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MODULI SPACES AND GRASSMANNIAN

JIA-MING (FRANK) LIOU AND A. SCHWARZ

Abstract. We calculate the homomorphism of the cohomology induced by the
Krichever map of moduli spaces of curves into infinite-dimensional Grass-
mannian. This calculation can be used to compute the homology classes of
cycles on moduli spaces of curves that are defined in terms of Weierstrass
points.
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1. Introduction

We study the relation between the topology of Sato Grassmannian and the topology of
the moduli space of compact complex curves. The Sato Grassmannian (or, better to say the
Segal-Wilson [14] version of Sato Grassmannian) associated with a polarized Hilbert space
H = H+ ⊕H− is an infinite dimensional Banach manifold Gr(H) modeled on the space of
compact operators from H− to H+. Its path components are parametrized by the set of
integers. The cohomology of each path component can be identified with the cohomology
of the infinite classical Grassmannian [13]. Let Grd(H) be a path connected component of
Gr(H), where d is an integer. The cohomology ring of H∗(Grd(H)) is isomorphic to the
polynomial ring C[c1, c2, . . . ] with variables ck whose degrees are 2k. Since S1 acts naturally
on Gr(H), we can also consider the S1-equivariant cohomology of Gr(H).

The moduli space F̂g,h is the space of quintuples (C, p, z, L, φ) where C is a compact
complex curve, z is a local coordinate in the disk D centered at the point p ∈ C, and
L stands for a line bundle over C having a trivialization φ over D. This space can be
mapped into the Sato Grassmannian Gr(H) by means of Krichever construction sending

x = (C, p, z, L, φ) ∈ F̂g,h to the closed subspace of H consisting of functions f : S1 → C that
can be obtained as restrictions of holomorphic sections of L over C\D. (See, for example

[10].) This construction determines an embedding k : F̂g,h → Gr(H). The image of F̂g,h in
Gr(H) via k is called the Krichever locus. The continuous map k : Fg,h → Gr(H) induces

a homomorphism on cohomology ring k∗ : H∗(Gr(H)) → H∗(F̂g,h). The group U(1) = S1

acts in natural way on F̂g,h and on Gr(H); this action commutes with Krichever map hence
we can talk about corresponding homomorphism of equivariant cohomology. We analyze the
induced map k∗ both for conventional cohomology and equivariant cohomology. We express
this map in terms of lambda-classes, introduced by Mumford [9], and their generalizations.

The work was partially supported by NSF grant DMS-0805989.
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The cohomology of Sato Grassmannian can be represented by finite-codimension subva-
rieties that are called Schubert cycles. 1The intersections of Schubert cycles with Krichever
locus can be described as cycles on moduli spaces that are defined in terms of Weierstrass
points [1]. Our calculations can be interpreted as calculations of (co)homology classes of
these cycles provided that the Schubert cycle and Krichever locus are in general position.

The results of the present paper should be important in the analysis of Grassmannian
string theory suggested in [16] as a version of nonperturbative string theory. The ideas
of [16] should be combined with ideas of [15]; this leads to the analysis of BV-algebra of
equivarianted chains on Grassmannian. The present paper is a first step in this direction.

2. Preliminaries

2.1. Sato Grassmannian. A semi-infinite structure on an infinite dimensional separable
Hilbert space H is a triple (H+,H−, κ), where H+ and H− are infinite dimensional closed
subspace of H with H = H+ ⊕H− and κ : H → H is an invertible map so that κ : H± →
H∓. A polarized Hilbert space is a Hilbert space H together with a semi-infinite structure
(H+,H−, κ) on it. A polarized Hilbert space is denoted by (H, κ). Given a polarized Hilbert
space (H, κ), denote the orthogonal projections from H onto H± by π± respectively.

The Sato Grassmannian2 Gr(H) associated with a polarized Hilbert space (H, κ) is the
set of all closed subspaces W of H such that the orthogonal projection π−|W : W → H− is
a Fredholm operator and the orthogonal projection π+|W :W → H+ is a compact operator
3.

For each W ∈ Gr(H), let UW be the set of all closed subspaces which are graphs of
compact operators from W into W⊥. In other words, V ∈ UW if and only if V consists
of points of the form w +Kw,w ∈ W for some compact operator K : W → W⊥. Define
ϕW (V ) = K, where V = W + KW in UW . Then ϕW : UW → K(W,W⊥) is a bijection
for each W ∈ Gr(H). (Here K(V, V ′) stands for the space of compact operators from a
Banach space V to a Banach space V ′). The family {(UW , ϕW )} gives Gr(H) a Banach
manifold structure modelled on K(H+,H−). A typical example of a polarized Hilbert
space is L2(S1) together with the standard semi-infinite structure defined as follows. The
subspaces L2(S1)+ and L2(S1)− of L2(S1) are the closed subspaces of L2(S1) spanned by
{zi : i ≥ 0} and {zj : j < 0} respectively and form an orthogonal direct sum of L2(S1).
The standard semi-infinite structure on L2(S1) is the map κ(f)(z) = 1

zf
(
1
z

)
. One can see

that κ maps L2(S1)± into L2(S1)∓. The standard Sato Grassmannian Gr(L2(S1)) is the
Sato Grassmannian associated with the standard polarized Hilbert space (L2(S1), κ). From
now on, we will assume H = L2(S1). A point W in Gr(H) is said to have virtual index
d if the Fredholm operator π−|W has index d. The set of all points of Gr(H) consisting
of virtual index d forms a submanifold of Gr(H); it is denoted by Grd(H). The manifolds
{Grd(H)}d∈Z are connected components of Gr(H).

