Numerical semigroups, cyclotomic polynomials and Bernoulli numbers

Pieter Moree

Abstract

We give two proofs of a folklore result relating numerical semigroups of embedding dimension two and binary cyclotomic polynomials and explore some consequences. In particular, we give a more conceptual reproof of a result of Hong et al. (2012) on gaps between the exponents of non-zero monomials in a binary cyclotomic polynomial.

The intent of the author with this paper is to better unify the various results within the cyclotomic polynomial and numerical semigroup communities.

1 Introduction

Let a_{1}, \ldots, a_{m} be positive integers, and let $S=S\left(a_{1}, \ldots, a_{m}\right)$ be the set of all non-negative integer linear combinations of a_{1}, \ldots, a_{m}, that is,

$$
S=\left\{x_{1} a_{1}+\cdots+x_{m} a_{m} \mid x_{i} \in \mathbb{Z}_{\geq 0}\right\}
$$

Then S is a semigroup (that is, it is closed under addition). The semigroup S is said to be numerical if its complement $\mathbb{Z}_{\geq 0} \backslash S$ is finite. It is not difficult to prove that $S\left(a_{1}, \ldots, a_{m}\right)$ is numerical if and only if a_{1}, \ldots, a_{m} are relatively prime (see, e.g., [15, p. 2]). If S is numerical, then $\max \left\{\mathbb{Z}_{\geq 0} \backslash S\right\}=F(S)$ is the Frobenius number of S. Alternatively, by setting $d\left(k, a_{1}, \ldots, a_{m}\right)$ equal to the number of non-negative integer representations of k by a_{1}, \ldots, a_{m}, one can characterize $F(S)$ as the largest k such that $d\left(k, a_{1}, \ldots, a_{m}\right)=0$. The value $d\left(k, a_{1}, \ldots, a_{m}\right)$ is called the denumerant of k. That $F(S(4,6,9,20))=11$ is well-known to fans of Chicken McNuggets, as 11 is the largest number of McNuggets that cannot be exactly purchased; hence the notion of of the Frobenius number is less abstract than it might appear at first glance. A set of generators of a numerical semigroup is a minimal system of generators if none of its proper subsets generates the numerical semigroup. It is known that every numerical semigroup S has a unique minimal system of generators and also that this minimal system of generators is finite (see, e.g., [18, Theorem 2.7]). The cardinality of the minimal set of generators is called the embedding dimension of the numerical semigroup S and is denoted by $e(S)$. The smallest member in the minimal system of generators is called the
multiplicity of the numerical semigroup S and is denoted by $m(S)$. The Hilbert series of the numerical semigroup S is the formal power series

$$
H_{S}(x)=\sum_{s \in S} x^{s} \in \mathbb{Z}[[x]] .
$$

It is practical to multiply this by $1-x$ as we then obtain a polynomial, called the semigroup polynomial:

$$
\begin{equation*}
P_{S}(x)=(1-x) H_{S}(x)=x^{F(S)+1}+(1-x) \sum_{\substack{0 \leq s \leq F(S) \\ s \in S}} x^{s}=1+(x-1) \sum_{s \notin S} x^{s} . \tag{1}
\end{equation*}
$$

From P_{S} one immediately reads off the Frobenius number:

$$
\begin{equation*}
\operatorname{deg}\left(P_{S}(x)\right)=F(S)+1 \tag{2}
\end{equation*}
$$

The nth cyclotomic polynomial $\Phi_{n}(x)$ is defined by

$$
\Phi_{n}(x)=\prod_{\substack{1 \leq j \leq n \\(j, n)=1}}\left(x-\zeta_{n}^{j}\right)=\sum_{k=0}^{\varphi(n)} a_{n}(k) x^{k}
$$

with ζ_{n} a nth primitive root of unity (one can take $\zeta_{n}=e^{2 \pi i / n}$). It has degree $\varphi(n)$, with φ Euler's totient function. The polynomial $\Phi_{n}(x)$ is irreducible over the rationals, see, e.g., Weintraub [22], and has integer coefficients. The polynomial $x^{n}-1$ factors as

