2.
Furthermore, according to [KO] the extremal cocycle corresponding to the Weyl group
of g determines an action of the braid group of g by automorphisms of the algebra Z̄ . We
call them the Zhelobenko automorphisms of Z̄. This braid group action is closely related
to the dynamical Weyl group action of Etingof, Tarasov and Varchenko [EV, TV1, TV2].

The adjoint action of the Lie algebra g on Ā determines an action of the Cartan
subalgebra t ⊂ g on Z̄. Consider the subalgebra of Z̄ consisting of all elements of zero
weight relative to t . The Zhelobenko automorphisms of Z̄ preserve this subalgebra, and
moreover determine on it an action of the Weyl group of g , see Subection 1.4 below.

Let G be a reductive algebraic group over C with the Lie algebra g . Suppose there
is an action of the group G by automorphisms on the algebra A, extending the adjoint
action of G on the subalgebra U(g) ⊂ A. Suppose the action of G on A preseves the
subspace V, and that the action of G on V is locally finite. Suppose the action of g on
A corresponding to that of G coincides with the adjoint action. Our joint work with
Vinberg [KNV] describes the image Q of the subalgebra of G-invariant elements AG ⊂ A
under the projection A → A/(J + J ′) . It shows that Q consists of all elements which
have weight zero relative to t , are invariant under the Zhelobenko automorphisms of
Ā/(J+J ′) , and are also invariant under certain other automorphisms arising when the
group G is not connected; see Subsection 1.5. Here A/(J+J ′) is regarded as a subspace
of Z̄ = Ā/(J + J ′) . The Zhelobenko automorphisms do not preserve this subspace in
general. Thus using the ring of fractions Ā is necessary for this description of AG.

The present work is a continuation of [KNV] and also of a series of our publications
[KN1, KN2, KN3, KN4]. The latter series has established correspondences between the
Zhelobenko automorphisms of certain algebras of the form Z̄ discussed above, and the
canonical interwining operators of tensor products of representations of Yangians. These
are the Yangian Y(gln) of the general linear Lie algebra gln , and its twisted analogues
Y(spn) and Y(son) corresponding to the symplectic and orthogonal subalgebras spn and
son of gln . For an introduction to these Yangians see the recent book [M2]. The Yangian
Y(gln) is a Hopf algebra while the twisted Yangians Y(spn) and Y(son) are one-sided
coideal subalgebras of Y(gln) . These Yangians admit homomorphisms to the rings of
the form AG discussed above. Moreover, together with the subalgebra U(g)G ⊂ AG , the
image of each of these homomorphisms generates the corresponding ring of invariants
AG . These homomorphisms first arose in the works of Olshanski [O1, O2] and are also
discussed in our Subsection 4.3. Another connection between the works [O1, O2] and the
theory of Mickelsson algebras was used by Molev to construct weight bases of irreducible
finite-dimensional modules of the Lie algebras spn and son ; see for instance [M2].

In the present work we combine the results of [KN1, KN2, KN3, KN4, KNV] to give
realizations of irreducible representations of the twisted Yangians. In particular, every
irreducible finite-dimensional module of the twisted Yangian Y(spn) will be realized,
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up to changing the action of the centre of this algebra, as the image of an intertwining
operator between representations of Y(spn) in tensor products of exterior powers of Cn .
For the Yangian Y(gln) , such realizations have been provided by the works of Akasaka
and Kashiwara [AK] and of Cherednik [C2]. Our work gives new proofs of these results
for Y(gln) . For the twisted Yangian Y(son) , the images of our intertwining operators
realize, up to changing the action of the centre of Y(son) , all those irreducible finite-
dimensional modules, where the action of the subalgebra U(son) ⊂ Y(son) integrates to
an action of the complex special orthogonal Lie group SOn .

Now let U(g) ⊂ A be an arbitrary pair as described above. Let A0 be the zero weight
component of the algebra A relative to the adjoint action of t . We denote by S the
subalgebra in Z̄ generated by the image of A0 ⊂ Ā under the projection Ā → Z̄ . Then
Q ⊂ S by definition. For any weight λ ∈ t∗ let N be an irreducible S-module whereon
the subalgebra U(t) ⊂ S acts via the mapping λ : t → C , extended to a homomorphism
U(t) → C . Then our Proposition 1.6. gives sufficient conditions for irreducibility of the
restriction of N to the subalgebra Q ⊂ S. One of the conditions is that the weight λ+ρ
is nonsingular. Here ρ denotes the half-sum of positive roots, and nonsingularity means
that the value of λ+ ρ on any positive coroot vector of t is not a negative integer.

Our results on irreducibility of representations of the Yangians Y(gln) , Y(spn) and
Y(son) are based on Proposition 1.6. By using the homomorphism AG → Q determined
by the projection A → A/(J + J ′) , any irreducible Q-module becomes an irreducible
module over the algebra AG . By using the homomorphisms from the Yangians to the
algebras of the form AG, we then obtain irreducible representations of these Yangians.

Proposition 1.6 is the main result of Section 1. In that section we also collect several
other results on the algebra Z̄ corresponding to an arbitrary pair U(g) ⊂ A. Below we
describe the contents of all other sections of our article in more detail.

0.2. Overview of Section 2

In this article, we employ the theory of reductive dual pairs due to Howe [H1]. Namely,
we use the pairs (G ,G′) of complex reductive algebraic groups from the following list:

(GLm ,GLn) , (O2m ,Spn) , (Sp2m ,On) , (Sp2m ,Spn) , (O2m ,On) . (0.1)

It is the Lie algebra g′ of the group G′ dual to G that will determine our Yangian Y(g′) .
We will employ both the symmetric and skew-symmetric versions of the Howe duality.
Let U be the tensor product Cm ⊗ Cn of vector spaces. The group G′ = GLn ,Spn ,On

acts on U naturally, via its defining action on C
n . In the symmetric case, this action of G′

is extended from U to the Weyl algebra of U . The subalgebra of G′ -invariant elements
in the Weyl algebra then becomes a homomorphic image of the universal enveloping
algebra U(g) where g is the Lie algebra of G = GLm ,O2m ,Sp2m respectively. In the
skew-symmetric case, the action of G′ on U is extended from U to the Clifford algebra
of U . Then the subalgebra of G′ -invariant elements in the Clifford algebra becomes
a homomorphic image of U(g) where g is the Lie algebra of G = GLm ,Sp2m ,O2m

respectively. Thus the first pair in the list (0.1) appears in both the symmetric and
skew-symmetric cases, the next two pairs appear only in the symmetric case, while the
last two pairs appear only in the skew-symmetric case.
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We will denote by H(U) either the Weyl or the Clifford algebra, and will distinguish
the symmetric and the skew-symmetric cases by using a parameter θ which equals 1 or
−1 respectively. The homomorphism U(g) → H(U) will be denoted by ζ . Our algebra
A will be the tensor product U(g)⊗H(U) . The algebra U(g) will be embedded into this
tensor product diagonally: any element X ∈ g will be identified with the element (2.6) of
A. The subspace V ⊂ A will be then 1⊗H(U) . The group G acts by automorphisms of
the algebra H(U) , and the corresponding action of g on H(U) coincides with the adjoint
to ζ . Thus we get a (diagonal) action of the group G by automorphisms of the algebra
A, obeying the assumptions from the beginning of this section. In Subsection 2.1 we
summarize the properties of the homomorphism ζ : U(g) → H(U) that we will use.

In Subsection 2.2 we introduce our main tool, the Shapovalov form on the algebra Z̄
corresponding to A = U(g) ⊗ H(U) . It takes values in the ring of fractions U(t) of the
algebra U(t) relative to the set of denominators (1.3). The algebra H(U) is generated by
its two subspaces, U and the dual U∗ . Let P(U) be the subalgebra of H(U) generated by
the subspace U . Then P(U) is the symmetric algebra of U when θ = 1, or the exterior
algebra of U when θ = −1. For any µ ∈ t∗ let Mµ be the corresponding Verma module
of the Lie algebra g . There is a unique weight κ ∈ t∗ satisfying the condition (2.12).
This weight is zero if g = glm , but differs from zero if g = sp2m or g = so2m .

In Subsection 2.3 we take the space of n-coinvariants of the g-module Mµ ⊗ P(U) .
This space is denoted by Mµ . It is identified with a quotient space of the algebra A by
the right ideal J and by a certain left ideal depending on µ , see the definition (2.14).
If the weight µ + κ is generic, that is if the value of µ + κ on any coroot vector of t is
not an integer, then the U(t) -valued Shapovalov form on Z̄ defines a C -valued bilinear
form on Mµ . The latter form is denoted by Sµ . Proposition 2.3 relates the form Sµ to
the extremal projector for the Lie algebra g .

In Subsection 2.4 for any λ ∈ t∗ we take the subspace of weight λ in the space Mµ .
This subspace is denoted by Mλ

µ . If µ+ κ is generic, then we define a C -valued bilinear

form Sλ
µ on the subspace Mλ

µ ⊂ Mµ as the restriction of the form Sµ . Letting the weights

λ and µ vary while the difference λ− µ is fixed, we extend the definition of Sλ
µ to all µ

such that λ+ ρ is nonsingular, by continuity. Thus here the weight µ+ κ needs not to
be generic. This extension of Sλ

µ corresponds to the fusion procedure of Cherednik [C2],
see below for an explanation of this correspondence. Our Proposition 2.6 states that the
quotient of Mλ

µ by the kernel of the bilinear form Sλ
µ is an irreducible S-module. This is

the main result of Section 2. It shows that under the extra conditions of Proposition 1.6
the quotient of Mλ

µ by the kernel of Sλ
µ is an irreducible Q-module, see Corollary 2.7.

In Subsection 2.5 we give another construction of irreducible Q-modules, by using
the general results on the Mickelsson algebras from our Subsection 1.6. Let Lµ be the
quotient of the Verma moduleMµ by its maximal proper submodule Nµ . Take the space
of n-coinvariants of weight λ of the g-module Lµ⊗P(U) . We denote this space by Lλ

µ . If

λ+ρ is nonsingular, then Lλ
µ is an irreducible S-module. Moreover, then under the extra

conditions of Proposition 1.6 the space Lλ
µ is an irreducible Q-module, see Corollary 2.8.

Note that then Lλ
µ is an irreducible AG -module by Proposition 1.5. Thus we extend the

results of Harish-Chandra [H] and of Lepowski and McCollum [LM].
Now take the space of n-coinvariants of weight λ of the g-module Nµ ⊗ P(U) . We

denote this space by Nλ
µ . Then Lλ

µ can be regarded as the quotient of the space of Mλ
µ

by its subspace Nλ
µ . In the case when λ+ρ is nonsingular while µ satisfies the conditions
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of Proposition 2.9, the subspace Nλ
µ ⊂ Mλ

µ coincides with the kernel of the form Sλ
µ .

Hence the quotient of Mλ
µ by the kernel of Sλ

µ coincides with Lλ
µ in this case. For each

pair (G ,G′) from the list (0.1), weights µ satisfying the conditions of Proposition 2.9
will be produced later on, in Section 4.

0.3. Overview of Section 3

In Section 3 we give another interpretation of the quotient space of Mλ
µ by the kernel of

Sλ
µ , for any µ and nonsingular λ+ ρ . The extremal cocycle corresponding to the Weyl

group S of g determines not only an action of the braid group of g by automorphisms
of the algebra Z̄ , but also an action of the same braid group by linear operators on the
vector space Ā/J. We call them the Zhelobenko operators on Ā/J, see Subection 1.4.
Throughout this article the symbol ◦ indicates the shifted action of the group S on t∗,
see (1.2). Again suppose that the weight µ+ κ is generic. Then the quotient space Mµ

of A can be identified with the quotient space of Ā by the right ideal J and by a certain
left ideal. In Subsection 3.1 we describe the image of the quotient Mµ of Ā under the
action of the Zhelobenko operator ξ̌σ on Ā/J, corresponding to any element σ ∈ S . If
g = glm then this image can be identified with Mσ◦µ . But if g = sp2m or g = so2m then
our description of the image is more involved, see Corollary 3.4. For g = glm this result
was obtained in [KN1, KN2]. For g = sp2m or g = so2m it was obtained in [KN3, KN4].
In Subsection 3.1 we give a new proof of this result, uniform for all these g .

For generic µ+ κ the operator ξ̌σ on Ā/J maps the subspace Mλ
µ ⊂ Mµ of weight λ

to the subspace of weight σ ◦λ in the image of Mµ . Our Proposition 3.5 relates this map
to the extremal projector for g . Letting the weights λ and µ vary while their difference
λ−µ is fixed, we extend the definition of this map to all µ such that λ+ρ is nonsingular,
again by continuity; see Corollary 3.6. Thus the weight µ + κ needs not to be generic
anymore. Yet if µ+ κ is not generic then the operator ξ̌σ on Ā/J does not necessarily
define any map on the whole space Mµ . In Subsection 3.3 we consider the operator ξ̌σ0

where σ0 is the longest element of S . Our Proposition 3.7 states that the kernel of the
corresponding map of Mλ

µ coincides with the kernel of the bilinear form Sλ
µ , for any µ

and nonsingular λ + ρ . The proof is based on Propositions 2.3 and 3.5. Corollary 2.7
then implies that the quotient space of Mλ

µ by the kernel of the map defined by ξ̌σ0
is

an irreducible Q-module, under the extra conditions of Proposition 1.6. Moreover, then
by Proposition 1.5 this quotient space of Mλ

µ is an irreducible AG -module. These are
the main results of Section 3, they are stated as Theorem 3.8 and Corollary 3.9.

0.4. Overview of Section 4

In Section 4 we apply the results of Section 3 to the representation theory of the Yangians
Y(g′) where g′ = gln ,spn ,son according to (0.1). In Subsection 4.1 we fix realizations of
the groups G and G′ appearing in (0.1), and define the corresponding homomorphisms
ζ : U(g) → H(U) . In Subsection 4.2 we recall the definitions of the Yangian Y(gln) and
the twisted Yangians Y(spn),Y(son) . The latter two are defined as certain subalgebras
of Y(gln) . Their definition implies that they are also right coideals of Y(gln) , see (4.22).

The twisted Yangians Y(spn),Y(son) can also be defined in terms of generators and
relations, see (4.14) and (4.18). The collection of all relations (4.14) can be written as
the reflection equation, introduced by Cherednik [C1] and Sklyanin [S]. The algebras
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defined by the relations (4.14) only, that is without imposing the relations (4.18), are
called the extended twisted Yangians. They are denoted by X(spn),X(son) respectively.
Thus for g′ = spn ,son we have a surjective homomorphism X(g′) → Y(g′) . Its kernel
is generated by certain central elements of X(g′) , see Subsection 4.2 for their definition.

In Proposition 4.1 for A = U(glm)⊗H(U) and θ = 1,−1 we define a homomorphism
Y(gln) → AGLm . Its image and the subalgebra U(glm)GLm ⊗ 1 ⊂ A together generate
AGLm . It is related to the homomorphism Y(gln) → U(gln+l)

GLl defined for l = 1, 2, . . .
by Olshanski [O1]. It is also related to the Cherednik functor studied by Arakawa and
Suzuki [AS] and to the Drinfeld functor [D1]. We explained the relations in [KN1, KN2].

Now consider any pair (G ,G′) from the list (0.1) other than the pair (GLm ,GLn) .
In Proposition 4.2 for A = U(g) ⊗ H(U) we define a homomorphism X(g′) → AG. Its
image together with the subalgebra U(g)G ⊗ 1 ⊂ A generate AG. This homomorphism
is related to the homomorphisms Y(spn) → U(spn+2l)

Sp2l and Y(son) → U(son+l)
Ol

defined for any l = 1, 2, . . . by Olshanski [O2]. We explained the relation in [KN3, KN4].
To prove our Propositions 4.1 and 4.2 we use the classical invariant theory, like Molev
and Olshanski [MO] did when studying the homomorphisms defined in [O1, O2].

For any g′ = gln ,spn ,son the algebra Y(g′) contains the universal enveloping algebra
U(g′) as a subalgebra, and admits a homomorphism Y(g′) → U(g′) identical on that
subalgebra. For g′ = gln this fact has been well known, see for instance the seminal work
of Kulish, Reshetikhin and Sklyanin [KRS]. For g′ = spn ,son this is another result from
[O2]. If θ = 1 then denote by Φk the k th symmetric power of the defining gln-module
Cn . If θ = −1 then denote by the same symbol Φk the k th exterior power of the gln-
module Cn . Using the homomorphism Y(gln) → U(gln) , regard Φ

k as a module over
the Yangian Y(gln) . For any t ∈ C denote by Φk

t the Y(gln)-module obtained by pulling
the Y(gln)-module Φk back through the automorphism (4.6) where z = θ t .

The definition of the Hopf algebra Y(gln) employs a certain n× n matrix T (x) . The
entries of this matrix are formal power series in x−1 where x is the spectral parameter .
The coefficients of these series are generators of Y(gln) . For G

′ = Spn or G′ = On we

denote by T̃ (x) the transpose to the matrix T (x) relative to the bilinear form on C
n

preserved by the subgroup G′ ⊂ GLn . Then the assignment (4.12) defines an involutive
automorphism of the algebra Y(gln) . For any non-negative integer k we denote by Φ−k

t

the Y(gln)-module obtained by pulling the Φk
t back through the automorphism (4.12).

By definition, for g′ = spn ,son the subalgebra Y(g′) ⊂ Y(gln) is generated by the

coefficients of the series in x which arise as the entries of the n×n matrix T̃ (−x)T (x) .
It turns out that if g′ = spn and θ = 1, or if g′ = son and θ = −1, then the restriction
of the above defined Y(gln)-module Φ−k

t to the subalgebra Y(g′) ⊂ Y(gln) coincides
with the restriction of the Y(gln)-module Φk

t . Both cases correspond to g = so2m . For
further explanation of this phenomenon, see the end of Subsection 4.4.

For any pair (G ,G′) from the list (0.1) and for any weights λ,µ ∈ t∗ the subspace Mλ
µ

of the quotient Mµ of the algebra A is a module over the subalgebra AG by definition.
For (G ,G′) = (GLm ,GLn) by using the homomorphism Y(gln) → AGLm we can regard
Mλ

µ as a module over the algebra Y(gln) . If non-zero, this Y(gln)-module is equivalent

to a tensor product of certain modules of the form Φk
t . This is stated as Proposition 4.3,

see [KN1, KN2] for the proof. Here we use the comultiplication (4.10) on Y(gln) .
For any other pair (G ,G′) from (0.1), we can regard Mλ

µ as a module of the algebra

X(g′) by using the homomorphism X(g′) → AG. If non-zero, this X(g′)-module is also
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equivalent to a tensor product of certain modules of the form Φk
t , pulled back through

an automorphism (4.15) of X(g′) . This is a particular case of our Proposition 4.5, see
[KN3, KN4] for the proof of that proposition. Here we first take the tensor product of the
Y(gln)-modules Φk

t , then restrict the tensor product to the subalgebra Y(g′) ⊂ Y(gln) ,
and then use the homomorphism X(g′) → Y(g′) mentioned above. Equivalently, we can
use the right Y(gln)-comodule structure on the algebra X(g′) ; see Subsection 4.2.

Now suppose λ+ ρ is nonsingular, while µ is arbitrary. Consider again the mapping
of the weight subspace Mλ

µ defined by the Zhelobenko operator ξ̌σ0
on Ā/J. In the case

(G ,G′) = (GLm ,GLn) by replacing Mλ
µ by an equivalent Y(gln)-module we obtain an

intertwining operator from a tensor product of Y(gln)-modules of the form Φk
t . The

target module of this operator can be identified with the tensor product of the same
Y(gln)-modules Φk

t as for the source module, but taken in the reversed order; see (4.49).
The quotient by the kernel, or equivalently the image of this intertwining operator is an
irreducible Y(gln)-module due to Corollary 3.9 and Proposition 4.1.

In the case (G ,G′) = (GLm ,GLn) we can regard the quotient space Lλ
µ of Mλ

µ as an

Y(gln)-module. The Yangian Y(gln) acts on Mλ
µ and hence on Lλ

µ via the homomorphism

Y(gln) → AGLm . If λ+ρ is nonsingular, then the Y(gln)-module Lλ
µ is irreducible for any

µ , see Subsection 4.6. Moreover, then the conditions of Proposition 2.9 are satisfied, if
for each positive root α of glm the number zα defined just before stating Proposition 4.4,
is not zero. Under these conditions, the image of our intertwining operator (4.49) is not
zero, and is equivalent to Lλ

µ as Y(gln)-module. Thus we extend the results of [AS].

Now take a pair (G ,G′) from the list (0.1) other than (GLm ,GLn) . By replacing Mλ
µ

by an equivalent X(g′)-module we again obtain an intertwining operator from a certain
tensor product of modules of the form Φk

t . The target module of this operator can
be identified with the tensor product of the modules Φ−k

t corresponding to the tensor
factors Φk

t of the source module, and taken in the same order; see (4.58). Here we need
not to apply to the source and the target X(g′)-modules the automorphisms (4.15),
because by Proposition 4.5 these automorphisms are the same for the source and for
the target. Hence we may also regard both the source and the target as Y(g′)-modules.
Note that if g = so2m , then instead of the first tensor factor Φ−k

t of the target we can
use Φk

t as well; see (4.59). This is because for g = so2m the restrictions of Φk
t and Φ−k

t

to the subalgebra Y(g′) ⊂ Y(gln) coincide, and because we regard this subalgebra as a
right coideal to define the tensor products.

If G = Sp2m then by Corollary 3.9 and Proposition 4.2 the image of our intertwining
operator (4.58) is an irreducible Y(g′)-module for both θ = 1 and θ = −1, that is for
both g′ = son and g′ = spn . But if G = O2m then our Corollary 3.9 and Proposition 4.2
imply Y(g′)-irreducibility of the image only under an extra condition, that the stabilizer
of the weight λ+ ρ in the extended Weyl group of g = so2m is contained in the proper
Weyl group. In Subsection 4.5 we remove this extra condition, but only for θ = −1,
that is only for g′ = son . Namely, for G = O2m and θ = −1 we prove that the image
of our intertwining operator is irreducible under the joint action of the algebra Y(son)
and the group On . Moreover, if n is odd then the image is irreducible under the action
of Y(son) alone. But if n is even then the image is either an irreducible Y(son)-module,
or is a direct sum of two non-equivalent irreducible Y(son)-modules; see Corollary 4.9.

Now let (G ,G′) again be any pair from the list (0.1) other than (GLm ,GLn) . Regard
the quotient space Lλ

µ of Mλ
µ as X(g′)-module. The extended twisted Yangian X(g′) acts
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on Mλ
µ and hence on Lλ

µ via the homomorphism X(g′) → AG . In Subsection 4.6 we derive

the same irreducibilty properties of the X(g′)-module Lλ
µ , as described above for the

image of our operator (4.58). Suppose that λ + ρ is nonsingular. If G = Sp2m then
Lλ
µ is an irreducible X(g′)-module for both g′ = son and g′ = spn . If G = O2m then

the X(g′)-module Lλ
µ is irreducible under an extra condition, that the stabilizer of the

weight λ + ρ in the extended Weyl group of g = so2m is contained in the proper Weyl
group. If G = O2m and θ = −1 then Lλ

µ is irreducible under the joint action of X(son)

and On . Moreover, if n is odd then Lλ
µ the image is irreducible under the action of the

algebra X(son) alone. But if n is even then Lλ
µ is either an irreducible X(son)-module,

or is a direct sum of two non-equivalent irreducible X(son)-modules.
Let (G ,G′) once again be any pair from (0.1) other than (GLm ,GLn) . Let λ+ ρ be

nonsingular. When θ = −1 or n = 1, the conditions of Proposition 2.9 are satisfied if
for each positive root α of g the number zα defined just before stating Proposition 4.6,
is not zero. When θ = 1 and n > 1, the conditions of Proposition 2.9 are satisfied if zα
is not zero for each compact positive root α of g . Under these conditions, the image of
our intertwining operator (4.58) is not zero, and is equivalent to Lλ

µ as X(g′)-module.

Moreover, then the image is equivalent to Lλ
µ under the joint actions of X(g′) and G′ .

In Subsection 4.7 we once again consider the Y(g′)-intertwining operators (4.49)
and (4.58), for g′ = gln and g′ = spn ,son respectively. We show that the target Y(g′)-
modules of these operators are dual to the source modules. We also show how this duality
arises from the theory of Mickelsson algebras, when the weight λ+ ρ is nonsingular.

0.5. Overview of Section 5

In Section 5 we use our intertwining operators (4.49) and (4.58) to give realizations of
irreducible representations of the Yangian Y(gln) and of the twisted Yangians Y(spn),
Y(son) . We call two Y(gln)-modules similar if they differ only by an automorphism
(4.7) of Y(gln) , where g(x) is any formal power series in x−1 with coefficients from C

and leading term 1. Up to equivalence and similarity, the irreducible finite-dimensional
Y(gln)-modules were classified by Drinfeld [D2], who generalized the classification given
for n = 2 by Tarasov [T1, T2]. It was then proved by Akasaka and Kashiwara [AK] that
any of these modules can be realized as a quotient of a tensor product of Y(gln)-modules
of the form Φk

t with θ = −1; see also the work of Chari and Pressley [CP]. Further results
were obtained by Chari [C] and by Brundan and Kleshchev [BK]. Note that the works
[AK] and [C] deal with representations of quantum affine algebras. For a connection to
the representation theory of Yangians see the work of Molev, Tolstoy and Zhang [MTZ].

In Subsection 5.1 we give new proofs of the results from [AK] for Y(gln) . Namely, we
prove that up to equivalence and similarity, any irreducible finite-dimensional Y(gln)-
module arises as the quotient by the kernel of intertwining operator (4.49) for θ = −1,
some m and certain weights λ,µ of glm . Here the weight λ + ρ is nonsingular, that is
satisfies the conditions (5.1). The difference ν = λ−µ satisfies the conditions (5.2), which
come from Proposition 4.4. This proposition was obtained in [KN1, KN2] and gives an
explicit formula for the image under the operator (4.49) of a certain distinguished vector,
called highest. For θ = −1 the conditions (5.2) guarantee that the image is not zero;
see Theorem 5.1.
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Now consider the twisted Yangians Y(g′) where g′ = spn ,son . Any automorphism
(4.7) of Y(gln) determines an automorphism of the subalgebra Y(g′) ⊂ Y(gln) . We
call two Y(g′)-modules similar if they differ only by such an automorphism. Up to
equivalence and similarity, the irreducible finite-dimensional Y(g′)-modules have been
classified by Molev; see [M2] for an exposition of the classification. No explicit realization
of these Y(g′)-modules had been known so far in general. It is provided by our results.
Thus we extend the works of Molev [M1] and the second named author of this article [N]
which give explicit realizations of irreducible Y(g′)-modules from a particular class.

In Subsection 5.3 we prove that up to equivalence and similarity, any irreducible
finite-dimensional Y(spn)-module arises as the quotient by the kernel of the intertwining
operator (4.58) for θ = −1, some m and certain weights λ,µ of sp2m . Here the weight
λ+ ρ is nonsingular, that is satisfies the conditions (5.9),(5.10) and (5.11). The weight
ν = λ−µ−κ of sp2m satisfies the conditions (5.12),(5.13) and (5.14); see Theorem 5.3.

Recall that the twisted Yangian Y(son) contains U(son) as a subalgebra. We shall
call a finite-dimensional module over the algebra Y(son) an (Y(son),On)-module, if the
group On also acts on this module, and the corresponding action of the Lie algebra son
of On on this module coincides with the action obtained by restricting the action of
Y(son) to the subalgebra U(son) . If n is odd then any irreducible (Y(son),On)-module
is also irreducible over Y(son) . But if n is even then any (Y(son),On)-module is either
irreducible over Y(son) , or splits into a direct sum of two irreducible Y(son)-modules,
not equivalent to each other. The irreducible Y(son)-modules occuring in this way for
any n are all those whose restriction to the subalgebra U(son) ⊂ Y(son) integrates to a
module of the special orthogonal group SOn ⊂ On .

In Subsections 5.4 and 5.5 we prove that up to equivalence and similarity, any finite-
dimensional irreducible (Y(son),On)-module arises as the quotient by the kernel of the
intertwining operator (4.58) for θ = −1, some m and certain weights λ,µ of so2m . Here
λ+ρ is nonsingular, that is satisfies the conditions (5.16),(5.17). The weight ν = λ−µ−κ
of so2m satisfies the conditions (5.18),(5.19); see Theorems 5.4 and 5.5.

Here for both g′ = spn ,son the weight κ of g = sp2m ,so2m respectively is defined by
(2.12). The above mentioned conditions on the weight ν of g come from Proposition 4.6.
This proposition was obtained in [KN3, KN4] and gives an explicit formula for the
image under the operator (4.58) of a certain distinguished vector, again called highest.
For θ = −1 our conditions on ν guarantee that the image is not zero. The notion of a
highest vector relative to Y(g′) for g′ = spn ,son is discussed in Subsection 5.2.

1. Mickelsson algebras

1.1. Generalities

Let g be any reductive complex Lie algebra of semisimple rank r . Choose a triangular

decomposition

g = n⊕ t⊕ n ′ (1.1)

where t is a Cartan subalgebra, while n and n ′ are the nilpotent radicals of two opposite
Borel subalgebras of g containing t . Consider the root system of g in t∗. The set of the
positive roots of g will be denoted by ∆+ .
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Let α1 , . . . , αr ∈ ∆+ be simple roots. For each c = 1 , . . . , r let Hc = α∨
c ∈ t be the

coroot corresponding to the simple root αc , Let Ec ∈ n ′ and Fc ∈ n be the root vectors
corresponding to the roots αc and −αc . We suppose that [Ec ,Fc] = Hc . Let ε be a
Chevalley anti-involution on g . This is an involutive anti-automorphism of g identical
on t , such that for every c = 1 , . . . , r one has ε(Ec) = εc Fc and ε(Fc) = ε−1

c Ec for some
non-zero εc ∈ C .

Let S be the Weyl group of the root system of g . Let σ1 , . . . , σr ∈ S be the reflections
in t∗ corresponding to the simple roots α1 , . . . , αr . We also use the induced action of
the Weyl group S on the vector space t . It is defined by setting λ(σ(H)) = σ−1(λ)(H)
for all σ ∈ S, H ∈ t and λ ∈ t∗. Let ρ ∈ t∗ be the half-sum of the positive roots. Then
the shifted action ◦ of the group S on the vector space t∗ is defined by setting

σ ◦ λ = σ(λ+ ρ)− ρ. (1.2)

It induces an action ◦ of S on the commutative algebra U(t) , by regarding the elements
of this algebra as polynomial functions on t∗. In particular, then (σ◦H)(λ) = H(σ−1◦λ)
for H ∈ t . For any left g-module K and any λ ∈ t∗ we will denote by Kλ the subspace
of weight λ in K ; we have v ∈ Kλ if and only if Hv = λ(H) v for every H ∈ t .

Let A be any complex associative algebra, containing as a subalgebra the universal
enveloping algebra U(g) . Suppose there is also a vector subspace V ⊂ A, invariant under
the adjoint action of the Lie algebra g on A, such that:

(a) the multiplication map U(g)⊗ V → A : X ⊗ Y 7→ X Y is bijective;
(b) the multiplication map V ⊗U(g) → A : Y ⊗X 7→ Y X is bijective;
(c) the space V is locally finite relative to the adjoint action of g .

