Pieter Moree

Abstract

We give two proofs of a folklore result relating numerical semigroups of embedding dimension two and binary cyclotomic polynomials and explore some consequences. In particular, we give a more conceptual reproof of a result of Hong et al. (2012) on gaps between the exponents of non-zero monomials in a binary cyclotomic polynomial.

The intent of the author with this paper is to better unify the various results within the cyclotomic polynomial and numerical semigroup communities.

1 Introduction

Let a_1, \ldots, a_m be positive integers, and let $S = S(a_1, \ldots, a_m)$ be the set of all non-negative integer linear combinations of a_1, \ldots, a_m , that is,

$$S = \{ x_1 a_1 + \dots + x_m a_m \mid x_i \in \mathbb{Z}_{\geq 0} \}.$$

Then S is a *semigroup* (that is, it is closed under addition). The semigroup S is said to be *numerical* if its complement $\mathbb{Z}_{\geq 0} \setminus S$ is finite. It is not difficult to prove that $S(a_1, \ldots, a_m)$ is numerical if and only if a_1, \ldots, a_m are relatively prime (see, e.g., [15, p. 2]). If S is numerical, then $\max\{\mathbb{Z}_{\geq 0}\setminus S\} = F(S)$ is the Frobenius number of S. Alternatively, by setting $d(k, a_1, \ldots, a_m)$ equal to the number of non-negative integer representations of k by a_1, \ldots, a_m , one can characterize F(S)as the largest k such that $d(k, a_1, \ldots, a_m) = 0$. The value $d(k, a_1, \ldots, a_m)$ is called the *denumerant* of k. That F(S(4, 6, 9, 20)) = 11 is well-known to fans of Chicken McNuggets, as 11 is the largest number of McNuggets that cannot be exactly purchased; hence the notion of the Frobenius number is less abstract than it might appear at first glance. A set of generators of a numerical semigroup is a minimal system of generators if none of its proper subsets generates the numerical semigroup. It is known that every numerical semigroup S has a unique minimal system of generators and also that this minimal system of generators is finite (see, e.g., [18, Theorem 2.7]). The cardinality of the minimal set of generators is called the *embedding dimension* of the numerical semigroup S and is denoted by e(S). The smallest member in the minimal system of generators is called the

Mathematics Subject Classification (2000). 20M14, 11C08, 11B68

multiplicity of the numerical semigroup S and is denoted by m(S). The Hilbert series of the numerical semigroup S is the formal power series

$$H_S(x) = \sum_{s \in S} x^s \in \mathbb{Z}[[x]].$$

It is practical to multiply this by 1 - x as we then obtain a *polynomial*, called the *semigroup polynomial*:

$$P_S(x) = (1-x)H_S(x) = x^{F(S)+1} + (1-x)\sum_{\substack{0 \le s \le F(S)\\s \in S}} x^s = 1 + (x-1)\sum_{s \notin S} x^s.$$
(1)

From P_S one immediately reads off the Frobenius number:

$$\deg(P_S(x)) = F(S) + 1. \tag{2}$$

The *n*th cyclotomic polynomial $\Phi_n(x)$ is defined by

$$\Phi_n(x) = \prod_{\substack{1 \le j \le n \\ (j,n)=1}} (x - \zeta_n^j) = \sum_{k=0}^{\varphi(n)} a_n(k) x^k,$$

with ζ_n a *n*th primitive root of unity (one can take $\zeta_n = e^{2\pi i/n}$). It has degree $\varphi(n)$, with φ Euler's totient function. The polynomial $\Phi_n(x)$ is irreducible over the rationals, see, e.g., Weintraub [22], and has integer coefficients. The polynomial $x^n - 1$ factors as

$$x^n - 1 = \prod_{d|n} \Phi_d(x) \tag{3}$$

over the rationals. By Möbius inversion it follows from (3) that

$$\Phi_n(x) = \prod_{d|n} (x^d - 1)^{\mu(n/d)},$$
(4)

where $\mu(n)$ denotes the Möbius function. From (4) one deduces that if p|n is a prime, then

$$\Phi_{pn}(x) = \Phi_n(x^p). \tag{5}$$

A good source for further properties of cyclotomic polynomials is Thangadurai [19].

A purpose of this paper is to popularise the following folklore result and point out some of its consequences.

Theorem 1 Let p, q > 1 be coprime integers, then

$$P_{S(p,q)}(x) = (1-x) \sum_{s \in S(p,q)} x^s = \frac{(x^{pq}-1)(x-1)}{(x^p-1)(x^q-1)}.$$

In case p and q are distinct primes it follows from (4) and Theorem 1 that

$$P_{S(p,q)}(x) = \Phi_{pq}(x). \tag{6}$$

Already Carlitz [5] in 1966 implicitly mentioned this result without proof.