$$
\begin{equation*}
x^{n}-1=\prod_{d \mid n} \Phi_{d}(x) \tag{3}
\end{equation*}
$$

over the rationals. By Möbius inversion it follows from (3) that

$$
\begin{equation*}
\Phi_{n}(x)=\prod_{d \mid n}\left(x^{d}-1\right)^{\mu(n / d)} \tag{4}
\end{equation*}
$$

where $\mu(n)$ denotes the Möbius function. From (4) one deduces that if $p \mid n$ is a prime, then

$$
\begin{equation*}
\Phi_{p n}(x)=\Phi_{n}\left(x^{p}\right) \tag{5}
\end{equation*}
$$

A good source for further properties of cyclotomic polynomials is Thangadurai [19].

A purpose of this paper is to popularise the following folklore result and point out some of its consequences.

Theorem 1 Let $p, q>1$ be coprime integers, then

$$
P_{S(p, q)}(x)=(1-x) \sum_{s \in S(p, q)} x^{s}=\frac{\left(x^{p q}-1\right)(x-1)}{\left(x^{p}-1\right)\left(x^{q}-1\right)}
$$

In case p and q are distinct primes it follows from (4) and Theorem 1 that

$$
\begin{equation*}
P_{S(p, q)}(x)=\Phi_{p q}(x) \tag{6}
\end{equation*}
$$

Already Carlitz [5] in 1966 implicitly mentioned this result without proof.
The Bernoulli numbers B_{n} can be defined by

$$
\begin{equation*}
\frac{z}{e^{z}-1}=\sum_{n=0}^{\infty} B_{n} \frac{z^{n}}{n!},|z|<2 \pi \tag{7}
\end{equation*}
$$

One easily sees that $B_{0}=1, B_{1}=-1 / 2, B_{2}=1 / 6, B_{3}=0, B_{4}=-1 / 30$ and $B_{n}=0$ for all odd $n \geq 3$. The most basic recurrence relation is, for $n \geq 1$,

$$
\begin{equation*}
\sum_{j=0}^{n}\binom{n+1}{j} B_{j}=0 \tag{8}
\end{equation*}
$$

The Bernoulli numbers first arose in the study of power sums $S_{j}(n):=\sum_{k=0}^{n-1} k^{j}$. Indeed, one has, cf. Rademacher [14],

$$
\begin{equation*}
S_{j}(n)=\frac{1}{j+1} \sum_{i=0}^{j}\binom{j+1}{i} B_{i} n^{j+1-i} \tag{9}
\end{equation*}
$$

In Section [5, we consider an infinite family of recurrences for B_{m} of which the following is typical

$$
\begin{aligned}
B_{m}= & \frac{m}{4^{m}-1}\left(1+2^{m-1}+3^{m-1}+5^{m-1}+6^{m-1}+9^{m-1}+10^{m-1}+13^{m-1}+17^{m-1}\right) \\
& +\frac{7^{m}}{4\left(1-4^{m}\right)} \sum_{r=0}^{m-1}\binom{m}{r}\left(\frac{4}{7}\right)^{r}\left(1+2^{m-r}+3^{m-r}\right) B_{r} .
\end{aligned}
$$

The natural numbers $1,2,3,5,6,9,10,13$ and 17 are precisely those that are not in the numerical semigroup $S(4,7)$.

Let $f=c_{1} x^{e_{1}}+\cdots+c_{s} x^{e_{s}}$, where the coefficients c_{i} are non-zero and $e_{1}<$ $e_{2}<\cdots<e_{s}$. Then the maximum gap of f, written as $g(f)$, is defined by

$$
g(f)=\max _{1 \leq i<s}\left(e_{i+1}-e_{i}\right), g(f)=0 \text { when } s=1 .
$$

Hong et al. [9] studied $g\left(\Phi_{n}\right)$ (inspired by a cryptographic application [10]). They reduce the study of these gaps to the case where n is square-free and odd and established the following result for the simplest non-trivial case.

Theorem 2 [9]. If p and q are arbitrary primes with $2<p<q$, then $g\left(\Phi_{p q}\right)=$ $p-1$.