Since the subspace V ⊂ A is invariant under the adjoint action of g, the conditions (a)
and (b) are equivalent. The condition (c) means that V can be decomposed into direct
sum of irreducible finite-dimensional g-modules. Since the adjoint action of g on U(g)
is locally finite, due to (c) the same is true for the adjoint action of g on A.

Let J be the right ideal of the algebra A generated by the elements of the subalgebra
n ⊂ g . Let Norm J ⊂ A be the normalizer of this right ideal, so that Y ∈ Norm J if and
only if Y J ⊂ J. Then J is a two-sided ideal of Norm J. The quotient algebra

R = NormJ/J

is called a Mickelsson algebra. By definition, the algebra R acts on the space K/nK of
n-coinvariants of any left A-module K . This space itself will be denoted by Kn .

Recall that U(g) ⊂ A. Hence we have U(t) ⊂ Norm J. It follows that the Mickelsson
algebra R also contains U(t) as subalgebra. Due to the condition (a) above, R is a torsion
free module over U(t) relative to the left multiplication. The condition (b) implies that
R is a torsion free module over U(t) relative to the right multiplication,

For each root α ∈ t∗ let Hα = α∨ ∈ t be the corresponding coroot. The Weyl group
S acts on the vector space t so that σ : Hα 7→ Hσ(α) for any σ ∈ S . Denote by U(t) the
ring of fractions of the commutative algebra U(t) relative to the set of denominators

{Hα + z | α ∈ ∆+ , z ∈ Z } . (1.3)

The elements of this ring can be regarded as rational functions on the vector space t∗ .
The elements of U(t) ⊂ U(t) are then regarded as polynomial functions on t∗ . LetU(g)



Mickelsson algebras and representations of Yangians 11

be the ring of fractions of the algebra U(g) relative to the same set of denominators
(1.3). This ring is well defined, because U(g) satisfies the Ore condition relative to (1.3).

Now regard (1.3) as a subset of A using the embedding of t ⊂ g . Due to the conditions
(a,b,c) the algebra A also satisfies the Ore condition relative to its subset (1.3). Let Ā
be the ring of fractions of A relative to the same set of denominators (1.3). Then Ā is
a free left and free right U(t) -module, which contains A as a subalgebra.

Denote by J the right ideal of the algebra Ā generated by the elements of n . Consider
the normalizer Norm J ⊂ A of this right ideal. This normalizer coincides with the ring
of fractions of Norm J relative to the same set of denominators (1.3) as before. Now J
is a two-sided ideal of Norm J. The quotient algebra

R̄ = NormJ/J

bears the same name of Mickelsson algebra, as the quotient algebra R does. Note that
J ∩ A = J, because the subalgebra t ⊂ g normalizes the subalgebra n ⊂ g . Hence the
natural embedding A → Ā determines an embedding R → R̄ .

1.2. Double coset algebra

For each positive root α ∈ ∆+ let Eα ∈ n ′ and Fα ∈ n be the corresponding root
vectors. In paricular, for any simple root α = αc we have Eα = Ec and Fα = Fc . For
any weight λ ∈ t∗ consider the infinite sum

Pα[λ] = 1 +

∞∑

s=1

(−1)s
(
s! (Hα + λ(Hα) + 1) . . . (Hα + λ(Hα) + s)

)−1
F s
α E

s
α (1.4)

where the denominators do not belong to the set (1.3) in general. The sum belongs to
certain algebra which contains U(g) and needs not to be defined here; see [Z2, Section 1].
Take σ ∈ S and any reduced decomposition σ = σdl

. . . σd1
. Here l is the length of σ.

Any such a decomposition defines a normally ordered sequence of positive roots:

β1 = αd1
, β2 = σd1

(αd2
) , . . . , βl = σd1

σd2
. . . σdl−1

(αdl
) .

The product
Pσ [λ] = Pβl

[λ] . . . Pβ1
[λ]

in the above mentioned algebra does not depend on the choice of a decomposition; see
[Z2, Section 2]. Let σ0 be the longest element of the Weyl group S . Put P [λ] = Pσ0

[λ] .
The element P = P [λ] with λ = ρ is called the extremal projector for the reductive

Lie algebra g ; its definition is due to Asherova, Smirnov and Tolstoy [AST]. The element
P can be presented as an infinite sum of elements of the algebra U(g) . Thus it belongs to

a certain completion Ũ(g) of the latter algebra; the completion needs not to be defined
here. Below are the basic properties of the extremal projector:

P 2 = P ; (1.5)

EαP = 0 and P Fα = 0 for α ∈ ∆+ ; (1.6)

P ∈ 1 + n Ũ(g) and P ∈ 1 + Ũ(g) n ′. (1.7)
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For the proofs of (1.5) and (1.6) see [AST] and [Z2, Section 3]. The two properties (1.7)
follow directly from the definition (1.4), which also implies that ε(P ) = P . Moreover,

P ∈ 1 +
∞∑

s=1

ns U(g) and P ∈ 1 +
∞∑

s=1

U(g)(n ′ )s . (1.8)

Now let J ′ be the left ideal of A generated by elements of n ′. Similarly, let J ′ be the
left ideal of Ā generated by elements of n ′. First consider the double coset vector space

Z = A/(J + J ′) ,

where the quotient is taken by a left and a right ideal. Since the Cartan subalgebra
t ⊂ g normalizes the subalgebras n and n ′, the left and right multiplications in A by
the elements of the algebra U(t) make the vector space Z a U(t)-bimodule. Relative to
the adjoint action of t on Z, we have a weight decomposition

Z = ⊕
λ∈t∗

Zλ . (1.9)

Next consider the double coset vector space

Z̄ = Ā/(J + J ′) .

This vector space is a bimodule over the algebraU(t). Since (J + J ′) ∩ A = J + J ′ , the
natural embedding A → Ā determines an embedding of U(t)-bimodules Z → Z̄ . Let us
now equip the vector space Z̄ with a binary operation ⋄ defined by setting

X ⋄ Y = XP Y for X ,Y ∈ Z̄ .

We first define the coset XP Y ∈ Z̄ in the case when X ,Y ∈ Z by using the relations
(1.6). Although P is an infinite sum of elements of U(g), the condition (c) implies that
only finitely many summands of XP Y are non-zero cosets in Z̄ in this case. Here we use
(1.8). This definition of XP Y extends to any cosets X ,Y ∈ Z̄ by U(t)-linearity. Note
that each summand of P commutes with every element of the subalgebra U(t) ⊂ U(g).

So Z̄ becomes an associative algebra over C . We call it the double coset algebra. The
quotient space Ā/J is a left Z̄ -module relative to an action, denoted by ⋄ too, defined by

X ⋄ Z = XP Z for X ∈ Z̄ and Z ∈ Ā/J . (1.10)

Recall that R ⊂ R̄ ⊂ Ā/J. Now let π : Ā/J → Z̄ be the canonical projection, so that

π(A+ J) = A+ J + J ′ for A ∈ Ā .

Proposition 1.1. (i) The restriction of π to R is a monomorphism of algebras.

(ii) The restriction of π to R̄ is an isomorphism of algebras R̄ and Z̄.

Proof. The properties (1.6) of P imply that the assignment X → XP defines a map
Z̄ → R̄ . Namely, the first of the properties (1.6) implies that the double coset X ∈ Z̄
gets mapped to a single coset in Ā/J. The second property implies that the latter coset
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belongs to R̄ . Although P is an infinite sum of elements of U(g), by (1.8) the condition
(c) implies that only finitely many summands of XP are non-zero cosets in Ā/J.

Let us denote by π∗ this map from Z̄ to R̄. Further, denote by π∗ the restriction to
R̄ of the projection map π : Ā/J → Z̄ . The first property in (1.7) implies the equality

XP = X for any X ∈ R̄ . (1.11)

Hence the composition π∗π∗ is the identity map on R̄. The equality (1.11) also implies
that π∗ is a homomorphism of algebras. Finally, the second property in (1.7) implies
that the composition π∗π

∗ is the identity map on Z̄. Thus we get (ii), and hence (i). ⊓⊔

Thus the algebra Z̄ contains as a subalgebra a copy π(R) of the algebra R. It also
contains as a subalgebra a copy of another Mickelsson algebra, defined as a quotient of
normalizer of the left ideal J ′ ⊂ A relative to this ideal. However, the latter quotient
algebra will not be used in this article. Note that both algebras R̄ and Z̄ act on the
quotient vector space Ā/J. Here R̄ acts via left multiplication from the algebra Ā, while
the action of Z̄ is defined by (1.10). The proof of Proposition 1.1 also demonstrates that
the isomorphism π : R̄ → Z̄ identifies these two actions.

The algebra Z̄ containsU(t) as a subalgebra and is free both as a left and as a right
module over it. Further, there is a weight decomposition of Z̄ relative to the adjoint
action of t on Z̄, similar to (1.9). The zero weight component Z̄0 is a subalgebra of Z̄ .
The algebra Z̄0 has several natural subalgebras. One of them is the image π(R0) of the
zero weight component of the algebra R. Further, consider the image of the zero weight
component A0 of A ⊂ Ā relative to the canonical projection Ā → Z̄ . This image is a
vector subspace in Z̄ . Denote by S the subalgebra in Z̄ generated by the elements of this
subspace. Then

π(R0) ⊂ S ⊂ Z̄0 . (1.12)

1.3. Algebraic group action

Let G be a reductive algebraic group over C with the Lie algebra g . Suppose there is
an action of the group G by automorphisms on the algebra A, extending the adjoint
action of G on the subalgebra U(g) ⊂ A. Suppose that the action of G on A preseves
the subspace V, and that the action of G on V is locally finite. Moreover, suppose that
the action of g on A corresponding to that of G coincides with the adjoint action:

X : A 7→ adX(A) = XA−AX for X ∈ g and A ∈ A .

Let G0 be the connected component of G and T ⊂ G0 be the maximal torus of G
with the Lie algebra t . Let NormT and Norm 0T be the normalizers of T in G and G0

respectively. The adjoint action of the group Norm 0T on t identifies the quotient group
Norm 0T/T with the Weyl group S of g . Choose a representative σ̂c ∈ Norm 0T of σc .
The elements σ̂1 , . . . , σ̂r ∈ G can be chosen to satisfy the braid relations

σ̂c σ̂d σ̂c . . .︸ ︷︷ ︸
mcd

= σ̂d σ̂c σ̂d . . .︸ ︷︷ ︸
mcd

for c 6= d (1.13)

where mcd is the order of the element σcσd ∈ S , see [T]. For any reduced decomposition
σ = σc1 . . . σck in S put
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σ̂ = σ̂c1 . . . σ̂ck .

Due to (1.13) this definition of σ̂ is independent of the choice of the decomposition of σ .
Thus we get an action of the braid group of g by automorphisms σ̂ of the algebra A.

The adjoint action of the group NormT on t identifies NormT/T with a semidirect
product R = T ⋉S where T is a certain finite subgroup of NormT/T. Each element
τ ∈ T acts on t by permuting H1 , . . . , Hr . Hence τ determines an automorphism of
the semisimple part of g , which permutes E1 , . . . , Er and in the same way permutes
F1 , . . . , Fr . For each τ ∈ T choose a representative τ̂ ∈ NormT whose adjoint action on
the semisimple part of g yields this automorphism. Then τ̂ 7→ τ and σ̂ 7→ σ under the
canonical map

NormT → NormT/T = R .

Moreover, the representatives σ̂1 , . . . , σ̂r above can be chosen so that the adjoint action
of τ̂ on G permutes them in the same way as τ permutes H1 , . . . , Hr .

Regard g as a subspace of A. Note that because the action of σ̂ ∈ G on the subspace
t ⊂ A factors through that of σ ∈ S , the action of σ̂ on A maps any vector of weight
λ to a vector of weight σ(λ) . Let A0 ⊂ A be the zero weight subspace relative to the
adjoint action of t . This subspace is preserved by the action of all the elements σ̂ , τ̂ ∈ G.
Since the subgroup T ⊂ G acts on A0 trivially, we get an action of the group R on A0 .

Since the action of the elements σ̂ , τ̂ ∈ G on A preserves the set of denominators (1.3),
it extends from A to Ā. Further, the action of τ̂ on A preserves the ideals J and J ′.
Hence τ̂ acts on A/J and on Z. Similarly, τ̂ acts on Ā and on Z̄.

1.4. Zhelobenko operators

For each c = 1 , . . . , r define a linear map ξc : A → Ā by setting for any A ∈ A

ξc (A) = A+

∞∑

s=1

(
s !Hc(Hc − 1) . . . (Hc − s+ 1)

)−1
E s

c ads
Fc
(A) (1.14)

By (c) for any given A ∈ A only finitely many terms of the sum (1.14) differ from zero,
hence the map ξc is well defined. The definition (1.14) and the next two propositions go
back to [Z1, Section 2]. See [KN1, Section 3] for detailed proofs of these propositions.

Proposition 1.2. For any H ∈ t and A ∈ A we have

ξc(HA) ∈ (H + αc(H)) ξc(A) + J ,

ξc(AH) ∈ ξc(A)(H + αc(H)) + J .

Proposition 1.2 allows us to define a linear map ξ̄c : Ā → Ā/J by setting

ξ̄c(XA) = Z ξc(A) + J for X ∈ U(t) and A ∈ A ,

where the element Z ∈ U(t) is defined by the equality Z(µ) = X(µ + αc) for µ ∈ t∗

when X and Z are regarded as rational functions on t∗ .
The action of the Weyl group S on the algebra U(t) extends to an action on U(t),

so that for any σ ∈ S

(σX)(µ) = X(σ−1(µ))

if X ∈ U(t) is regarded as a rational function on t∗ . Take the images σ̂c(J) and σ̂c(J
′ )

relative to the action of σ̂c ∈ G on Ā; they are respectively right and left ideals of Ā .
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Proposition 1.3. We have σ̂c(J) ⊂ Ker ξ̄c and ξ̄c( σ̂c(J
′ )) ⊂ J ′+ J .

This proposition allows us to define the linear maps

ξ̌c : Ā/J → Ā/J and ξ̌c : Z̄ → Z̄

as the composition ξ̄c σ̂c applied to elements of Ā which are taken modulo J and J+J ′

respectively. In their present form, the maps ξ̌c have been introduced in [KO]. The next
proposition states their key properties. For the proof of Part (i) see [Z1, Section 6]; for
the proofs of (ii) and (iii) see [KO, Section 5].

Proposition 1.4. (i) The maps ξ̌1 , . . . , ξ̌r of Ā/J and Z̄ satisfy the braid relations

ξ̌c ξ̌d ξ̌c . . .︸ ︷︷ ︸
mcd

= ξ̌d ξ̌c ξ̌d . . .︸ ︷︷ ︸
mcd

for c 6= d.

(ii) The map ξ̌c of Z̄ is an automorphism of the double coset algebra:

ξ̌c(X ⋄ Y ) = ξ̌c(X) ⋄ ξ̌c(Y ) for X ,Y ∈ Z̄ .

(iii) The map ξ̌c of Ā/J is Z̄-equivariant in the following sense:

ξ̌c(X ⋄ Z) = ξ̌c(X) ⋄ ξ̌c(Z) for X ∈ Z̄ and Z ∈ Ā/J .

Part (i) of Proposition 1.4 implies that for any reduced decomposition of an element
σ = σc1 . . . σck in the Weyl group S the map

ξ̌σ = ξ̌c1 . . . ξ̌ck (1.15)

of Ā/J or Z̄ does not depend on the choice of the decomposition. In view of Part (ii),
any map ξ̌σ of Z̄ will be called a Zhelobenko automorphism of Z̄ . Any map ξ̌σ of Ā/J
will be called a Zhelobenko operator on Ā/J. Then using the same symbol ξ̌σ for the
maps of both Ā/J and Z̄ should cause no confusion. By Proposition 1.2

ξ̌σ(HZ) = (σ ◦H) ξ̌σ(Z) , (1.16)

ξ̌σ(ZH) = ξ̌σ(Z) (σ ◦H) (1.17)

for any σ ∈ S, H ∈ t and Z ∈ Ā/J or Z ∈ Z̄ . Here for c = 1 , . . . , r we use the equality

σc (µ+ αc) = σc ◦ µ for µ ∈ t∗.

The relations (1.16) imply that all the operators ξ̌σ on Z̄ preserve the subspace Z̄0.
We will complete this subsection with an explicit formula for the operator ξ̌c on Z̄.

Let us denote by gc the sl2 -subalgebra of g spanned by the elements Ec, Fc and Hc .
It acts on the vector space A, by restricting to gc the adoint action of g on A. As
an gc -module, A splits into a direct sum of irreducible finite-dimensional submodules.
Choose j ∈ {0, 1

2
, 1, . . .} and take any element A ∈ A from an irreducible gc -submodule

of dimension 2j + 1. Suppose that A is of weight 2h relative to the action of Hc , that
is [Hc ,A ] = 2hA for h ∈ {−j ,−j + 1 , . . . , j − 1 , j} . Since σ̂c is an automorphism of
the algebra A, the element σ̂c(A) ∈ A belongs to an irreducible gc -submodule of the
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same dimension 2j+1, and is of weight −2h relative to the action of Hc . Therefore the
operator ξ̌c on Z̄ maps the coset of A to the coset of

∞∑

s=0

(
s !Hc(Hc − 1) . . . (Hc − s+ 1)

)−1
E s

c ad s
Fc
(σ̂c(A)) =

j−h∑

s=0

(
s !Hc(Hc − 1) . . . (Hc − s+ 1)

)−1
E s

c ad s
Fc
(σ̂c(A)) .

By the definition of subspace J ⊂ Ā , the coset of this sum coincides with the coset of

j−h∑

s=0

(
s !Hc(Hc − 1) . . . (Hc − s+ 1)

)−1
ad s

Ec
ad s

Fc
(σ̂c(A)) .

But the coset of the last sum in Z̄ coincides with the coset of

j−h∑

s=0

s−1∏

i=0

(j − h− i) (j + h+ i+ 1)

( i+ 1) (Hc − i)
σ̂c(A) ; (1.18)

see for instance the proof of [KN1, Proposition 3.7]. The sum over s = 0 , . . . , j − h of
the products of fractions in (1.18) is a particular value F(h − j , j + h + 1 ,−Hc ; 1) of
the hypergeometric function. Using the well known formula

F(u, v, w ; 1) =
Γ(w) Γ(w − u− v)

Γ(w − u) Γ(w − v)

valid for u,v ,w ∈ C with w 6= 0,−1, . . . and Re (w − u− v) > 0, the sum (1.18) equals

Γ(−Hc) Γ(−Hc − 2h− 1)

Γ(−Hc − h+ j) Γ(−Hc − h− j − 1)
σ̂c(A) =

j−h∏

i=1

Hc + 2h+ i+ 1

Hc − i+ 1
σ̂c(A)

=

j−h∏

i=1

(Hc − i+ 1)−1 · σ̂c(A) ·
j−h∏

i=1

(Hc + i+ 1) .

1.5. Invariants of Zhelobenko automorphisms

Consider the subspace AG of G-invariants in A. Define the linear map γ : AG → Z
as the restriction to AG of the canonical projection A → Z. The natural embedding of
algebras A → Ā determines an embedding of U(t)-bimodules Z → Z̄. Consider the zero
weight component Z0 of the vector space Z. Here we again refer to the adjoint action
of t on Z. The definition of the action of ξ̌σ and τ̂ on Z̄ implies immediately that the
image of the map γ is contained in the subspace of Z,

Q = {Z ∈ Z0 | ξ̌σ(Z) = Z and τ̂ (Z) = Z for all σ ∈ S and τ ∈ T } .

By [KNV, Remark 3] this Q is a subalgebra of Z̄ , and is included in the chain (1.12):

Q ⊂ π(R0) ⊂ S ⊂ Z̄0 . (1.19)

The next proposition has been also proved in [KNV].
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Proposition 1.5. The map γ : AG → Z is injective, and its image is equal to Q .

The squares of the Zhelobenko automorphisms ξ̌1 , . . . , ξ̌r of Z̄ are given by the formula

ξ̌ 2c (Z) = (Hc + 1) σ̂ 2
c (Z) (Hc + 1)−1 for all Z ∈ Z̄ ,

see [KO, Corollary 7.5]. Here σ̂ 2
c ∈ T by definition, so that the squares σ̂ 2

c and hence ξ̌ 2c
act trivially on the zero weight subspace Z̄ 0 ⊂ Z̄ . This means that the restrictions of
all the operators ξ̌σ to Z̄ 0 determine an action of the Weyl group S . Furthermore, for
any τ ∈ T the adjoint action of τ̂ ∈ G on g permutes the operators ξ̌1 , . . . , ξ̌r on Z̄ in
the same way, as it permutes the elements H1 , . . . , Hr of t . This implies that the latter
action of the group S on Z̄ 0 extens to that of the semidirect product R = T⋉S .

We call a weight µ ∈ t∗ nonsingular if µ(Hα) 6= −1,−2, . . . for all α ∈ ∆+. Fix any
λ ∈ t∗ such that λ + ρ is nonsingular. Let N be any irreducible S-module of weight λ .
The latter condition means that the subalgebra U(t) ⊂ S acts on N via the mapping
λ : t → C . This mapping extends to a homomorphism U(t) → C , also denoted by λ .

Due to (1.19), N is a module over the algebra Q by restriction. Let Sλ and Rλ denote
the stabilizers of λ ∈ t∗ in R and S relative to the shifted actions of these groups on t∗;

Sλ = {σ ∈ S | σ ◦ λ = λ} .

The shifted action of S on t∗ extends to an action of R since τ(ρ) = ρ for every τ ∈ T .

Proposition 1.6. Suppose that λ+ ρ ∈ t∗ is nonsingular, and that Rλ = Sλ . Then N
is an irreducible Q-module.

We shall prove Proposition 1.6 in the remainder of this subsection. Let χ : S → End N
the defining homomorphism of the S-module N . For the proof of the proposition it is
sufficient to find for each Y ∈ S an element Z ∈ Q such that χ(Y ) = χ(Z). Here we
will assume that Y is the image of some element A ∈ A0 under the canonical projection
Ā → Z̄ ; see the definition of the subalgebra S given at the end of Subsection 1.2.

Lemma 1.7. There exists X ∈ U(t) such that λ(X) 6= 0 and for any σ ∈ S the element

ξ̌σ(XY ) ∈ Z̄ belongs to the image of A0 under the canonical projection Ā → Z̄ .

Proof. All elements σ̂ (A) with σ ∈ S belong to some finite-dimensional submodule M
of A0 under the adjoint action of g . For every positive root α ∈ ∆+ we can choose a
non-negative integer nα such that

adnα+1
Fα

(B) = 0 for all B ∈M . (1.20)

Put

X =
∏

α∈∆+

nα∏

s=1

(Hα + ρ(Hα) + s) . (1.21)

Then we have λ(X) 6= 0, because the weight λ+ ρ is nonsingular by our assumption.
Now take any element σ ∈ S and a reduced decomposition σ = σc1 . . . σck . Denote

ω l = σc1 . . . σcl and β l = ω l−1(αcl) for l = 1 , . . . , k .
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Note that β1 , . . . , βk are all those roots α ∈ ∆+ for which σ−1(α) /∈ ∆+. By (1.16),

ξ̌σ(XY ) = (σ ◦X) ξ̌σ(Y ) .

In each factor ξ̌cl of ξ̌σ in the product (1.15) we can replace, modulo the left ideal J ′ of
Ā, every entry of Ecl by the corresponding adjoint operator. Using the property (1.16)
repeatedly, in ξ̌σ(Y ) we can also move to the left all denominators from U(t). Hence
ξ̌σ(Y ) equals to the coset in Z̄ of the image of σ̂ (A) under the operator

∞∑

s1,...,sk=0

k∏

l=1

(
sl ! (ω l−1 ◦Hcl) . . . (ω l−1 ◦Hcl − sl + 1)

)−1 · ad s1
Eβ1

ad s1
Fβ1

. . . ad sk
Eβk

ad sk
Fβk

.

By the assumption (1.20), all summands above with at least one index sl > nβ l
vanish.

Further, for all l = 1 , . . . , k and s = 1 ,2 , . . . we have

ω l−1 ◦Hcl − s+ 1 = Hβ l
+ (ω−1

l−1(ρ)− ρ)(Hcl)− s+ 1

= Hβ l
+ ρ(Hβ l

)− 1− s+ 1

= Hβ l
+ ρ(Hβ l

)− s. (1.22)

Now for l = 1 , . . . , k consider the factor in (1.21) corresponding to the positive root
α = −σ−1(β l) and an index s = 1 , . . . , nα . The shifted action of σ on this factor yields

σ ◦Hα + ρ(Hα) + s = −Hβ l
+ (σ−1(ρ)− ρ)(Hα) + ρ(Hα) + s = −Hβ l

− ρ(Hβ l
) + s.

The yielded factor cancels, up to the minus sign, the factor (1.22) in the denominator
of ξ̌σ(Y ) . Hence the product (σ ◦X) ξ̌σ(Y ) ∈ Z̄ belongs to the image of A0 . ⊓⊔

Take the element X ∈ U(t) from Lemma 1.7. We have χ(XY ) = λ(X)χ(Y ) because
the S-module is of weight λ by our assumption. Hence

χ(Y ) = χ(X Y/λ(X)) .

Replacing the given element Y ∈ S by X Y/λ(X) , we may from now assume that for any
σ ∈ S the element ξ̌σ(Y ) ∈ Z̄ belongs to the image of A0 under the projection Ā → Z̄ .

Consider the orbit of the weight λ relative to the shifted action of the group R on t∗,

Oλ = {ω ◦ λ | ω ∈ R} .
This is a finite subset of t∗. Hence there exists an element X ′ ∈ U(t), such that λ(X ′) = 1
and µ(X ′) = 0 for any weight µ ∈ Oλ with µ 6= λ . Put

Z = |Sλ|−1
∑

ω∈R

ξ̌ω(X
′ Y ) . (1.23)

Here ξ̌ω denotes the composition τ̂ ξ̌σ of operators on Z̄, if ω = τ σ for some σ ∈ S and
τ ∈ T . Due to our assumptions on the given element Y , we have Z ∈ S. Moreover, for
every ω ∈ R we have ξ̌ω(Z) = Z . Thus Z ∈ Q. Let us show that χ(Y ) = χ(Z).

Until the end of this section, the symbol ≡ will indicate equalities in the algebra Z̄
modulo the right ideal generated by all the elements H−λ(H) with H ∈ t . Firstly, take
any ω ∈ R such that ω ◦ λ 6= λ . By our choice of the element X ′, then we have

ξ̌ω(X
′ Y ) = (ω ◦X ′) ξ̌ω(Y ) ≡ λ(ω ◦X ′) ξ̌ω(Y ) = (ω−1 ◦ λ)(X ′) ξ̌ω(Y ) = 0 .

Hence χ(ξ̌ω(X
′ Y )) = 0 unless ω ∈ Rλ = Sλ . Let us now prove another lemma.
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Lemma 1.8. For any σ ∈ Sλ we have ξ̌σ(Y ) ≡ Y .

Proof. By [B, Proposition V.3.2] the subgroup Sλ ⊂ S is generated by the reflections
σα corresponding to the positive roots α ∈ ∆+ such that (λ+ρ)(Hα) = 0. Fix such an α
and write α = σ(αc) where αc is a simple root and σ ∈ S. Since Y ∈ Z̄0, then we have

ξ̌σα
(Y ) = ( ξ̌σ ξ̌c ξ̌σ−1)(Y ) .

Consider the element Y ′ = ξ̌σ−1(Y ) of Z̄. By our assumptions on Y , the element
Y ′ is the image of some element A ′ ∈ A0 under the projection Ā → Z̄ . Consider the
sl2 -subalgebra gc ⊂ g . First suppose that A ′ belongs to an irreducible gc -submodule of
A. If A ′ 6= 0, then this submodule has an odd dimension, say 2j+1. By the calculation
made in the end of Subsection 1.4, the operator ξ̌c maps the coset of A ′ in Z̄ to

(−1) j
j∏

i=1

Hc + i+ 1

Hc − i+ 1
· Y ′ .

Here we also used the following observation: because A ′ ∈ A0 belongs to an irreducible
gc -submodule of dimension 2j + 1, we have σ̂c(A

′) = (−1)j A ′ . Thus

ξ̌σα
(Y ) = (−1) j

j∏

i=1

σ ◦Hc + i+ 1

σ ◦Hc − i+ 1
· ξ̌σ(Y ′) = (−1) j

j∏

i=1

σ ◦Hc + i+ 1

σ ◦Hc − i+ 1
· Y .

But

λ(σ ◦Hc) = (σ−1 ◦ λ)(Hc) = (σ−1(λ+ ρ)− ρ)(Hc)

= (λ+ ρ)(σ(Hc))− ρ(σ(Hc)) = (λ+ ρ)(Hα)− 1 = −1 ,

so that

ξ̌σα
(Y ) ≡ (−1) j

j∏

i=1

−1 + i+ 1

−1− i+ 1
· Y = Y .

The assumption that A ′ belongs to an irreducible gc -submodule can now be removed
without any loss of generality. Lemma 1.8 is thus proved for any σ = σα . ⊓⊔

Using Lemma 1.8, for any σ ∈ Sλ we now get

ξ̌σ(X
′ Y ) = (σ ◦X ′) ξ̌σ(Y ) ≡ λ(σ ◦X ′) Y = (σ−1 ◦ λ)(X ′) Y = λ(X ′) Y ≡ X ′Y .

This completes the proof of the equality χ(Y ) = χ(Z) and hence that of Proposition 1.6.

1.6. Irreducible S-modules

In this subsection we will introduce a class of irreducible S-modules, to which we can
then apply Proposition 1.6. Let K be any left A-module. Since U(g) is a subalgebra of
A, we can regard K as a g-module by restriction. Suppose the action of the subalgebra
t ⊂ g on K is semisimple, so that K splits into direct sum of the weight subspaces Kλ

where λ ranges over t∗. Also suppose the action of the subalgebra n ′ ⊂ g on K is locally
nilpotent, so that for any v ∈ K there is a positive integer s such that (n ′)s v = {0} .
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Consider the spaceKn of n-coinvariants ofK. Take any λ ∈ t∗ and consider the weight
subspace Kλ

n
⊂ Kn . Denote by N the subspace of K consisting of all n ′-invariants of

weight λ . By restricting the canonical projection K → Kn to the subspace N ⊂ K , we
get a natural linear map N → Kλ

n
. In general, the restriction map may be not bijective.

Now suppose that the weight λ + ρ is nonsingular. It turns out that then the map
N → Kλ

n
is bijective. To define the inverse map, take any coset f ∈ Kλ

n
and choose its

representative u ∈ K. We may assume that u ∈ Kλ. Then we can define a linear map
Kλ

n → N by mapping f 7→ P u . Here we use the properties (1.6), the second property in
(1.8), the local nilpotency of K relative to n ′, and the nonsingularity of λ+ρ . This map
is the right and left inverse to the projection N → Kλ

n , due to the first and the second
properties in (1.7) respectively. See also the proofs of the properties (1.6) we referred to.

Since λ+ρ is nonsingular, the weight subspace Kλ
n ⊂ Kn has a structure of a module

over the algebra S. The action of S on Kλ
n
will be denoted by ⋄ like in Subsection 1.2,

and defined by
X ⋄ f = XP f for X ∈ S and f ∈ Kλ

n
.

At the right hand side of the above equality, we use the action of the algebra A on K .

Proposition 1.9. Suppose that K is an irreducible A-module, while the weight λ+ ρ is

nonsingular. Then Kλ
n is an irreducible S-module.