2.2. Moduli Spaces and the Krichever Map. We denote by Mg the moduli space of
complex curves of genus g (of Riemann surfaces of genus g). As a set this is a set of all
equivalence classes of compact smooth complex curves of genus g. A rigorous definition of

1The statement that a submanifold of oriented manifold specifies a cohomology class of dimension equal to the
codimension of submanifold is well known in finite-dimensional case, but its precise formulation and proof in infinite-
dimensional case are non-trivial. However, in the situations we consider it is possible to justify our considerations
representing infinite-dimensional manifolds as limits of finite-dimensional ones.

2We use the version of Sato Grassmannian defined by Segal and Wilson.
3Sometimes it is convenient to use Hilbert-Schmidt operators instead of compact operators in the definition of

Grassmannian. Our calculations can be applied to this modification of Grassmannian.
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moduli space Mg is complicated, because complex curves can have non-trivial automor-
phisms. This means that the moduli space should be regarded as an orbifold or as a stack.
To avoid these complications we can work instead with families of curves . 4 A complex
curve of genus g with n marked points is a collection (C, p1, . . . , pn), where C is a compact
complex curve of genus g and (p1, . . . , pn) is an n-tuple of distinct points on C. A mor-
phism from (C, p1, . . . , pn) to (C ′, p′1, . . . , p

′
n) is a holomorphic map ϕ : C → C ′ such that

ϕ(pj) = p′j for 1 ≤ j ≤ n. The moduli space of complex curves with n marked points Mg,n

consists of all isomorphism classes of compact complex curves of genus g with n marked
points. It is obvious that Mg,0 = Mg. Again we can work with families instead of moduli
spaces. Similarly we can define other moduli spaces.

The moduli space M̂g is defined as a space of triples (C, p, z), where C is a compact
complex curve of genus g with a point p and a map z : D → D is an isomorphism from
a closed set D into the closed unit disk D = {z ∈ C : |z| ≤ 1} obeying z(p) = 0 . The

moduli space of quintuples (C, p, z, L, φ), where (C, p, z) specifies a point of M̂g and L is

a line bundle over C together with a local trivialization φ over D will be denoted by F̂g,h.
We also denote by Fg,h the moduli space of triples (C, p, L), where (C, p) ∈ Mg,1 and L is
a line bundle over C of degree h.The moduli space of pairs (C,L), where C ∈ Mg and L is
a line bundle over C of degree h will be denoted by Pg,h .

The moduli spaces M̂g and F̂g,h can be embedded into the standard Sato Grassmannian
Gr(H).

Let (C, p, z, L, ϕ) be a point in F̂g,h. Identify D with the closed unit disk D and its
boundary ∂D with S1 via z. Let H0(C\D,L) be the space of holomorphic sections of L over
C \D. Let k(x) be the closed subspace of L2(S1) consisting of functions f with the property
that there exists s ∈ H0(C \D,L) such that f = s|S1 . One can show that k(x) ∈ Gr(H)
([14]). Moreover, ker π−|k(x) and coker π−|k(x) can be identified with ker ∂L = H0(C,L) and

coker ∂L = H1(C,L) respectively. By the Riemann-Roch theorem,

ind k(x) = h0(C,L) − h1(C,L) = h− g + 1,

where hi(C,L) = dimH i(C,L) for any line bundle L. The map

(2.1) k : F̂g,h → Grd(H)

where d = h− g + 1 is called the Krichever map . It is a continuous embedding. Similarly,
one can construct continuous embeddings

(2.2) kq : M̂g → Grdq (H)

by defining kq(C, p, z) = k(C, p, z,K⊗q
C , dz⊗q), where KC is the canonical line bundle over

C, hq = q(2g − 2) for q ≥ 1, and dq = hq − g + 1. (One can say that these embeddings are

obtained as compositions of Krichever map and natural embeddings of M̂g into F̂g,h.)

2.3. The Equivariant Cohomology. Let G be a topological group and X be a G-space.
The equivariant cohomology of X is defined to be

H∗
G(X) = H∗(EG ×G X),

where EG is a contractible G-space such that G acts freely on EG and EG×G X denotes
the quotient space of EG ×X modulo the relation (h · g, x) ∼ (h, g · x). ( This definition
works for any group of coefficients, but we always consider the cohomology with coefficients

4Recall that a family of curves of genus g with base B is a holomorphic map p : E → B that can be considered as
locally trivial fibration with curves of genus g as fibers.
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in C.) When X is a point, H∗
G(pt) is the cohomology H∗(BG) of the classiying space

BG = EG/G . When G acts freely on X, H∗
G(X) is simply H∗(X/G). The equivariant

cohomology H∗
G(X) is an algebra over H∗

G(pt).
If G-space X is an orientable manifold then for every G- invariant cycle Z of codimension

r in X one can construct an r-dimensional equivariant cohomology class [Z]. We will say
that this class is dual to Z (the construction generalizes Poincare duality). If Y is a G-
invariant submanifold of X and G-invariant cycle Z in X is in general position with respect
to Y (the codimension of Z ∩ Y in Y is equal to intersection of Z in X) then

(2.3) i∗[Z] = [Z ∩ Y ]

where i∗ denotes the homomorphism H∗
G(X) → H∗

G(Y ) induced by the embedding i : Y →
X.