In Section 6a conceptual proof of Theorem 2 using numerical semigroups is given.

2 Inclusion-exclusion polynomials

It will turn out to be convenient to work with a generalisation of the cyclotomic polynomials, introduced by Bachman [1]. Let $\rho=\left\{r_{1}, r_{2}, \ldots, r_{s}\right\}$ be a set of natural numbers satisfying $r_{i}>1$ and $\left(r_{i}, r_{j}\right)=1$ for $i \neq j$, and put

$$
n_{0}=\prod_{i} r_{i}, n_{i}=\frac{n_{0}}{r_{i}}, n_{i j}=\frac{n_{0}}{r_{i} r_{j}}[i \neq j], \ldots
$$

For each such ρ we define a function Q_{ρ} by

$$
\begin{equation*}
Q_{\rho}(x)=\frac{\left(x^{n_{0}}-1\right) \cdot \prod_{i<j}\left(x^{n_{i j}}-1\right) \cdots}{\prod_{i}\left(x^{n_{i}}-1\right) \cdot \prod_{i<j<k}\left(x^{n_{i j k}}-1\right) \cdots} \tag{10}
\end{equation*}
$$

For example, if $\rho=\{p, q\}$, then

$$
\begin{equation*}
Q_{\{p, q\}}(x)=\frac{\left(x^{p q}-1\right)(x-1)}{\left(x^{p}-1\right)\left(x^{q}-1\right)} \tag{11}
\end{equation*}
$$

It can be shown that $Q_{\rho}(x)$ defines a polynomial of degree $d:=\prod_{i}\left(r_{i}-1\right)$. We define its coefficients $a_{\rho}(k)$ by $Q_{\rho}(x)=\sum_{k \geq 0} a_{\rho}(k) x^{k}$. Furthermore, $Q_{\rho}(x)$ is selfreciprocal; that is $a_{\rho}(k)=a_{\rho}(d-k)$ or, what amounts to the same thing,

$$
\begin{equation*}
Q_{\rho}(x)=x^{d} Q_{\rho}\left(\frac{1}{x}\right) \tag{12}
\end{equation*}
$$

If all elements of ρ are prime, then comparison of (10) with (4) shows that

$$
\begin{equation*}
Q_{\rho}(x)=\Phi_{r_{1} r_{2} \cdots r_{s}}(x) . \tag{13}
\end{equation*}
$$

If n is an arbitrary integer and $\gamma(n)=p_{1} \cdots p_{s}$ its squarefree kernel, then by (5) and (13) we have $Q_{\left\{p_{1}, \ldots, p_{s}\right\}}\left(x^{n / \gamma(n)}\right)=\Phi_{n}(x)$ and hence inclusion-exclusion polynomials generalize cyclotomic polynomials. They can be expressed as products of cyclotomic polynomials.

Theorem 3 [1]. Given $\rho=\left\{r_{1}, \ldots, r_{s}\right\}$ and

$$
D_{\rho}=\left\{d: d \mid \prod_{i} r_{i} \text { and }\left(d, r_{i}\right)>1 \text { for all } i\right\}
$$

then $Q_{\rho}(x)=\prod_{d \in D_{\rho}} \Phi_{d}(x)$.
Example. We have $Q_{\{4,7\}}=\Phi_{28} \Phi_{14}$.

2.1 Binary inclusion-exclusion polynomials: a close-up

Lam and Leung [11] discuss binary cyclotomic polynomials $\Phi_{p q}$ in detail, with p and q primes (their results were anticipated by Lenstra [12]). Now, let $p, q>1$ be positive coprime integers. All arguments in their paper easily generalize to this setting (instead of taking ξ to be a primitive $p q$ th-root of unity as they do, one has to take ζ a $p q$ th root of unity satisfying $\zeta^{p} \neq 1$ and $\zeta^{q} \neq 1$). One finds that

$$
\begin{equation*}
Q_{\{p, q\}}(x)=\sum_{i=0}^{\rho-1} x^{i p} \sum_{j=0}^{\sigma-1} x^{j q}-x^{-p q} \sum_{i=\rho}^{q-1} x^{i p} \sum_{j=\sigma}^{p-1} x^{j q} \tag{14}
\end{equation*}
$$

where ρ and σ are the (unique) non-negative integers for which $1+p q=\rho p+$ σq. On noting that upon expanding the products in identity (14), the resulting monomials are all different, we arrive at the following result.