Proof. Take any two cosets f, g ∈ Kλ
n and choose their representatives u,v ∈ K . We

may assume that both u,v ∈ Kλ . Determine the element P u ∈ Kλ as above. Because
K is an irreducible A-module, we can find an element A ∈ A0 such that AP u = v . Let
X ∈ Z be the coset of A . Then we have X ∈ S and X ⋄ f = g . ⊓⊔

2. Shapovalov forms

2.1. Howe systems

Suppose that the reductive Lie algebra g is symmetric. That is, g is equipped with an
involutive automorphism identical on the Cartan subalgebra t and preserving each of
the nilpotent subalgebras n and n ′. We have a Cartan decomposition g = g+⊕g− where
g+ and g− are the eigenspaces of this automorphism with the eigenvalues 1 and −1.
Then g+ is a Lie subalgebra of g containing t , while

[g+, g−] ⊂ g− and [g−, g−] ⊂ g+ .

Note that then the involutive anti-automorphism ε of g preserves the decomposition
g = g+ ⊕ g− . This decomposition induces decompositions of the nilpotent subalgebras:
we have n = n+ ⊕ n− and n ′ = n ′

+ ⊕ n ′
− where

n+ = n ∩ g+ , n− = n ∩ g− , n
′
+ = n ′ ∩ g+ , n

′
− = n ′ ∩ g− .

Let U be any finite-dimensional complex vector space and θ ∈ {1,−1} . Depending
on whether θ = 1 or θ = −1, denote by H(U) the Weyl algebra or the Clifford algebra

of U ⊕ U∗. This is the complex associative unital algebra generated by the elements of
U and of the dual space U∗ subject to the relations for u,v ∈ U and u′ , v′ ∈ U∗
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v u = θ u v , v′u′ = θ u′v′ , u′u− θ u u′ = u′ (u) . (2.1)

Equip the vector space W = U ⊕ U∗ with the bilinear form B , symmetric if θ = −1
and alternating if θ = 1, such that B(u, v) = B(u′, v′) = 0 and B(u, u′) = u′ (u) . The
relations (2.1) are then equivalent to the relations for all w,w′ ∈W

w′w − θ w w′ = B(w,w′) . (2.2)

Then any isotropic subspace V ⊂ W generates a subalgebra of H(U), which is a free
commutative algebra if θ = 1, or free skew-commutative if θ = −1. This subalgebra
will be denoted by P(V ). In particular, the algebra H(U) contains two distinguished
subalgebras P(U) and P(U∗) , generated by the elements of U and of U∗ respectively.

Further, equip the vector space W with a grading so that the direct summands U
and U∗ of W have degrees 1 and −1 respectively. This grading naturally extends to
a Z-grading on the algebra H(U) . In particular, the subalgebras P(U) and P(U∗) of
H(U) are graded respectively by non-negative and non-positive integers.

Now suppose there is a homomorphism of associative algebras ζ : U(g) → H(U) .
Further suppose there is an action of the group G on the vector space W preserving the
bilinear form B. Since the form is preserved, this action extends uniquely to a action
of G by automorphisms of the algebra H(U) . In particular, we get an action of the Lie
algebra g on H(U) , and the weight decomposition

H(U) = ⊕
λ∈t∗

H(U)λ . (2.3)

Choose a non-degenerate symmetric bilinear form 〈 , 〉 on the vector space U . Using
this form, define a linear map ε :W →W such that ε : U → U∗, ε : U∗ → U while

ε(u)(v) = 〈u,v〉 and 〈u,ε(u′)〉 = u′ (u) (2.4)

for any u,v ∈ U and u′ ∈ U∗. The map ε is involutive and for all w,w′ ∈W satisfies

B(ε(w), ε(w′)) = −θ B(w,w′) .

Therefore this map admits a unique extension to an involutive anti-automorphism of
the algebra H(U). We denote the extension by ε again.

We shall say that that the homomorphism ζ : U(g) → H(U) and the action of G on
W form a Howe system on U if the following six conditions are satisfied:

(1) the map ζ : U(g) → H(U) is G-equivariant;
(2) the action of g on H(U) corresponding to that of G is adjoint to ζ ;
(3) ε(ζ(X)) = ζ(ε(X)) for all X ∈ g , where ε : g → g is the Chevalley anti-involution;
(4) ζ(n) ⊂ U ·H(U) and ζ(t) ⊂ C · 1 + U ·H(U) ;
(5) [ζ(g+) ,U ] ⊂ U and [ζ(n−) ,U

∗] ⊂ U while [ζ(n−) ,U ] = {0} ;
(6) any weight element of P(U) has a Z-degree uniquely determined by the weight.

The property (2) of a Howe system means that the action of Lie algebra g on H(U)
corresponding to that of G is given by

X : Y 7→ [ζ(X), Y ] for X ∈ g and Y ∈ H(U) .
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The properties (2) and (3) imply that the automorphism ε of H(U) changes the signs of
the degree and of the weight. Here and in (6) we refer to the Z-grading on H(U) and the
weight decomposition (2.3). By combining (3) and (4),(5) we get two more properties:

(7) ζ(n ′) ⊂ H(U) · U∗ and ζ(t) ⊂ C · 1 + H(U) · U∗;
(8) [ζ(g+) ,U

∗] ⊂ U∗ and [ζ(n ′
−) ,U ] ⊂ U∗ while [ζ(n ′

−) ,U
∗] = {0} ;

The properties (5) and (8) imply that for X ∈ g+ ,n− ,n
′
− the adjoint operators adζ(X)

on H(U) have the degrees 0 ,2 ,−2 respectively.
Later on we will work with known examples [H1] of Howe systems. The list of (1) to (8)

summarizes the common properties of these examples that we shall use. Now fix any
Howe system on U and set

A = U(g)⊗ H(U) . (2.5)

The group G acts (diagonally) by automorphisms of the algebra A. Let us identify U(g)
with subalgebra of A generated by the elements

X ⊗ 1 + 1⊗ ζ(X) where X ∈ g . (2.6)

Then set
V = 1⊗H(U) .

The condition (2) on a Howe system imply that the condition (c) on the algebra A is
satisfied. Note that in this case V is a subalgebra of A, not only a vector subspace. In
this section we will investigate the Mickelsson algebras R and Z̄ corresponding to the
associative algebra (2.5) determined by any Howe system. We will usually identify any
element X ∈ g with the element (2.6) of A, and any element Y ∈ H(U) with 1⊗Y ∈ A.
Note that for X ∈ g the commutator [X, Y ] in the algebra A equals [ζ(X), Y ] ∈ H(U) .

2.2. Shapovalov form on double coset algebra

Let us extend the map ε from H(U) to the algebra A defined by (2.5), so that under
the extension X ⊗ Y 7→ ε(X) ⊗ ε(Y ) for X ∈ U(g) and Y ∈ H(U) . Here the symbol
ε in the first tensor factor denotes the Chevalley anti-involution on U(g) . The same
symbol ε in the second tensor factor denotes the involutive anti-automorphism of H(U)
defined by (2.4). The extended map is an involutive anti-automorphism of the algebra
A. Its restriction to the subalgebra U(g) generated by the elements (2.6) coincides with
the Chevalley anti-involution on U(g) , due to the property (3) of a Howe system. This
anti-automorphism further extends from A to Ā.

Since the latter extension preserves the subspace J + J ′ ⊂ Ā , it defines an involutive
linear map ε : Z̄ → Z̄ . Because ε(P ) = P where P is the extremal projector for g , this
map is an anti-automorphism of the double coset algebra Z̄ . We will denote it by the
same symbol ε . Clearly, ε maps the subalgebra S ⊂ Z̄ to itself. Denote by K the right
ideal of the algebra Z̄ , generated by the cosets of all elements u ∈ U . Similarly, denote
by K′ the left ideal of the algebra Z̄ , generated by the cosets of all elements u′ ∈ U∗.
We identify the elements u,u′ ∈ H(U) with the elements 1⊗ u,1⊗ u′ ∈ A respectively.

Lemma 2.1. (i) K is spanned by the cosets of products uX in Ā where u ∈ U , X ∈ Ā .

(ii) K′ is spanned by the cosets of products Xu′ in Ā where u′ ∈ U∗, X ∈ Ā .
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Proof. Take any u ∈ U and X ∈ Ā . The property (5) of a Howe system implies that
for any A ∈ n the commutator [u,A] ∈ U . We may assume that u is a weight element,
say u ∈ Uλ for some λ ∈ t∗. If A ∈ n is also a weight element then [u,A] has a weight
less than λ . The inequality µ < λ for some µ ∈ t∗ means that the difference λ− µ is a
non-zero sum of simple roots in ∆+ with non-negative integral coefficients. By the first
relation in (1.7),

uP X ∈ uX +
∑

v

vY + J (2.7)

where v ranges over a certain finite subset of U and has a weight µ < λ , while Y ∈ Ā
corresponds to v. But (2.7) shows that the product of the cosets of u and of X in the
algebra Z̄ is the coset of

uX +
∑

v

v Y .

Furthermore, we can recursively invert (2.7) and get the relation in the algebra Ā,

uX ∈ uP X +
∑

w

wP Z + J

where w ranges over some finite subset of U and has a weight less than λ , while Z ∈ Ā
corresponds to w . So the coset in Z̄ of the product uX in the algebra Ā is the coset of

uP X +
∑

w

wP Z

and therefore belongs to the ideal K of the algebra Z̄ . This completes the proof of the
part (i) of the lemma. The proof of the part (ii) is very similar, and is omitted here. ⊓⊔

Corollary 2.2. For any Z ∈ Z̄ there is a unique element (Z)0 ∈ U(t) such that

Z − (Z)0 ∈ K+K′ .

Proof. Choose any ordered basis in each of the vector spaces n ,n′ ,U ,U ′ and t . By the
classical Poincaré-Birkhoff-Witt theorem, each of the vector spaces U(n) ,U(n ′) ,P(U),
P(U∗) and U(t) has a basis made of all monomials in the corresponding basis vectors. If
A,A′ ,B ,B ′ and C run through these monomials, then the products ABCB ′A′ form a
basis in A. So the vector space Z̄ is spanned by the cosets of products in Ā of the form
BDB ′ where B and B ′ are as above whereas D ∈ U(t) . By Lemma 2.1, any such a
coset belongs to K +K′ unless B = B ′ = 1. Thus (Z)0 ∈ U(t) exists for any Z ∈ Z̄ .

Now suppose that (Z)0 ∈ U(t) is not unique. Then Lemma 2.1 implies the existence
of a nonzero element of U(t) which belongs to the sum of the right ideal of Ā generated
by n and U , and of the left ideal of Ā generated by n′ and U∗. But this is not possible
due to existence of the basis in A described above. ⊓⊔

Now regard Z̄ as a left U(t)-module. Define the Shapovalov form S : Z̄× Z̄ → U(t) by

S(X, Y ) = (ε(X) ⋄ Y )0 for X, Y ∈ Z̄ .

This form is symmetric, contravariant and U(t)-linear by definition. That is, we have
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S(X, Y ) = S(Y,X) ; (2.8)

S(Z ⋄X, Y ) = S(X, ε(Z) ⋄ Y ) for Z ∈ Z̄ ; (2.9)

S(ZX, Y ) = ZS(X, Y ) for Z ∈U(t) . (2.10)

Note that
S(X, Y ) = 0 when Y ∈ K′ . (2.11)

2.3. Shapovalov form on coinvariants space

Let µ ∈ t∗ be any weight. Denote by J ′
µ the left ideal of A, generated by the elements

X of n ′, and by the elements H − µ(H) where H ∈ t . Here we identify any element X
of g with the element (2.6) of the algebra A. Further, denote by J ′′

µ the left ideal of A,
generated by the elements X ⊗ 1 where X ∈ n ′, and the elements H ⊗ 1− µ(H) where
H ∈ t. Let I be the left ideal of A generated by the elements of U∗ ⊂ H(U) . The first
inclusion in the property (7) of a Howe system implies that X −X ⊗ 1 ∈ I for X ∈ n ′ .
The second inclusion in the property (7) implies that there is a weight κ ∈ t∗ such that

ζ(H)− κ(H) ∈ H(U) · U∗ for all H ∈ t . (2.12)

Hence H −H ⊗ 1− κ(H) ∈ I for H ∈ t . Therefore

J ′′
µ + I = J ′

µ+κ + I . (2.13)

Let Aµ be the quotient space of A relative to the left ideal J ′′
µ + I. Let Mµ be the

vector space of double cosets of A relative to the left ideal J ′′
µ + I and the right ideal J:

Aµ = A/(J ′′
µ + I) , Mµ = Aµ /J = A/(J ′′

µ + I + J) . (2.14)

Regard the ring P(U) as a left H(U)-module, by identifying this ring with the quotient
of H(U) over the left ideal generated by U∗. Thus for X ∈ H(U) and u,v ∈ P(U)

X(u) = v if Xu− v ∈ H(U) · U∗ . (2.15)

Then we can identify the A-module Aµ with the tensor product Mµ ⊗P(U) where Mµ

is the Verma module of the algebra U(g) appearing as the first tensor factor in (2.5).
The vector space Mµ gets identified with the space of coinvariants

(Mµ ⊗ P(U))n . (2.16)

The Cartan subalgebra t ⊂ g acts on this space via left multiplication in A. Moreover,
this space is a left module over the Mickelsson algebra R. It is generated by the image of

1µ ⊗ 1 ∈Mµ ⊗ P(U) (2.17)

where 1µ is the highest weight vector of the Verma module Mµ . By using the equality
(2.13), any element H ∈ t acts on the vector (2.17) as multiplication by (µ + κ)(H) .
Hence the image of the vector (2.17) in Mµ belongs to the weight subspace Mµ+κ

µ . Due to
the condition (6) on a Howe system, the subspace Mµ+κ

µ ⊂ Mµ is one-dimensional, and
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is spanned by the image of (2.17). Note that there is an isomorphism of vector spaces
P(U) → Mµ . It can be defined by assigning to any u ∈ P(U) the coset of 1⊗ u ∈ A in
the quotient Mµ = A/(J ′

µ + I + J). This isomorphism will be denoted by ιµ .

Now consider the left ideals of the algebra Ā,

J ′′
µ = U(t) J ′′

µ and I = U(t) I .

Suppose the weight µ+ κ ∈ t∗ is generic, that is (µ+ κ)(Hα) /∈ Z for all α ∈ ∆+ . Then
the spaces of double cosets Ā/(J ′′

µ + I + J) and A/(J ′′
µ + I + J) = Mµ are naturally

isomorphic. Here we once again use the equality (2.13). Further, Mµ is isomorphic to
the left Z̄-module, defined as the quotient of the algebra Z̄ by the left ideal generated
by the cosets of the elements of 1⊗ U∗ and the cosets of the elements H − (µ+ κ)(H)
where H ∈ t . Here we use the isomorphism of the algebras R̄ and Z̄; see Proposition 1.1
and remarks made immediately after stating it. Accordingly, we will use the symbol ⋄
to denote the action of the algebra Z̄ on Mµ . Then any element of Mµ can be presented
as Z ⋄ ιµ(1) for some Z ∈ Z̄ . Since ιµ(1) ∈ Mµ+κ

µ , we get Z ⋄ ιµ(1) ∈ Mλ
µ if Z ∈ Z̄ν and

ν = λ− µ− κ . (2.18)

We may also choose Z from the image in Z̄ of the subalgebra 1 ⊗ P(U) ⊂ Ā . Indeed,
due to (1.7) the cosets of (1⊗u)P and 1⊗ u in Mµ coincide for any element u ∈ P(U) .

Due to (2.8)-(2.11), for a generic weight µ+ κ the Shapovalov form S : Z̄⊗ Z̄ → U(t)
defines a symmetric contravariant form Sµ : Mµ ⊗Mµ → C by setting

Sµ(X ⋄ ιµ(1) ,Y ⋄ ιµ(1)) = S(X, Y )(µ+ κ) for X ,Y ∈ Z̄ . (2.19)

Here S(X, Y )(µ + κ) is the evaluation at µ + κ of an element of U(t), regarded as a
rational function on t∗. The contravariance of the form Sµ means the equality

Sµ(Z ⋄ f, g) = Sµ(f, ε(Z) ⋄ g) for f, g ∈ Mµ and Z ∈ Z̄ . (2.20)

Note that if f = ιµ(u) and g = ιµ(v) for some u and v from P(U) , then

Sµ(f, g) = S(X, Y )(µ+ κ) (2.21)

where X and Y are respectively the images of 1⊗u and 1⊗v under the projection map
A → Z. This follows from the remark made at the end of the previous paragraph.

In Subsection 2.1 we selected a non-degenerate symmetric bilinear form 〈 , 〉 on the
vector space U . Let us now extend this form from U to P(U) in a natural way, as follows.
Choose an orthonormal basis u1 , . . . , un of U . Thus 〈ui, uj〉 = δij for i , j = 1 , . . . , n . Put

〈up1

1 . . . upn
n , uq11 . . . uqnn 〉 =

n∏

k=1

δpk qk pk !

where for every k = 1 , . . . , n we take pk , qk ∈ {0 ,1 ,2 , . . .} in the case θ = 1, whereas
pk , qk ∈ {0 ,1} in the case θ = −1. This form on P(U) is uniquely determined by setting
〈1 ,1〉 = 1 and by declaring that the transpose to the operator of left multiplication by
any uk is given by the action of u′k ∈ U∗. Here u′1 , . . . , u

′
n is the basis in U∗ dual to the

basis u1 , . . . , un in U . Thus for each k = 1 , . . . , d we have
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〈uku,v 〉 = 〈u,u′k v 〉 for u,v ∈ P(U) .

Here we regard P(U) as a left H(U)-module, see (2.15). Since u′k = ε(uk) , the above
displayed equality implies a more general equality,

〈Xu,v 〉 = 〈u,ε(X)v 〉 for u,v ∈ P(U) and X ∈ H(U) . (2.22)

Proposition 2.3. Let µ+ κ ∈ t∗ be generic. Then for any u,v ∈ P(U)

Sµ(f, g ) = 〈u , ζ(P [µ+ ρ])v 〉 if f = ιµ(u) and g = ιµ(v) .

Proof. By definition, the extremal projector P is a product in Ũ(g) over the set ∆+ of
positive roots equipped with any normal ordering. Any such an ordering on ∆+ has the
following basic property [AST]. Take any α,β ∈ ∆+ such that [Eα ,Fβ ] 6= 0. Then α−β
is a root. The commutator [Eα ,Fβ] is proportional to Eα−β or to Fβ−α respectively if
α − β ∈ ∆+ or β − α ∈ ∆+. Now suppose that the root α precedes β in the ordering.
Then the basic property is that either the positive root α−β precedes α , or the positive
root β − α is preceded by β . Using repeatedly this property and the definition (1.4),

we can present the extremal projector P = P [ρ] as the sum in Ũ(g) of the products
of the form AA′C where A and A′ are normally ordered monomials in the generators
Fα and Eα respectively. Here α ranges over the set ∆+ . These monomials form bases
respectively in the vector spaces U(n ′) and U(n) . Further, any monomial AA′ appears
in the sum P with a unique factor C ∈ U(t) on the right of it. This C is a ratio of a
complex number to a finite product of factors

Hα + ρ(Hα) + s (2.23)

where α is a positive root and s is a positive integer. We will also regard the elements
of U(t) as rational functions on t∗ . By (2.19) the value Sµ(f, g ) of the Shapovalov form
equals the sum of the values (X)0 (µ+κ) where X is the coset in Z̄ of the product in Ā,

1⊗ ε(u) ·AA′C · 1⊗ v . (2.24)

Without loss of generality we may assume that the element v ∈ P(U) has a weight,
say λ ∈ t∗, relative to the adjoint action of t :

[ ζ(H) , v ] = λ(H) v for all H ∈ t . (2.25)

Then
C · 1⊗ v = 1⊗ v ·D (2.26)

where D ∈ U(t) is obtained from C by replacing every factor (2.23) respectively by

Hα + (λ+ ρ)(Hα) + s .

Consider the product
1⊗ ε(u) ·AA′ · 1⊗ v (2.27)

in the algebra Ā. Here A = Fα . . . Fβ and A = Eα′ . . . Eβ′ for some positive roots
α, . . . , β and α′ , . . . , β′. By the definition of the ideals J and J ′ of the algebra Ā, the
coset in Z̄ of the product (2.27) coincides with that of the product of commutators
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[Fα , . . . , [Fβ ,1⊗ ε(u)] . . .] · [Eα′ , . . . , [Eβ′ ,1⊗ v] . . .] =

1⊗ [ζ(Fα) , . . . , [ζ(Fβ) , ε(u)] . . .] · 1⊗ [ζ(Eα′) , . . . , [ζ(Eβ′) , v] . . .] .

Denote by Y the coset of the last product. Due to the properties (4) and (7) of a Howe
system, then we have (Y )0 = (Z)0 where Z denotes the coset in Z̄ of the product in Ā,

1⊗ (ε(u) · ζ(Fα) . . . ζ(Fβ) · ζ(Eα′) . . . ζ(Eβ′) · v ) = 1⊗ (ε(u) ζ(AA′ ) v ) .

Note that here (Z)0 ∈ C ⊂ U(t) . Further, the adjoint action of the subalgebra t ⊂ g

normalizes the ideals J and J ′ of Ā . It also normalizes the ideals K ,K′ of Z̄ . Hence the
above argument together with (2.26) implies that (X)0 = (ZD)0 = (Z)0D . Therefore

(X)0 (µ+ κ) = (Z)0 ·D(µ+ κ) = (Z)0 · C(µ+ κ+ λ) . (2.28)

But by the definitions (2.12) and (2.25) of the weights κ and λ respectively, for every
element H ∈ t we have the relations in the algebra H(U) ,

v · (κ+ λ)(H) ∈ v · (ζ(H) + λ(H)) + H(U) · U∗ = ζ(H) · v +H(U) · U∗ .

They imply the equality in the left H(U)-module P(U) ,

ε(u) ζ(AA′ ) v · C(µ+ κ+ λ) = ε(u) ζ(AA′B) v

where B ∈ U(t) is obtained from C by replacing every factor (2.23) respectively by

Hα + (µ+ ρ)(Hα) + s .

Since 〈1 ,U · P(U)〉 = 0, the right hand side of (2.28) can be now written as

〈1 , ε(u) ζ(AA′B) v 〉 = 〈u,ζ(AA′B) v 〉 .

By using the definition of the element B ∈ U(t), we now get Proposition 2.3. ⊓⊔
Consider again the symmetric bilinear form 〈 , 〉 on the vector space P(U) . Take the

action of the Lie algebra g on the vector space H(U) corresponding to that of the group
G. By the property (2) of a Howe system, this action of g is adjoint to the homomorphism
ζ : U(g) → H(U) . By the properties (5) and (8), the action of the Cartan subalgebra
t ⊂ g+ ⊂ g preserves the subspaces U and U∗ of H(U). By the definition (2.4) for any
u ∈ U and u′ ∈ U∗

〈u,ε(u′)〉 = u′ (u) = B(u,u′) ,

while the action of the group G on the vector space W = U ⊕U∗ preserves the bilinear
form B by our assumption. Therefore for any H ∈ t and for any u,u′ as above we have

〈 [ζ(H), u ] , ε(u′)〉+ 〈u,ε( [ζ(H), u′ ] )〉 = 0 .

Here ε is an anti-automorphism of the algebra H(U) obeying the property (3) of a Howe
system. Moreover, we have ε(H) = H for the Chevalley anti-involution ε on g . Therefore

〈 [ζ(H), u ] , ε(u′)〉 = 〈u, [ζ(H), ε(u′) ])〉 .

Since any vector of U can be written as ε(u′) for some u′ ∈ U∗, the last equality implies
that the action of the Cartan subalgebra t on P(U) is self-conjugate with respect to
the bilinear form 〈 , 〉 . Therefore, because the form 〈 , 〉 on P(U) is non-degenerate, its
restriction to any weight subspace of P(U) is also non-degenerate.
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2.4. Shapovalov form on a weight subspace

Now let µ ∈ t∗ be an arbitrary weight. Take the subspace Mλ
µ of Mµ = A/(J + J ′′

µ + I)
consisting of the elements of weight λ . The Cartan subalgebra t ⊂ g acts on Mµ via the
left multiplication in A by the elements of U(g) ⊂ A. In this subsection, we will assume
that λ + ρ is nonsingular. Then for any f ∈ Mλ

µ and Z ∈ Z the element Z ⋄ f ∈ Mµ

is well defined. Indeed, the denominators of P = P [ρ] do not vanish on Mλ
µ if λ + ρ is

nonsingular. In partucular, Mλ
µ is a module over the subalgebra S ⊂ Z̄ . Let the weights

λ and µ vary under the constraint that their difference λ−µ is fixed. Then for any given
elements X ,Y ∈ Z̄ we can regard S(X ,Y )(µ+ κ) as a rational function of µ ∈ t∗. Now
recall the definition (2.18) of the weight ν .

Proposition 2.4. Suppose that the weight λ+ρ ∈ t∗ is nonsingular. Then for any given

elements X, Y ∈ Zν the function S(X ,Y )(µ+ κ) of µ has only finite values.

Proof. Let A and B be any representatives in A of the cosets X and Y respectively.
Then the ε(X) ⋄ Y is the coset of

ε(A)P B (2.29)

where P = P [ρ] ∈Ũ(g) is the extremal projector for g . We assume that the elements A
and B of A also have the weight ν relative to the adjoint action of t .

Any poles of (ε(X) ⋄ Y )0 as of a rational function on t∗ may arise only from the
denominators of the summands of P [ρ] . By the definition (1.4), up to non-zero scalar
multipliers, these denominators are products of linear factors of the form Hα+ρ(Hα)+s
with s = 1, 2, . . . and α ∈ ∆+ . Let us move these denominators to the right in (2.29)
through the factor B , and evaluate the resulting denominators at µ+κ . Then the linear
factors become

(µ+ κ+ ν + ρ)(Hα) + s = (λ+ ρ)(Hα) + s

which do not depend on µ , and are nonzero numbers when λ+ ρ is nonsingular. ⊓⊔

When the weight µ+ κ is generic, the Shapovalov form Sµ on Mµ can be defined by
the equation (2.21) where f = ιµ(u) and g = ιµ(v) for some u and v from P(U) , while
X and Y are the images of 1 ⊗ u and 1 ⊗ v under the projection A → Z. The same
equation (2.21) can now be used to define an S-contravariant form on the subspace
Mλ

µ ⊂ Mµ for nonsingular λ+ ρ and any µ . Indeed, if here f, g ∈ Mλ
µ then X, Y ∈ Zν so

that Proposition 2.4 applies. Denote by Sλ
µ the bilinear form on the subspace Mλ

µ ⊂ Mµ

defined by (2.21),
Sλ
µ : Mλ

µ ×Mλ
µ → C .

The contravariance (2.9) of the Shapovalov form on Z̄ implies that Sλ
µ is a contravariant

form relative to the action of the subalgebra S ⊂ Z̄ . Indeed, if µ+ κ is generic then by
(2.20) for any f, g ∈ Mλ

µ and Z ∈ S we have

Sλ
µ(Z ⋄ f ,g ) = Sλ

µ(f ,ε(Z) ⋄ g ) . (2.30)

When the weight λ− µ is fixed, both sides of this equality are rational functions of µ .
Hence these two rational functions are the same. So the equality (2.30) holds for any µ ,
provided λ+ ρ is nonsingular, which is assumed in this subsection.
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In the next lemma, we regard P(U) ⊂ H(U) as subalgebras of A and use the adjoint
action of t on A; see the condition (5) on a Howe system. We also identify the elements
of H(U) with their images in the double coset algebra Z̄ . The weights of these elements
in Z̄ are taken relative to the adjoint action of t . By the condition (2) on a Howe system,
these weights are the same as relative to the adjoint action of t on H(U) . Recall (2.18).

Lemma 2.5. Suppose that for some f ∈ Mλ
µ and Y ∈ P(U∗)−ν we have the equality

Y ⋄ f = ιµ(1) in Mµ . Then for any X ∈ P(U)ν we also have (XY ) ⋄ f = ιµ(X) in Mµ .

Proof. We have f = ιµ(u) for a certain element u ∈ P(U) , which has weight ν under
the adjoint action of t on P(U) . In Subsection 2.1 we equipped the algebra H(U) with
Z-grading so that the elements of U and U∗ have degrees 1 and −1 respectively. Since
the weights of the elements X, ε(Y ) and u of H(U) are the same, by the condition (6)
on a Howe system these elements also have the same (non-negative) degree. Thus

degX = − deg Y = deg u.

Consider the element (XY ) ⋄ f of Mµ . It corresponds to the product XY P u in Ā.
Write the extremal projector P as a sum, like we did in the beginning of the proof of
Proposition 2.3. Then move the generators Fα and Eα of g respectively to the left of
XY and to the right of u in the resulting summands of XY P u . This procedure shows
that modulo J+J ′, the product XY P u equals the sum of products of the form X ′Y ′u′

where
X ′ ∈ P(U)ν−α , Y ′ ∈ P(U∗)−ν−β and u′ ∈ P(U)ν+α+β

while α, β are certain sums of positive roots.
Suppose that the coset of X ′Y ′u′ makes a non-zero contribution to (XY ) ⋄ f ∈ Mµ .

The condition (5) on a Howe system implies that the adjoint operator adζ(Fα) on H(U)
either has zero degree, or vanishes on the subspace P(U) . Hence

degX ′ = degX .

Thus the element Y ′u′ ∈ H(U) has the degree zero. By our assumption, this element
does not belong to the left ideal H(U)U∗ ⊂ H(U) . It also has a weight relative to the
adjoint action of t on H(U) . But then the weight must be zero. Indeed, by the condition
(8) on a Howe system, the adjoint action of t on H(U) preserves the left ideal H(U)U∗.
Modulo this ideal, the element Y ′u′ of H(U) equals a non-zero scalar, which has the
weight zero. Thus the weight of Y ′u′ is zero as well. Therefore α = 0 and X ′ = X .

The element Y ⋄ f of Mµ corresponds to the product Y P u in Ā . Modulo J +J ′, the
latter product equals the sum of the products Y ′u′ ∈ H(U) where Y ′ and u′ are the
same as above in the particular case when α = 0:

Y ′ ∈ P(U∗)−ν−β and u′ ∈ P(U)ν+β

where β ranges over sums of positive roots. Modulo the left ideal H(U)U∗ of H(U), the
sum of the products Y ′u′ equals a scalar. This scalar must be 1, because Y ⋄ f = ιµ(1)
in Mµ . Hence the sum of the products XY ′u′ equals X modulo H(U)U∗ ⊂ H(U) . ⊓⊔
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The contravariance of the form Sλ
µ implies that the kernel KerSλ

µ is an S-submodule

of Mλ
µ . Indeed, let f ∈ KerSλ

µ and Z ∈ S. Then Z ⋄f ∈ KerSλ
µ , because for any g ∈ Mλ

µ

Sλ
µ(Z ⋄ f ,g ) = Sλ

µ(f ,ε(Z) ⋄ g ) = 0 .

Proposition 2.6. Let λ + ρ ∈ t∗ be nonsingular. Then the quotient space Mλ
µ /KerSλ

µ

is an irreducible S-module.