Example 2.1. Let S∞ be an infinite-dimensional sphere (understood as the direct limit of
finite-dimensional spheres with respect to maps S2n−1 → S2n+1 induced by natural embed-
dings C

n ⊂ C
n+1 or as the unit sphere in an infinite dimensional complex Hilbert space

H). It is a contractible space with a free S1 action. Hence the classifying space BS1

of S1 is the infinite dimensional projective space P
∞. The equivariant cohomology ring

HS1(pt) = H∗(P∞) of a point is the polynomial ring C[u], where u is a degree 2 element in
H∗(P∞). Using this this statement one obtains that the equivariant cohomology ring HT(pt)
where T = (S1)n is an n-dimensional torus is a polynomial ring C[u1, . . . , un].

One says that a G-space X is equivariantly formal if its equivariant cohomology is a free
module over H∗

G(pt). There exist numerous conditions that guarantee equivariant formality
(see [5]); for us it is sufficient to know that among these conditions is vanishing of odd-
dimensional cohomology.

Let us suppose that G = T is a torus and the action of T on X is equivariantly formal.
Then the restriction map HT(X) → HT(F ) where F is the set of fixed points of torus
action is injective. Hence to calculate the cohomology ring HT(X) one should describe
the image of this map. This can be done [5]. We will formulate the answer in the case
when X is a non-singular algebraic variety, F is finite, the action of T can extended to
an algebraic action of algebraic torus T

al and T
al has only a finite number of orbits of

complex dimension 1. We define X1 as a union of these orbits and F (a union of orbits
of dimension ≤ 1). Then the image of restriction map can be characterized as the kernel
of the homomorphism 5 HT(F ) → HT(X1, F )) (GKM-theorem, [5]). Notice, that in the
conditions of GKM theorem we can calculate not only equivariant cohomology with respect
to the torus T, but also equivariant cohomology with respect to any subtorus T′ ⊂ T.

The moduli space M̂g has a natural free S
1- action S1×M̂g → M̂g defined by (λ, (C, p, z)) 7→

(C, p, λz). Let us consider the forgetful map

F : M̂g → Mg,1

defined by F (C, p, z) = (C, p). The moduli space M̂g is homotopy equivalent to the moduli
space M′

g,1, where M′
g,1 is the moduli space of triples (C, p, v), where (C, p) ∈ Mg,1 and v

is a nonzero tangent vector to C at p. Hence F is homotopy equivalent to the map:

F ′ : M′
g,1 → Mg,1,

5This homomorphism is defined as the boundary homomorphism in the exact sequence of the pair (X1, F ).
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where F ′(C, p, v) = (C, p) is the forgetful map. Since the fiber of F ′ is homotopy equivalent
to S1, we have the following identification:

(2.4) F
′
: M′

g,1/S
1 → Mg,1.

Lemma 2.1. We have natural isomorphisms:

(2.5) H∗
S1(M̂g) = H∗

S1(M
′
g,1) = H∗(Mg,1).

The generator of the algebra HS1(pt) = C[u] acts on H∗(Mg,1) as multiplication by −ψ
where ψ is the first Chern class of the complex line bundle Kπ over Mg,1 that over the point
(C, p) ∈ Mg,1 has a fiber defined as the cotangent space to C at the point p. (This bundle
can be interpreted as relative dualizing sheaf of fibration Mg,1 → Mg.)

Proof. Since S1 acts on both M′
g,1 and M̂g freely and M′

g,1 is homotopy equivalent to M̂g,
we have the natural identifications

(2.6) H∗
S1(M

′
g,1) = H∗(M′

g,1/S
1) ∼= H∗(M̂g/S

1) = H∗
S1(M̂g).

The map F
′
defined in (2.4) is a homeomorphism which identifies the cohomology:

(2.7) H∗(M′
g,1/S

1) ∼= H∗(Mg,1).

By (2.6) and (2.7), we proved (2.5).
To find the action of the generator of the algebra HS1(pt) we apply the general statement

that in the case of free action of S1 onX the action of the generator onH∗
S1(X) = H∗(X/S1)

can be described as multiplication on the first Chern class of the circle bundle X → X/S1.
�

The moduli space F̂g,h of quintuples (C, p, z, L, φ) is homotopy equivalent to the moduli
space F ′

g,h of quaduples (C, p, v, L), where (C, p, L) specifies an element of Fg,h and v is a
tangent vector to C at p. Similarly, we have the following result:

Lemma 2.2. There exists a natural isomorphism:

H∗
S1(F̂g,h) ∼= H∗(Fg,h).

The generator of the algebra HS1(pt) = C[u] acts on H∗(Fg,h) as multiplication by −ω
where ω denotes the first Chern class of line bundle over Fg,h having the cotangent space
T ∗
p to the curve C at p as a fiber over (C, p, L) ∈ Fg,h. (This bundle can be regarded as the

relative dualizing sheaf of the forgetful map π′ : Fg,h → Pg,h.)

Notice that the group S1 acts on H = L2(S1) as the group of rotations of S1; this action
induces an action on Gr(H). It is easy to check that the Krichever map commutes with the
S1-action on moduli spaces and on Grassmannian, hence it induces a homomorphism on
equivariant cohomology. Our goal is to study this homomorphism.