The Bernoulli numbers B_n can be defined by

$$\frac{z}{e^z - 1} = \sum_{n=0}^{\infty} B_n \frac{z^n}{n!}, \ |z| < 2\pi.$$
 (7)

One easily sees that $B_0 = 1, B_1 = -1/2, B_2 = 1/6, B_3 = 0, B_4 = -1/30$ and $B_n = 0$ for all odd $n \ge 3$. The most basic recurrence relation is, for $n \ge 1$,

$$\sum_{j=0}^{n} \binom{n+1}{j} B_j = 0.$$
(8)

The Bernoulli numbers first arose in the study of power sums $S_j(n) := \sum_{k=0}^{n-1} k^j$. Indeed, one has, cf. Rademacher [14],

$$S_j(n) = \frac{1}{j+1} \sum_{i=0}^j {\binom{j+1}{i}} B_i n^{j+1-i}.$$
 (9)

In Section 5, we consider an infinite family of recurrences for B_m of which the following is typical

$$B_m = \frac{m}{4^m - 1} (1 + 2^{m-1} + 3^{m-1} + 5^{m-1} + 6^{m-1} + 9^{m-1} + 10^{m-1} + 13^{m-1} + 17^{m-1}) + \frac{7^m}{4(1 - 4^m)} \sum_{r=0}^{m-1} {m \choose r} \left(\frac{4}{7}\right)^r (1 + 2^{m-r} + 3^{m-r}) B_r.$$

The natural numbers 1, 2, 3, 5, 6, 9, 10, 13 and 17 are precisely those that are not in the numerical semigroup S(4, 7).

Let $f = c_1 x^{e_1} + \cdots + c_s x^{e_s}$, where the coefficients c_i are non-zero and $e_1 < e_2 < \cdots < e_s$. Then the maximum gap of f, written as g(f), is defined by

$$g(f) = \max_{1 \le i < s} (e_{i+1} - e_i), \ g(f) = 0 \text{ when } s = 1.$$

Hong et al. [9] studied $g(\Phi_n)$ (inspired by a cryptographic application [10]). They reduce the study of these gaps to the case where n is square-free and odd and established the following result for the simplest non-trivial case.

Theorem 2 [9]. If p and q are arbitrary primes with $2 , then <math>g(\Phi_{pq}) = p - 1$.

In Section 6 a conceptual proof of Theorem 2 using numerical semigroups is given.

2 Inclusion-exclusion polynomials

It will turn out to be convenient to work with a generalisation of the cyclotomic polynomials, introduced by Bachman [1]. Let $\rho = \{r_1, r_2, \ldots, r_s\}$ be a set of natural numbers satisfying $r_i > 1$ and $(r_i, r_j) = 1$ for $i \neq j$, and put

$$n_0 = \prod_i r_i, \ n_i = \frac{n_0}{r_i}, \ n_{ij} = \frac{n_0}{r_i r_j} [i \neq j], \dots$$

For each such ρ we define a function Q_{ρ} by

$$Q_{\rho}(x) = \frac{(x^{n_0} - 1) \cdot \prod_{i < j} (x^{n_{ij}} - 1) \cdots}{\prod_{i < j < k} (x^{n_{ijk}} - 1) \cdot \prod_{i < j < k} (x^{n_{ijk}} - 1) \cdots}.$$
 (10)

For example, if $\rho = \{p, q\}$, then

$$Q_{\{p,q\}}(x) = \frac{(x^{pq} - 1)(x - 1)}{(x^p - 1)(x^q - 1)}.$$
(11)

It can be shown that $Q_{\rho}(x)$ defines a polynomial of degree $d := \prod_{i} (r_{i} - 1)$. We define its coefficients $a_{\rho}(k)$ by $Q_{\rho}(x) = \sum_{k\geq 0} a_{\rho}(k)x^{k}$. Furthermore, $Q_{\rho}(x)$ is *selfreciprocal*; that is $a_{\rho}(k) = a_{\rho}(d-k)$ or, what amounts to the same thing,

$$Q_{\rho}(x) = x^d Q_{\rho}(\frac{1}{x}). \tag{12}$$

If all elements of ρ are prime, then comparison of (10) with (4) shows that

$$Q_{\rho}(x) = \Phi_{r_1 r_2 \cdots r_s}(x). \tag{13}$$

If n is an arbitrary integer and $\gamma(n) = p_1 \cdots p_s$ its squarefree kernel, then by (5) and (13) we have $Q_{\{p_1,\dots,p_s\}}(x^{n/\gamma(n)}) = \Phi_n(x)$ and hence inclusion-exclusion polynomials generalize cyclotomic polynomials. They can be expressed as products of cyclotomic polynomials.