Proof. Take any f ∈ Mλ
µ such that f /∈ KerSλ

µ , so that the image of f in the quotient

space Mλ
µ /KerSλ

µ is not zero. For any Y ∈ P(U∗)−ν consider the vector Y ⋄ f ∈ Mµ .
This vector is well defined, because the denominators of P = P [ρ] do not vanish on f .
The weight of this vector is λ− ν = µ+ κ , while the subspace Mµ+κ

µ ⊂ Mµ is spanned
by the vector ιµ(1). Hence the vector Y ⋄ f is a multiple of ιµ(1).

Suppose that Y ⋄ f = 0 for every Y ∈ P(U∗)−ν . The map ε provides a bijection
P(U∗)−ν → P(U)ν of subspaces of H(U) . Hence for any g ∈ Mλ

µ there is an element
Y ∈ P(U∗)−ν such that g = ιµ(ε(Y )) . If the weight µ+ κ is generic, then

Sλ
µ (f, g) = Sµ (f, ε(Y ) ⋄ ιµ(1)) = Sµ (Y ⋄ f, ιµ(1)) = 0 .

By our definition of the form Sλ
µ then we must have Sλ

µ (f, g) = 0 for all weights µ , not

only those where µ+κ is generic. Hence f ∈ KerSλ
µ , a contradiction. It shows that there

is Y ∈ P(U∗)−ν such that Y ⋄ f 6= 0. Moreover, we can choose Y with Y ⋄ f = ιµ(1).
Now take any h ∈ Mλ

µ and choose X ∈ P(U)ν such that ιµ(X) = h . By Lemma 2.5,
then we have

(XY ) ⋄ f = h.

Here XY stands for the coset in Z̄ of the product of X ∈ P(U)ν and Y ∈ P(U∗)−ν in
the algebra A. This coset belongs to S by definition, because the product of X and Y
in A has weight zero. ⊓⊔

Recall that Q is a subalgebra of S. By using Proposition 1.6, we now get the following

Corollary 2.7. Suppose that λ + ρ ∈ t∗ is nonsingular, and that Rλ = Sλ . Then the

quotient space Mλ
µ /KerSλ

µ is an irreducible Q-module.

2.5. Irreducible Q-modules

In this subsection we give another construction of irreducible Q-modules, which employs
Proposition 1.9. For any weight µ ∈ t∗ denote by Lµ the quotient of the Verma module
Mµ by its maximal proper submodule Nµ . This quotient is an irreducible g-module.
Note that P(U) is irreducible as a module over the algebra H(U) . Hence the tensor
product Lµ ⊗P(U) is an irreducible module over the algebra A = U(g)⊗H(U) . Recall
that the action of the algebra H(U) on the vector space P(U) is defined by (2.15).

We can also regard Lµ⊗P(U) as a g-module, by restriction from A to its subalgebra
U(g) . Here g acts on the tensor factor P(U) via the homomorphism ζ : U(g) → H(U) .
Let us show that then the actions on P(U) of the subalgebras t and n ′ of g are semisimple
and locally nilpotent respectively. Indeed, the action of the group G on H(U) is locally
finite, see Subsection 2.1. Hence the action of g on H(U) adjoint to ζ is also locally
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finite, by the property (2) of a Howe system. In particular, the actions of t and n ′ on
H(U) adjoint to ζ are respectively semisimple and locally nilpotent. So are the actions
of t and n ′ on P(U) , by (2.15) and the property (7) of a Howe system. It follows that the
actions of t and n ′ on Lµ ⊗P(U) are also semisimple and locally nilpotent respectively.

Take any λ ∈ t∗ such that λ+ ρ is nonsingular. Consider the space of n-coinvariants
of the g-module Lµ ⊗ P(U) , and denote by Lλ

µ its weight subspace

(Lµ ⊗ P(U))λn ⊂ (Lµ ⊗ P(U))n . (2.31)

Then Lλ
µ is an irreducible S-module by Proposition 1.9. By using Proposition 1.6 we get

Corollary 2.8. Suppose that λ + ρ ∈ t∗ is nonsingular, and that Rλ = Sλ . Then Lλ
µ

is an irreducible Q-module.

Let us now regard Lλ
µ as the quotient of the vector subspace Mλ

µ by its subspace

Nλ
µ = (Nµ ⊗ P(U))λ

n
. (2.32)

We will prove that under certain conditions on λ and µ , the subspace Nλ
µ of Mλ

µ coincides

with the kernel KerSλ
µ of the Shapovalov form on Mλ

µ . Then the quotient Lλ
µ of Mλ

µ

coincides with the quotient Mλ
µ /KerSλ

µ . In particular, then these two quotients are the
same as Q-modules. Observe that for any vector u ∈ P(U) of the weight λ − µ , the
denominators of ζ(P [µ+ ρ])u get evaluated as products of factors of the form

(λ− µ)(Hα) + (µ+ ρ)(Hα) + s = (λ+ ρ)(Hα) + s

where α ∈ ∆+ and s is a positive integer. These factors do not depend on µ . And they
do not vanish, when the weight λ+ ρ is nonsingular.

Note that here the weight λ−µ of the vector u ∈ P(U) is taken relative to the action
of g on P(U) via the homomorphism ζ : U(g) → H(U) , by using the definition (2.15). If
we used the adjoint action of g on P(U) as on a subalgebra of H(U) ⊂ A, like we did in
the previous subsection, then the weight of the same vector u would be equal to (2.18).

Proposition 2.9. Suppose that λ + ρ ∈ t∗ is nonsingular, and that ζ(P [µ + ρ])u 6= 0
for some vector u ∈ P(U) of weight λ− µ . Then

Nλ
µ = KerSλ

µ . (2.33)

Proof. Consider the vector 1µ ⊗ u ∈ Mµ ⊗ P(U) . This vector is of weight λ . We will
show that the image ιµ(u) of this vector in the quotient space

Mλ
µ = (Mµ ⊗ P(U))λ

n

does not belong to the sum Nλ
µ +KerSλ

µ . This implies the equality (2.33). Indeed, then

Mλ
µ /(N

λ
µ +KerSλ

µ ) (2.34)

is a non-zero quotient of
Mλ

µ/N
λ
µ = Lλ

µ , (2.35)
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which is an irreducible S-module by Proposition 1.9. So the quotients (2.34) and (2.35)
of Mλ

µ must coincide, and we obtain the inclusion KerSλ
µ ⊂ Nλ

µ . The opposite inclusion

is obtained from the irreducibility of Mλ
µ /KerSλ

µ as an S-module, see Proposition 2.6.

Let us now assume that ιµ(u) ∈ Nλ
µ +KerSλ

µ . We shall bring this to a contradiction.

By our assumption, the element ιµ(u) ∈ Mλ
µ equals the sum of an element of (2.32) and

of an element ιµ(v) ∈ KerSλ
µ where v ∈ P(U) . Let us regard Mλ

µ as a g-module, and
apply the extremal projector P = P [ρ] to that equality. Then we get a certain equality
in the vector space Mµ ⊗ P(U) . Here we use the second property in (1.6).

By applying P to the element ιµ(u) ∈ Mλ
µ we get the vector P (1µ⊗ u) ∈Mµ⊗P(U) ,

which belongs to
1µ ⊗ ζ(P [µ+ ρ])u+ (nMµ)⊗ P(U) .

Here ζ(P [µ + ρ])u 6= 0. By applying P to any element of (2.32) we get a vector from
the subspace

P (Nµ ⊗ P(U)) ⊂ Nµ ⊗ P(U) ⊂ (nMµ)⊗ P(U) .

By applying P to the element ιµ(v) ∈ Mλ
µ we get the vector P (1µ ⊗ v) ∈ Mµ ⊗ P(U) ,

which belongs to
1µ ⊗ ζ(P [µ+ ρ])v + (nMµ)⊗ P(U) .

But since ιµ(v) ∈ KerSλ
µ , here we have ζ(P [µ + ρ])v = 0 by Proposition 2.3. We use

the non-degeneracy of the restriction of the form 〈 , 〉 to any weight subspace of P(U) ,
proved in the very end of Subsection 2.3. Thus we get a contradiction. ⊓⊔

Later we will produce vectors u satisfying the conditions of Proposition 2.9, for each
example of a Howe system and for certain weights µ ; see Propositions 3.5, 4.4 and 4.6.

3. Intertwining operators

3.1. Zhelobenko operators and left ideals

The vector space W = U ⊕ U∗ has been equipped with a non-degenerate bilinear form
B, symmetric or alternating. For each isotropic subspace V ⊂W denote by IV the left
ideal of the algebra A generated by the elements of 1⊗ V . Also consider the left ideal

IV = U(t) IV

of algebra Ā. It is generated by the elements of the subspace 1⊗ V ⊂ Ā . In particular,

IU∗ = I and IU∗ = I .

In Subsection 2.1 we assumed that the group G acts on the vector spaceW and preserves
the bilinear form B. Thus σ̂ (V ) is an isotropic subspace of W for any σ ∈ S .

Lemma 3.1. For any element σ ∈ S the operator ξ̌σ on Ā/J maps

( I + J )/J → ( I σ̂ (U∗) + J )/J .
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Proof. We use the induction on the length ℓ(σ) of the element σ ∈ S . For ℓ(σ) = 0 the
statement to prove is tautological. Take any index c ∈ {1 , . . . , r} with ℓ(σc σ) = ℓ(σ)+1.
Then ξ̌σc σ = ξ̌c ξ̌σ . Note that here we have σ−1(αc) ∈ ∆+. Take any element X ∈ I .
By the induction assumption, the operator ξ̌σ maps the coset of X in Ā/J to that of

n∑

k=1

Yk · 1⊗ σ̂ (u′k)

where u′1 , . . . , u
′
n are basis elements of U∗ and Y1 , . . . , Yn are certain elements of Ā . By

definition, the operator ξ̌c maps the latter coset to

n∑

k=1

ξ̄c ( σ̂c(Yk) · 1⊗ σ̂c σ̂ (u
′
k)) .

Due to the definition (1.14), for making the induction step it now suffices to show that

[Fc ,1⊗ σ̂c σ̂ (U
∗)] ⊂ 1⊗ σ̂c σ̂ (U

∗) .

Applying to this relation the automorphism (σ̂c σ̂)
−1 of the algebra Ā, we get the relation

[Eα ,1⊗ U∗] ⊂ 1⊗ U∗ for α = σ−1(αc) ∈ ∆+ ,

which holds by the condition (8) on a Howe system. Here (σ̂c σ̂)
−1(Fc) is a multiple of

Eα, because the action of Norm 0T on the subspace t ⊂ g factors through that of S. ⊓⊔

In Subsection 2.3 for arbitrary µ ∈ t∗ we introduced the left ideals J ′′
µ and J ′′

µ of the

algebras A and Ā respectively. Generalizing (2.14), introduce the quotient vector spaces

Aµ,V = A/(J ′′
µ + IV ) and Mµ,V = Aµ,V /J = A/(J ′′

µ + IV + J) (3.1)

of A. Then Aµ,V is a left A-module with the space of n-coinvariants Mµ,V . Note that
for any element τ ∈ T the action of its representative τ̂ ∈ G on the algebra A determines
a linear map

Mµ,V → Mτ(µ),τ̂(V ) . (3.2)

Indeed, the adjoint action of τ̂ on g preserves the subalgebras n and n ′. The action of τ̂
on the algebra A preserves the right ideal J, and maps the left ideals J ′′

µ and IV to J ′′
τ(µ)

and I τ̂(V ) respectively. The linear map (3.2) determined in this way is clearly invertible.
If the weight µ+ κ is generic, then the spaces of double cosets

Ā/(J ′′
µ + IV + J) and A/(J ′′

µ + IV + J) = Mµ,V

are naturally isomorphic. Here we use the equality (2.13). Furthermore, then Mµ,V is
isomorphic to the left Z̄ -module, defined as the quotient of the algebra Z̄ by the left
ideal generated by the cosets of the elements of 1 ⊗ V and the cosets of the elements
H − (µ+ κ)(H) where H ∈ t . Now denote respectively by J ′′ and J ′′ the left ideals of
A and Ā, generated by the elements X ⊗ 1 with X ∈ n′ .

Lemma 3.2. For any element σ ∈ S the operator ξ̌σ on Ā/J maps

( J ′′ + I + J )/J → ( J ′′ + I σ̂ (U∗) + J )/J .



34 Sergey Khoroshkin and Maxim Nazarov

Proof. For each c = 1 , . . . , r denote by n′c the vector subspace of n′ spanned by all root
vectors Eα except Ec . Denote by J ′′

c the left ideal of A generated by all elements X ⊗ 1
with X ∈ n′c , and by the element Ec . Let J

′′
c = U(t)Jc be the corresponding left ideal of

Ā. We will first prove that the Zhelobenko operator ξ̌c on the vector space Ā/J maps

( J ′′
c + J )/J → ( J ′′+ J )/J . (3.3)

The left ideal σ̂c (J
′′
c ) is generated by the element Fc, and by the subspace of Ā formed

by all elements X ⊗ 1 where X ∈ n ′
c . Observe that the latter subspace is preserved by

the adjoint action of the element Fc . Hence for any element Y ∈ Ā and any element Z
from that subspace, ξ̄c (Y Z) ∈ J ′′+ J by the definition of the operator ξ̄c . The property
(3.3) of the operator ξ̌c on Ā/J now follows from the inclusion ξ̄c (Y Fc) ∈ J for every
Y ∈ Ā. For a detailed proof of that inclusion see [KO, Section 7.2] or [KN1, Section 3].

We will now prove Lemma 3.2 by induction on the length ℓ(σ) of the element σ ∈ S .
For ℓ(σ) = 0 the statement to prove is tautological. Take any index c ∈ {1 , . . . , r} with
ℓ(σc σ) = ℓ(σ)+1. Then ξ̌σc σ = ξ̌c ξ̌σ . Note that here we have σ−1(αc) ∈ ∆+. Take the
statement of the lemma as the induction assumption. Observe an equality of left ideals

J ′′ + I σ̂ (U∗) = J ′′
c + I σ̂ (U∗) (3.4)

of the algebra Ā. Indeed, by the definitions of left ideals J ′′ and J ′′
c the equality (3.4)

follows from the inclusion
1⊗ ζ(Ec) ∈ I σ̂ (U∗) .

Using the automorphism σ̂−1 of the algebra Ā, the latter inclusion is equivalent to

1⊗ ζ(Eα) ∈ I for α = σ−1(αc) ∈ ∆+,

which holds by the condition (7) on a Howe system. To make the induction step it now
suffices to prove that the operator ξ̌c on J\Ā maps

( J ′′
c + I σ̂ (U∗) + J )/J → ( J ′′ + I σ̂cσ̂ (U∗) + J )/J .

But that follows from the property (3.3) of the operator ξ̌c , and from the induction step
we made when proving Lemma 3.1. ⊓⊔

Proposition 3.3. Let µ+ κ ∈ t∗ be generic. Then the operator ξ̌σ on Ā/J maps

( J ′′
µ + I + J )/J → ( J ′′

σ◦µ + I σ̂ (U∗) + J )/J .

Proof. The left ideal J ′′
µ of the algebra Ā is spanned by J ′′ and by all the subspaces

Ā (H ⊗ 1− µ(H)) (3.5)

where H ∈ t . Due to Lemma 3.2, to prove Proposition 3.3 it suffices to consider the
action of ξ̌σ on the images of the subspaces (3.5) in the quotient J\Ā. Rewrite (3.5) as

Ā (H − (µ+ κ)(H)− 1⊗ ζ(H) + κ(H)) . (3.6)

By (1.17) the operator ξ̌σ maps the image of ĀH in J\Ā to that of Ā (σ ◦H) . By (2.12)
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1⊗ ζ(H)− κ(H) ∈ I . (3.7)

Hence by using Lemma 3.1, the image of (3.6) in J\Ā is mapped by ξ̌σ to a subspace of
the image in J\Ā of

Ā (σ ◦H − (µ+ κ)(H)) + I σ̂ (U∗) .

We will complete the proof of Proposition 3.3 by showing that for every H ∈ t∗,

σ ◦H − (µ+ κ)(H) ∈ J ′′
σ◦µ + I σ̂ (U∗) . (3.8)

Replacing H by σ−1 ◦H at the left hand side of (3.8), we get the element

H − (σ ◦ (µ+ κ))(H) = H ⊗ 1− (σ ◦ µ)(H) + 1⊗ ζ(H)− σ(κ)(H) .

By definition, here
H ⊗ 1− (σ ◦ µ)(H) ∈ J ′′

σ◦µ .

But by applying to the relation (3.7) the automorphism σ̂ of Ā , using the condition (1)
on a Howe system, and then replacing H by σ−1(H) in the resulting relation, we get

1⊗ ζ(H)− σ(κ)(H) ∈ I σ̂ (U∗) . ⊓⊔

Corollary 3.4. Let µ+ κ ∈ t∗ be generic. Then for any σ ∈ S the operator ξ̌σ defines

a Z̄-equivariant linear map

Mµ → Mσ◦µ, σ̂ (U∗) . (3.9)

Let us denote this linear map by the same symbol ξ̌σ . Then its Z̄-equivariance means

ξ̌σ(Z ⋄ f) = ξ̌σ(Z) ⋄ ξ̌σ(f) for Z ∈ Z̄ and f ∈ Mµ .

This property follows from Proposition 1.4(iii). Note that by (1.16), the above defined
operator (3.9) maps the weight subspace Mλ

µ ⊂ Mµ to the weight subspace

Mσ◦λ
σ◦µ, σ̂ (U∗) ⊂ Mσ◦µ, σ̂ (U∗) .

3.2. Action of Zhelobenko operators

For any element σ ∈ S and any weight µ ∈ t∗ consider the A-module

A σ◦µ, σ̂ (U∗) = A /( J ′′
σ◦µ + I σ̂ (U∗) ) . (3.10)

Its vector space can be identified with that of the tensor product of the Verma module
Mσ◦µ over g , multiplied by the H(U)-module H(U)/H(U) σ̂(U∗) . The latter quotient
space can be idenitified with P(σ̂ (U)) . The vector space of (3.10) is then identified
with Mσ◦µ ⊗ P(σ̂ (U)) . Further, the space Mσ◦µ,σ̂ (U∗) of n-coinvariants of (3.10) can
be identified with P(σ̂ (U)) , by assigning to any w ∈ P(σ̂ (U)) the coset of 1⊗w ∈ A in

Mσ◦µ, σ̂ (U∗) = A /( J ′′
σ◦µ + I σ̂ (U∗) + J) . (3.11)

In particular, when σ ∈ S is the identity element, the space Mµ,U∗ = Mµ gets identified
with P(U) , as in Subsection 2.3.

Suppose that the weight µ+κ is generic. Using Corollary 3.4 together with the above
identifications of the source and target vector spaces in (3.9), the operator ξ̌σ on Ā/J
determines a linear map P(U) → P(σ̂ (U)) . The latter map will be denoted by Iσ,µ .
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Proposition 3.5. Let µ+ κ ∈ t∗ be generic. Then for any σ ∈ S and any u ∈ P(U)

Iσ,µ(u) = σ̂ (ζ(Pσ[µ+ ρ])u) (3.12)

where ζ(Pσ[µ+ ρ])u is regarded as an element of P(U) by using the definition (2.15).

Proof. We prove Proposition 3.5 by induction on the length ℓ(σ) of σ ∈ S. When σ is
the identity element of S, the statement to prove is trivial. Let us now use the statement
as the induction assumption. Take any index c ∈ {1 , . . . , r} with ℓ(σc σ) = ℓ(σ) + 1.
Then σ−1(αc) is a positive root, let us denote it by α . For short, denote by v the element
ζ(Pσ[µ+ ρ])u ∈ P(U) . We have

Mσcσ◦µ, σ̂cσ̂ (U∗) = Ā /( J ′′
σcσ◦µ + Iσcσ(U∗) + J) . (3.13)

Using the definition (1.14) along with the induction assumption, the element Iσcσ,µ(u)
of P(σ̂ (U)) can be identified with the coset in (3.13) of the sum

∞∑

s=0

s∏

t=1

(
t (Hc − t+ 1)

)−1 · E s
c ads

Fc
(1⊗ σ̂c σ̂ (v)) .

Without changing the sum, we can replace the operator ads
Fc

by 1⊗ads
ζ(Fc)

here, because

the elements Fc ⊗ 1 and 1⊗ σ̂c σ̂ (v) of Ā commute. Without changing the coset, we can
then replace E s

c by 1⊗ ζ(E s
c ) in resulting sum, because Ec ⊗ 1 commutes with

1⊗ ads
ζ(Fc)( σ̂c σ̂ (v))

and belongs to the left ideal J ′′ ⊂ J ′′
σcσ◦µ

. So we get the sum

∞∑

s=0

s∏

t=1

(
t (Hc − t+ 1)

)−1 · 1⊗ ζ(E s
c ) ad

s
ζ(Fc)(σ̂c σ̂ (v)) =

∞∑

s=0

s∏

t=1

(
t (Hc − t+ 1)

)−1 · 1⊗ σ̂c σ̂ (ζ(F
s
α ) ad

s
ζ(Eα)(v)) .

By the property (7) of a Howe system, the element 1⊗ ζ(Eα) belongs to the left ideal
I = IU∗ of A. Hence

1⊗ σ̂c σ̂ (ζ(Eα)) ∈ Iσcσ(U∗) .

Therefore in the last displayed sum, the element ads
ζ(Eα)(v) ∈ H(U) can be replaced by

the element ζ(E s
α) v ∈ H(U) , without changing the coset of the sum in (3.13). We get

∞∑

s=0

s∏

t=1

(
t (Hc − t+ 1)

)−1 · 1⊗ σ̂c σ̂ (ζ(F
s
α ) ζ(E

s
α) v ) . (3.14)

Here Hc stands for Hc ⊗ 1 + 1⊗ ζ(Hc) . Modulo the left ideal J ′′
σcσ◦µ of A, the element

Hc ⊗ 1 equals
(σcσ ◦ µ)(Hc) = (σcσ (µ+ ρ)− ρ)(Hc) =

(µ+ ρ)((σcσ)
−1(Hc))− ρ(Hc) = −(µ+ ρ)(Hα)− 1 .
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Hence the coset of the sum (3.14) in (3.13) coincides with that of

∞∑

s=0

s∏

t=1

1⊗
(
t (ζ(Hc)− (µ+ ρ)(Hα)− t)

)−1 · 1⊗ σ̂c σ̂ (ζ(F
s
α ) ζ(E

s
α) v ) =

∞∑

s=0

1⊗ σ̂c σ̂
( s∏

t=1

(
t (−ζ(Hα)− (µ+ ρ)(Hα)− t)

)−1 · ζ(F s
α ) ζ(E

s
α) v

)
=

1⊗ σ̂c σ̂ (ζ(Pα[µ+ ρ]) v ) = 1⊗ σ̂c σ̂ (ζ(Pσcσ[µ+ ρ]) u) . ⊓⊔

The operator (3.9) has been defined only when the weight µ+ κ is generic. However,
Proposition 3.5 yields the following result, which is valid for any µ ∈ t∗. Here we also
use the remark made at the very end of Subsection 3.1.

Corollary 3.6. If λ+ ρ is nonsingular, the operator ξ̌σ on Ā/J defines a linear map

Mλ
µ → Mσ◦λ

σ◦µ, σ̂ (U∗) . (3.15)

Proof. The source and target spaces in (3.9) can be identified with P(U) and P(σ̂ (U))
respectively. The first of these identifications uses the bijection ιµ as in Subsection 2.3.
Let u ∈ P(U) be any element of weight λ−µ relative to the action of t . Here any element
H ∈ t acts on P(U) via the left multiplication by ζ(H) , using the definition (2.15). Then
ιµ(u) ∈ Mλ

µ . When applying the operator ζ(Pσ[µ+ ρ]) to u , the denominators become,
up to non-zero scalar multipliers, certain products of the factors of the form

(λ− µ)(Hα) + (µ+ ρ)(Hα) + s = (λ+ ρ)(Hα) + s

where α is a positive root and s is a positive integer. These factors do not depend on µ ,
and do not vanish if the weight λ+ ρ is nonsingular. Thus by mapping u to the element
of P(σ̂ (U)) at the right hand side of (3.12), we get the required linear map (3.15). ⊓⊔

3.3. Irreducibility theorem

Now take the longest element σ0 of the Weyl group S . For any weight µ ∈ t∗ consider
the R-module Mσ0◦µ,σ̂0(U∗) . The next Proposition 3.7 establishes a connection between

the Shapovalov form Sλ
µ on Mλ

µ , and the linear map

Mλ
µ → Mσ0◦λ

σ0◦µ, σ̂0(U∗) (3.16)

defined by the Zhelobenko operator ξ̌0 = ξ̌σ0
on Ā/J, when λ + ρ ∈ t∗ is nonsingular.

The latter map will be denoted by ξ̌0 |Mλ
µ . Note that when µ+κ ∈ t∗ fails to be generic,

the operator ξ̌0 on Ā/J does not necessarily define any map from the whole space Mµ .
By combining Proposition 3.7 with Corollary 2.7, we will obtain Theorem 3.8.

Proposition 3.7. Let λ+ ρ ∈ t∗ be nonsingular. Then for any µ ∈ t∗

KerSλ
µ = Ker( ξ̌0 |Mλ

µ ) .
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Proof. According to Subsection 3.2, the vector space of the the R-module Mσ0◦µ,σ̂0(U∗)

can be identified with P(σ̂0(U)) . Denote by 〈 , 〉σ0
the non-degenerate C -bilinear pairing

P(U)× P(σ̂0(U)) → C

defined by the equality
〈u,w 〉σ0

= 〈u, σ̂−1
0 (w)〉 . (3.17)

Here 〈 , 〉 is the non-degenerate symmetric bilinear form on the vector space U selected
in Subsection 2.1. Hence the pairing 〈 , 〉σ0

is non-degenerate too.
Now for any u, v ∈ P(U) put f = ιµ(u) and g = ιµ(v) . If the weight µ+ κ is generic,

then by Propositions 2.3 and 3.5 we have

Sλ
µ (f, g) = 〈u , ζ(P [µ+ ρ])v 〉 = 〈u , σ̂−1

0 (Iσ0,µ(v))〉 = 〈u , Iσ0,µ(v)〉σ0
. (3.18)

When the difference λ − µ and the elements u,v ∈ P(U) are fixed, the left hand side
of the above equalities becomes a rational functions of µ ∈ t∗ . If λ + ρ is nonsingular,
this rational function has finite values for all µ by Proposition 2.4. Now Proposition 3.7
follows from the definition of the operator ξ̌0 |Mλ

µ , see our proof of Corollary 3.6. ⊓⊔

Theorem 3.8. Suppose that λ + ρ ∈ t∗ is nonsingular, and that Rλ = Sλ . Then for

any µ ∈ t∗ the quotient Mλ
µ /Ker( ξ̌0 |Mλ

µ ) is an irreducible Q-module.

Recall that the algebra A is specified as the tensor product (2.5), where the group
G acts diagonally. Consider the corresponding subalgebra AG ⊂ A of G-invariants.
This subalgebra acts on Aµ by restricting the action of A. Since AG ⊂ NormJ, the
subalgebra AG then acts on the space Mµ of n-coinvariants of Aµ . The latter action
preserves the subspace Mλ

µ ⊂ Mµ . This subspace is also a Q-module, if the weight λ+ρ

is nonsingular. The above action of AG on Mλ
µ can also be obtained by pulling the action

of Q back through the isomorphism γ : AG → Q, see Subsection 1.5. Note that for any
σ ∈ S the actions of AG on the source and target vector spaces of the map (3.15)
defined by ξ̌σ , are intertwined by this map by its definition. Using this observation
when σ = σ0, we obtain a corollary to Theorem 3.8.

Corollary 3.9. Suppose that λ + ρ ∈ t∗ is nonsingular, and that Rλ = Sλ . Then for

any µ ∈ t∗ the quotient Mλ
µ /Ker( ξ̌0 |Mλ

µ ) is an irreducible AG -module.

3.4. Contravariant pairing

For any µ ∈ t∗ we can define a non-degenerate C -bilinear pairing

Qµ : Mµ ×Mσ0◦µ, σ̂0(U∗) → C

as follows. For any two elements u ∈ P(U) and w ∈ P(σ̂0(U)) consider the cosets in Mµ

and Mσ0◦µ, σ̂0(U∗) of 1⊗u and 1⊗w respectively; see (3.11). By definition, the value of
Qµ on this pair of cosets is 〈u,w 〉σ0

; see (3.17). By restricting Qµ to weight subspaces,
we define a pairing

Qλ
µ : Mλ

µ ×Mσ0◦λ
σ0◦µ, σ̂0(U∗) → C (3.19)
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for any λ ∈ t∗ . The latter pairing is also non-degenerate, see the end of Subsection 2.3.
Now suppose that the weight λ+ ρ is nonsingular. Let us prove that then

Qλ
µ (ε(Z) ⋄ f ,h) = Qλ

µ (f , ξ̌0(Z) ⋄ h) when Z ∈ S . (3.20)

In particular, here ξ̌0(Z) ⋄ h ∈ Mσ0◦λ
σ0◦µ, σ̂0(U∗) is defined, even though the element ξ̌0(Z)

of the algebra Z̄ may be not contained in the subspace Z ⊂ Z̄ .
First let µ+ κ be generic. Then the map (3.16) defined by the Zhelobenko operator

ξ̌0 on Ā/J, is invertible. Let g ∈ Mλ
µ be the image of h under the inverse map. By (3.18)

Qλ
µ (ε(Z) ⋄ f ,h) = S λ

µ (ε(Z) ⋄ f ,g ) = S λ
µ (f ,Z ⋄ g ) = Qλ

µ (f , ξ̌0(Z) ⋄ h) .

Here we used (2.30) and Corollary 3.4. Thus we get (3.20) for generic µ+ κ . Now note
that when λ+ ρ is nonsingular, the left hand side of (3.20) is defined for any weight µ ,
as a finite number. When f, h, Z and the difference λ − µ are all fixed while µ varies,
this number becomes a rational function of µ . Hence the right hand side of (3.20) can
also be defined as a rational function of the weight µ , with only finite values. Since the
pairing (3.19) is non-degenerate, we can then determine the vector ξ̌0(Z) ⋄ h .

If Z ∈ Q, then ξ̌0(Z) = Z by definition. Hence the equality (3.20) implies that for
any µ and nonsingular λ+ ρ the pairing (3.19) is Q-contravariant:

Qλ
µ (ε(Z) ⋄ f ,h) = Qλ

µ (f ,Z ⋄ h) when Z ∈ Q .

In particular, we have an action ⋄ of the algebra Q on the vector space Mσ0◦λ
σ0◦µ, σ̂0(U∗) .

4. Yangians and reductive dual pairs

4.1. Reductive dual pairs

From now on we will work with examples of Howe systems, as defined in Subsection 2.1.
For each of the corresponding algebras (2.5) we will describe explicitly its subalgebra of
G-invariants. Then we will apply Corollary 3.9 to each of these examples. The group G
will be one of the classical complex Lie groups GLm , Sp2m and O2m with any positive
integer m . Respectively, g will be one of the Lie algebras glm , sp2m and so2m .