2.4. Topology of Sato Grassmannian. Let us remind some basic facts about topology
of finite-dimensional Grassmannian Grn,l (of the space of l-dimensional complex vector

subspaces of C
n.) The torus T = (S1)n (as well as the algebraic torus T

al = (C∗)n)
acts in natural way on C

n and therefore on Grn,l. (The torus acts on C
n by means of

linear transformations having vectors of the standard basis {e1, . . . , en} as eigenvectors.)
Fixed points of the torus action on Grn,l are vector subspaces HS spanned by subsets S
of the the set {e1, . . . , en} consisting of l vectors. There exists a cell decomposition into
even-dimensional cells invariant with respect to torus action (Schubert cells); these cells
are in one-to-one correspondence with fixed points. It follows that the Grassmannian is
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equivariantly formal. This means that equivariant cohomology is a free module over the
cohomology of one-point set; cocycles dual to Schubert cells (Schubert cocycles) constitute
a basis of this module. The two-dimensional orbits of the torus action (orbits of Tal having
complex dimension 1) can be described in the following way. Let us consider two fixed
points of torus action corresponding to subsets S1, S2 having l−1 common vectors. Denote
the subspace spanned by vector ei + λej and vectors from S1

⋂
S2 by Vλ (here λ ∈ C,

ei ∈ S1 \ S1
⋂
S2, ej ∈ S2 \ S1

⋂
S2). These subspaces form a two-dimensional orbit of

the torus action. Applying GKM theorem one obtains the equivariant cohomology ring of
Grassmannian as a subring of the ring of functions on the set of fixed points taking values
in the polynomial ring C[u1, ..., un].

The situation with Sato Grassmannian is similar. An infinite-dimensional torus T acts
on H 6 and therefore on Gr(H) . The fixed points of this action are subspaces HS spanned
by vectors zj where j ∈ S. Such a subspace belongs to Gr(H) iff S ∈ S where S consists
of subsets of Z that differ from Z− only by finite number of points, i.e. the symmetric
difference S∆Z− is a finite set . Two-dimensional orbits of torus action correspond to pairs
of subsets S1, S2 such that one can go from one subset to another deleting and adding one
vector. The construction of such an orbit is similar to the construction in finite-dimensional
case. We can describe equivariant cohomology classes of Grassmannian Grd(H) in terms
of their restriction to fixed points (to the points of the form HS). We prove that the
GKM theorem can be applied to Sato Grassmannian. This allows us to describe the ring
HT(Grd(H)) as a subring of functions φ on S taking values in the ring H∗

T
(pt) (we consider

only functions with finite support). Namely, if S1 = (S1 ∩ S2) ∪ {ei}, S2 = (S1 ∩ S2) ∪ {ej}
the difference φ(S1) − φ(S2) should be divisible by ui − uj . We are mostly interested in
cohomology HS1(Grd(H)); it can be described as a ring of C[u]-valued functions φ on S
such that the difference φ(S1)−φ(S2) is divisible by u. (We embed S1 into T by the formula
ti = λi and therefore we should substitute iu instead of ui. )

There exists a stratification of Gr(H) in terms of Schubert cells: the Grassmannian can
be represented as a disjoint union of Schubert cells ΣS; again these cells are in one-to-one
correspondence with fixed points (the fixed point HS belongs to the cell ΣS). Instead of
a set S one can consider a decreasing sequence (si)i≥1 of elements of this set; it is easy
to check that for n >> 0 we have sn = −n + d where d stands for the index of HS. The
complex codimension of Schubert cell ΣS is given by the formula

l(S) =

∞∑

i=1

(si + i− d).

To construct a stratification of Grassmannian Gr(H) we notice that every subspace V ⊂
H that specifies a point of Grassmannian has a canonical basis of the form en = zsn +∑

l≥sn+1 knlz
l where (si)i≥1 is a decreasing sequence and knsj = 0 for all 1 ≤ j < n. The

Grassmannian is a union of sets labelled by sequences (si) that appear in the definition of
canonical basis; these sets are called Schubert cells, they will be denoted by ΣS .

7 Notice

6If (. . . , tn, . . . ) ∈ T, n ∈ Z, the corresponding map of H transforms a point
∑

anen into the point
∑

tnanen.
Here en = zn.The topology of T is specified by the operator norm. The cohomology ring H∗

T
(pt) can be considered as

a subring of the ring of functions of infinite number of variables un where n ∈ Z (this follows from the fact that every
homomorphism of S1 into T induces a map H∗

T
(pt) → H∗

S1
(pt).) One can give a precise description of this subring,

but we do not need this description.
7An equivalent definition of Schubert cell can be given in the following way. For every S ∈ S we construct a set

US consisting of such elements V ∈ Gr(H) that the projection V → HS is an isomorphism. Then we can find a basis
of V having the form en = zn +

∑
l knlz

l where n ∈ S, l /∈ S. To define ΣS ⊂ US we impose an additional condition

knl = 0 for l < n.
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that instead of sequences S = (sn) one can use partitions λ = (λn) where λn = sn + n− d
vanishes for n >> 0. Given a sequence S with its corresponding partition λ, we also denote
ΣS by Σλ,d or simply Σλ when the index d is specified.

The closure ΣS of ΣS is called the Schubert cycle with the characteristic sequence S =
(si). It defines a cohomology class in H2l(S)(Gr(H)) (Schubert class). The Schubert cycle is

T-invariant, hence it specifies an element of equivariant cohomology group H
2l(S)
T

(Gr(H)).