Theorem 3 [1]. Given $\rho = \{r_1, \ldots, r_s\}$ and

$$D_{\rho} = \{d: d \mid \prod_{i} r_i \text{ and } (d, r_i) > 1 \text{ for all } i\},\$$

then $Q_{\rho}(x) = \prod_{d \in D_{\rho}} \Phi_d(x).$

Example. We have $Q_{\{4,7\}} = \Phi_{28} \Phi_{14}$.

2.1 Binary inclusion-exclusion polynomials: a close-up

Lam and Leung [11] discuss binary cyclotomic polynomials Φ_{pq} in detail, with pand q primes (their results were anticipated by Lenstra [12]). Now, let p, q > 1be positive coprime integers. All arguments in their paper easily generalize to this setting (instead of taking ξ to be a primitive pqth-root of unity as they do, one has to take ζ a pqth root of unity satisfying $\zeta^p \neq 1$ and $\zeta^q \neq 1$). One finds that

$$Q_{\{p,q\}}(x) = \sum_{i=0}^{\rho-1} x^{ip} \sum_{j=0}^{\sigma-1} x^{jq} - x^{-pq} \sum_{i=\rho}^{q-1} x^{ip} \sum_{j=\sigma}^{p-1} x^{jq},$$
(14)

where ρ and σ are the (unique) non-negative integers for which $1 + pq = \rho p + \sigma q$. On noting that upon expanding the products in identity (14), the resulting monomials are all different, we arrive at the following result.

Lemma 1 Let p, q > 1 be coprime integers. Let ρ and σ be the (unique) nonnegative integers for which $1 + pq = \rho p + \sigma q$. Let $0 \le m < pq$. Then either $m = \alpha p + \beta q$ or $m = \alpha p + \beta q - pq$ with $0 \le \alpha \le q - 1$ the unique integer such that $\alpha p \equiv m \pmod{q}$ and $0 \le \beta \le p - 1$ the unique integer such that $\beta q \equiv m \pmod{p}$. The inclusion-exclusion coefficient $a_{\{p,q\}}(m)$ equals

$$\begin{cases} 1 & \text{if } m = \alpha p + \beta q \text{ with } 0 \leq \alpha \leq \rho - 1, \ 0 \leq \beta \leq \sigma - 1; \\ -1 & \text{if } m = \alpha p + \beta q - pq \text{ with } \rho \leq \alpha \leq q - 1, \ \sigma \leq \beta \leq p - 1; \\ 0 & \text{otherwise.} \end{cases}$$

Corollary 1 The number of positive coefficients in $Q_{\{p,q\}}(x)$ equals $\rho\sigma$ and the number of negative ones equals $\rho\sigma-1$. The number of non-zero coefficients equals $2\rho\sigma-1$.

This corollary (in case p and q are distinct primes) is due to Carlitz [5].

Lemma 1 can be nicely illustrated with an LLL-diagram (for Lenstra, Lam and Leung). Here is one such diagram for p = 5 and q = 7.

28	33	3	8	13	18	23
21	26	31	1	13 6	11	16
14	19	24	29	34	4	9
7	12	17	22	27	32	2
0	5	10	15	34 27 20	25	30

We start with 0 in the lower left and add p for every move to the right and q for every move upwards. Reduce modulo pq. Every integer $0, \ldots, pq - 1$ is obtained precisely once in this way (by the Chinese remainder theorem).

Lemma 1 can be reformulated in the following way.

Lemma 2 Let p, q > 1 be coprime integers. The numbers in the lower left corner of the LLL-diagram are the exponents of the terms in $Q_{\{p,q\}}$ with coefficient 1. The numbers in the upper right corner are the exponents of the terms in $Q_{\{p,q\}}$ with coefficient -1. All other coefficients equal 0.

3 Two proofs of the main (folklore) result

In terms of inclusion-exclusion polynomials we can reformulate Theorem 1 as follows.

Theorem 4 If p, q > 1 are coprime integers, then $P_{S(p,q)}(x) = Q_{\{p,q\}}(x)$.

Our first proof will make use of 'what is probably the most versatile tool in numerical semigroup theory' [18, p. 8], namely Apéry sets.