First consider G = GLm . Let the indices a and b run through 1 , . . . , m . Then ea will
denote a vector of the standard basis in the vector space Cm , while Eab ∈ glm will be
a standard matrix unit. Choose the standard triangular decomposition (1.1) of g = glm
where the subalgebras n , t ,n ′ are spanned by the matrix units Eab with a > b, a = b,
a < b respectively. The elements Eaa form a basis in t , and we will denote by ηa the
vector of the dual basis in t∗ corresponding to Eaa . The positive and negative roots are
ηa − ηb with a < b and a > b respectively. The semisimple rank r of glm is m− 1. For
each c = 1 , . . . , m− 1 we will choose ηc − ηc+1 as the simple root αc , and

Hc = Ecc − Ec+1,c+1 , Ec = Ec,c+1 and Fc = Ec+1,c

as the basis elements of the sl2 -subalgebra gc ⊂ g . Define the Chevalley anti-involution
ε on glm by setting ε(Eab) = Eba . Choose the trivial Cartan decomposition g = g+⊕g−
of glm so that g+ = glm and g− = {0} .
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The algebraic group GLm is connected, and the maximal torus T ⊂ GLm with the
Lie algebra t consists of all elements acting on each basis vector ea ∈ Cm by a scalar
multiplication. The action of σc ∈ S on t∗ exchanges the dual basis vectors ηc and ηc+1 ,
leaving all other basis vectors fixed. Hence the Weyl group S can be identified with the
symmetric group Sm. Choose the representative σ̂c ∈ NormT so that its action on Cm

exchanges the basis vectors ec and ec+1 , leaving all other basis vectors of Cm fixed.
Note that here the group T is trivial.

Now consider G = Sp2m ,O2m . Let a and b run through −m, . . . ,−1 ,1 , . . . , m . Then
ea will denote a vector of the standard basis in C2m , and Eab will be a standard matrix
unit in gl2m . We will regard G as the subgroup in GL2m preserving the bilinear form
on C2m whose value on any pair (ea , eb) of the basis vectors is respectively

δa,−b · sign a or δa,−b

when G is Sp2m or O2m . Then g is the Lie subalgebra of gl2m spanned by the elements

Fab = Eab − sign ab · E−b,−a or Fab = Eab −E−b,−a .

Choose the triangular decomposition (1.1) of g = sp2m ,so2m where the subalgebras
n , t ,n ′ are spanned by the elements Fab with a > b, a = b, a < b respectively. The
elements F−a,−a with a > 0 form a basis in t . Here for any a > 0 we will denote by ηa
the vector of the dual basis in t∗ corresponding to the basis vector Fa−m−1, a−m−1 ∈ t .
The positive roots of sp2m are ηa − ηb and ηa + ηb where 1 6 a < b 6 m , together with
2ηa where 1 6 a 6 m . The positive roots of so2m are only ηa − ηb and ηa + ηb where
1 6 a < b 6 m . The semisimple rank r of so2m with m > 1 and of sp2m is m . But the
the semisimple rank of so2 is zero, while the root system is empty.

For g = sp2m ,so2m and c = 1 , . . . , m− 1 choose αc = ηc − ηc+1 and

Hc = Fc−m−1, c−m−1 − Fc−m,c−m , Ec = Fc−m−1, c−m and Fc = Fc−m,c−m−1

Further, if g = sp2m then choose αm = 2ηm and

Hm = F−1,−1 , Em = F−1,1/2 and Fm = F1,−1/2 .

If g = so2m and m > 1, then choose αm = ηm−1 + ηm and

Hm = F−2,−2 + F−1,−1 , Em = F−2,1 and Fm = F1,−2 .

For g = sp2m ,so2m choose the Cartan decomposition g = g+ ⊕ g− where g+ is spanned
by the elements Fab with a,b > 0 while g− is spanned by Fa,−b and F−a,b with a,b > 0.
The Chevalley anti-involution ε will be defined by setting ε(Fab) = sign ab ·Fba if θ = 1,
or ε(Fab) = Fba if θ = −1. Here the parameter θ is the same as in Subsection 2.1. This
choice of ε is prescribed by the condition (3) on our particular Howe systems, see below.

The algebraic group Sp2m is connected, but O2m has two connected components.
For G = Sp2m ,O2m the maximal torus T ⊂ G0 with the Lie algebra t consists of all
the elements of GL2m which multiply any two basis vectors ea , e−a ∈ C2m by scalars
inverse to each other. The Weyl group of sp2m is isomorphic to the semidirect product
Sm ⋉ Z

m
2 where the symmetric group Sm acts by permutations of the m copies of Z2 .

The Weyl group of so2m is isomorphic to a subgroup of Sm ⋉ Zm
2 of index two. For
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c = 1 , . . . , m − 1 and g = sp2m ,so2m the action of σc ∈ S on t∗ exchanges the basis
vectors ηc and ηc+1 , leaving other basis vectors fixed. Then choose the representative
σ̂c ∈ Norm 0T so that its action on C2m exchanges ec−m−1 and ec−m , also exchanges
em−c+1 and em−c , leaving all other basis vectors of C2m fixed. For g = sp2m we have
σm(ηm) = −ηm and σm(ηa) = ηa for 1 6 a < m . Choose the representative σ̂m ∈ Sp2m

so that σ̂m(e−1) = e1 and σ̂m(e1) = −e−1 while σ̂m(ea) = ea for |a| > 1. Note that for
g = sp2m the group T is trivial, like it was in the case g = glm .

Now take g = so2m . Here the group T is not trivial, but is isomorphic to Z2 . Let τm
be the generator of this group. Then τm (ηm) = −ηm and τm (ηa) = ηa for 1 6 a < m ,
so that σm = τm σm−1 τm . Choose the representative τ̂m ∈ O2m so that τ̂m (e−1) = e1
and τ̂m (e1) = e−1 while τ̂m (ea) = ea for |a| > 1. Choose σ̂m ∈ O2m to be τ̂m σ̂m−1 τ̂m .
We will need a representative in O2m for every element ω ∈ R . If ω /∈ S , then ω = τm σ
for some σ ∈ S . In this case, the representative of ω in O2m will be ω̂ = τ̂m σ̂ .

We will now associate to any G another classical complex Lie group, to be denoted
by G′ . Let n be any positive integer. If θ = 1 then for G = GLm ,Sp2m ,O2m put
G′ = GLn ,On ,Spn respectively. If θ = −1 then put G′ = GLn ,Spn ,On respectively.
Here for G′ = Spn the integer n is to be even. Then (G ,G′) is a reductive dual pair [H1].

Let g′ be the Lie algebra of G′ . Let the indices i and j run through the sequence
1 , . . . , n . Then fi will denote a vector of the standard basis in the vector space Cn ,
while E ij ∈ gln will be a standard matrix unit. If i is even, put ı̃ = i−1. If i is odd and
i < n, put ı̃ = i+1. Finally, if i = n and n is odd, put ı̃ = i . We will regard G′ = On or
G′ = Spn as the subgroup in GLn , preserving the bilinear form on Cn whose value on
any pair (fi , fj) of the basis vectors is θi δ ı̃j where θi = 1 or θi = (−1) i−1 respectively.
Then g′ is the Lie subalgebra of gln spanned by the elements Eij − θi θjE ̃ ı̃ .

Let U be the tensor product of vector spaces Cm⊗Cn , and let U∗ be the dual vector
space. For a = 1 , . . . , m and i = 1 , . . . , n let xai denote the basis vector ea ⊗ fi of U .
Then let ∂ai denote the corresponding vector of the dual basis in U∗ . If θ = 1 then
P(U) is the algebra of polynomials in xai while H(U) can be identified with the algebra
of differential operators on P(U) , so that ∂ai is the partial derivation corresponding to
xai . If θ = −1 then P(U) is the Grassmann algebra with mn anticommuting generators
xai . The definition (2.15) then implies that the element xai ∈ H(U) acts on P(U) via
left multiplication, while ∂ai ∈ H(U) acts as the left derivation relative to xai . The
latter operator on the Grassmann algebra is also called the inner multiplication by xai .
For any θ the form 〈 , 〉 on U will be chosen so that the basis of the xai is orthonormal.
Then the involutive anti-automorphism ε of the algebra H(U) exchanges xai with ∂ai .

Let us now consider the vector space W = U⊕U∗ . The groups GLm and GLn act on
the vector space U , and their actions commute which other. Hence we get the mutually
commuting actions of GLm and GLn on W . Clearly, both actions preserve the bilinear
form B in W as introduced in Subsection 2.1. If G = Sp2m ,O2m then we can identify
the vector space W with the tensor product C2m ⊗ Cn so that for a = 1 , . . . , m we
have xai = ea ⊗ fi as above, and ∂ai = e−a ⊗ (θi fı̃ ) . Then the bilinear form B on W
gets identified with the tensor product of the forms on C2m and Cn chosen above. If
θ = 1 then the form B is alternating and G′ = On ,Spn respectively. If θ = −1 then the
form B is symmetric and G′ = Spn ,On respectively. Hence we always obtain mutually
commuting actions of G and G′ on the vector space W , preserving the bilinear form B .
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To complete the description of a Howe system on U one requires a homomorphism
ζ : U(g) → H(U) obeying the conditions (1) to (6) from Subsection 2.1. It is well known
and can be verified directly that ζ can be chosen so that for g = glm and a,b = 1 , . . . , m

ζ(Eab) =

n∑

i=1

xai ∂bi ; (4.1)

while for g = sp2m ,so2m and the same indices a,b = 1 , . . . , m

ζ(Fab) = θ δab n/2 +

n∑

i=1

xai ∂bi ,

ζ(Fa,−b) = −
n∑

i=1

θ θi xaı̃ xbi , ζ(F−a,b) =

n∑

i=1

θi ∂ai ∂bı̃ . (4.2)

For g = glm ,sp2m ,so2m and θ = 1,−1 by [H2, Sections 2.3, 3.5, 3.8, 4.2, 4.3] the image of
the homomorphism ζ coincides with the subalgebra of G′ -invariant elements in H(U).

Note that for any i , j = 1 , . . . , n the element Eij ∈ gln acts on P(U) as the operator

m∑

a=1

xai ∂aj . (4.3)

Hence for g′ = son ,spn the element Eij − θi θjE ̃ ı̃ ∈ g′ acts on P(U) as the operator

m∑

a=1

(xai ∂aj − θi θj xa̃ ∂aı̃ ) . (4.4)

It is well known [H1] that the subalgebra of G-invariant elements in H(U) is generated
by the elements (4.3) for G = GLm or by the elements (4.4) for G = Sp2m ,O2m . In
Subsection 4.3 we give an analogue of this result for the algebra (2.5) instead of H(U) .

4.2. Yangians

First take the Yangian Y(gln) corresponding to the Lie algebra g′ = gln . This Yangian

is a complex unital associative algebra with a family of generators T
(1)
ij , T

(2)
ij , . . . where

i , j = 1 , . . . , n . Defining relations for these generators can be written using the series

Tij(x) = δij + T
(1)
ij x−1 + T

(2)
ij x−2 + . . .

where x is a formal parameter. Let y be another formal parameter. Then the defining
relations in the associative algebra Y(gln) can be written as

(x− y) [Tij(x) , Tkl(y) ] = Tkj(x)Til(y)− Tkj(y)Til(x) . (4.5)

The algebra Y(gln) is commutative if n = 1. By (4.5), for any z ∈ C the assignments

Tij(x) 7→ Tij(x+ z) (4.6)
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define an automorphism of the algebra Y(gln) . Here each of the formal power series
Tij(x + z) in (x + z)−1 should be re-expanded in x−1, and every assignment (4.6) is a
correspondence between the respective coefficients of series in x−1. Relations (4.5) also
show that for any formal power series g(x) in x−1 with coefficients from C and leading
term 1, the assignments

Tij(x) 7→ g(x)Tij(x) (4.7)

define an automorphism of the algebra Y(gln) . The subalgebra in Y(gln) consisting of
all elements which are invariant under every automorphism of the form (4.7), is called
the special Yangian of gln , and will be denoted by SY(gln) . Two representations of the
algebra Y(gln) are called similar if they differ by an automorphism of the form (4.7).
Similar representations of Y(gln) have the same restriction to the subalgebra SY(gln) .

Using (4.5), one can directly check that the assignments

Tij(x) 7→ δij +Eij x
−1 (4.8)

define a homomorphism of unital associative algebras Y(gln) → U(gln) . There is also

an embedding U(gln) → Y(gln) , defined by mapping Eij 7→ T
(1)
ij . So Y(gln) contains

the universal enveloping algebra U(gln) as a subalgebra. The homomorphism (4.8) is
identical on the subalgebra U(gln) ⊂ Y(gln) .

Let T (x) be the n×n matrix whose i , j entry is the series Tij(x) . One can show that
the assignment

T (x) 7→ T (−x)−1 (4.9)

defines an involutive automorphism of the algebra Y(gln) . Here each entry of the inverse
matrix T (−x)−1 is a formal power series in x−1 with coefficients from the algebra Y(gln) ,
and the assignment (4.9) as a correspondence between the respective matrix entries.

The Yangian Y(gln) is a Hopf algebra over the complex field C . The comultiplication
∆ : Y(gln) → Y(gln)⊗ Y(gln) is defined by the assignment

∆ : Tij(x) 7→
n∑

k=1

Tik(x)⊗ Tkj(x) . (4.10)

When taking tensor products of Y(gln)-modules, we use the comultiplication (4.10).
The counit homomorphism Y(gln) → C is defined by the assignment Tij(x) 7→ δij . The
antipodal map Y(gln) → Y(gln) is defined by mapping T (x) 7→ T (x)−1. Note that the
assignments

Tij(x) 7→ Tji(x) (4.11)

define an involutive anti-automorphism of the associative algebra Y(gln). Moreover,
they define a bialgebra anti-automorphism of Y(gln) .

Note that the special Yangian SY(gln) is a Hopf subalgebra of Y(gln) . It is isomorphic
to the Yangian Y(sln) of the special linear Lie algebra sln ⊂ gln considered in [D1, D2].
For the proofs of the latter two assertions see [M2, Subsection 1.8].

Now let g′ be one of the two Lie algebras son ,spn . When considering these two cases
simultaneously, we will use the following convention. Whenever the double sign ± or
∓ appears, the upper sign will correspond to the case of a symmetric form on Cn so
that g′ = son , while the lower sign will corresponds to the case of an alternating form
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on Cn so that g′ = spn . Let T̃ (x) be the transpose to the matrix T (x) relative to that

form on Cn . The i , j entry of the matrix T̃ (x) is θi θj T ̃ ı̃ (x) , see Subsection 4.1. An
involutive automorphism of the algebra Y(gln) can be then defined by the assignment

T (x) 7→ T̃ (−x) . (4.12)

This assignment is understood as a correspondence between respective matrix entries.
Note that (4.12) defines an anti-automorphism of the coalgebra Y(gln) , like (4.11) does.

Consider the product T̃ (−x)T (x) . The i , j entry of this matrix is the series

n∑

k=1

θi θk T k̃ ı̃ (−x)Tkj(x) . (4.13)

The twisted Yangian corresponding to the Lie algebra g′ is the subalgebra of Y(gln)
generated by coefficients of all series (4.13). We denote this subalgebra by Y(g′) . The
subalgebra Y(g′)∩ SY(gln) of Y(gln) is called the special twisted Yangian corresponding
to g′ . This subalgebra will be denoted by SY(g′) . The automorphism (4.7) of Y(gln)
determines an automorphism of Y(g′) which multiplies the series (4.13) by g(x) g(−x) .
The subalgebra SY(g′) of Y(g′) consists of the elements fixed by all such automorphisms.
Two representations of Y(g′) are called similar if they differ by such an automorphism.
Similar representations of Y(g′) have the same restriction to the subalgebra SY(g′) .

To give defining relations for these generators of Y(g′) , let us introduce the extended
twisted Yangian X(g′) . The complex unital associative algebra X(g′) has a family of

generators S
(1)
ij , S

(2)
ij , . . . where i , j = 1 , . . . , n . Put

Sij(x) = δij + S
(1)
ij x−1 + S

(2)
ij x−2 + . . .

and let S(x) be the n×n matrix whose i , j entry is the series Sij(x) . Defining relations
in the algebra X(g′) can then be written as

(x2 − y2) [Sij(x) , Skl(y) ] = (x+ y)(Skj(x)Sil(y)− Skj(y)Sil(x))

∓ (x− y) ( θk θj Si k̃(x)S ̃ l(y)− θiθl Sk ı̃(y)S l̃ j(x))

± θi θj (Sk ı̃ (x)S ̃ l(y)− Sk ı̃ (y)S ̃ l(x)) . (4.14)

These relations shows that for any formal power series f(x) in x−1 with the coefficients
from C and leading term 1, an automorphism of the algebra X(g′) is defined by mapping

Sij(x) 7→ f(x)Sij(x) . (4.15)

Let S̃(x) be the transpose to the matrix S(x) relative to our form on Cn , so that the

i , j entry of S̃(x) is θi θjS ̃ ı̃ (x) . By [M2, Theorem 2.3.13] there is a formal power series
O(x) in x−1 with the coefficients in the centre of X(g′) and leading term 1, such that

S(x)∓ 2x S̃(x) = (1∓ 2x)O(x)S(−x) . (4.16)

Moreover, then O(x)O(−x) = 1. Note that (4.16) yields an explicit formula for O(x) .
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One can define a homomorphism X(g′) → Y(g′) by mapping

S(x) 7→ T̃ (−x)T (x) . (4.17)

Moreover, the kernel of the homomorphism (4.17) is generated by the coefficients of the
series O(x) − 1. For the proof of the last two statements see [M2, Section 2.13]. By
setting O(x) = 1 in the matrix relation (4.16) and then considering the i , j entry we get

Sij(x)∓ 2x θiθj S ̃ ı̃ (x) = (1∓ 2x)Sij(−x) . (4.18)

The homomorphism (4.17) is surjective by its definition. Thus the twisted Yangian Y(g′)

can also be defined as the associative unital algebra with the generators S
(1)
ij , S

(2)
ij , . . .

subject to the relations (4.14) and (4.18).
Note that the anti-automorphism (4.11) and the automorphism (4.12) of the algebra

Y(gln) commute with each other. Their composition is an involutive anti-automorphism
of Y(gln) which maps

Tij(x) 7→ θi θj T ı̃ ̃ (−x) . (4.19)

The composition (4.19) preserves the the subalgebra Y(g′) ⊂ Y(gln) . The resulting
anti-automorphism of Y(g′) can also be obtained as follows. By using (4.14) only, one
shows that the assignments

Sij(x) 7→ Sji(x) (4.20)

define an involutive anti-automorphism of the algebra X(g′) ; see [M2, Proposition 2.3.4].
Moreover, due to (4.18) it factors to anti-automorphism of the algebra Y(g′) . The latter
coincides with the restriction of (4.19) to the subalgebra Y(g′) ⊂ Y(gln) .

Suppose we are given a representation of the algebra X(g′) such that every coefficient
of the series O(x) is represented by a scalar. Denote by o(x) the corresponding series
with scalar coefficients. Then o(x) o(−x) = 1 and the leading term of o(x) is 1. Hence
we can find another formal power series f(x) in x−1 with scalar coefficients and the
leading term 1, such that o(x) = f(−x)/f(x) . By pulling back the given representation
of X(g′) through the automorphism (4.15) we then get another representation of X(g′) ,
which factors through the homomorphism X(g′) → Y(g′) . The series f(x) and hence the
resulting representation of Y(g′) are not unique. However, here we can only replace f(x)
by f(x) h(x) where h(x) is a formal power series in x−1 with scalar coefficients and the
leading term 1, such that h(x) = h(−x) . Then h(x) = g(x) g(−x) for some series g(x) as
in (4.7). Hence all the representations of Y(g′) corresponding to the given representation
of X(g′) are similar to each other, and have the same restriction to SY(g′) .

The twisted Yangian Y(g′) has an analogue of the homomorphism Y(gln) → U(gln)
defined by (4.8). Namely, one can define a homomorphism X(g′) → U(g′) by mapping

Sij(x) 7→ δij +
Eij − θi θjE ̃ ı̃

x± 1
2

(4.21)

This can be proved by using the defining relations (4.14), see [M2, Proposition 2.1.2].
Moreover, the homomorphism (4.21) factors through the homomorphism X(g′) → Y(g′)
defined by (4.17). Further, there is an embedding U(g′) → Y(g′) defined by mapping
each element Eij− θi θjE ̃ ı̃ ∈ g′ to the coefficient at x−1 of the series (4.13). Hence Y(g′)
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contains the universal enveloping algebra U(g′) as a subalgebra. The homomorphism
Y(g′) → U(g′) corresponding to (4.21) is identical on the subalgebra U(g′) ⊂ Y(g′) .

The twisted Yangian Y(g′) is not only a subalgebra of Y(gln) , it is also a right coideal
of the coalgebra Y(gln) relative to the comultiplication (4.10). Indeed, let us apply this

comultiplication to the i , j entry of the n× n matrix T̃ (−x)T (x) . We get the sum

n∑

k=1

θi θk∆(T k̃ ı̃ (−x)Tkj(x)) =

n∑

g,h,k=1

θi θj (T k̃ g̃ (−x)⊗ T g̃ ı̃ (−x)) (Tkh(x)⊗ Thj(x)) =

n∑

g,h,k=1

θg θk T k̃ g̃ (−x)Tkh(x) ⊗ θi θg T g̃ ı̃ (−x)Thj(x) .

In the last displayed line, by performing the summation over k = 1 , . . . , n in the first
tensor factor we get the g ,h entry of the matrix T̃ (−x)T (x) . Therefore

∆(Y(g′)) ⊂ Y(g′)⊗ Y(gln) . (4.22)

For the extended twisted Yangian X(g′) , one defines a homomorphism of associative
algebras

X(g′) → X(g′)⊗Y(gln)

by mapping

Sij(x) 7→
n∑

g,h=1

Sgh(x) ⊗ θi θg T g̃ ı̃ (−x)Thj(x) . (4.23)

The homomorphism property can be verified directly, see [KN3, Section 3]. Using the
homomorphism (4.23), the tensor product of any modules over the algebras X(g′) and
Y(gln) becomes another module over X(g′) .

Moreover, the homomorphism (4.23) is a right coaction of the Hopf algebra Y(gln)
on the algebra X(g′) . Formally, one can define a homomorphism of associative algebras

X(g′) → X(g′)⊗ Y(gln)⊗ Y(gln)

in two different ways: either by using the assignment (4.23) twice, or by using (4.23)
and then (4.10). Both ways however lead to the same result, see again [KN3, Section 3].

4.3. Olshanski homomorphisms

First consider the reductive dual pair (G ,G′) = (GLm ,GLn) . We will treat the cases
of θ = 1 and θ = −1 simultaneously. We shall use the Yangian Y(gln) to describe the
subalgebra of GLm -invariant elements in the corresponding algebra (2.5). Denote by E
the m×m matrix whose a,b entry is Eba ∈ glm . Note the transposition of the indices a
and b here. The inverse matrix (x+ θE)−1 will be regarded as a formal power series in
x−1 whose coefficients are certain m×m matrices with entries from the algebra U(glm) .
Let (x+ θE)−1

ab be the a,b entry of the inverse matrix. This entry equals
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δab x
−1 − θEbax

−2 +

∞∑

s=0

m∑

c1,...,cs=1

(−θ)s+1Ec1aEc2c1 . . . Ecscs−1
Ebcs x

−s−2 .

The following result first appeared in [O1], although in another guise. For connections to
our setting see [KN1, Section 4] or [KN2, Section 4] when θ = 1 or θ = −1 respectively.
Let U(glm)GLm be the subalgebra of GLm -invariants in U(glm) ; it coincides with the
centre of the algebra U(glm) .

Proposition 4.1. (i) One can define a homomorphism Y(gln) → U(glm)⊗ H(U) by

Tij(x) 7→ δij +
m∑

a,b=1

(x+ θm/2 + θE )−1
ab ⊗ xai ∂bj . (4.24)

(ii) The subalgebra of GLm-invariant elements in A = U(glm) ⊗ H(U) coincides with

the subalgebra, generated by U(glm)GLm ⊗1 and by the image of homomorphism (4.24).

Proof. Part (i) of the proposition was proved in [KN1, Section 1] and [KN2, Section 1]
for θ = 1 and θ = −1 respectively. The claim that the image of the homomorphism (4.24)
belongs to the subalgebra AGLm ⊂ A, was also proved therein. It remains to prove that
the elements

m∑

a=1

1⊗ xai ∂aj (4.25)

and
m∑

a,b,c1,...,cs=1

Ec1aEc2c1 . . . Ecscs−1
Ebcs ⊗ xai ∂bj , (4.26)

together with the elements of U(glm)GLm⊗1, generate the whole subalgebra AGLm ⊂ A.
Here s = 0 ,1 ,2 , . . . and i , j = 1 , . . . , n . For s = 0 the first tensor factor of the summand
in (4.26) should be understood as Eba .

Let N denote the additive semigroup of non-negative integers. Take the standard
N -filtration on the algebra U(glm) , where any element of glm has degree 1. The adjoint
action of the group GLm on U(glm) preserves this filtration, and the corresponding
graded algebra is identified with the symmetric algebra S(glm) . The algebra H(U) has
an N× N -filtration, such that the elements of U and U∗ have degrees (1 ,0) and (0 ,1)
respectively. This filtration is preserved by the action of the group GLm on H(U) . The
corresponding graded algebra is identified with the symmetric algebra of U ⊕U∗ in the
case θ = 1, or with the exterior algebra of U⊕U∗ in the case θ = −1. In both cases, the
graded algebra is denoted by P(U ⊕ U∗) . It suffices to prove that the elements of the
algebra S(glm)⊗ P(U ⊕ U∗) corresponding to (4.25) and (4.26), taken together with

S(glm)GLm ⊗ 1 ⊂ S(glm)⊗ P(U ⊕ U∗) , (4.27)

generate the whole subalgebra of GLm-invariants. We will prove this for n = 1 only.
The generalization of our proof to any n > 1 will be obvious; cf. [MO, Subsection 2.9].

So let us suppose that U = Cm ⊗C1 = Cm. Let e ′1 , . . . , e
′
m be the basis of the vector

space U∗ dual to the standard basis e1 , . . . , em of U . First consider the GLm-invariants
in the subspace
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1⊗ P(U ⊕ U∗) ⊂ S(glm)⊗ P(U ⊕ U∗) . (4.28)

The subspace of P(U ⊕U∗) of degree (p,q) ∈ N×N is a subspace in the tensor product
U ⊗p⊗(U∗)⊗q . The latter tensor product contains non-zero GLm-invariant vectors, only
if p = q . The GLm-invariants in U⊗p⊗ (U∗)⊗p are any linear combinations of the sums

m∑

c1,...,cp=1

ec̟(1)
⊗ . . .⊗ ec̟(p)

⊗ e ′c1 ⊗ . . .⊗ e ′cp (4.29)

where ̟ ranges over all permutations of the indices 1 , . . . , p . Here we used the classical
invariant theory for GLm ; see [H1, Theorem 1A]. For θ = 1 or θ = −1 respectively, by
applying to the sum (4.29) the symmetrization or antisymmetrization in the first p and
also in the last p tensor factors of the summand, we get an element of

P(U)⊗ P(U∗) = P(U ⊕ U∗)

corresponding to
m∑

c1,...,cp=1

xc11 . . . xcp1 ∂c11 . . . ∂cp1 ∈ H(U)

multiplied by θ ℓ(̟) . This observation shows that for n = 1, the GLm-invariants in the
subspace (4.28) are generated by the elements corresponding to (4.25) with i = j = 1.

Now consider the subspace (4.27). Generators of the subalgebra S(glm)GLm ⊂ S(glm)
are well known. We will reproduce a set of generators here, because they will be used in
the subsequent argument. Identify glm with U ⊗U∗ as a module of the group GLm , so
that the matrix unit Eab ∈ glm is identified with the vector ea ⊗ e ′b ∈ U ⊗U∗. Then the
subspace in S(glm) of degree t becomes a subspace in (U ⊗U∗)⊗ t. The GLm-invariants
in the latter tensor product are any linear combinations of the sums

m∑

c1,...,ct=1

ec̟(1)
⊗ e ′c1 ⊗ . . .⊗ ec̟(t)

⊗ e ′ct (4.30)

where ̟ ranges over all permutations of the indices 1 , . . . , t . Let s1 , . . . , sk be the cycle
lengths of the permutation ̟ , so that t = s1 + . . .+ sk . By applying to the sum (4.30)
the symmetrization in the t pairs of tensor factors of the summand, we get an element
of S(glm) , which corresponds to the product over s = s1 , . . . , sk of the elements

m∑

c1,...,cs=1

Ec2c1Ec3c2 . . . Ecscs−1
Ec1cs ∈ U(glm)GLm . (4.31)
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Now take the subspace in S(glm)⊗P(U⊕U∗) of degree t+1 in the first tensor factor
and of degree (p, q) in the second tensor factor, for any t > 0 and (p,q) 6= (0 ,0). Regard
it as a subspace in the tensor product

(U ⊗ U∗)⊗ (t+1) ⊗ U ⊗p ⊗ (U∗)⊗q .

The tensor product contains non-zero GLm-invariant vectors, only if p = q . Suppose this
is the case. Then the GLm-invariants in the tensor product are any linear combinations
of the sums over the indices c0 , c1 , . . . , ct , ct+1 , . . . , ct+p = 1 , . . . , m of the vectors

ec̟(0)
⊗ e ′c0⊗ . . .⊗ ec̟(t)

⊗ e ′ct⊗ ec̟(t+1)
⊗ . . .⊗ ec̟(t+p)

⊗ e ′ct+1
⊗ . . .⊗ e ′ct+p

(4.32)

where each of the sums corresponds to a permutation ̟ of 0 ,1 , . . . , t , t+ 1 , . . . , t+ p .
The GLm-invariants in S(glm) ⊗ P(U ⊕ U∗) are obtained by applying to these linear
combinations the symmetrization of the first t+1 pairs of factors of the tensor product
(4.32), and the symmetrization or antisymmetrization in the next p and in the last p
factors, for θ = 1 or θ = −1 respectively. Let Q̟ be the element of S(glm)⊗P(U ⊕U∗)
obtained by these operations from the sum corresponding to the permutation ̟ .

If the cycle of an element of the set {0 ,1 , . . . , t} under the action of the powers of
̟ is contained in the set, then the element Q̟ ∈ S(glm) ⊗ P(U ⊕ U∗) is divisible in
the first tensor factor by the element of S(glm) corresponding to (4.31), where s is the
length of the cycle. Then our argument reduces to a similar one with t replaced by t−s .
Suppose that the ̟ -cycle of each element of {0 ,1 , . . . , t} is not contained in this set.

Now consider the index ̟(t+ 1). If this index belongs to the set {t+ 1 , . . . , t+ p}
then Q̟ is divisible by the element of S(glm)⊗P(U⊕U∗) corresponding to (4.25) with
i = j = 1, and our argument reduces to a similar one with p replaced by p−1. Suppose
that ̟(t+ 1) ∈ {0 ,1 , . . . , t} . Due to the symmetrization described above, without loss
of generality we may assume that ̟(t+ 1) = 0. Let s > 0 be the minimal number such
that ̟ s+1(0) /∈ {0 ,1 , . . . , t} . Again due to (anti)symmetrization, we may assume that

̟(0) = 1 , ̟(1) = 2 , . . . , ̟(s− 1) = s and ̟(s) = t+ 1 .