This element (also called Schubert class) will be denoted by the symbol [ΣS ].
8 We will

be mostly interested in equivariant cohomology H
2l(S)
S1 (Gr(H)), where S1 stands for the

subgroup of T corresponding to rotation z → λz, but the statements of the next paragraph
can be generalized to any subtorus of T.

One can prove that the Schubert cocycles specify a basis of cohomology of Grassmannian.
Similarly equivariant cohomology is a free module over HS1(pt) generated by equivariant
Schubert classes. The multiplication of Schubert classes can be expressed in terms of Schur
functions , as in finite-dimensional case. More precisely, if Schubert classes are labeled by
partitions, the multiplication formula for Schubert classes in the case of Sato Grassman-
nian is the same as for finite-dimensional Grassmannian. The multiplication of equivariant
Schubert classes can be expressed in terms of shifted Schur functions introduced in [12] ;
see [8].

It is easy to check that (equivariant) cohomology of Grd(H) is a polynomial algebra
generated by Schubert classes cr corresponding to sequences S = (sj), where sj = 1− j + d
for 1 ≤ j ≤ r and sj = −j+d for j ≥ r+1.9 If we are working with equivariant cohomology
we will use notations Cr for these Schubert classes.10

The proof of these statements can be based on the results of [13]. Following [13] we
can consider the sequence Gk ⊂ Gr(H) where the subspace V ∈ Gr(H) belongs to Gk iff
H−k ⊂ V ⊂ Hk . (We use the notation Hk for the subspace of H spanned by zn with
n < k.) It follows from [13] that the homology and cohomology of Gr(H) coincide with
homology (cohomology) of the union Gr0 of sets Gk. It is easy to derive from this fact that
the same is true for equivariant homology and cohomology. The space Gr0 admits a cell
decomposition consisting of invariant even-dimensional cells [13]; this decomposition can be
used to calculate (equivariant) (co)homology and justify the above statements. A little bit
different proof is based on the remark that the homology of Gr0 can be represented as direct
limit of homology groups of Gk; the same is true for equivariant homology. 11 The remark
that Gk is homeomorphic to disjoint union of finite-dimensional Grassmannians permits us
to finish the proof.

3. Cohomological properties of Krichever map

The action of the Krichever map on the cohomology of Grassmanian Grd(H) can be
expressed in terms of lambda-classes. If we are working with equivariant cohomology, we
can get analogous results by introducing the notion of equivariant lambda-classes.

Recall that the Hodge bundle E over moduli space Mg is defined as a bundle having as
a fiber over a curve C ∈ Mg the space of all holomorphic differentials on C. Replacing

8More precisely, if the sequence S has index d the class [ΣS ] belongs to H
2l(S)
T

(Grd(H)).
9The corresponding partitions are (1, . . . , 1, 0, . . . ) = (1r) for r ≥ 1.
10The classes cr can be interpreted as Chern classes of (infinite-dimensional) tautological vector bundle over

Grd(H) (up to a factor (−1)r). We do not use this interpretation, because it does not work in equivariant case:
equivariant Chern classes are not well defined for tautological bundle.

11 More generally, one can consider spaces Gkl consisting of subspaces obeying Hl ⊂ V ⊂ Hk) and take the limit
k → ∞, l → −∞.
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the space of holomorphic differentials by the space of holomorphic q-differentials in the
definition of the Hodge bundle, we obtain a more general notion of Hodge bundle Eq. (For
q > 1 this is a bundle of dimension dq = (2q − 1)(g − 1).) More rigorously we can define
Hodge bundle Eq as the pushforward of q-th power of relative dualizing sheaf Kπ of forgetful
map π : Mg,1 → Mg. (As we noticed this sheaf can be identified with the complex line
bundle over Mg,1 that over the point (C, p) ∈ Mg,1 has a fiber defined as cotangent space
to C at the point p. The first Chern class of this bundle was denoted by ψ.)

Chern classes of Hodge bundle are called lambda-classes; they are denoted by λr (if we
would like to emphasize that we are working with q-differentials we use the notation λqr).
For all other moduli spaces, we have a natural map onto Mg; taking pullback with respect
to this map, we construct Hodge bundles and lambda-classes on these spaces.

Hodge bundles over M̂g are S1-equivariant bundles, hence we can define corresponding
equivariant Chern classes. They are called equivariant lambda-classes and denoted by Λr.
The equivariant Chern classes of Eq are denoted by Λq

r. Equivariant lambda classes are

equivariant cohomology classes of M̂g, or equivalently, cohomology classes of Mg,1 . If π is
the natural projection Mg,1 → Mg we can say that Λq

r = π∗λqr. To prove this fact we notice
that Mg can be considered as S1-space and Hodge bundle as an equivariant bundle over it

if we assume that S1 acts trivially. The equivariant Hodge bundle over M̂g can be regarded

as pullback of Hodge bundle over Mg with respect to natural projection M̂g → Mg; this
allows us to obtain Λq

r from λqr considered as equivariant Chern class of a bundle with trivial
action of S1.

The following theorem describes the behavior of equivariant cohomology classes Cr with
respect to the Krichever map. (Notice, that k∗q(u) = −ψ as follows from Lemma 2.1.) It is
sufficient to calculate Krichever map on the equivariant cohomology ring of Grd(H) (classes
Cr generate this ring), however, it is possible to calculate directly the image of Schubert
classes [ΣS ] (The result can be expressed in terms of shifted Schur functions defined in [12].
This calculation will be published separately.)