First proof of Theorem 4. The Apéry set of S with respect to a nonzero $m \in S$ is defined as

$$\operatorname{Ap}(S;m) = \{ s \in S : s - m \notin S \}.$$

Note that

$$S = \operatorname{Ap}(S; m) + m\mathbb{Z}_{>0}$$

and that Ap(S; m) consists of a complete set of residues modulo m. Thus we have

$$H_S(x) = \sum_{w \in \operatorname{Ap}(S;m)} x^w \sum_{i=0}^{\infty} x^{mi} = \frac{1}{1 - x^m} \sum_{w \in \operatorname{Ap}(S;m)} x^w.$$
 (15)

Note that if $S = \langle a_1, \ldots, a_n \rangle$, then $\operatorname{Ap}(S; a_1) \subseteq \langle a_2, \ldots, a_n \rangle$. It follows that $\operatorname{Ap}(S(p,q); p)$ consists of multiples of q. The latter set equals the minimal set of multiples of q representing every congruence class modulo p and hence $\operatorname{Ap}(S(p,q); p) = \{0, q, \ldots, (p-1)q\}$ (see [16, Proposition 1] or [18, Example 8.22]). Hence

$$H_{S(p,q)}(x) = \frac{1 + x^q + \dots + x^{(p-1)q}}{1 - x^p} = \frac{1 - x^{pq}}{(1 - x^q)(1 - x^p)}.$$

Using this identity and (11) easily completes the proof.

Remark. This proof is an adaptation of the arguments given in [16]. Indeed, once we know the Apéry set of a numerical semigroup S, by using [16, (4)], we obtain an expression for $H_S(x)$ and consequently for $P_S(x)$. Theorem 4 is a particular case of [16, Proposition 2], with $\{p,q\} = \{a, a+d\}$ and k = 1.

Our second proof uses the denumerant (see [15, Chapter 4] for a survey) and the starting point is the observation that

$$\frac{1}{(1-x^p)(1-x^q)} = \sum_{j\ge 0} r(j)x^j,$$
(16)

where r(j) denotes the cardinality of the set $\{(a, b) : a \ge 0, b \ge 0, ap + bq = j\}$. In the terminology of the introduction, we have r(j) = d(j; p, q). Concerning r(j) we make the following observation.

Lemma 3 Suppose that $k \ge 0$, then r(k + pq) = r(k) + 1.

Proof. Put $\alpha \equiv kp^{-1} \pmod{q}$, $0 \leq \alpha < q$ and $\beta \equiv kq^{-1} \pmod{p}$, $0 \leq \beta < p$ and $k_0 = \alpha p + \beta q$. Note that $k_0 < 2pq$. We have $k \equiv k_0 \pmod{pq}$. Now if $k \notin S$, then $k < k_0$ and $k + pq = k_0 \in S$ (since $k_0 < 2pq$). It follows that if r(k) = 0, then r(k + pq) = 1. If $k \in S$, then $k = k_0 + tpq$ for some $t \geq 0$ and we have r(k) = 1 + t, where we use that

$$k = (\alpha + tq)p + \beta q = (\alpha + (t-1)q)p + (\beta + 1)p = \dots = \alpha p + (\beta + tq)p.$$

We see that r(k + pq) = 1 + t + 1 = r(k) + 1.

Remark. It is not difficult to derive an explicit formula for r(n) (see, e.g., [2, Section 1.3] or [13, pp. 213-214]). Let p^{-1}, q^{-1} denote inverses of p modulo q, respectively q modulo p. Then we have

$$r(n) = \frac{n}{pq} - \left\{\frac{p^{-1}n}{q}\right\} - \left\{\frac{q^{-1}n}{p}\right\} + 1,$$

where $\{x\}$ denote the fractional-part function. Note that Lemma 3 is a corollary of this formula.

Second proof of Theorem 4. From Lemma 3 we infer that

$$(1 - x^{pq}) \sum_{j \ge 0} r(j) x^j = \sum_{\substack{j=0\\pq-1}}^{pq-1} r(j) x^j + \sum_{\substack{j=pq\\j=0}}^{\infty} (r(j) - r(j - pq)) x^j$$
$$= \sum_{\substack{j=0\\j=0}}^{pq-1} r(j) x^j + \sum_{\substack{j\ge pq\\j\in S(p,q)}} x^j,$$

where we used that $r(j) \leq 1$ for j < pq and $r(j) \geq 1$ for $j \geq pq$. Using this identity and (16) easily completes the proof.

4 Symmetric numerical semigroups

A numerical semigroup S is said to be *symmetric* if

$$S \cup (F(S) - S) = \mathbb{Z}_{2}$$

where $F(S) - S = \{F(S) - s | s \in S\}$. Symmetric semigroups occur in the study of monomial curves that are complete intersections, Gorenstein rings, and the classification of plane algebraic curves, see, e.g. [15, p. 142]. For example, Herzog and Kunz showed that a Noetherian local ring of dimension one and analytically irreducible is a Gorenstein ring if and only if its associate value semigroup is symmetric.