Lemma 1 Let $p, q>1$ be coprime integers. Let ρ and σ be the (unique) nonnegative integers for which $1+p q=\rho p+\sigma q$. Let $0 \leq m<p q$. Then either $m=\alpha p+\beta q$ or $m=\alpha p+\beta q-p q$ with $0 \leq \alpha \leq q-1$ the unique integer such that $\alpha p \equiv m(\bmod q)$ and $0 \leq \beta \leq p-1$ the unique integer such that $\beta q \equiv m(\bmod p)$. The inclusion-exclusion coefficient $a_{\{p, q\}}(m)$ equals

$$
\begin{cases}1 & \text { if } m=\alpha p+\beta q \text { with } 0 \leq \alpha \leq \rho-1,0 \leq \beta \leq \sigma-1 \\ -1 & \text { if } m=\alpha p+\beta q-p q \text { with } \rho \leq \alpha \leq q-1, \sigma \leq \beta \leq p-1 \\ 0 & \text { otherwise. }\end{cases}
$$

Corollary 1 The number of positive coefficients in $Q_{\{p, q\}}(x)$ equals $\rho \sigma$ and the number of negative ones equals $\rho \sigma-1$. The number of non-zero coefficients equals $2 \rho \sigma-1$.

This corollary (in case p and q are distinct primes) is due to Carlitz [5].
Lemma 1 can be nicely illustrated with an LLL-diagram (for Lenstra, Lam and Leung). Here is one such diagram for $p=5$ and $q=7$.

28	33	3	8	13	18	23
21	26	31	1	6	11	16
14	19	24	29	34	4	9
7	12	17	22	27	32	2
0	5	10	15	20	25	30

We start with 0 in the lower left and add p for every move to the right and q for every move upwards. Reduce modulo $p q$. Every integer $0, \ldots, p q-1$ is obtained precisely once in this way (by the Chinese remainder theorem).

Lemma 1 can be reformulated in the following way.
Lemma 2 Let $p, q>1$ be coprime integers. The numbers in the lower left corner of the LLL-diagram are the exponents of the terms in $Q_{\{p, q\}}$ with coefficient 1. The numbers in the upper right corner are the exponents of the terms in $Q_{\{p, q\}}$ with coefficient -1 . All other coefficients equal 0 .

3 Two proofs of the main (folklore) result

In terms of inclusion-exclusion polynomials we can reformulate Theorem 1 as follows.

Theorem 4 If $p, q>1$ are coprime integers, then $P_{S(p, q)}(x)=Q_{\{p, q\}}(x)$.
Our first proof will make use of 'what is probably the most versatile tool in numerical semigroup theory' [18, p. 8], namely Apéry sets.
First proof of Theorem 4. The Apéry set of S with respect to a nonzero $m \in S$ is defined as

$$
\operatorname{Ap}(S ; m)=\{s \in S: s-m \notin S\}
$$

Note that

$$
S=\operatorname{Ap}(S ; m)+m \mathbb{Z}_{\geq 0}
$$

and that $\operatorname{Ap}(S ; m)$ consists of a complete set of residues modulo m. Thus we have

$$
\begin{equation*}
H_{S}(x)=\sum_{w \in \operatorname{Ap}(S ; m)} x^{w} \sum_{i=0}^{\infty} x^{m i}=\frac{1}{1-x^{m}} \sum_{w \in \operatorname{Ap}(S ; m)} x^{w} \tag{15}
\end{equation*}
$$