Now we see that Q̟ is divisible by the element of S(glm) ⊗ P(U ⊕ U∗) corresponding
to (4.26) with i = j = 1, a = c0 and b = ct+1 . This observation reduces our argument
to a similar one where t+ 1 and p are replaced by t− s and p− 1 respectively. ⊓⊔

Now let (G ,G′) be any of the reductive dual pairs from Subsection 4.1 with G = Sp2m

or G = O2m . Again, we will treat the cases of θ = 1 and θ = −1 simultaneously. Denote
by F the 2m× 2m matrix whose a,b entry is the matrix unit Fab ∈ g . Here the indices
a and b run through −m, . . . ,−1 ,1 , . . . , m . Regard the inverse matrix (x − θF )−1 as
a formal power series in x−1 whose coefficients are 2m× 2m matrices with entries from
the algebra U(g) . Let (x− θF )−1

ab be the a,b entry of the inverse matrix. It equals

δab x
−1 + θFabx

−2 +
∞∑

s=1

m∑

|c1|,...,|cs|=1

θ s+1 Fac1Fc1c2 . . . Fcs−1cs Fcsb x
−s−2 .

Like the indices a and b, here the indices c1 , . . . , cs run through −m, . . . ,−1 ,1 , . . . , m .
In another guise, the next result appeared first in [O2]. For connections to our present
setting see [KN3, Section 6] or [KN4, Section 6] when θ = 1 or θ = −1 respectively.
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To state this result like Proposition 4.1, for a < 0 put pai = x−a,i and qai = ∂−a,i .
For a > 0 put pai = − θ θi ∂a ı̃ and qai = θi xa ı̃ . Note that then our definition of the
homomorphism ζ : U(g) → H(U) for g = sp2m ,so2m can be written as

ζ(Fab) = θ δab n/2 −
n∑

i=1

θ qai p bi for a,b = −m, . . . ,−1 ,1 , . . . , m.

Let U(g)G be the subalgebra of G-invariant elements in U(g) . This subalgebra coincides
with the centre of U(g) if g = sp2m , but is strictly contained in the centre if g = so2m .

Proposition 4.2. (i) One can define a homomorphism X(g′) → U(g)⊗H(U) by

Sij(x) 7→ δij +

m∑

|a|,|b|=1

(x± 1
2 + θm− θF )−1

ab ⊗ pai qbj . (4.33)

(ii) The subalgebra of all G-invariant elements in A = U(g)⊗H(U) coincides with the

subalgebra, generated by U(g)G ⊗ 1 and by the image of the homomorphism (4.33).

Proof. Part (i) of the proposition was proved in [KN3, Section 6] and [KN4, Section 6]
for θ = 1 and θ = −1 respectively. The claim that the image of the homomorphism (4.33)
belongs to the subalgebra AG ⊂ A, was also proved therein. It remains to prove that
the elements

m∑

|a|=1

1⊗ pai qaj (4.34)

and
m∑

|a|,|b|,|c1|,...,|cs|=1

Fac1 Fc1c2 . . . Fcs−1csEcsb ⊗ pai qbj , (4.35)

taken together with the elements of U(g)G⊗1, generate the whole subalgebra AG ⊂ A.
Here s = 0 ,1 ,2 , . . . and i , j = 1 , . . . , n . For s = 0 the first tensor factor of the summand
in (4.26) should be understood as Fab .

Consider the standard N -filtration on the algebra U(g) , where any element of g

has degree 1. The adjoint action of the group G on U(g) preserves this filtration, and
the corresponding graded algebra is identified with the symmetric algebra S(g) . The
algebra H(U) is generated by its subspace W = U ⊕ U∗, which is identified with the
tensor product C2m ⊗ Cn . By presenting W as a direct sum of n copies of C2m we get
an N×n filtration on the algebra H(U) , such that the i th direct summand C2m of W
has degree 1 in the i th factor N of N×n. This filtration is preserved by the action of
the group G on H(U) . The corresponding graded algebra is identified with P(C2m)⊗n .
Here P(C2m) denotes the symmetric algebra of C2m if θ = 1, or the exterior algebra of
C2m if θ = −1. It suffices to prove that the elements of the algebra S(g) ⊗ P(C2m)⊗n

corresponding to (4.34) and (4.35), taken together with the elements of the subalgebra

S(g)G ⊗ 1 ⊂ S(g)⊗ P(C2m)⊗n , (4.36)

generate the whole subalgebra of G-invariants. We will prove this by using the classical
invariant theory for the group G ; cf. [MO, Subsection 4.9].
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Now ea with a = −m, . . . ,−1 ,1 , . . . , m denotes a basis vector of C2m. Consider the
bilinear form on C2m preserved by the action of the group G. Denote by e ′a the vector

sign a · e−a or e−a

when G is Sp2m or O2m respectively. The value of the form on a pair (ea , e
′
b ) equals

δab for any indices a and b . The odd tensor powers of C2m do not contain any non-zero
G-invariant vectors. The G-invariant vectors in (C2m)⊗2t are all linear combinations of

m∑

|c1|,...,|ct|=1

ec1 ⊗ e ′c1 ⊗ . . .⊗ ecp ⊗ e ′ct (4.37)

and of the sums, obtained from (4.37) by any simultaneous permutation of the 2t tensor
factors of every summand. For instance, see [H1, Theorem 1B].

First let us consider the G-invariants in the subspace

1⊗ P(C2m)⊗n ⊂ S(g)⊗ P(C2m)⊗n . (4.38)

Regard the subspace of P(C2m)⊗n of degree (s1 , . . . , sn) ∈ N×n as a subspace in the
tensor product

(C2m)⊗s1 ⊗ . . . ⊗ (C2m)⊗sn . (4.39)

Our subspace is obtained by applying to each of the n groups of the tensor factors C2m

of (4.39) the symmetrization or antisymmetrization, for θ = 1 or θ = −1 respectively.
By using the explicit description of G-invariants in (4.39) and arguing like in the proof
of Proposition 4.1, one shows that the G-invariants in the subspace (4.38) are generated
by elements of this subspace corresponding to (4.34) with i , j = 1 , . . . , n . For example,
if n = 2t then (4.37) may be regarded as a element of the graded algebra P(C2m)⊗n of
degree (s1 , . . . , sn) = (1 , . . . , 1). Then (4.37) corresponds to the sum

m∑

|c1|,...,|ct|=1

pc11 qc11 . . . pctt qctt ∈ H(U) .

Now consider the subspace (4.36). Generators of the subalgebra S(g)G ⊂ S(g) are
well known. We will reproduce a set of generators here, because they will be used in the
subsequent argument. If G = Sp2m then g can be identified with the symmetric square
of the G-module C2m , so that Fab ∈ g is identified with the element

(ea ⊗ e ′b + e ′b ⊗ ea)/2

of the symmetric square. If G = O2m then g can be identified with the exterior square
of the G-module C2m , so that Fab ∈ g is identified with the element

(ea ⊗ e ′b − e ′b ⊗ ea)/2

of the exterior square. Now for G = Sp2m ,O2m the subspace in S(g) of degree t becomes
a subspace in the space of tensors (C2m)⊗2t, and we may use the explicit description
of G-invariants in the latter space. This description implies that the elements of the
graded algebra S(g) corresponding to the elements
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m∑

|c1|,...,|cs|=1

Fc1c2Fc2c3 . . . Fcs−1csFcsc1 ∈ U(g)G

with s = 1 ,2 , . . . generate the subalgebra S(g)G ⊂ S(g) . A similar argument was given
in the proof of Proposition 4.1; here we omit the details.

Now take the subspace in S(g)⊗P(C2m)⊗n of degree t > 1 in the first tensor factor,
and of any non-zero degree (s1 , . . . , sn) in the remaining n tensor factors. Regard it as
a subspace in

(C2m)⊗2t ⊗ (C2m)⊗s1 ⊗ . . . ⊗ (C2m)⊗sn , (4.40)

by using the embedding of g into the tensor square of C2m. Our subspace is obtained by
applying to each of the first t pairs of tensor factors C2m of (4.40) the symmetrization
or antisymmetrization for g = sp2m or g = so2m respectively, by symmetrizing these t
pairs of tensor factors C2m, and by applying to each of the n groups of the remaining
tensor factors C2m of (4.40) the symmetrization or antisymmetrization for θ = 1 or
θ = −1 respectively. Using the explicit description of G-invariants in (4.40) and arguing
like we did in the case G = GLm of Proposition 4.1, we complete the proof. ⊓⊔

4.4. Tensor products

Recall the following general definition. Let F be any algebraic group over C with a Lie
algebra f . Let E be any associative algebra where the group F acts by automorphisms.
Consider the crossed product algebra F⋉E. It is generated by the elements of E and F
subject to the relations in E and F together with the cross relations

υ Z υ−1 = υ (Z) for Z ∈ E and υ ∈ F .

Suppose there is also a homomorphism U(f) → E. A module K over the algebra E and
over the group F will be called a (E ,F)-module, if the joint actions of E and F on K
make it a module over the algebra F⋉ E, and if the action of f on K corresponding to
that of F coincides with the action of f obtained by pulling the action of E on K back
through the homomorphism U(f) → E. We suppose that F acts on K locally finitely.

Take any reductive dual pair (G ,G′) from Subsection 4.1. We have U = C
m⊗C

n . The
Lie algebra g acts on the vector space P(U) via the homomorphism ζ : U(g) → H(U) .
The action of the algebra H(U) on P(U) is determined by (2.15). The group G′ acts on
H(U) via linear transformations of the vector space Cn . This action of G′ preserves the
subspaces U and U∗ of H(U) . It also leaves invariant any element in the image of the
homomorphism ζ . Hence the actions of g and G′ on P(U) commute with each other.

Now for any pair of weights λ,µ ∈ t∗ consider the weight subspace

(Mµ ⊗ P(U))λ
n
⊂ (Mµ ⊗ P(U))n (4.41)

of the space of n-coinvariants of tensor product of g-modules Mµ ⊗ P(U) . We extend
the action of the group G′ from P(U) to the latter tensor product, so that G′ acts on
the tensor factor Mµ trivially. Then G′ also acts on the pair of vector spaces (4.41).

A bijective linear map
P(U) → (Mµ ⊗ P(U))n (4.42)
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can be defined by mapping any u ∈ P(U) to the coset of 1µ ⊗ u in (Mµ ⊗P(U))n . The
algebra A acts on the vector space Mµ ⊗ P(U) by definition. By restricting the latter
action to the subalgebra U(g) ⊂ A we get the diagonal action of g on Mµ ⊗ P(U) , as
above. When the A-module Mµ⊗P(U) is identified with Aµ as in Subsection 2.3, then
the pair of vector spaces (4.41) gets identified with the pair Mλ

µ ⊂ Mµ .
The group G′ acts by automorphisms of the algebra A = U(g)⊗H(U) via its action

on H(U) . The action of G′ on A preserves each of the ideals I ,J and J ′′
µ . Hence G′ also

acts on the pair Mλ
µ ⊂ Mµ . Its identification with (4.41) is that of pairs of G′ -modules.

Note that the action of the Lie group G′ on the subspace P(U) ⊂ H(U) provides a
homomorphism of algebras U(g′) → H(U) . Any element of this image is G-invariant.
For G′ = GLn the image of the element Eij ∈ gln under this homomorphism equals
(4.3). For G′ = On or G′ = Spn the image of the element Eij − θiθjE ̃ ı̃ ∈ g′ equals
(4.4). By identifying H(U) with the subalgebra 1⊗H(U) ⊂ A we get a homomorphism
U(g′) → AG . Then (4.41) is a pair of (AG ,G′)-modules, and so is the pair Mλ

µ ⊂ Mµ .
More generally, for any element ω of the group R = S⋉ T consider the subspace

(Mω◦µ ⊗ P( ω̂ (U)))ω◦λ
n ⊂ (Mω◦µ ⊗ P( ω̂ (U)))n (4.43)

of the space of n-coinvariants of the tensor product of g-modules Mω◦µ ⊗ P( ω̂ (U)) . A
bijective linear map

P( ω̂ (U)) → (Mω◦µ ⊗ P( ω̂ (U)))n (4.44)

can be defined by mapping any w ∈ P( ω̂ (U)) to the coset of 1ω◦µ ⊗ w in the space of
coinvariants. Similarly to (2.15) the action of the algebra H(U) on P( ω̂ (U)) is defined by

X(u) = v if Xu− v ∈ H(U) · ω̂ (U∗)

where u,v ∈ P( ω̂ (U)) . Then g acts on the vector space P( ω̂ (U)) via the homomorphism
ζ : U(g) → H(U) . The pair of vector spaces (4.43) gets identified with the pair

Mω◦λ
ω◦µ, ω̂ (U∗) ⊂ Mω◦µ, ω̂ (U∗) . (4.45)

The action of G′ on H(U) commutes with that of G. In particular, the action of
G′ preserves the subspaces ω̂ (U) and ω̂ (U∗) of H(U) . Hence the group G′ also acts
on the two pairs (4.43) and (4.45). Our identification of them is that of pairs of G′ -
modules. Note that both (4.43) and (4.45) are also (AG ,G′)-modules, like they were in
the particular case above, when ω was the identity element of R .

The subalgebra AG of G-invariant elements of A acts on the weight subspace (4.43)
by definition. First suppose that G = GLm . Like in the previous subsection, we will treat
the cases of θ = 1 and θ = −1 simultaneously. Via the homomorphism Y(gln) → AGLm

defined by (4.24), the subspace in (4.43) becomes a module over the Yangian Y(gln) .
We shall now describe this module explicitly, by using the comultiplication (4.10) and
the homomorphism (4.8). For g = glm the group T is trivial, while any ω̂ preserves U
and U∗. Hence it suffices to consider only the case when ω is the identity element.

Every weight µ of glm is determined by the sequence µ1 , . . . , µm of its labels where
µa = µ(Eaa) for each a = 1 , . . . , m . Note that here for the half-sum ρ of the positive
roots ρa = m/2− a+ 1

2 . For g = glm we get κ = 0 by the definitions (2.12),(4.1). Then
ν = λ− µ by (2.18). Take the sequence ν1 , . . . , νm of labels of ν . If θ = 1 then suppose



54 Sergey Khoroshkin and Maxim Nazarov

that each label νa ∈ {0 ,1 ,2 , . . .} . If θ = −1 then suppose that each νa ∈ {0 ,1 , . . . , n} .
Otherwise the weight subspace in (4.41) would contain zero only.

If θ = 1 then denote by Φk the k th symmetric power of the defining gln-module Cn .
If θ = −1 then denote by the same symbol Φk the k th exterior power of the gln-module
Cn . The group G′ = GLn also acts on Φk . Using the homomorphism (4.8), regard Φk as
a module over the Yangian Y(gln) . For t ∈ C denote by Φk

t the Y(gln)-module obtained
by pulling the Y(gln)-module Φk back through the automorphism (4.6) where z = θ t .

For θ = 1 denote by P(Cn) the symmetric algebra of the vector space Cn . For θ = −1
denote by P(Cn) the exterior algebra of Cn . For any θ and t the underlying vector space
of the Y(gln)-module Φk

t consists of all homogeneous elements of P(Cn) of degree k .
Using the standard basis e1 , . . . , em of Cm , decompose the vector space U = Cm ⊗ Cn

into a direct sum of m copies of Cn . Then the vector space P(U) gets identified with
the tensor product of m copies of P(Cn) . For the proof of the following proposition see
[KN1, Section 2] or [KN2, Section 2] when θ = 1 or θ = −1 respectively.

Proposition 4.3. Under the above assumptions on the weight ν , the subspace in (4.41)
is equivalent as a Y(gln)-module to the tensor product

Φ ν1

µ1+ρ1+
1
2

⊗ . . . ⊗ Φ νm

µm+ρm+ 1
2

. (4.46)

An equivalence map from the latter Y(gln)-module to the former is defined by regarding

(4.46) as a subspace of P(U), and then applying the map (4.42) to that subspace.

The equivalence map here is also that of GLn-modules. This follows from the GLn -
equivariance of the map (4.42). The group GLn also acts by automorphisms of the Hopf
algebra Y(gln) . When an element υ ∈ GLn is regarded as a n × n matrix by using the
standard basis f1 , . . . , fn of Cn, the corresponding automorphism of Y(gln) is defined by

T (x) 7→ υ−1 T (x) υ .

The Olshanski homomorphism Y(gln) → AGLm is GLn -equivariant. This can be verified
directly by using the definition (4.24). Furthermore, we can consider the crossed product
GLn ⋉Y(gln) . Moreover, we have an embedding U(gln) → Y(gln) . Then both modules
in Proposition 4.3 become (Y(gln) ,GLn)-modules. For the latter module this can be
verified directly, by using the definition of Φk

t . For the former this follows from GLn -
equivariance of (4.24), by regarding Mµ⊗P(U) as a module over the algebra GLn⋉A.

Now take ω = σ with arbitrary σ ∈ S . By replacing in Proposition 4.3 the weights λ
and µ respectively by σ ◦λ and σ ◦µ , we get a description of the subspace in (4.43) with
ω = σ as a module over the Yangian Y(gln) . Then ν is replaced by σ(ν) . Let us identify
the Weyl group S with the symmetric group Sm so that any permutation of the dual
basis vectors η1 , . . . , ηm ∈ t∗ by an element σ ∈ S corresponds to a permutation of the
numbers 1 , . . . , m . The latter permutation will be denoted by the same symbol σ . Put

µ̆a = µσ−1(a) , ν̆a = νσ−1(a) , ρ̆a = ρσ−1(a) .

These are the a th labels of the weights σ(µ) ,σ(ν) ,σ(ρ) respectively. In this notation,
the subspace in (4.43) with ω = σ is equivalent as a module over Y(gln) and GLn to
the tensor product
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Φ ν̆1

µ̆1+ρ̆1+
1
2

⊗ . . . ⊗ Φ ν̆m

µ̆m+ρ̆m+ 1
2

. (4.47)

Now suppose that the weight λ+ ρ of glm is nonsingular. By Corollary 3.6, then the
Zhelobenko operator ξ̌σ on Ā/J defines a linear map (3.15). This map commutes with
the actions of the algebra AGLm on the source and the target vector spaces of (3.15).
Hence it is an intertwining operator of Y(gln)-modules. By replacing the modules by
their equivalents, we now get an intertwining operator

Φ ν1

µ1+ρ1+
1
2

⊗ . . . ⊗ Φ νm

µm+ρm+ 1
2

→ Φ ν̆1

µ̆1+ρ̆1+
1
2

⊗ . . . ⊗ Φ ν̆m

µ̆m+ρ̆m+ 1
2

(4.48)

of two tensor products of Y(gln)-modules. It is well known that both tensor products
are irreducible and equivalent to each other if (but not only if) the weight µ is generic,
that is if µa−µb /∈ Z whenever a 6= b ; see [NT2, Theorem 4.8] for a more general result.
Hence for generic µ , an intertwining operator between the two tensor products is unique
up to scalar factor. For our particular intertwining operator, this factor is determined by
the next proposition. This proposition is valid for any weight µ , not necessarily generic.

Choose ϕk ∈ Φk as follows. If θ = 1 then Φk is the k th symmetric power of Cn ,
and we put ϕk = f k

1 . If θ = −1 then Φk is the k th exterior power of Cn , and we put
ϕk = f1 ∧ . . .∧ fk . The vector ϕk is annihilated by the action of the elements Eij ∈ gln
with i < j . Take any positive root α = ηa − ηb of glm with a < b . For θ = 1 define

zα =

νb∏

s=1

µa − µb + ρa − ρb − s

λa − λb + ρa − ρb + s
.

Here the denominator corresponding to the running index s equals (λ + ρ)(Hα) + s .
Hence the denominator does not vanish for any nonsingular λ+ ρ . For θ = −1 define

zα = (−1)νaνb





λa − λb + ρa − ρb
µa − µb + ρa − ρb

if νa < νb ;

1 if νa > νb .

Here µa = λa − νa for any index a . Therefore in the first of the last two cases, the
denominator equals (λ+ρ)(Hα)−νa+νb . Hence it does not vanish for any nonsingular
weight λ+ ρ , under the condition νa < νb when this denominator occurs.

Proposition 4.4. Let λ+ρ be nonsingular. The operator (4.48) determined by ξ̌σ maps

the vector ϕν1
⊗ . . .⊗ ϕνm

of (4.46) to the vector ϕ ν̆1
⊗ . . .⊗ ϕ ν̆m

of (4.47) multiplied

by all those zα where α ∈ ∆+ but σ(α) /∈ ∆+ .

Proof. For a generic weight µ, this proposition has been proved in [KN1, Section 3] and
[KN2, Section 3] when θ = 1 or θ = −1 respectively. But when the weight ν is fixed,
our operator (4.48) depends on µ ∈ t∗ continiously, see the proof of Corollary 3.6. ⊓⊔

For any µ and nonsingular λ+ρ , Corollary 3.9 and Proposition 4.1 give that for σ = σ0
the quotient by the kernel, or equivalently the image of our intertwining operator

Φ ν1

µ1+ρ1+
1
2

⊗ . . . ⊗ Φ νm

µm+ρm+ 1
2

→ Φ νm

µm+ρm+ 1
2

⊗ . . . ⊗ Φ ν1

µ1+ρ1+
1
2

(4.49)
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is an irreducible Y(gln)-module. Here we also use the observation that any element of the
subalgebra U(glm)GLm ⊗1 ⊂ AGLm acts on the subspace (4.41) by scalar multiplication.
In the next section we will show that up to equivalence and similarity, every irreducible
finite-dimensional Y(gln)-module arises as the image of (4.49) for θ = −1 and some λ,µ .

Now let (G ,G′) be any of the reductive dual pairs from Subsection 4.1 with G = Sp2m

or G = O2m . We will continue treating the cases of θ = 1 and θ = −1 simultaneously.
Via the homomorphism X(g′) → AG defined by (4.33), the subspace in (4.43) becomes
a module over the extended twisted Yangian X(g′) . We shall now describe this module
explicitly. For g 6= glm we do not have ω̂ (U) = U in general. We will give an analogue of
Proposition 4.3 for arbitrary ω ∈ R . For the proof of this analogue see [KN3, Section 5]
and [KN4, Section 5] in the cases θ = 1 and θ = −1 respectively. We will keep using
the Y(gln)-modules Φk

t for integers k > 0. Further, denote by Φ−k
t the Y(gln)-module

obtained by pulling the Y(gln)-module Φk
t back through the automorphism (4.12).

We regard g′ is a Lie subalgebra of gln . Any Y(gln)-module can also be regarded as
a X(g′)-module, first by restricting from Y(gln) to the subalgebra Y(g′) , and then by
pulling back through the homomorphism X(g′) → Y(g′) defined by (4.17). The resulting
X(g′)-module can also be defined as the tensor product of the initial Y(gln)-module
by the one-dimensional trivial X(g′)-module, defined by the assignment Sij(x) 7→ δij .
Here we use the coaction of Y(gln) on X(g′) defined by (4.23). Either way, any tensor
product of Y(gln)-modules of the form Φk

t or Φ−k
t will be regarded as a X(g′)-module.

The group G′ acts on Φk
t and on Φ−k

t by restricting the natural action of GLn on Φk.
For any weight µ of g = sp2m or g = so2m define the sequence µ1 , . . . , µm of its labels

by setting µa = µ(Faa) for a = 1 , . . . , m . Note that unlike in the case of g = glm , here

µ = −µm η1 − . . .− µ1 ηm . (4.50)

For the half-sum of positive roots we get ρa = −a if g = sp2m , or ρa = 1−a if g = so2m .
By the definitions (2.12),(4.2) here κa = θ n/2. Consider the sequence ν1 , . . . , νm of the
labels the weight (2.18). Like for g = glm , suppose that each label νa ∈ {0 ,1 ,2 , . . .}
if θ = 1. If θ = −1 then suppose that each νa ∈ {0 ,1 , . . . , n} . Otherwise the weight
subspace in (4.43) would contain zero only.

The Weyl group of sp2m is isomorphic to the semidirect product Sm ⋉ Z
m
2 , and the

group T is trivial in this case. The Weyl group of so2m is isomorphic to a subgroup of
Sm⋉Zm

2 of index two, and T is isomorphic to Z2. The extended Weyl group R = S⋉T

of so2m is isomorphic to Sm ⋉ Zm
2 . Fix the isomorphisms as follows. Regard Sm ⋉ Zm

2

as the group of permutations of the indices −m, . . . ,−1 ,1 , . . . , m such that if a 7→ b
under a permutation, then −a 7→ −b under the same permutation. The image of ω ∈ R

in Sm ⋉ Zm
2 will be denoted by ω . Then for any c = 1 , . . . , m− 1 the permutation σ̄c

only exchanges c − m − 1 with c − m , and m − c with m − c + 1. For g = sp2m the
permutation σ̄m exchanges only −1 and 1. For g = so2m the transposition of −1 and 1
will be denoted by τ̄m ; then σ̄m = τ̄m σ̄m−1 τ̄m . The transposition τ̄m is the image in
Sm ⋉ Zm

2 of the generator τm of T for g = so2m . Now put

µ̆a = µ |ω−1(a)| , ν̆a = ν |ω−1(a)| , ρ̆a = ρ |ω−1(a)| and δa = sign ω−1(a)

for a = 1 , . . . , m . In this notation, the a th label of the weight ω (µ) is equal to δa µ̆a .
For any a = 1 , . . . , m let ω̂a be the element of the group G such that ω̂a(e−a) = ea ,

and ω̂a(ea) = −e−a or ω̂a(ea) = e−a depending on whether G = Sp2m or G = O2m . By
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definition, all other basis vectors of C2m are invariant under the action of ω̂a . We have
ω̂a ∈ NormT. The image of ω̂a in the group R will be denoted by ωa . In particular,
ω1 = σm in the case G = Sp2m , but ω1 = τm in the case G = O2m . The action of the
element ω̂a ∈ G on the vector space W = C2m ⊗ Cn determines an automorphism of
the algebra H(U) such that for all i = 1 , . . . , n

xai 7→ − θ θi ∂aı̃ and ∂ai 7→ θi xaı̃ ,

while the elements xbi , ∂bi ∈ H(U) with b 6= a are invariant under this automorphism.
This automorphism of H(U) will denoted by the same symbol ω̂a .

Proposition 4.5. Under the above assumptions on the weight ν , the subspace in (4.43)
is equivalent as module over X(g′) to the tensor product

Φ δ1ν̆1

µ̆1+ρ̆1+
1
2

⊗ . . . ⊗ Φ δmν̆m

µ̆m+ρ̆m+ 1
2

(4.51)

pulled back through the automorphism (4.15) of X(g′) where

f(x) =
m∏

a=1

θx− µa − ρa − 1
2

θx− µa − ρa +
1
2

.

An equivalence map from the latter X(g′)-module to the former is defined by regarding

(4.51) as a subspace of P(U) ⊂ H(U), then applying to this subspace all automorphisms

ω̂−1
a with δa = −1, and then applying the map (4.44) to the resulting subspace of H(U).

The equivalence map here is also that of G′ -modules. This fact follows from the G′ -
equivariance of the map (4.44). The group G′ also acts by automorphisms of the right
coideal subalgebra Y(g′) ⊂ Y(gln) , and by automorphisms of the right Y(gln)-comodule
algebra X(g′) . When an element υ ∈ G′ is regarded as a n × n matrix by using the
standard basis f1 , . . . , fn of Cn, the corresponding automorphism of X(g′) is defined by

S(x) 7→ υ−1 S(x) υ . (4.52)

It factors to an automorphism of the quotient Y(g′) of the algebra X(g′) . The Olshanski
homomorphism X(g′) → AG is G′ -equivariant. This can be verified directly by using the
definition (4.33). We can consider the crossed product algebra G′ ⋉Y(g′) . We also have
an embedding U(g′) → Y(g′) , defined by mapping each element Eij − θi θjE ̃ ı̃ ∈ g′ to
the coefficient at x−1 of the series (4.13). Then (4.51) becomes a (Y(g′) ,G′)-module.
This statement can be verified directly, by using the definitions of Φk

t and Φ−k
t .

Note that the series f(x) in Proposition 4.5 does not depend on the choice of ω ∈ R .
By using this proposition in the basic case when ω is the identity element, the subspace
in (4.41) is equivalent as an X(g′)-module to the tensor product of the form (4.46) pulled
back through the automorphism (4.15) of X(g′) where the series f(x) is as above. But
here the labels µa , νa , ρa for a = 1 , . . . , m correspond to the Lie algebra g = sp2m or
g = so2m , not to g = glm . In particular, here the labels ρa of the half-sum ρ of the
positive roots are different from those for g = glm . Our choice (4.50) of the labels of µ for
g = sp2m or g = so2m has been made so that here the description of the subspace (4.41)
becomes similar to that in the case g = glm . For the same purpose, in the definition
(4.24) we employed the matrix (x+θ m/2+θE )−1 rather than the matrix (x+θE)−1.
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Now we suppose that the weight λ+ ρ of g = sp2m or g = so2m is nonsingular. Then
by Corollary 3.6, the Zhelobenko operator ξ̌σ on Ā/J determines a linear map (3.15).
This map commutes with the actions of the algebra AG on the source and target vector
spaces of (3.15). Further, for g = so2m and ω = τm σ the representative τ̂m ∈ G of τ ∈ T

yields a linear map
Mσ◦λ

σ◦µ, σ̂ (U∗) → Mω◦λ
ω◦µ, ω̂ (U∗) , (4.53)

see (3.2). This map also commutes with the actions of AG on the source and the target
vector spaces. Note that τ̂m ∈ O2m is an involution, and the corresponding map (4.53) is
invertible. Take the composition of the latter map with the map (3.15) determined by ξ̌σ .

Thus for g = sp2m or g = so2m and for any ω ∈ R we get a linear map

Mλ
µ → Mω◦λ

ω◦µ, ω̂ (U∗) , (4.54)

commuting with the actions of the algebra AG on the source and target vector spaces.
Hence this is an intertwining operator of X(g′)-modules. By replacing the modules in
(4.54) by their equivalents, and by using the observation that the series f(x) for both
modules is the same, we get an intertwining operator of X(g′)-modules

Φ ν1

µ1+ρ1+
1
2

⊗ . . . ⊗ Φ νm

µm+ρm+ 1
2

→ Φ δ1ν̆1

µ̆1+ρ̆1+
1
2

⊗ . . . ⊗ Φ δmν̆m

µ̆m+ρ̆m+ 1
2

. (4.55)

The last two can also be regarded as Y(g′)-modules, and our operator intertwines them.
In this case we first take the tensor products of Y(gln)-modules, and then restrict both
tensor products to the subalgebra Y(g′) ⊂ Y(gln) .

We will now give an analogue of Proposition 4.4 for G = Sp2m ,O2m . Let us arrange
the indices 1 , . . . , n into the sequence

1 ,3 , . . . , n− 1 ,n, . . . , 4 ,2 or 1 ,3 , . . . , n− 2 ,n,n− 1 , . . . , 4 ,2 (4.56)

when n is even or odd respectively. The mapping i 7→ ı̃ reverses the sequence (4.56). We
will write i ≺ j when i precedes j in this sequence. The elements E ij − θi θjE ̃ ı̃ ∈ gln
with i ≺ j or i = j span a Borel subalgebra of g′ ⊂ gln , while the elements E ii − E ı̃ ı̃

span the corresponding Cartan subalgebra of g′ . Choose a vector ψk ∈ Φk as follows.
For θ = 1 put ψk = f k

1 , so that ϕk = ψk in this case. However, for θ = −1 let ψk be the
exterior product of the vectors fi taken over the first k indices in the sequence (4.56).
For instance, ψ2 = f1 ∧ f3 if n > 3. Note that the vector ψk is always annihilated by
the action of the elements E ij ∈ gln with i ≺ j .