We will now show that the selfreciprocity of $Q_{\{p,q\}}(x)$ implies that S(p,q) is symmetric (a well-known result, see, e.g., [18, Corollary 4.7]).

Theorem 5 Let S be a numerical semigroup. Then S is symmetric if and only if $P_S(x)$ is selfreciprocal.

Proof. If $s \in S \cap (F(S) - S)$, then $s = F(S) - s_1$ for some $s_1 \in S$. This implies that $F(S) \in S$, a contradiction. Thus S and F(S) - S are disjoint sets. Since every integer $n \ge F(S) + 1$ is in S and every integer $n \le -1$ is in F(S) - S, the assertion is equivalent to showing that

$$\sum_{\substack{0 \le j \le F(S) \\ j \in S}} x^j + \sum_{\substack{0 \le j \le F(S) \\ j \in S}} x^{F(S)-j} = 1 + x + \dots + x^{F(S)},$$
(17)

if and only if $P_S(x)$ is selfreciprocal. On noting by (1) that

$$x^{F(S)+1}P_S(\frac{1}{x}) - P_S(x) = 1 - x^{F(S)+1} + (x-1)\Big(\sum_{\substack{0 \le j \le F(S)\\j \in S}} x^j + \sum_{\substack{0 \le j \le F(S)\\j \in S}} x^{F(S)-j}\Big),$$

we see that $x^{F(S)+1}P_S(1/x) = P_S(x)$ if and only if (17) holds. Clearly (17) holds if and only if S is symmetric.

Using the latter result and Theorem 4 we infer the following classical fact.

Theorem 6 A numerical semigroup of embedding dimension 2 is symmetric.

Theorem 4 together with Theorem 3 shows that if e(S) = 2, then $P_S(x)$ can be written as a product of cyclotomic polynomials. This leads to the following problem.

Problem 1 Characterize the numerical semigroups S for which $P_S(x)$ can be written as a product of cyclotomic polynomials.

Since $P_S(0) \neq 0$, the product cannot involve $\Phi_1(x) = x - 1$ and so it is selfreciprocal. Therefore, by Theorem 5 such an S must be symmetric. Ciolan et al. [6] make some progress towards solving this problem and show, e.g., that $P_S(x)$ can be written as a product of cyclotomic polynomials also if e(S) = 3 and S is symmetric.

5 Gap distribution

The non-negative integers not in S are called the *gaps* of S. E.g., the gaps in S(4,7) are 1, 2, 3, 5, 6, 9, 10, 13 and 17. The number of gaps of S is called the *genus* of S, and denoted by N(S). The set of gaps is denoted by G(S). The following well-known result holds, cf. [15, Lemma 7.2.3] or [18, Corollary 4.7].

Theorem 7 We have $2N(S) \ge F(S) + 1$ with equality if and only if S is symmetric.

Proof. The proof of Theorem 5 shows that $2\#\{0 \le j \le F(S) : j \in S\} \le F(S)+1$ with equality if and only if S is symmetric. Now use that $\#\{0 \le j \le F(S) : j \in S\} = F(S) + 1 - N(S)$.

From (2) and Theorem 1 we infer the following well-known result due to Sylvester:

$$F(S(p,q)) = pq - p - q.$$
 (18)

From Theorem 6, Theorem 7 and (18), we obtain another well-known result of Sylvester:

$$N(S(p,q)) = (p-1)(q-1)/2.$$
(19)

For four different proofs of (18) and more background see [15, pp. 31-34]; the shortest proof of (18) and (19) the author knows of is in the book by Wilf [23, p. 88].

Additional information on the gaps is given by the so-called Sylvester sum

$$\sigma_k(p,q) := \sum_{s \notin S(p,q)} s^k.$$

By (19) we have $\sigma_0(p,q) = (p-1)(q-1)/2$. By (1) and Theorem 4 we infer that

$$\sum_{j \notin S(p,q)} x^j = \frac{1 - Q_{\{p,q\}}(x)}{1 - x}.$$
(20)

It is not difficult to derive a formula for $\sigma_k(p,q)$ for arbitrary k. On substituting $x = e^z$ and recalling the Taylor series expansion $e^z = \sum_{k\geq 0} z^k/k!$, we obtain from (20) and (11) the identity

$$\sum_{k=0}^{\infty} \sigma_k(p,q) \frac{z^k}{k!} = \frac{e^{pqz} - 1}{(e^{pz} - 1)(e^{qz} - 1)} - \frac{1}{e^z - 1}.$$
(21)

We obtain from (21), on multiplying by z and using the Taylor series expansion (7), that

$$\sum_{m=1}^{\infty} m\sigma_{m-1}(p,q) \frac{z^m}{m!} = \sum_{i=0}^{\infty} B_i p^i \frac{z^i}{i!} \sum_{j=0}^{\infty} B_j q^j \frac{z^j}{j!} \sum_{k=0}^{\infty} \frac{(pqz)^k}{(k+1)!} - \sum_{m=0}^{\infty} B_m \frac{z^m}{m!}$$

Equating coefficients of z^m then leads to the following result.