Theorem 3.1. In the case q > 1,

(3.1) k∗qCr = (−1)r
∑

j+m=r

(−1)mhm(q, q + 1, . . . , q + dq − r)ψmΛq
j

for all 1 ≤ r ≤ dq and

(3.2) k∗qCr = (−1)r
∑

m+j=r

em(q − 1, q − 2, · · · , q − r + dq + 1)ψmΛq
j ,

if r > dq.
Here hm(x1, x2, . . . ) is the m-th complete symmetric function in variables {x1, x2, . . . }

and em(x1, x2, · · · ) denotes the m-th elementary symmetric function in variables {x1, x2, · · · }.

Proof. In order to calculate the homomorphism k∗q we introduce the space Grld as the sub-

manifold of Grd(H) consisting of allW such that the orthogonal projection πl :W → z−lH−

is surjective. It follows from this requirement that there is an equivariant (d+l)-dimensional
vector bundle El over Grld whose fiber overW is the kernel of the projection πl : W → z−lH−.

The intersections of Schubert cells with Grld form a stratification of Grld; the strata are
also called Schubert cells. For every Schubert cell in Grd(H) and sufficiently large l this
cell is in general position with respect to Grld(H); in other words the corresponding cell in

Grld(H) has the same codimension. (Recall that the codimension of the Schubert cell ΣS is

determined by the length l(S)). Denote the intersection of Σ(1r) and Grld by Σ(1r),l. The
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equivariant cohomology class corresponding to Σ(1r),l is denoted by Cr,l. Since Σ(1r),l is in

general position with respect to Grld for l >> 0 applying the formula (2.3) we obtain

(3.3) f∗l Cr = Cr,l

where f∗l : H∗
T (Grd) → H∗

T (Grld) is the homomorphism induced by the inclusion map

fl : Grld → Grd.
Denote d = dq. (Here dq = (2q − 1)(g − 1) stands for the dimension of Hodge bundle Eq,

q > 1.). The Krichever locus kq(M̂g) lies in Grld for all l ≥ 0. We obtain modified Krichever

maps lkq : M̂g → Grld for all l ≥ 0. Then kq = fl◦
lkq, where fl : Grld → Grd is the inclusion

map. Hence we can compute k∗q : H∗
T (Grd) → H∗

T (M̂g) composing homomorphisms in the
sequence

H∗
S1(Grd)

f∗

l−−−−→ H∗
S1(Grld)

lk∗q
−−−−→ H∗

S1(M̂g).

Due to (3.3) it is sufficient to calculate lk∗qCr,l. To do this we express Cr,l in terms of
equivariant Chern classes. The expression we need can be obtained from general Kempf-
Laksov formula (see [6] or [3], Lecture 8), but we can use also simpler Porteous formula.

Let us construct a vector bundle Hi,j over Grld as a bundle with total space Hi,j ×Grld.

Here Hi,j is the subspace of H spanned by {zm : i ≤ m ≤ j}. We define the action of S1

on this bundle by

(3.4) (λ, f,W ) 7→ (λ−qf(λ−1z), λ(W ))

where λ ∈ S1, f ∈ Hi,j and W ∈ Grld. (We define λ(W ) as a space of functions f(λ−1z)
where f(z) ∈ W.) We also define an S1-action on El by (3.4) on the fiber of El. Then the
bundles Hi,j and El are non-trivial equivariant bundles. The total equivariant Chern class

cT (the sum of all equivariant Chern classes) of Hi,j is given by the formula

cT (Hi,j) =

j∏

m=i

(1− (q +m)u).

Lemma 3.1.

(3.5) Cr,l = (−1)rcTr (El −H−l,d−r).

Note that the class cTr (El−H−l,d−r) is well-defined because El and H−l,d−r are equivariant

complex vector bundles of finite rank over Grld.
To prove this lemma we consider an equivariant bundle map El → H−l,d−r defined by

means of orthogonal projection of fibers. The cycle Σ(1r),l can be considered as degeneracy
locus of this bundle map (this is the locus where the rank of the map of fibers is ≤ l+d−r).
This allows us to apply the Porteous formula [4] to calculate the dual cohomology class.

Let us denote by E0
l the restriction of the bundle El to Gr0d. The restriction of H−l,−1 to

Gr0d will be denoted by H0
−l,−1. There exists an exact sequence of equivariant bundles

0 → E0 → E0
l → H0

−l,−1 → 0.

This means that

cT (E0
l ) = cT (E0)c

T (H0
−l,−1).

Let us consider the case 1 ≤ r ≤ d. Using the relation H−l,d−r = H−l,−1⊕H0,d−r we obtain
that

cT (H−l,d−r) = cT (H−l,−1)c
T (H0,d−r).
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We have

(−1)rk∗qCr = (−1)r lk∗qCr,l =
lk∗qc

T
r (El −H−l,d−r) =

0k∗q ι
∗
l c

T
r (El −H−l,d−r)

= 0k∗qc
T
r (E

0
l −H0

−l,d−r) =
0k∗qc

T
r (E0 −H0

0,d−r).