For each positive root α of g = sp2m or g = so2m define zα ∈ C as follows. If θ = 1,

zα =





ν b∏

s=1

µa − µb + ρa − ρb − s

λa − λb + ρa − ρb + s
if α = ηm−b+1 − ηm−a+1 ,

ν b∏

s=1

µa + µb + ρa + ρb + s

λa + λb + ρa + ρb − s
if α = ηm−b+1 + ηm−a+1 ,

[νa/2]∏

s=1

µa + ρa + s

λa + ρa − s
if α = 2 ηm−a+1 .
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In the first two cases we have 1 6 a < b 6 m , while in the third case 1 6 a 6 m and
g = sp2m . In the first case, the denominator corresponding to s equals (λ+ ρ)(Hα)+ s ,
while in each of the last two cases the denominator equals − (λ+ ρ)(Hα)− s . All these
denominators do not vanish for a nonsingular λ+ ρ . If θ = −1, then zα = z ′

α z
′′
α where

z ′
α =

{
(−1)νaνb if α = ηm−b+1 − ηm−a+1 or α = ηm−b+1 + ηm−a+1 ,

1 otherwise;

z ′′
α =





λa − λb + ρa − ρb

µa − µb + ρa − ρb
if α = ηm−b+1 − ηm−a+1 and νa < νb ,

λa + λb + ρa + ρb

µa + µb + ρa + ρb
if α = ηm−b+1 + ηm−a+1 and νa + νb > n ,

λa + ρa

µa + ρa
if α = 2 ηm−a+1 and 2νa > n ,

1 otherwise.

Here for θ = −1 we have µa = λa − νa + n/2 for each index a . Hence in the first of the
last four cases, the denominator equals (λ + ρ)(Hα) − νa + νb . In the second of these
four cases, the denominator equals − (λ+ ρ)(Hα) − νa − νb + n . In the third case, the
denominator equals − (λ + ρ)(Hα) − νa + n/2. These denominators do not vanish for
any nonsingular λ + ρ , under the conditions they occur with. Denote by ∆++ the set
of compact positive roots of g , these are the weights ηa − ηb where 1 6 a < b 6 m .

Proposition 4.6. Let λ+ρ be nonsingular. The operator (4.55) determined by ξ̌σ maps

the vector

ψν1
⊗ . . .⊗ ψνm

∈ Φ ν1

µ1+ρ1+
1
2

⊗ . . . ⊗ Φ νm

µm+ρm+ 1
2

(4.57)

to the vector ψ ν̆1
⊗ . . .⊗ ψ ν̆m

of (4.51) multiplied by those zα where ω(α) /∈ ∆+ while

α ∈
{
∆++ if θ = 1 and n > 1 ,

∆+ otherwise.

Proof. For a generic weight µ, this proposition has been proved in [KN3, Section 5] and
[KN4, Section 5] when θ = 1 or θ = −1 respectively. But when the weight ν is fixed,
our operator (4.55) depends on µ ∈ t∗ continiously, see the proof of Corollary 3.6. ⊓⊔

Our intertwining operator of Y(g′)-modules (4.55) has been defined for any element
ω ∈ R . By definition, the corresponding element ω ∈ Sm⋉Zm

2 is a certain permuation of
the indices −m, . . . ,−1 ,1 , . . . , m . Now consider the special case when the permutation
ω only changes the sign of each of these indices, so that ω = ω1 . . . ωm in the notation
introduced just before stating Proposition 4.5. Thus we get an intertwining operator

Φ ν1

µ1+ρ1+
1
2

⊗ . . . ⊗ Φ νm

µm+ρm+ 1
2

→ Φ−ν1

µ1+ρ1+
1
2

⊗ . . . ⊗ Φ−νm

µm+ρm+ 1
2

(4.58)

of Y(g′)-modules. It corresponds to the longest element ω = σ0 of the Weyl group S , if
g = sp2m or if g = so2m and m is even. If g = so2m and m is odd, then σ0 = ω2 . . . ωm

so that (4.58) corresponds to the element ω = τm σ0 of the extended Weyl group R .
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For any g = sp2m ,so2m the element ω2 . . . ωm ∈ R gives the intertwining operator

Φ ν1

µ1+ρ1+
1
2

⊗ . . . ⊗ Φ νm

µm+ρm+ 1
2

→ Φ ν1

µ1+ρ1+
1
2

⊗ Φ−ν2

µ2+ρ2+
1
2

⊗ . . . ⊗ Φ−νm

µm+ρm+ 1
2

(4.59)

of Y(g′)-modules. The underlying vector spaces of the two Y(gln)-modules appearing
as the first tensor factors on the right hand sides of (4.58) and (4.59) are the same by
definition. Moreover, for g = so2m our operators (4.58) and (4.59) are the same due to
Proposition 4.5. In particular, for g = so2 the intertwining operator

Φ ν1

µ1+ρ1+
1
2

→ Φ−ν1

µ1+ρ1+
1
2

corresponding to ω = ω1 is the identity map. This explains the following fact from [N].
If g′ = spn and θ = 1, or if g′ = son and θ = −1, that is if g = so2m in the context of
the present article, then for any t ∈ C the restriction of the Y(gln)-module Φ−k

t to the
subalgebra Y(g′) ⊂ Y(gln) coincides with the restriction of the Y(gln)-module Φk

t .
Now suppose that g = sp2m . Then we have R = S , so that Rλ = Sλ for any λ ∈ t∗

automatically. Thus for any µ and nonsingular λ+ ρ , Corollary 3.9 and Proposition 4.2
imply that the quotient by the kernel of our intertwining operator (4.58) is an irreducible
Y(g′)-module. Here we also use the observation that any element of the subalgebra
U(sp2m)Sp2m ⊗ 1 ⊂ ASp2m acts on the subspace (4.41) via scalar multiplication. Note
that here g′ = son or g′ = spn respectively for θ = 1 or θ = −1. In the next section
we will show that up to equivalence and similarity, any finite-dimensional irreducible
Y(spn)-module arises as the image of (4.58) for θ = −1 and some λ,µ .

Next suppose that g = so2m . Then R 6= S . Here for any µ and nonsingular λ + ρ ,
Corollary 3.9 and Proposition 4.2 imply that the quotient by the kernel, or equivalently
the image of our intertwining operator (4.58) is an irreducible Y(g′)-module, under the
extra condition that Rλ = Sλ . We also use the fact that any element of the subalgebra
U(so2m)O2m ⊗ 1 ⊂ AO2m acts on the subspace (4.41) via scalar multiplication. In the
next subsection we study the quotient by the kernel of (4.58) without imposing that
extra condition, but for θ = −1 only. We will show that then the quotient is either an
irreducible Y(son)-module, or splits into a direct sum of two non-equivalent irreducible
Y(son)-modules. In Section 5 we will explain which irreducible Y(son)-modules arise
in this particular way.

4.5. Crossed product algebras

For any pair (G ,G′) consider the crossed product algebra G′⋉A. The action of G′ on A
commutes with that of the group G, and leaves invariant any element of the subalgebra
U(g) ⊂ A. Therefore the group G′ acts by automorphisms of the double coset algebra
Z̄ , and we can also consider the crossed product algebra G′ ⋉ Z̄ .

The action of G′ on Z̄ commutes with the Zhelobenko automorphisms ξ̌1 , . . . , ξ̌r .
Since it also commutes with the action of τ̂ ∈ G on Z̄ for any τ ∈ T , the action of G′

preserves the subalgebra Q ⊂ Z̄ . So we get the crossed product algebra G′ ⋉ Q. The
homomorphism U(g′) → AG used in Subsection 4.4 yields a homomorphism U(g′) → Q.

For any λ,µ ∈ t∗ the subspace Mλ
µ ⊂ Mµ is a module over the subalgebra

G′
⋉ AG ⊂ G′

⋉ A ,
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and moreover an (AG ,G′)-module. If λ + ρ is nonsingular, the subspace Mλ
µ ⊂ Mµ is

also an Q-module, and moreover an (Q ,G′)-module. Then the action of AG on Mλ
µ

can also be obtained by pulling the action of Q on Mλ
µ back through the isomorphism

γ : AG → Q, see Subsection 3.3. Moreover, the isomorphism γ is G′ -equivariant. Hence
by using γ we get the same structure of an (AG ,G′)-module on Mλ

µ as above.

The Zhelobenko operator ξ̌0 on Ā/J is G′ -equivariant. So is the corresponding linear
map (3.16) for any µ and nonsingular λ+ρ . Hence the action of the group G′ preserves
the subspace Ker( ξ̌0 |Mλ

µ ) of M
λ
µ . Another way to see this is to use Proposition 3.7 and

G′ -contravariance of the Shapovalov form Sλ
µ on Mλ

µ . The latter property means that

Sλ
µ(υ (f) , g) = Sλ

µ(f ,υ
′(g)) for f ,g ∈ Mλ

µ

where υ 7→ υ ′ is the anti-involution on G′ defined by the matrix transposition. Here the
elements of G′ are regarded as matrices by using the standard basis f1 , . . . , fn of Cn .
Either way, the quotient space of Mλ

µ by Ker( ξ̌0 |Mλ
µ ) becomes an (Q ,G′)-module.

When the Lie group G′ is connected, that is when G′ = GLn or G′ = Spn , we will
not need to use the action of G′ ⋉Q on Mλ

µ . It will suffice to use only the action of Q.
But the Lie group G′ = On is not connected. Until the end of this subsection we will
be considering only the case when (G ,G′) = (O2m ,On) so that θ = −1. The space U
has been identified with the tensor product Cm ⊗ Cn . In our case H(U) is the Clifford
algebra generated by the elements of the vector space W = C2m ⊗ Cn subject to the
relations (2.2), where B is the tensor product of the symmetric forms on C2m and Cn

preserved by the actions of the groups O2m and On respectively. Here xai = ea⊗fi and
∂ai = e−a ⊗ fı̃ for a = 1 , . . . , m and for all i = 1 , . . . , n . Note that θi = 1 in this case.

Choose any vector f0 ∈ C
n of length

√
2 with respect to the form preserved by On .

The corresponding orthogonal reflection is

υ0 : Cn → C
n : u 7→ u− zf0

where z is the value of the symmetric form on Cn taken on the pair of vectors (f0 ,u) .
This reflection is an element of the group On . It determines an automorphism of the
algebra H(U) , which preserves the subalgebra P(U) generated by all the elements xai .

For a = 1 , . . . , m define the vectors xa = ea ⊗ f0 and ∂a = e−a ⊗ f0 of C2m ⊗ Cn .
By (2.2) we get

xa∂a + ∂axa = B (xa , ∂a) = 2 . (4.60)

Consider the product

A0 =

m∏

a=1

(1− xa∂a) ∈ H(U) .

The m factors of this product pairwise commute. We will use the next properties of A0 .

Lemma 4.7. (i) There is an equality τ̂m (A0) = −A0 .

(ii) The action of the element A0 on P(U) coincides with that of the reflection υ0 .

(iii) The element A0 ∈ H(U) commutes with ζ(X) for every X ∈ so2m .

Proof. In our case, the action of the element τ̂m ∈ O2m on C
2m exchanges e1 with e−1 ,

and leaves other basis vectors of C2m fixed. So the action of τ̂m on H(U) exchanges the
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element x1 with ∂1 , and leaves fixed any element xa or ∂a with a > 1. Now (i) follows
from the relation (4.60) with a = 1. Part (ii) can be obtained by a direct calculation,
which reduces to the case m = 1. Part (iii) follows from (ii), because every element
ζ(X) ∈ H(U) with X ∈ so2m is On -invariant. ⊓⊔

Proposition 4.8. Suppose that λ + ρ is nonsingular and (G ,G′) = (O2m ,On) . Then
for any weight µ ∈ t∗ the quotient Mλ

µ /Ker( ξ̌0 |Mλ
µ ) is an irreducible (Q ,On)-module.

Proof. By Propositions 2.6 and 3.7 the quotient N = Mλ
µ /Ker( ξ̌0 |Mλ

µ ) is an irreducible
S-module. By applying Proposition 1.6 to this S-module, we get Proposition 4.8 when
Rλ = Sλ . In this case Proposition 4.8 follows from Theorem 3.8. We will now modify our
proof of Proposition 1.6, to get Proposition 4.8 without assuming that Rλ = Sλ .

Instead of the element (1.23) of the algebra Q let us first consider an element of S,

Z ′ = |Sλ|−1
∑

σ∈S

ξ̌σ(X
′ Y ) .

Here X ′ and Y are the same as in (1.23), but the sum is taken over the Weyl group S .
The arguments given just after (1.23) show that χ(Y ) = χ(Z ′) . We also get the equality
ξ̌σ(Z

′) = Z ′ for every σ ∈ S . But we might have τ̂m (Z ′) 6= Z ′, so that Z ′ /∈ Q then.
Then put Z = Z ′+τ̂m (Z ′) . Since τ̂ 2

m = 1, we get the equality τ̂m (Z) = Z . The action
of the element τ̂m ∈ O2m on S exchanges the operator ξ̌m−1 with ξ̌m , and commutes
with the operators ξ̌1 , . . . , ξ̌m−2 . Hence ξ̌σ(Z) = Z for any σ ∈ S . Thus we have Z ∈ Q,
like we had for the element (1.23).

Now put Z ′′ = Z ′−Z . Then ξ̌σ(Z
′′) = Z ′′ for any σ ∈ S , while τ̂m (Z ′′) = −Z ′′ . But

here we have Z ′′A0 ∈ Q. Indeed, by Part (iii) of Lemma 4.7 we have ξ̌σ(Z
′′A0) = Z ′′A0

for any σ ∈ S , while τ̂m (Z ′′A0) = Z ′′A0 by Part (i). Now consider the element

Z ′′A0 υ
−1
0 ∈ On ⋉Q .

Its action on N coincides with that of the element Z ′′ due to Part (ii) of Lemma 4.7.
Hence the action of

Z + Z ′′A0 υ
−1
0 ∈ On ⋉Q

coincides with that of the element Z ′ . But the latter action coincides with that of Y . ⊓⊔

Corollary 4.9. Suppose λ+ρ is nonsingular and (G ,G′) = (O2m ,On) , so that θ = −1 .

(i) If n is odd then the quotient Mλ
µ /Ker( ξ̌0 |Mλ

µ ) is an irreducible AO2m-module.

(ii) If n is even then Mλ
µ /Ker( ξ̌0 |Mλ

µ ) is either an irreducible AO2m-module, or splits

into a direct sum of two irreducible non-equivalent AO2m-modules.

Proof. If n is odd then the group On splits as a direct product Z2×SOn where Z2 is the
subgroup of On generated by the minus identity element. This element acts on Mλ

µ as the
multiplication by (−1)ν1+ ...+νm . Instead of the action of the connected Lie group SOn

on Mλ
µ it suffices to consider the action of the Lie algebra son . But the latter action can

also be obtained by pulling the action of AO2m on Mλ
µ back through the homomorphism

U(son) → AO2m , as mentioned earlier in this subsection. Proposition 1.5 now yields (i).
When n is even, we can use the action of the Lie algebra son on Mλ

µ instead of the
action of the subgroup SOn ⊂ On . This is a normal subgroup of index two. We can also
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use the homomorphism U(son) → AO2m , as we did for an odd n . Proposition 1.5 now
implies that the quotient Mλ

µ /Ker( ξ̌0 |Mλ
µ ) is irreducible over the joint action of AO2m

and of any element υ from the complement to SOn in On . Now general arguments from
[W, Section V.8] yield (ii). Moreover, if the quotient is a direct sum of two irreducible
AO2m-modules and N is one of them, the space of the other equals υN for any υ . ⊓⊔

4.6. Equivalent modules

Let (G ,G′) be any dual pair from Subsection 4.1. For any weights λ and µ of g , the
subspace (2.31) can be regarded as an AG -module. We have denoted the subspace by Lλ

µ .

First consider (G ,G′) = (GLm ,GLn) . By using the homomorphism Y(gln) → AGLm

we can also regard Lλ
µ as an Y(gln)-module. By Corollary 2.8 the Y(gln)-module Lλ

µ is
irreducible for any µ and nonsingular λ+ ρ . Here we also use Propositions 1.5 and 4.1.

Further suppose that the weight ν = λ−µ satisfies the conditions of Proposition 4.3.
Using that proposition, the Y(gln)-module Lλ

µ is equivalent to a certain quotient of
the tensor product (4.46). The latter tensor product can be regarded as a subspace in
P(U) . Denote by u the vector of P(U) corresponding to the vector ϕν1

⊗ . . .⊗ ϕνm
of

(4.46). If the weight λ + ρ is nonsingular, then ζ(P [µ + ρ])u = zu where z stands for
the product of all zα with α ∈ ∆+ . This equality follows from Propositions 3.5 and 4.4.
It can also be obtained directly from [KN1, Section 3] or [KN2, Section 3] when θ = 1
or θ = −1 respectively. If z 6= 0 then by Propositions 2.9 and 3.7 the Y(gln)-module Lλ

µ

is equivalent to the image of our intertwining operator (4.49). Then Lλ
µ is not zero.

Now take any pair (G ,G′) from Subsection 4.1 other than (GLm ,GLn) . By using the
homomorphism X(g′) → AG we can regard Lλ

µ as an X(g′)-module. Moreover, Lλ
µ can

be then regarded as a (X(g′),G′)-module, see the beginning of Subsection 4.5. Take
any µ and nonsingular λ + ρ . By Corollary 2.8 the X(g′)-module Lλ

µ is irreducible, if
Rλ = Sλ . Here we also use Propositions 1.5 and 4.2. Next take (G ,G′) = (O2m ,On) , so
that θ = −1. Then our proof of Proposition 4.8 demonstrates that Lλ

µ is an irreducible

(X(son) ,On)-module. Our proof of Corollary 4.9 demonstrates that Lλ
µ is an irreducible

X(son)-module, if n is odd. If n is even then Lλ
µ is either an irreducible X(son)-module,

or a direct sum of two irreducible non-equivalent X(son)-modules.
Now consider again any pair (G ,G′) from Subsection 4.1 other than (GLm ,GLn) .

Suppose that the weight ν = λ−µ−κ satisfies the conditions of Proposition 4.5. Using
that proposition in the case when ω is the identity element of the group R , the X(g′)-
module Lλ

µ is equivalent to a certain quotient of the tensor product of the form (4.46).
This tensor product can be regarded as a subspace in P(U) . Let u be the vector of
P(U) corresponding to (4.57). If λ+ ρ is nonsingular, then we again have the equality
ζ(P [µ+ρ])u = zu . But here z stands for the product of all zα with α ∈ ∆++ if θ = 1 and
n > 1. Otherwise z stands for the product of all zα with α ∈ ∆+ . The equality follows
from Propositions 3.5 and 4.6. It can also be obtained directly from [KN3, Erratum] or
from [KN4, Section 5] when θ = 1 or θ = −1 respectively. If z 6= 0 then by Propositions
2.9 and 3.7 the X(g′)-module Lλ

µ is equivalent to the image of our intertwining operator

(4.58). Moreover, then Lλ
µ is equivalent to the image of (4.58) as an (X(g′) ,G′)-module.

Note that then the quotient Lλ
µ of Mλ

µ is not zero, see Subsection 2.5.
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4.7. Dual modules

In Subsection 3.4 for any µ and nonsingular λ+ ρ we defined a Q-contravariant pairing
(3.19). Let us now describe that pairing in terms of representations of Yangians. First
take (G ,G′) = (GLm ,GLn) . The Chevalley anti-involution ε on the Lie algebra g = glm
is defined by ε(Eab) = Eba . It extends to an involutive anti-automorphism of the algebra
A, also denoted by ε, so that the extension exchanges the generators xai and ∂ai of the
subalgebra H(U) ⊂ A. First applying the homomorphism Y(gln) → A defined by
(4.24), and then applying the anti-automorphism ε of A, amounts to first applying
the anti-automorphism (4.11) of Y(gln) , and then applying the homomorphism (4.24).
Therefore, when we regard the two vector spaces in the pairing (3.19) as Y(gln)-modules,
the pairing becomes contravariant relative to the anti-automorphism (4.11) of Y(gln) .

By replacing these two Y(gln)-modules by their equivalents, we get a non-degenerate
contravariant pairing of the source and target Y(gln)-modules in (4.49). In particular,
the Y(gln)-module dual to the source in (4.49), is equivalent to the target. The latter
equivalence can be proved directly, for all λ and µ . Indeed, because (4.11) is a coalgebra
anti-automorphism, it is enough to consider the case m = 1 only. But it is well known
that the Y(gln)-modules Φk

t are equivalent to their duals relative to (4.11), whenever
θ = 1 or θ = −1. See [NT1, Proposition 1.7] for a more general result.

Now let (G ,G′) be any pair from (0.1) other than (GLm ,GLn) . The Chevalley anti-
involution ε on the Lie algebra g is defined by setting for a,b = −m, . . . ,−1 ,1 , . . . , m

ε(Fab) = sign ab · Fba or ε(Fab) = Fba

when θ = 1 or θ = −1 respectively. It extends to an involutive anti-automorphism of the
algebra A, also denoted by ε , so that the extension exchanges the element pai ∈ H(U)
with the element

− sign a · qai or qai

when θ = 1 or θ = −1 respectively. Here we use the notation from Proposition 4.2.
First applying the homomorphism X(g′) → A defined by (4.33), and then applying

the anti-automorphism ε of A, amounts to first applying the anti-automorphism (4.20) of
X(g′) , and then applying the homomorphism (4.33). Therefore, when we regard the two
vector spaces in the pairing (3.19) as X(g′)-modules, the pairing becomes contravariant
relative to the involutive anti-automorphism (4.20) of X(g′) .

By replacing these two X(g′)-modules by their equivalents, we get a non-degenerate
contravariant pairing of the source and target X(g′)-modules in (4.58), if g = sp2m
or if g = so2m and m is even. If g = so2m and m is odd, then we get a pairing of
the source and target X(g′)-modules in (4.59). But if g = so2m , then the target X(g′)-
modules in (4.58) and (4.59) are equivalent, see the end of Subsection 4.4. Thus for both
g = sp2m ,so2m and for any m we get a non-degenerate contravariant pairing of the
source and target X(g′)-modules in (4.58). Let us now regard them as Y(g′)-modules,
like we did in Subsection 4.4. Then we get a non-degenerate pairing of them, which is
contravariant relative to the restriction of the involutive anti-automorphism (4.19) of
Y(gln) to the subalgebra Y(g′) ⊂ Y(gln) . We also use the fact that any automorphism
of X(g′) defined by (4.15) commutes with the anti-automorphism defined by (4.20). In
particular, the Y(g′)-module dual to the source in (4.58), is equivalent to the target.
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Like in the case g′ = gln , the equivalence here can be proved for all λ and µ directly.
Indeed, the Y(g′)-module dual to the source in (4.58) can be defined by first considering
the source as a Y(gln)-module, then taking its dual relative to the anti-automorphism
(4.19) of Y(gln) , and then restricting the resulting Y(gln)-module to the subalgebra
Y(g′) ⊂ Y(gln) . But (4.19) is the composition of (4.11) and (4.12). Hence taking the
dual relative to (4.19) amounts to first taking the dual relative to (4.11), and then
pulling the result back through the automorphism (4.12).

We have already proved that relative to (4.11), the Y(gln)-module dual to the source
tensor product in (4.58) is equivalent to the tensor product of the same factors, but taken
in the reversed order. Pulling the latter tensor product back through (4.12) replaces each
factor Φk

t by Φ−k
t , and also reverses the order of the factors once again. Thus we get

the target in (4.58) as Y(gln)-module. Here we used the definition of the Y(gln)-module
Φ−k

t , and the fact that (4.12) defines an anti-automorphism of the coalgebra Y(gln) .

5. Irreducible representations of Yangians

5.1. Irreducible representations of Y(gln)

Let Φ be a non-zero finite-dimensional Y(gln)-module. A non-zero vector of Φ is called
highest if it is annihilated by all the coefficients of the series Tij(x) with i < j . If Φ is
irreducible then a highest vector ϕ ∈ Φ is unique up to a scalar multiplier. Moreover,
then ϕ is an eigenvector for the coefficients of all series Tii(x) , and for i = 1 , . . . , n− 1

Tii(x)Ti+1,i+1(x)
−1 ϕ = Pi(x+ 1

2 )Pi(x− 1
2)

−1 ϕ

where Pi(x) is a monic polynomial in x with coefficients in C . Then P1(x) , . . . , Pn−1(x)
are called the Drinfeld polynomials of Φ . Any sequence of n−1 monic polynomials with
complex coefficients arises in this way. Furthermore, two irreducible finite-dimensional
Y(gln)-modules have the same Drinfeld polynomials if and only if their restrictions to
the subalgebra SY(gln) ⊂ Y(gln) are equivalent. Thus up to equivalence and similarity,
all the non-zero irreducible finite-dimensional Y(gln)-modules are parametrized by their
Drinfeld polynomials [D2, Theorem 2]. For example, consider the trivial Y(gln)-module.
It is one-dimensional, and is defined by the counit homomorphism Y(gln) → C . Then
the corresponding Drinfeld polynomials are also trivial: P1(x) = . . . = Pn−1(x) = 1.

In this subsection we will assume that θ = −1 and g = glm , so that g′ = gln . For
any k ∈ {0 ,1 , . . . , n} the vector space Φk is irreducible under the action of gln . Hence
for any t ∈ C the Y(gln)-module Φk

t is irreducible. The vector ϕk = f1 ∧ . . .∧ fk of this
module is highest, see the definitions (4.6) and (4.8). Moreover, by these definitions

Tii(x)ϕk =

{
(x− t+ 1) (x− t)−1 ϕk if 1 6 i 6 k ;

ϕk if k < i 6 n.

Hence for i = 1 , . . . , n− 1 the Drinfeld polynomial Pi(x) of the Y(gln)-module Φk
t is

Pi(x) =

{
x− t+ 1

2
if i = k ;

1 otherwise.
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For g = glm we have ν = λ− µ . Suppose that each label νa ∈ {0 ,1 , . . . , n} . Further
suppose that the weight λ+ ρ is nonsingular. The latter condition means here that

λb − λa + ρb − ρa 6= 1, 2, . . . for all 1 6 a < b 6 m. (5.1)

By Corollary 3.9 and Proposition 4.1, the quotient by the kernel of our operator (4.49)
is then an irreducible Y(gln)-module. But the definition (4.10) of the comultiplication
on Y(gln) implies that the vector ϕν1

⊗ . . .⊗ ϕνm
of (4.46) is highest. Suppose that

νa > νb whenever λa + ρa = λb + ρb and a < b. (5.2)

Due to the nonsingularity of the weight λ + ρ , then Proposition 4.4 implies that the
image of the vector ϕν1

⊗ . . . ⊗ ϕνm
in the quotient is not zero. Hence this image is

highest relative to the action of the Yangian Y(gln) on the quotient. Since the vectors
ϕν1

, . . . , ϕνm
are highest in their Y(gln)-modules, their tensor product is an eigenvector

for all coefficients of the series Tii(x) , see again (4.10). Moreover,

Tii(x) (ϕν1
⊗ . . .⊗ ϕνm

) = (Tii(x)ϕν1
)⊗ . . .⊗ (Tii(x)ϕνm

) .

Therefore for any index i = 1 , . . . , n−1 the Drinfeld polynomial Pi(x) of the quotient is
equal to the product of the Drinfeld polynomials with the same index i of the m tensor
factors of (4.46). Thus we get the following theorem. Recall that here ρa = m/2−a+ 1

2
.

Theorem 5.1. Let the labels λ1 , . . . , λm satisfy the condition (5.1), while the labels

ν1 = λ1 − µ1 , . . . , νm = λm − µm

belong to the set {0 ,1 , . . . , n} and satisfy the condition (5.2). Then the quotient by the

kernel of our intertwining operator (4.49) is a non-zero irreducible Y(gln)-module. For

any i = 1 , . . . , n− 1 the Drinfeld polynomial Pi(x) of this module is the product of the

differences x− µa − ρa taken over all indices a such that νa = i .

Note that if ν1 = . . . = νm = 0, then both the source and the target Y(gln)-modules
in (4.49) are trivial for any µ . If moreover λ+ ρ is nonsingular, then by Proposition 4.4
our operator (4.49) is the identity map C → C .

Now take any sequence of n−1 monic polynomials P1(x) , . . . , Pn−1(x) with complex
coefficients. Denote by P the collection of pairs ( i , z) where i = 1 , . . . , n−1 and z ranges
over all roots of the polynomial Pi(x) ; the roots are taken with their multiplicities. Note
that the collection P is unordered. Let m be the total number of elements in P , it is
equal to the sum of the degrees of P1(x) , . . . , Pn−1(x) . Suppose that at least one of the
polynomials is not trivial, so that m > 0. Let λ and µ be any weights of glm such that
for ν = λ− µ the collection of pairs (νa ,µa + ρa ) for a = 1 , . . . , m coincides with P . In
particular νa ∈ {1 , . . . , n− 1} . We do not yet impose any other conditions on λ and µ .

Then λ and µ are determined up to any permutation of the m pairs (νa ,µa + ρa ) .
Equivalenly, they are determined up to a permutation of the m pairs (λa+ρa ,µa+ρa ) .
In other words, λ and µ are determined up to the (simultaneous) shifted action of the
Weyl group S of glm on them, as on elements of t∗. Therefore we can choose λ to satisfy
the conditions (5.1), so that the weight λ+ ρ is nonsingular. For a < b the equality on
the right hand side of (5.2) means that λ is invariant under the shifted action of that
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element of S which exchanges ηa with ηb , and leaves all other basis vectors of t∗ fixed.
This action amounts to exchanging the pair (νa ,µa + ρa ) with (νb ,µb + ρb ) . By using
this action and keeping λ fixed, we can choose µ so that the condition (5.2) is satisfied.

Now consider our operator (4.49) corresponding to the weights λ and µ chosen above.
Due to Theorem 5.1, the quotient by the kernel of this operator is a non-zero irreducible
Y(gln)-module, and has the given Drinfeld polynomials P1(x) , . . . , Pn−1(x) . Thus up to
equivalence and similarity, every non-zero irreducible finite-dimensional Y(gln)-module
arises as such a quotient. Note that the choice θ = −1 here is essential.

5.2. Representations of twisted Yangians

From now on we will regard the coefficients of all the series Sij(x) as generators of the
algebra Y(g′) , with the relations (4.14) and (4.18) imposed on them. In this subsection
we collect some general results on finite-dimensional Y(g′)-modules for both g′ = spn
and g′ = son . Let Ψ be any of these modules. If Ψ is obtained by restricting the trivial
Y(gln)-module to the subalgebra Y(g′) ⊂ Y(gln) , then Ψ will be also called trivial.

Now assume that Ψ is non-zero. We will use the ordering (4.56) of the indices 1 , . . . , n .
We will keep writing i ≺ j when i precedes j in the sequence (4.56). A non-zero vector
of Ψ is called highest if it is annihilated by all the coefficients of the series Sij(x) with
i ≺ j . If Ψ is irreducible then a highest vector ψ ∈ Ψ is unique up to a scalar multiplier.
Then ψ is an eigenvector for the coefficients of all series Sii(x) ; see [M2, Theorem 4.2.6
and Corollary 4.2.7]. Then Ψ is determined by the corresponding eigenvalues up to
equivalence. In the next subsections we will use the description from [M2, Chapter 4] of
all possible eigenvalues. Note that the relation (4.18) with i = j takes the form

Sii(x)∓ 2xS ı̃ ı̃ (x) = (1∓ 2x)Sii(−x) .