Theorem 8 [17]. For $m \ge 1$ we have

$$m\sigma_{m-1}(p,q) = \frac{1}{m+1} \sum_{i=0}^{m} \sum_{j=0}^{m-i} \binom{m+1}{i,j,m+1-i-j} B_i B_j p^{m-j} q^{m-i} - B_m$$

Using this formula we find e.g. that $\sigma_1(p,q) = \frac{1}{12}(p-1)(q-1)(2pq-p-q-1)$ (this result is due to Brown and Shiue [3]) and $\sigma_2(p,q) = \frac{1}{12}(p-1)(q-1)pq(pq-p-q)$. The proof we have given here of Theorem 8 is due to Rødseth [17], with the difference that we gave a different proof of the identity (21).

By using the formula (9) for power sums we obtain from Theorem 8 the identity

$$m\sigma_{m-1}(p,q) = \sum_{r=0}^{m} {m \choose r} p^{m-r-1} B_{m-r} q^{r} S_{r}(p) - B_{m}$$

giving rise to the following recursion formula for B_m :

$$B_m = \frac{m}{p^m - 1} \sigma_{m-1}(p, q) + \frac{q^m}{p(1 - p^m)} \sum_{r=0}^{m-1} \binom{m}{r} \left(\frac{p}{q}\right)^r B_r S_{m-r}(p).$$

On taking p = 4 and q = 7, we obtain the recursion for B_m stated in the introduction.

Tuenter [20] established the following characterization of the gaps in S(p,q). For every finite function f,

$$\sum_{n \notin S} (f(n+p) - f(n)) = \sum_{n=1}^{p-1} (f(nq) - f(n)),$$

where p and q are interchangeable. He shows that by choosing f appropriately one can recover all earlier results mentioned in this section and in addition the identity

$$\prod_{n \notin S(p,q)} (n+p) = q^{p-1} \prod_{n \notin S(p,q)} n.$$

Wang and Wang [21] obtained results similar to those of Tuenter for the alternate Sylvester sums $\sum_{s \notin S(p,q)} (-1)^s s^k$.

6 A reproof of Theorem 2

As mentioned previously, the gaps for S(4,7) are given by 1, 2, 3, 5, 6, 9, 10, 13and 17. One could try to break this down in terms of *gap blocks*, that is blocks of consecutive gaps, (also known in the literature as *deserts* [7, Definition 16])): $\{1, 2, 3\}, \{5, 6\}, \{9, 10\}, \{13\}, \text{ and } \{17\}$. It is interesting to compare this with the distribution of the *element blocks*, that is finite blocks of consecutive elements in S. For S(4,7) we get $\{0\}, \{4\}, \{7, 8\}, \{11, 12\}$ and $\{14, 15, 16\}$. The longest gap block we denote by g(G(S)) and the longest element block by g(S).

The following result gives some information on gap blocks and element blocks in a numerical semigroup of embedding dimension 2. Recall that the smallest positive integer of S is called the *multiplicity* and denoted by m(S).

Lemma 4

1) The longest gap block, g(G(S)), has length m(S) - 1.

2) The longest element block, g(S), has length not exceeding m(S) - 1.

3) If S is symmetric, then g(S) = m(S) - 1.

Proof. 1) Let $S = \{s_0, s_1, s_2, s_3, \ldots\}$ be the elements of S written in ascending order, i.e., $0 = s_0 < s_1 < s_2 < \cdots$. Since $s_0 = 0$ and $s_1 = m(S)$ we have $g(G(S)) \ge m(S) - 1$. Since all multiples of m(S) are in S, it follows that actually g(G(S)) = m(S) - 1.

2) If $g(S) \ge m(S)$, it would imply that we can find $k, k+1, \ldots, k+m(S)-1$ all in S such that $k+m(S) \notin S$. This is clearly a contradiction.

3) If S is symmetric, then we clearly have g(S) = g(G(S)) = m(S) - 1. **Remark**. The second observation was made by my intern Alexandru Ciolan. It allows one to prove Theorem 10.

Finally, we will generalize a result of Hong et al. [9].

Theorem 9 If p, q > 1 are coprime integers, then $g(Q_{\{p,q\}}(x)) = \min\{p,q\} - 1$.