Here ιl stands for the embedding ιl : Gr0d → Grld,
lkq = ιl

0kq. It remains to notice that
Eq =

0k∗qE0 (the bundle Eq is the pullback of E0 as an S1-equivariant bundle with respect

to the action (3.4)). Hence Λq
r = 0k∗qc

T
r (E0). We obtain

(−1)rk∗qCr =

(
cT (Eq)∏d−r

j=0(1 + (q + j)ψ)

)

[r]

.

where (x)[r] stand for 2r-dimensional component of cohomology class x.
Using the Cauchy’s identity,

(3.6)
d−r∏

j=0

(1 + (q + j)x)−1 =
∞∑

m=0

(−1)mhm(q, q + 1, . . . , q + d− r)xm,

we obtain

lk∗qc
T (El −H−l,d−r) =

dq∑

j=0

∞∑

m=0

(−1)mhm(q, q + 1, . . . , q + dq − r)ψmΛq
j

which implies (3.1). In the case r > d, very similar arguments lead to the relation:

(−1)rk∗qCr =
0k∗qc

T
r (E0 ⊕H0

−(r−d)+1,−1).

This relation implies (3.2). �

Applying the forgetful map H∗
S1(Grd(H)) → H∗(Grd(H)), we obtain:

Corollary 3.1.
k∗qcr = (−1)rλqr

if r ≤ dq and
k∗qcr = 0,

if r > dq.

Of course, it is easy to give an independent proof of these formulas (for example, inter-
preting cr as Chern classes of infinite-dimensional tautological vector bundle).

Mumford [9] has shown how to relate lambda classes λr to kappa classes κr = π∗ψ
r+1.

The same method, based on Grothendieck-Riemann-Roch theorem, can be used to calculate
λqr in terms of kappa classes.

Theorem 3.2. The r-th component of the Chern character of Eq is given by

chr Eq =
Br+1(q)

(r + 1)!
κr,

where Bn(q) is the n-th Bernoulli polynomial in q. (The Bernoulli polynomials {Bn(x)} are
defined by the generating function text/(et − 1) =

∑∞
n=0Bn(x)t

n/n!).

This formula was given in [2].
The expression of Chern classes in terms of Chern character is well known (see for example

[11]).
The behavior of the equivariant cohomology with respect to the Krichever map k1 is

described as follows:
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Theorem 3.3.

(3.7) k∗1Cr = (−1)r
∑

j+m=r

(−1)mhm(1, 2, . . . , g − r)ψmΛj

for r ≤ g − 1 and

(3.8) k∗1Cg = (−1)gΛg

and

k∗1Cg+1 = 0

and if r ≥ g + 2, we have

(3.9) k∗1Cr = (−1)r
∑

m+j=r

(−1)mem(1, 2, · · · , r − g − 1)ψmΛj.

Proof. The Krichever locus k1(M̂g) lies in Grld for all l ≥ 1. Consider the modified Krichever

maps lk1 : M̂g → Grld for l ≥ 2. We compute k∗1 via

H∗
S1(Grd)

f∗

l−−−−→ H∗
S1(Gr1d)

lk∗1−−−−→ H∗
S1(M̂g).

Denote E1
l the restriction of the bundle E to Gr1d. The restriction of Hi,j to Gr1d is denoted

by H1
i,j for each i, j. Then there exists an exact sequence of equivariant vector bundles:

(3.10) 0 → E1 → E1
l → H1

−l,−2 → 0

which gives

cT (E1
l ) = cT (E1)c

T (H1
−l,−2).

For 1 ≤ r ≤ g, using the relation H−l,g−1−r = H−l,−2 ⊕H−1,g−1−r, we obtain

cT (H−l,g−1−r) = cT (H−l,−2)c
T (H−1,g−1−r).

We have

(−1)rk∗1Cr = (−1)r lk∗1Cr,l =
lk∗1c

T
r (El −H−l,g−1−r) =

1k∗1 ι
∗
1,lc

T
r (El −H−l,g−1−r)

= 1k∗1c
T
r (E

1
l −H1

−l,g−1−r) = (−1)r 1k∗1c
T
r (E1 −H−1,g−1−r).

Here ι1,l stands for the embedding ι1,l : Gr1d → Grld,
lk1 = ι1,l

1k1. Notice that E = 1k∗1E1
and hence Λr =

1k∗1c
T
t (E1). We obtain

(−1)rk∗1Cr =

(
cT (E)

∏g−1−r
j=−1 (1 + (j + 1)ψ)

)

[r]

which implies (3.7) and (3.8) by the Cauchy’s identity. By the exact sequence (3.10), we
have

(−1)g+1k∗1Cg+1 =
1k∗1c

T
g+1(E

1
l −H1

−l,−2)c =
1k∗1c

T
g+1(E1) = cTg+1(E) = 0.

In the case r > g + 1, very similar arguments give us

(−1)rk∗1Cr =
1k∗1c

T
r (E1 ⊕H1

−(r−g),−2).

This result gives us (3.9). �

Similarly, forgetting about the equivariant structure, we obtain
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Corollary 3.2.

k∗1cr = (−1)rλr

for r ≤ g,

k∗1cr = 0,

for r > g.

The moduli space Mg can be embedded in the moduli space Mg (Deligne-Mumford
compactification). Similar embeddings exist for other moduli spaces we considered (we
allow curves with simple double points, but the marked point should be non-singular).

The Krichever map k1 can be extended to the moduli space M̂g, but this extension is not
continuous (however, the extension is continuous on the subspace consisting of irreducible
curves). More generally, the map k1 can be extended to the moduli space of irreducible
Cohen-Macaulay curves with a disk around a non-singular point; this extension is continuous
in appropriate topology. (This follows from the results of [14] and from the remark that
the dualizing sheaf of Cohen-Macaulay curve is torsion-free.) Our methods can be applied
to the analysis of cohomological properties of the extended Krichever map.