Hence it suffices to describe the eigenvalues of the coefficients of only one of every two
series Sii(x) and S ı̃ ı̃ (x) . We choose the series Sii(x) with i < ı̃ , or equivalently with
i < n . This choice is explained by the next lemma which valid for any non-zero Y(gln)-
module Φ , not necessarily irreducible; cf. [M2, Corollary 4.2.10]. We will also regard Φ
as module over the subalgebra Y(g′) ⊂ Y(gln) , by restriction.

Lemma 5.2. Let ϕ ∈ Φ be a non-zero vector annihilated by all coefficients of the series

Tij(x) with i ≺ j . Suppose Tii(x)ϕ = hi(x)ϕ for i = 1 , . . . , n where hi(x) is a formal

power series in x−1 with coefficients from C . Then ϕ is a highest vector for Y(g′) and
moreover Sii(x)ϕ = gi(x)ϕ for i = 1 , . . . , n where

gi(x) =

{
(1∓ (2x)−1) hi(x) h ı̃(−x)± (2x)−1 hi(−x) h ı̃(x) if i ≺ ı̃ ;

hi(x) h ı̃(−x) if i < ı̃ .

Proof. Take i , j ∈ {1 , . . . , n} such that i 4 j . The coefficients of the series Sij(x) act on
the vector ϕ ∈ Φ as the corresponding coefficients of the series (4.13), giving the sum of

θi θk T k̃ ı̃ (−x)Tkj(x)ϕ (5.3)

over the indices k < j . This is because the vector ϕ is highest relative to Y(gln) . Using
the commutation relations (4.5), the summand (5.3) is equal to the difference
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θi θk Tkj(x)T k̃ ı̃ (−x)ϕ (5.4)

− θiθk (2x)
−1(Tk ı̃ (−x)T k̃j(x)− Tk ı̃ (−x)T k̃j(x))ϕ. (5.5)

Here (5.4) may be non-zero only if k̃ < ı̃ , that is only if k 4 i . The latter condition
together with i 4 j and j 4 k implies that i = j = k . Then (5.4) equals

hi(x) h ı̃(−x)ϕ. (5.6)

Further, (5.5) may be non-zero only if k̃ < j . When presenting (5.3) as the sum of
(5.4) and of (5.5) by using (4.5), we could replace (5.5) by the expression

− θiθk (2x)
−1(T k̃j(x)Tk ı̃ (−x)− T k̃j(x)Tk ı̃ (−x))ϕ. (5.7)

But (5.7) may be non-zero only if k < ı̃ , that is only if k̃ 4 i . The latter condition
together with i 4 j and j 4 k̃ implies that i = j = k̃ . Then (5.5) and (5.7) are equal to

∓(2x)−1 (hi(x) h ı̃(−x)− hi(−x) h ı̃(x))ϕ. (5.8)

We have also assumed that k < j , which together with the equalities i = j = k̃ implies
that i 4 ı̃ . Moreover, if i = ı̃ then (5.8) obviously vanishes.

Thus under the assumption i 4 j we have proved that Sij(x)ϕ may difer from zero
only of i = j . If i ≺ ı̃ then Sii(x)ϕ is equal to the sum of (5.6) and (5.8). But if i < ı̃
then Sii(x)ϕ is equal to the expression (5.6) alone. ⊓⊔

We will keep assuming that θ = −1. Hence for g = sp2m or g = so2m we will have
g′ = spn or g′ = son respectively. In these next subsections, we will consider the two
cases separately. Moreover, we will separate the cases of g′ = son with n even and odd.
If g′ = spn then n has to be even. We will write n = 2l if n is even, or n = 2l + 1 if n
is odd. Then the condition i < n will mean respectively that i is one of the indices

2l ,2l − 2 , . . . , 2 or 2l + 1 ,2l ,2l− 2 , . . . , 2 .

As the first application of Lemma 5.2, consider the case when Φ = Φk
t and ϕ = ψk is

the vector of Φk defined in Subsection 4.4. We assume that k ∈ {0 ,1 , . . . , n} . All the
conditions of Lemma 5.2 are then satisfied. Here hi(x) = 1 + (x− t)−1 if i is one of the
first k indices in the sequence (4.56), otherwise hi(x) = 1. Hence h ı̃(−x) = 1−(x+ t)−1

if i is one of the last k indices in the sequence (4.56), otherwise h ı̃(−x) = 1. If i < n ,
then gi(x) = hi(x) h ı̃(−x) . This implies the following relations, to be used later on.

Take any i ≻ n . Let j be the index occuring just before i in the sequence (4.56). Here
j = i+ 2 unless n = 2l + 1 and i = 2l , in which case j = i+ 1. Note that j < n . Then

gj(x) gi(x)
−1 =





(x+ t) (x+ t− 1)−1 if 2k = i ;

(x− t+ 1) (x− t)−1 if 2(n− k) = i ;

1 otherwise.

Indeed, for i ≻ n we have hi(x) 6= hj(x) only if 2(n− k) = i . In the latter case we have
hi(x) = 1 while hj(x) = 1 + (x − t)−1 . Further, for any i ≻ n we have h ı̃(x) 6= h ̃(x)
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only if 2k = i . In the latter case we have h ı̃(x) = 1 + (x− t)−1 while h ̃(x) = 1. Thus
we obtain the relation displayed above.

If n = 2l , then we also have the relation

gn(−x) gn(x)−1 =

{
(x− t+ 1) (x+ t) (x− t)−1 (x+ t− 1)−1 if k = l ;

1 otherwise.

Indeed, if n = 2l then ñ = 2l− 1. Then for k 6 l we have hn(x) = 1, while for k > l we
have hn(x) = 1 + (x − t)−1. Further, for k < l we have h ñ(x) = 1, while for k > l we
have h ñ(x) = 1 + (x− t)−1 . Therefore gn(x) = gn(−x) for any k 6= l . But if k = l then
gn(x) = 1 + (x− t)−1 . Thus we obtain the last displayed relation.

We will end this section by introducing a notion applicable to any finite-dimensional
module Ψ over the twisted Yangian Y(g′) where g′ = son and n is any positive integer,
even or odd. Consider the restriction of Ψ to the subalgebra U(son) ⊂ Y(son) . Suppose
that the restriction integrates to a module of the complex special orthogonal group SOn .
Thus we exclude the spinor representations of son . Then we call the Y(son)-module
Ψ integrable . Equivalently, then Ψ is an (Y(son) ,SOn)-module; see the beginning of
Subsection 4.4. For instance, any Y(son)-module of the form (4.51) is integrable, and so
is any quotient of such a module. We will not treat non-integrable Y(son)-modules here.

5.3. Irreducible representations of Y(spn)

In this subsection, we consider the case when θ = −1 and g = sp2m , so that g′ = spn
where n = 2 l . Let Ψ be a non-zero irreducible finite-dimensional Y(spn)-module. Let
ψ ∈ Ψ be a highest vector. By [M2, Theorem 4.3.8] for any k = 1 , . . . , l − 1 we have

S2k+2,2k+2(x)S2k,2k(x)
−1 ψ = Qk(x+ 1

2)Qk(x− 1
2)

−1 ψ

where Qk(x) is a monic polynomial in x with coefficients in C . Further, we have

Snn(−x)Snn(x)
−1 ψ = Ql(x+ 1

2 )Ql(x− 1
2 )

−1 ψ

where Ql(x) is an even monic polynomial in x with coefficients in C . Any sequence
of l monic polynomials with complex coefficients arises in this way, provided that the
last polynomial in the sequence is even. Furthermore, two irreducible finite-dimensional
Y(spn)-modules have the same sequence of polynomials Q1(x) , . . . , Ql(x) if and only if
their restrictions to the subalgebra SY(spn) ⊂ Y(spn) are equivalent. Thus the non-zero
irreducible finite-dimensional Y(spn)-modules are parametrized by their polynomials
Q1(x) , . . . , Ql(x) up to equivalence and similarity [M2, Corollary 4.3.11]. For example,
if Ψ is the trivial Y(spn)-module then Q1(x) = . . . = Ql(x) = 1.

In this subsection, ρa = −a and κa = − l for each index a = 1 , . . . , m . Recall the
definition (2.18) of the weight ν . Suppose that each label νa ∈ {0 ,1 , . . . , n} . Further
suppose that the weight λ+ ρ is nonsingular. The latter condition means here that

λb − λa + ρb − ρa 6= 1, 2, . . . for all 1 6 a < b 6 m ; (5.9)

λa + λb + ρa + ρb 6= 1, 2, . . . for all 1 6 a < b 6 m ; (5.10)

λa + ρa 6= 1, 2, . . . for all 1 6 a 6 m. (5.11)
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By Corollary 3.9 and Proposition 4.2, the quotient by the kernel of our intertwining
operator (4.58) is then an irreducible Y(spn)-module. But the definition (4.10) of the
comultiplication on Y(gln) implies that the vector (4.57) is highest relative to the twisted
Yangian Y(spn) . Here we also use Lemma 5.2. Further suppose that

νa > νb whenever λa − λb + ρa − ρb = 0 and a < b ; (5.12)

νa + νb 6 n whenever λa + λb + ρa + ρb = 0 and a < b ; (5.13)

νa 6 l whenever λa + ρa = 0 . (5.14)

Due to the nonsingularity of the weight λ+ ρ , Proposition 4.6 then implies that the
image of the vector (4.57) in the quotient is not zero. Hence this image is highest relative
to the action of the twisted Yangian Y(spn) on the quotient. Lemma 5.2 implies that
each of the polynomials Q1(x) , . . . , Ql(x) of the quotient is multiplicative with respect
to the m tensor factors of the vector (4.57). But in the case m = 1 these polynomials
are transparent from the relations given in the very end of Subsection 5.2. Thus we get

Theorem 5.3. Put n = 2l. Let λ1 , . . . , λm satisfy (5.9),(5.10),(5.11) while the labels

ν1 = λ1 − µ1 + l , . . . , νm = λm − µm + l (5.15)

belong to the set {0 ,1 , . . . , n} and satisfy (5.12),(5.13),(5.14). Then the quotient by the

kernel of our intertwining operator (4.58) is a non-zero irreducible Y(spn)-module. For

any k = 1 , . . . , l − 1 the polynomial Qk(x) of this module is the product of the sums

x+µa+ρa taken over all indices a such that νa = k , and of the differences x−µa −ρa
taken over all indices a such that νa = n − k . The polynomial Ql(x) of this module is

the product of the differences x2 − (µa + ρa)
2 taken over all indices a such that νa = l .

Note that if ν1 = . . . = νm = 0, then both the source and the target Y(spn)-modules
in (4.58) are trivial for any µ . If moreover λ+ ρ is nonsingular, then by Proposition 4.6
our operator (4.58) is the identity map C → C .

Now let us take any sequence of l monic polynomials Q1(x) , . . . , Ql(x) with complex
coefficients, such that the polynomial Ql(x) is even. Let m be the sum of the degrees of
Q1(x) , . . . , Ql−1(x) plus half of the degree of Ql(x) . Suppose that at least one of all the
l polynomials is not trivial, so that m > 0. Let λ and µ be any weights of sp2m such
that the corresponding labels (5.15) belong to the set {1 , . . . , n− 1} and such that the
given polynomials Q1(x) , . . . , Ql(x) are obtained from λ and µ as in Theorem 5.3. But
we do not yet impose any other conditions on λ and µ , such as nonsingularity of λ+ ρ .

Then λ and µ are determined up to permuting the m pairs (νa ,µa + ρa ) , and up to
replacing (νa ,µa + ρa ) by (n− νa ,−µa − ρa ) for any number of indices a . Equivalenly,
λ and µ are determined up to a permutation of the m pairs (λa + ρa ,µa + ρa ) , and
up to replacing (λa + ρa ,µa + ρa ) by (−λa − ρa ,−µa − ρa ) for any number of indices
a . In other words, λ and µ are determined up to the (simultaneous) shifted action of
the Weyl group S of sp2m on them, as on elements of t∗. Therefore we can choose λ to
satisfy the conditions (5.9),(5.10),(5.11) so that the weight λ+ ρ is nonsingular.

The equality on the right hand side of (5.12) for a < b means that λ is invariant
under the shifted action of that element of S which exchanges ηm−a+1 with ηm−b+1 ,
and leaves all other basis vectors of t∗ fixed. This action amounts to exchanging the
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pair (νa ,µa + ρa ) with (νb ,µb + ρb ) . By using this action and keeping λ fixed, we can
choose µ so that the condition (5.12) is satisfied.

The equality on the right hand side of (5.14) means that the weight λ is invariant
under the shifted action of that element of S which maps ηm−a+1 to −ηm−a+1 , and
leaves all other basis vectors of t∗ fixed. This action amounts to replacing the pair
(νa ,µa + ρa ) by the pair (n− νa ,−µa − ρa ) . By using this action and keeping λ fixed,
we can choose µ so that the condition (5.14) is satisfied.

Finally, the equality on the right hand side of (5.13) for a < bmeans that the weight λ
is invariant under the shifted action of that element of the group S which maps ηm−a+1

and ηm−b+1 respectively to −ηm−b+1 and −ηm−a+1 , leaving all other basis vectors of
t∗ fixed. This action amounts to replacing the pairs (νa ,µa + ρa ) and (νb ,µb + ρb ) by
the pairs (n − νb ,−µb − ρb ) and (n − νa ,−µa − ρa ) respectively. By using this action
and keeping λ fixed, we can choose the weight µ so that the condition (5.13) is satisfied
when λa+ρa 6= 0, or equivalently when λb+ρb 6= 0. When λa+ρa = 0 and λb+ρb = 0,
the condition (5.13) is already satisfied, because then νa 6 l and ηb 6 l due to (5.14).

Now consider our operator (4.58) corresponding to λ and µ . Due to Theorem 5.3 the
quotient by the kernel of this operator is a non-zero irreducible Y(spn)-module, and has
the given polynomials Q1(x) , . . . , Ql(x) . Thus up to equivalence and similarity, every
non-zero irreducible finite-dimensional Y(spn)-module arises as such a quotient.

5.4. Irreducible representations of Y(son) for odd n

In this subsection, we consider the case of g′ = son where n is odd. Hence n = 2l + 1
where l is a non-negative integer. We assume that θ = −1, so that g = so2m . Let Ψ be
any integrable finite-dimensional Y(son)-module, see the end of Subsection 5.2. Further
suppose that the Y(son)-module Ψ is irreducible and non-zero. Let ψ ∈ Ψ be a highest
vector. By [M2, Theorem 4.5.9] there exist monic polynomials Q1(x) , . . . , Ql(x) in x
with complex coefficients such that for any k = 1 , . . . , l − 1

S2k+2,2k+2(x)S2k,2k(x)
−1 ψ = Qk(x+ 1

2)Qk(x− 1
2 )

−1 ψ ,

while
Snn(x)Sn−1,n−1(x)

−1 ψ = Ql(x+ 1
2 )Ql(x− 1

2)
−1 ψ .

Every sequence of l monic polynomials with coefficients from C arises in this way. Two
irreducible integrable finite-dimensional Y(son)-modules have the same polynomials
Q1(x) , . . . , Ql(x) if and only if their restrictions to the subalgebra SY(son) ⊂ Y(son)
are equivalent [M2, Corollary 4.5.12]. Thus all the non-zero irreducible integrable finite-
dimensional Y(son)-modules are parametrized by their polynomials Q1(x) , . . . , Ql(x)
up to equivalence and similarity. For example, if Ψ is the trivial Y(son)-module then
we have Q1(x) = . . . = Ql(x) = 1.

In this subsection, ρa = 1− a and κa = − l + 1
2 for each index a = 1 , . . . , m . Recall

the definition (2.18) of the weight ν . Suppose that each label νa ∈ {0 ,1 , . . . , n} . Further
suppose that the weight λ+ ρ is nonsingular. The latter condition means here that

λb − λa + ρb − ρa 6= 1, 2, . . . for all 1 6 a < b 6 m ; (5.16)

λa + λb + ρa + ρb 6= 1, 2, . . . for all 1 6 a < b 6 m. (5.17)
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In the end of Subsection 4.4 we observed that for g = so2m our intertwining operators
(4.58) and (4.59) are the same. Using Proposition 4.2 and Corollary 4.9, the quotient by
the kernel of this operator is an irreducible Y(son)-module. But the definition (4.10) of
the comultiplication on Y(gln) implies that the vector (4.57) is highest relative to the
twisted Yangian Y(son) . Here we also use Lemma 5.2. Further suppose that

νa > νb whenever λa − λb + ρa − ρb = 0 and a < b ; (5.18)

νa + νb 6 n whenever λa + λb + ρa + ρb = 0 and a < b. (5.19)

We have already noted that for σ = σ0 and ω = τm σ0 our operator (4.53) is invertible.
Due to the nonsingularity of the weight λ+ρ , Proposition 4.6 now implies that the image
of the vector (4.57) in the quotient is not zero. Hence this image is highest relative to
the action of the twisted Yangian Y(son) on the quotient. Lemma 5.2 implies that each
of the polynomials Q1(x) , . . . , Ql(x) of the quotient is multiplicative with respect to
the m tensor factors of the vector (4.57). But in the case m = 1 these polynomials are
transparent from the relations given in the very end of Subsection 5.2. Thus we get

Theorem 5.4. Put n = 2l + 1 . Let λ1 , . . . , λm satisfy (5.16),(5.17) while the labels

ν1 = λ1 − µ1 + l + 1
2
, . . . , νm = λm − µm + l + 1

2
(5.20)

belong to the set {0 ,1 , . . . , n} and satisfy (5.18),(5.19). Then the quotient by the kernel

of our intertwining operator (4.58) is a non-zero irreducible Y(son)-module. For any

k = 1 , . . . , l the polynomial Qk(x) of this module is the product of the sums x+ µa + ρa
taken over all indices a such that νa = k , and of the differences x− µa − ρa taken over

all indices a such that νa = n− k .

Note that if ν1 = . . . = νm = 0, then both the source and the target Y(son)-modules
in (4.58) are trivial for any µ . If moreover λ+ ρ is nonsingular, then by Proposition 4.6
our operator (4.58) is the identity map C → C .

Now let us take any sequence of l monic polynomials Q1(x) , . . . , Ql(x) with complex
coefficients. Let m be the sum of the degrees of Q1(x) , . . . , Ql(x) . Suppose that m > 0.
Let λ and µ be any weights of so2m such that the corresponding labels (5.20) belong to
the set {1 , . . . , n−1} and such that the given polynomials Q1(x) , . . . , Ql(x) are obtained
from λ and µ as in Theorem 5.4. We do not yet impose any other conditions on λ and µ .

Then λ and µ are determined up to permuting the m pairs (νa ,µa + ρa ) , and up to
replacing (νa ,µa+ρa ) by (n−νa ,−µa−ρa ) for any number of indices a . Equivalenly, λ
and µ are determined up to a permutation of the m pairs (λa+ ρa ,µa+ ρa ) , and up to
replacing (λa+ρa ,µa+ρa ) by (−λa−ρa ,−µa−ρa ) for any number of indices a . Thus
λ and µ are determined up to the (simultaneous) shifted action of the group R of so2m
on them, as on elements of t∗. Using only the action of the subgroup S ⊂ R , we can
choose λ to satisfy the conditions (5.16),(5.17) so that the weight λ+ ρ is nonsingular.

The equality on the right hand side of (5.18) for a < b means that λ is invariant
under the shifted action of that element of S which exchanges ηm−a+1 with ηm−b+1 ,
and leaves all other basis vectors of t∗ fixed. This action amounts to exchanging the pair
(νa ,µa+ρa ) with (νb ,µb+ρb ) . By using this action and keeping λ fixed, we can choose
µ so that the condition (5.18) is satisfied.
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The equality on the right hand side of (5.19) for a < b means that the weight λ is
invariant under the shifted action of that element of the group S which maps ηm−a+1

and ηm−b+1 respectively to −ηm−b+1 and −ηm−a+1 , leaving all other basis vectors of
t∗ fixed. This action amounts to replacing the pairs (νa ,µa + ρa ) and (νb ,µb + ρb ) by
the pairs (n − νb ,−µb − ρb ) and (n − νa ,−µa − ρa ) respectively. By using this action
and keeping λ fixed, we can choose the weight µ so that the condition (5.19) is satisfied.

Now consider our intertwining operator (4.58) corresponding to these λ and µ . Due
to Theorem 5.4, the quotient by the kernel of this operator is a non-zero irreducible
integrable Y(son)-module, and has the given polynomials Q1(x) , . . . , Ql(x) . Thus up
to equivalence and similarity, every non-zero irreducible integrable finite-dimensional
Y(son)-module arises as such a quotient. Note that the choice θ = −1 here is essential.

5.5. Irreducible representations of Y(son) for even n

In this subsection, we will consider the case of g′ = son where n is even. Hence n = 2l
where l is a positive integer. We keep assuming that θ = −1, so that g = so2m . Let Ψ
be any Y(son)-module. Let υ ∈ On be the element which exchanges the basis vector
fn−1 with fn , and leaves all other basis vectors of Cn fixed. Consider the corresponding
automorphism (4.52) of the algebra Y(son) . Our element υ is involutive, and so is the
corresponding automorphism of Y(son) . Denote by Ψ the Y(son)-module obtained by
pulling the action of Y(son) on Ψ back through this automorphism. Any Y(son)-module
equivalent to Ψ will be called conjugate to Ψ .

The Y(son)-modules Ψ and Ψ may be equivalent or not. Suppose that the Y(son)-
module Ψ is irreducible, finite-dimensional, integrable and non-zero. So is the Y(son)-
module Ψ then. By [M2, Theorem 4.4.14] for a highest vector ψ of at least one of the
two modules Ψ and Ψ we have for k = 1 , . . . , l − 1

S2k+2,2k+2(x)S2k,2k(x)
−1 ψ = Qk(x+ 1

2)Qk(x− 1
2)

−1 ψ (5.21)

where Qk(x) is a monic polynomial in x with coefficients in C . Further, we have

Snn(−x)Snn(x)
−1 ψ = Ql(x+ 1

2 )Ql(x− 1
2 )

−1 ψ (5.22)

where Ql(x) is an even monic polynomial in x with coefficients in C . Any sequence of
l monic polynomials with complex coefficients arises in this way, provided that the last
polynomial in the sequence is even. Moreover, the two Y(son)-modules Ψ and Ψ are
equivalent, if and only if zero is not a root of the corresponding polynomial Ql(x) .

Let us consider the case when Ψ and Ψ are not equivalent, so that zero is a root of
the polynomial Ql(x) . Let h be the positive integer such that 0 ,1 , . . . ,h − 1 are roots
of Ql(x) , but h is not. The above vector ψ has been a highest vector of one of the two
Y(son)-modules Ψ and Ψ . Let ψ be a highest vector of the other of the two. For each
index i < n we have Sii(x)ψ = gi(x)ψ where gi(x) is a formal power series in x−1 with
the coefficients from C . The proof of [M2, Theorem 4.4.14] demonstrates that then for
each i ≻ n we also have the equality Sii(x)ψ = gi(x)ψ , while

Snn(x)ψ = g(x) gn(x)ψ

where
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g(x) = (x+ h+ 1
2 ) (x− h+ 1

2)
−1 .

By the definition of the polynomial Ql(x) here we have

gn(−x) gn(x)−1 = Ql(x+ 1
2 )Ql(x− 1

2 )
−1 .

However,
g(−x) g(x)−1 6= Q(x+ 1

2 )Q(x− 1
2 )

−1

for any polynomial Q(x) , because the integer h is positive. This implies that only one
of the two non-equivalent Y(son)-modules Ψ and Ψ gives rise to l polynomials by using
its highest vector ψ , as in (5.21) and (5.22). If ψ is a highest vector of Ψ , assign to Ψ a
label δ = 1. Otherwise, that is if ψ is a highest vector of Ψ , assign to Ψ a label δ = −1.
The polynomials Q1(x) , . . . , Ql(x) will be from now on associated to both Ψ and Ψ .

Thus to every non-zero irreducible integrable finite-dimensional Y(son)-module Ψ
we have associated a sequence of monic polynomials Q1(x) , . . . , Ql(x) where the last
polynomial is even. If zero is a root of the polynomial Ql(x) , that is if Ψ is not equivalent
to Ψ , then we also have associated to Ψ a label δ ∈ {+1 ,−1} . The modules Ψ are
parametrized by their polynomials Q1(x) , . . . , Ql(x) and by their labels δ (where the
latter exist) up to equivalence and similarity [M2, Corollary 4.4.17]. For example, if Ψ
is the trivial Y(son)-module then Q1(x) = . . . = Ql(x) = 1, and there is no label δ .

In this subsection g = so2m , as in Subsection 5.4. In particular, here ρa = 1− a for
each index a = 1 , . . . , m . Suppose that the weight λ+ ρ is nonsingular. This condition
can be written as the collection of inequalities (5.16) and (5.17). However, now κa = − l .
Using the definition (2.18) of the weight ν , suppose that each label νa ∈ {0 ,1 , . . . , n} .

In the end of Subsection 4.4 we observed that for g = so2m our intertwining operators
(4.58) and (4.59) are the same. Denote by N the quotient by the kernel of this operator.
By Proposition 4.2 and Corollary 4.9, N is either an irreducible Y(son)-module or splits
into a direct sum of two irreducible non-equivalent Y(son)-modules. In the latter case,
our N is irreducible as a module over the algebra On ⋉ Y(son) by Proposition 4.8.

Due to the On -equivariance of the Olshanski homomorphism X(son) → AO2m , for
any υ ∈ On pulling the action of Y(son) on N back through the automorphism (4.52)
amounts to pulling that action forward through the automorphism of X 7→ υX υ−1 of
the algebra End N . Let us apply this observation to the element υ used in the beginning
of this subsection. If the Y(son)-module N is irreducible, then it is of the form Ψ , where
Ψ and Ψ are equivalent. If N splits to a direct sum of two irreducible non-equivalent
submodules and one of them is denoted by Ψ , the other submodule is equivalent to Ψ .

Like in Subsection 5.4, the definition (4.10) of the comultiplication on Y(gln) implies
that the vector (4.57) is highest for the twisted Yangian Y(son) . Here we again used
Lemma 5.2. Suppose that the weight ν satisfies the inequalities (5.18) and (5.19). Note
that the weights κ used here and in Subsection 5.4 to determine ν are different. It is
the form of the inequalities (5.18) and (5.19) for ν that is the same.

We have already noted that for σ = σ0 and ω = τm σ0 our operator (4.53) is invertible.
Due to the nonsingularity of the weight λ+ρ , Proposition 4.6 now implies that the image
of the vector (4.57) in the quotient N is not zero. This image is going to be our vector ψ .
In particular, it will satisfy (5.21) and (5.22) for certain polynomials Q1(x) , . . . , Ql(x) .
Lemma 5.2 implies that each of these polynomials is multiplicative with respect to the
m tensor factors of the vector (4.57). But in the case m = 1 these polynomials are
transparent from the relations given in the very end of Subsection 5.2. Thus we get
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Theorem 5.5. Put n = 2 l. Let λ1 , . . . , λm satisfy (5.16),(5.17) while the labels

ν1 = λ1 − µ1 + l , . . . , νm = λm − µm + l (5.23)

belong to the set {0 ,1 , . . . , n} and satisfy (5.18),(5.19). Then the quotient by the kernel

of our intertwining operator (4.58) is either a non-zero irreducible self-conjugate Y(son)-
module, or splits into a direct sum of two non-equivalent non-zero irreducible Y(son)-
modules conjugate to each other. For every k = 1 , . . . , l− 1 polynomial Qk(x) of any of

the irreducible modules is the product of the sums x+ µa + ρa taken over all indices a
such that νa = k , and of the differences x− µa − ρa taken over all indices a such that

νa = n − k . The polynomial Ql(x) of any of the irreducible modules is the product of

the differences x2 − (µa + ρa)
2 taken over all indices a such that νa = l . The splitting

occurs if and only if µa + ρa = 0 for at least one index a such that νa = l .

In view of (5.23), the splitting in Theorem 5.5 occurs if and only if λa + ρa = 0 and
µa + ρa = 0 simultaneously for at least one index a . If ν1 = . . . = νm = 0 then both the
source and the target Y(son)-modules in (4.58) are trivial for any µ . If moreover λ+ ρ
is nonsingular, then by Proposition 4.6 our operator (4.58) is the identity map C → C .

Now let us take any sequence of l monic polynomials Q1(x) , . . . , Ql(x) with complex
coefficients, such that the polynomial Ql(x) is even. Let m be the sum of the degrees
of Q1(x) , . . . , Ql−1(x) plus half of the degree of Ql(x) . Suppose that m > 0. Let λ and
µ be any weights of so2m such that the corresponding labels (5.23) belong to the set
{1 , . . . , n− 1} and such that the given polynomials Q1(x) , . . . , Ql(x) are obtained from
λ and µ as in Theorem 5.5. We do not yet impose any other conditions on λ and µ .

Then λ and µ are determined up to permuting the m pairs (νa ,µa + ρa ) , and up to
replacing (νa ,µa+ρa ) by (n−νa ,−µa−ρa ) for any number of indices a . Equivalenly, λ
and µ are determined up to a permutation of the m pairs (λa+ ρa ,µa+ ρa ) , and up to
replacing (λa+ρa ,µa+ρa ) by (−λa−ρa ,−µa−ρa ) for any number of indices a . Thus
λ and µ are determined up to the (simultaneous) shifted action of the group R of so2m
on them, as on elements of t∗. Using only the action of the subgroup S ⊂ R , we can
choose λ to satisfy the conditions (5.16),(5.17) so that the weight λ+ ρ is nonsingular.

By using only the shifted action on µ of those elements of the subgroup S ⊂ R which
leave λ invariant, we can choose µ so that the conditions (5.18),(5.19) are satisfied. The
arguments are the same as in the end of Subsection 5.4, and we do not repeat them here.

Now consider our intertwining operator (4.58) corresponding to these λ and µ . Due to
Theorem 5.5, the quotient by the kernel of this operator is either a non-zero irreducible
integrable Y(son)-module, or splits into a direct sum of two non-equivalent irreducible
integrable Y(son)-modules. To any of the irreducible modules we associate the given
polynomialsQ1(x) , . . . , Ql(x) . It the quotient is irreducible, there is no label δ associated
to it. If the quotient splits into two irreducible modules, they have the labels δ = 1 and
δ = −1 associated to them. Therefore up to equivalence and similarity, every non-zero
irreducible integrable finite-dimensional Y(son)-module arises either as such a quotient,
or as one of its two direct summands. Note that the choice θ = −1 here is essential.



76 Sergey Khoroshkin and Maxim Nazarov

Acknowledgments

We are grateful to Ernest Vinberg for collaborating with us on [KNV]. The present work
began when we visited MPIM, and continued when we visited IHES. We are grateful
to the staff of both institutes for their kind help and generous hospitality. The first
named author was supported by the RFBR grant 08-01-00392, joint grant 09-01-93106,
interdisciplinary grant 09-01-12185-ofi-m, and the grant for Support of Scientific Schools
3036-2008-2. The second named author was supported by the EPSRC grant C511166.

References

[AK] T.Akasaka and M.Kashiwara, Finite-dimensional representations of quantum affine

algebras, Publ. Res. Inst. Math. Sci. 33 (1997), 839–867.
[AS] T.Arakawa and T. Suzuki, Duality between sln(C) and the degenerate affine Hecke

algebra, J. Algebra 209 (1998), 288–304.
[AST] R.Asherova, Y. Smirnov and V.Tolstoy, A description of certain class of projection

operators for complex semisimple Lie algebras, Math. Notes 26 (1980), 499–504.
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