Proof. Note that $g(Q_{\{p,q\}}(x))$ equals the maximum of the longest gap block length and the longest element block length and hence by Lemma 4 equals $m(S(p,q)) - 1 = \min\{p,q\} - 1$.

This result can be easily generalized further.

Theorem 10 We have $g(P_S(x)) = m(S) - 1$.

Proof. Using that $P_S(x) = (1-x)H_S(x)$ and Lemma 4 we infer that $g(P_S(x)) = \max\{g(S), g(G(S))\} = m(S) - 1$.

7 The LLL-diagram revisited

It is instructive to indicate (we do this in boldface) the gaps of S(p,q) in the LLL-diagram. They are those elements $\alpha p + \beta q$ with $0 \leq \alpha \leq q - 1$, $0 \leq \beta \leq p - 1$ for which $\alpha p + \beta q > pq$. Note that the Frobenius number equals (q-1)p + (p-1)q - pq and so appears in the top right hand corner of the LLL-diagram. We will demonstrate this (again) for p = 5 and q = 7.

28	33	3	8	13	18	23
21	26	31	1	6	11	16
14	19	24	29	34	4	9
7	12	17	22	27	32	2
0	5	10	15	13 6 34 27 20	25	30

As a check we can verify that N(S(p,q)) = (p-1)(q-1)/2 integers appear in boldface.

On comparing coefficients in the identity $(1-x) \sum_{j \in S(p,q)} x^j = \sum_{j \ge 0} a_{\{p,q\}}(j) x^j$ we get the following reformulation of Theorem 4 at the coefficient level.

Theorem 11 If p, q > 1 are coprime integers, then

$$a_{\{p,q\}}(k) = \begin{cases} 1 & \text{if } k \in S(p,q), \ k-1 \notin S(p,q); \\ -1 & \text{if } k \notin S(p,q), \ k-1 \in S(p,q); \\ 0 & \text{otherwise.} \end{cases}$$

Corollary 2 The non-zero coefficients of $Q_{\{p,q\}}$ alternate between 1 and -1.

The next result gives an example where an existing result on cyclotomic coefficients yields information about numerical semigroups.

Theorem 12 Let p, q, ρ and σ be as in Lemma 1. If S = S(p,q), then there are $\rho\sigma - 1$ gap blocks and $\rho\sigma - 1$ element blocks.

Proof. In view of Theorem 11 we have $a_{\{p,q\}}(k) = 1$ if and only if k is at the start of an element block (including the infinite block $[F(S) + 1, \infty) \cap \mathbb{Z}$). Moreover, $a_{\{p,q\}}(k) = -1$ if and only if k is at the end of a gap block. The proof is now completed by invoking Corollary 1.

Using Lemma 2 and Theorem 11 our folklore result can now be reformulated in terms of the LLL-diagram.

Theorem 13 Let p, q > 1 be coprime integers and denote $S(p,q) \cap \{0, \ldots, pq-1\}$ by T. The integers $k \in T$ such that $k - 1 \notin T$ are precisely the integers in the lower left corner of the LLL-diagram. The integers $k \notin T$ such that $k - 1 \in T$ are precisely the integers in the upper right corner. If k is not in the lower left or upper right corner, then either $k \in T$ and $k - 1 \in T$ or $k \notin T$ and $k - 1 \notin T$.

Denote S(p,q) by S. Note that the upper right integer in the lower left corner of the LLL-diagram equals F(S) + 1 and that the remaining integers in the lower left corner are all $\langle F(S)$. This observation together with (19) then leads to the following corollary of Theorem 13.

Corollary 3 If p, q > 1 are coprime integers, then

$$\begin{cases} \{0 \le k \le F(S) : k \in S, k-1 \in S\} = (p-1)(q-1)/2 - \rho\sigma + 1; \\ \{0 \le k \le F(S) : k \in S, k-1 \notin S\} = \rho\sigma - 1; \\ \{0 \le k \le F(S) : k \notin S, k-1 \in S\} = \rho\sigma - 1; \\ \{0 \le k \le F(S) : k \notin S, k-1 \notin S\} = (p-1)(q-1)/2 - \rho\sigma - 1. \end{cases}$$

The distribution of the quantity $\rho\sigma$ that appears at various places in this article has been recently studied using deep results from analytic number theory by Bzdęga [4] and Fouvry [8]. In particular they are interested in counting the number of integers $m = pq \leq x$ with p, q distinct primes such that $\theta(m)$, the number of non-zero coefficients of Φ_m , satisfies $\theta(m) \leq m^{1/2+\gamma}$, with $\gamma > 0$ fixed. (Note that by Corollary 1 we have $\theta(m) = 2\rho\sigma - 1$.)