Let us define a vector bundle P on the moduli space Pg,h (on the moduli space of pairs
(C,L)) as a bundle having a fiber over a point (C,L) that can be identified with the space of
holomorphic sections of L.12 (To guarantee the existence of such a vector bundle we impose
the condition h > 2g − 2; then one of the terms in Riemann-Roch theorem vanishes and P

is a bundle of rank d = h − g + 1.) The Chern classes of P are denoted by the symbol pr;
we will use the same notation for their images in cohomology of other moduli spaces that
can be mapped in P in natural way.

The classes pr are analogous to lambda-classes λqr. The methods that were applied to
calculate lambda-classes can be used to compute pr. It is easy to check that the bundle P

is a pushforward of a bundle on Fg,h. This bundle, denoted by L, has a fiber Lp over the
point (C, p, L) ∈ Fg,h. (Here Lp stands for the fiber of L over the point p.) We denote its
first Chern class by γ.

Recall that we denoted by ω be the first Chern class of line bundle over Fg,h having the
cotangent space T ∗

p to the curve C at p as a fiber over (C, p, L) ∈ Fg,h (see Lemma 2.2).
Following [7] we define the generalized Mumford-Morita classes mi,j by

mi,j = π∗(γ
iωj) ∈ H i+j−1(Fg,h).

The Chern classes of P can be expressed in terms of the generalized Mumford-Morita classes
mi,j.

Theorem 3.4. The k-th Chern character of P is given by

(3.11) chk P =
1

(k + 1)!
mk+1,0 −

1

2(k!)
mk,1 +

[k/2]∑

j=1

B2j

(2j)!(k − 2j)!
mk+1−2j,2j,

where {Bn} are Bernoulli numbers
x

ex − 1
=

∞∑

n=0

Bn
xn

n!
.

12The restriction of P to moduli spaces of curves embedded into Pg,h by means of q-differentials coincides with

Hodge bundle.
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Proof. The proof is based on the Grothendieck-Riemann-Roch theorem applied to the for-
getful map π′ : Fg,h → Pg,h and the bundle L on Fg,h; it is similar to Mumford’s calculation
of lambda classes. The Todd class of the relative tangent sheaf Tπ′ of π′ is

TdTπ′ =
−ω

1− eω
= 1−

1

2
ω +

∞∑

j=1

B2j

(2j)!
ω2j .

Since chL = eγ , we find

chL · TdTπ′ =
∞∑

k=0

γk

k!
−

1

2

∞∑

k=0

γkω

k!
+

∞∑

k=0

∞∑

j=1

B2j

k!(2j)!
γkω2j .

The Grothendieck-Riemann-Roch theorem states that chP = π′∗(chLTdTπ′). This gives us

chP =

∞∑

k=0

mk,0

k!
−

1

2

∞∑

k=0

mk,1

k!
+

∞∑

k=0

∞∑

j=1

B2j

(2j)!k!
mk,2j

which implies (3.11). �

The bundle P can be considered as S1-equivariant bundle with respect to trivial action of
S1. Let us denote by P an equivariant bundle constructed as a pullback of P with respect to

the forgetful map F̂g,h → Pg,h . The equivariant Chern classes Pr transforms into pr under

the identification H∗
S1(F̂g,h) = H∗(Fg,h). (Notice that the non-equivariant Chern classes of

P are the classes pr in H∗(F̂g,h).)
Now let us consider the Krichever map

(3.12) k : F̂g,h → Grd(H),

where d = h − g + 1 and h > 2g − 2. The Krichever locus k(F̂g,h) lies in Grld(H) for all
l ≥ 0.

To study (3.12), we consider the action of S1 on the vector bundle Hi,j and El defined by

(3.13) λ · (f,W ) 7→ (f(λ−1z), λ(W )).

Then both Hi,j and El are nontrivial equivariant vector bundles. The total equivariant
Chern class of Hi,j is

cT (Hi,j) =

j∏

m=i

(1−mu).

Moreover, the equivariant vector bundle P of rank d over F̂g,h is the pullback of the equi-

variant d-dimensional bundle E0 over Gr0d(H) via k with respect to (3.13). It follows from
2.2 that k∗u = −ω.

To calculate the homomorphism induced by (3.12) on the (equivariant) cohomology we
repeat the arguments used in the proof of (3.1). We obtain

Theorem 3.5. For the equivariant case, we have

k∗Cr = (−1)r
∑

j+m=r

(−1)mhm(1, 2, . . . , d− r)ωmPj ,

if r ≤ d,

k∗Cr = (−1)r
∑

m+j=r

(−1)mem(1, 2, · · · , r − d− 1)ωmPj ,
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if r > d. For the nonequivariant case, we have

k∗cr = (−1)rpr

if r ≤ d,

k∗cr = 0

if r > d.

AcknowledmentsWe are indebted to Yu. Manin, M. Movshev, M. Mulase, A.Okounkov,
B. Osserman, F. Plaza-Martin , A. Polishchuk and V. Vologodsky for very useful comments.

References

1. Arbarello, E., de Concini, C., Kac, V.G., Procesi, C.,: Moduli Spaces of Curves and
Representation Theory. Comm. Math. Phys. 117, no. 1, 1-36 (1988).

2. Bini, G.,: Generalized Hodge Classes on the Moduli Space of Curves. Beiträge Algebra
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