Acknowledgement. I like to thank Matthias Beck, Scott Chapman, Alexandru Ciolan, Pedro A. García-Sánchez, Nathan Kaplan, Bernd Kellner, Jorge Ramírez Alfonsín, Ali Sinan Sertoz, Paul Tegelaar and the three referees for helpful comments. Alexandru Ciolan pointed out to me that $g(S) \leq m(S) - 1$, which allows one to prove Theorem 10.

References

- G. Bachman, On ternary inclusion-exclusion polynomials, *Integers* 10 (2010) A48 623–638.
- [2] M. Beck and S. Robins, Computing the continuous discretely. Integer-point enumeration in polyhedra, Undergraduate Texts in Mathematics. Springer, New York, 2007.
- [3] T.C. Brown and P. J.-S. Shiue, A remark related to the Frobenius problem, *Fibonacci Quart.* **31** (1993) 32–36.
- [4] B. Bzdęga, Sparse binary cyclotomic polynomials, J. Number Theory 132 (2012) 410–413.
- [5] L. Carlitz, The number of terms in the cyclotomic polynomial $F_{pq}(x)$, Amer. Math. Monthly **73** (1966) 979-981.
- [6] A. Ciolan, P.A. García-Sánchez and P. Moree, Cyclotomic numerical semigroups, in preparation.
- [7] J.I. Farrán and C. Munuera, Goppa-like bounds for the generalized Feng-Rao distances, International Workshop on Coding and Cryptography (WCC 2001) (Paris), *Discrete Appl. Math.* **128** (2003) 145–156.
- [8] E. Fouvry, On binary cyclotomic polynomials, Algebra Number Theory 7 (2013) 1207–1223.
- [9] H. Hong, E. Lee, H.-S. Lee and C.-M. Park, Maximum gap in (inverse) cyclotomic polynomial, J. Number Theory 132 (2012) 2297-2315, available at http://dx.doi.org/10.1016/j.jnt.2012.04.008.
- [10] H. Hong, E. Lee, H.-S. Lee and C.-M. Park, Simple and exact formula for minimum loop length in Ate_i pairing based on Brezing-Weng curves, *Des. Codes Cryptogr.* 67 (2013) 271–292.

- [11] T.Y. Lam and K.H. Leung, On the cyclotomic polynomial $\Phi_{pq}(x)$, Amer. Math. Monthly 103 (1996) 562–564.
- [12] H. W. Lenstra, Vanishing sums of roots of unity, Proceedings, Bicentennial Congress Wiskundig Genootschap (Vrije Univ., Amsterdam, 1978), Part II, 249–268, Math. Centre Tracts 101, Math. Centrum, Amsterdam, 1979.
- [13] I. Niven, H.S. Zuckerman and H.L. Montgomery, An introduction to the theory of numbers, 5th edition, John Wiley & Sons, Inc., New York, 1991.
- [14] H. Rademacher, Topics in analytic number theory, Die Grundlehren der mathematischen Wissenschaften 169, Springer-Verlag, New York-Heidelberg, 1973.
- [15] J.L. Ramírez Alfonsín, The Diophantine Frobenius problem, Oxford Lecture Series in Mathematics and its Applications 30, Oxford University Press, Oxford, 2005.
- [16] J.L. Ramírez Alfonsín and Ø.J. Rødseth, Numerical semigroups: Apéry sets and Hilbert series, *Semigroup Forum* 79 (2009) 323–340.
- [17] Ø.J. Rødseth, A note on Brown and Shiue's paper on a remark related to the Frobenius problem, *Fibonacci Quart.* **32** (1994) 407–408.
- [18] J.C. Rosales and P.A. García-Sánchez, Numerical semigroups, Developments in Mathematics 20, Springer, New York, 2009.
- [19] R. Thangadurai, On the coefficients of cyclotomic polynomials, Cyclotomic fields and related topics (Pune, 1999), 311–322, Bhaskaracharya Pratishthana, Pune, 2000.
- [20] H.J.H. Tuenter, The Frobenius problem, sums of powers of integers, and recurrences for the Bernoulli numbers, J. Number Theory 117 (2006), 376– 386.
- [21] W. Wang and T. Wang, Alternate Sylvester sums on the Frobenius set, Comput. Math. Appl. 56 (2008) 1328–1334.
- [22] S.H. Weintraub, Several proofs of the irreducibility of the cyclotomic polynomials, Amer. Math. Monthly 120 (2013) 537–545.
- [23] H.S. Wilf, *Generatingfunctionology*, Academic Press, Inc., Boston, MA, 1990.

Max-Planck-Institut für Mathematik, Vivatsgasse 7, D-53111 Bonn, Germany. e-mail: moree@mpim-bonn.mpg.de