Note that if $S=\left\langle a_{1}, \ldots, a_{n}\right\rangle$, then $\operatorname{Ap}\left(S ; a_{1}\right) \subseteq\left\langle a_{2}, \ldots, a_{n}\right\rangle$. It follows that $\operatorname{Ap}(S(p, q) ; p)$ consists of multiples of q. The latter set equals the minimal set of multiples of q representing every congruence class modulo p and hence $\operatorname{Ap}(S(p, q) ; p)=\{0, q, \ldots,(p-1) q\}$ (see [16, Proposition 1] or [18, Example 8.22]). Hence

$$
H_{S(p, q)}(x)=\frac{1+x^{q}+\cdots+x^{(p-1) q}}{1-x^{p}}=\frac{1-x^{p q}}{\left(1-x^{q}\right)\left(1-x^{p}\right)} .
$$

Using this identity and (11) easily completes the proof.
Remark. This proof is an adaptation of the arguments given in [16]. Indeed, once we know the Apéry set of a numerical semigroup S, by using [16, (4)], we obtain an expression for $H_{S}(x)$ and consequently for $P_{S}(x)$. Theorem 4 is a particular case of [16, Proposition 2], with $\{p, q\}=\{a, a+d\}$ and $k=1$.

Our second proof uses the denumerant (see [15, Chapter 4] for a survey) and the starting point is the observation that

$$
\begin{equation*}
\frac{1}{\left(1-x^{p}\right)\left(1-x^{q}\right)}=\sum_{j \geq 0} r(j) x^{j}, \tag{16}
\end{equation*}
$$

where $r(j)$ denotes the cardinality of the set $\{(a, b): a \geq 0, b \geq 0, a p+b q=j\}$. In the terminology of the introduction, we have $r(j)=d(j ; p, q)$. Concerning $r(j)$ we make the following observation.

Lemma 3 Suppose that $k \geq 0$, then $r(k+p q)=r(k)+1$.
Proof. Put $\alpha \equiv k p^{-1}(\bmod q), 0 \leq \alpha<q$ and $\beta \equiv k q^{-1}(\bmod p), 0 \leq \beta<p$ and $k_{0}=\alpha p+\beta q$. Note that $k_{0}<2 p q$. We have $k \equiv k_{0}(\bmod p q)$. Now if $k \notin S$, then $k<k_{0}$ and $k+p q=k_{0} \in S$ (since $k_{0}<2 p q$). It follows that if $r(k)=0$, then $r(k+p q)=1$. If $k \in S$, then $k=k_{0}+t p q$ for some $t \geq 0$ and we have $r(k)=1+t$, where we use that

$$
k=(\alpha+t q) p+\beta q=(\alpha+(t-1) q) p+(\beta+1) p=\cdots=\alpha p+(\beta+t q) p .
$$

We see that $r(k+p q)=1+t+1=r(k)+1$.
Remark. It is not difficult to derive an explicit formula for $r(n)$ (see, e.g., [2, Section 1.3] or [13, pp. 213-214]). Let p^{-1}, q^{-1} denote inverses of p modulo q, respectively q modulo p. Then we have

$$
r(n)=\frac{n}{p q}-\left\{\frac{p^{-1} n}{q}\right\}-\left\{\frac{q^{-1} n}{p}\right\}+1
$$

where $\{x\}$ denote the fractional-part function. Note that Lemma 3 is a corollary of this formula.

Second proof of Theorem [4. From Lemma 3 we infer that

$$
\begin{aligned}
\left(1-x^{p q}\right) \sum_{j \geq 0} r(j) x^{j} & =\sum_{\substack{j=0 \\
p q-1}}^{p q-1} r(j) x^{j}+\sum_{j=p q}^{\infty}(r(j)-r(j-p q)) x^{j} \\
& =\sum_{j=0}^{p} r(j) x^{j}+\sum_{j \geq p q} x^{j}=\sum_{j \in S(p, q)} x^{j},
\end{aligned}
$$

where we used that $r(j) \leq 1$ for $j<p q$ and $r(j) \geq 1$ for $j \geq p q$. Using this identity and (16) easily completes the proof.

4 Symmetric numerical semigroups

A numerical semigroup S is said to be symmetric if

$$
S \cup(F(S)-S)=\mathbb{Z}
$$

where $F(S)-S=\{F(S)-s \mid s \in S\}$. Symmetric semigroups occur in the study of monomial curves that are complete intersections, Gorenstein rings, and the classification of plane algebraic curves, see, e.g. [15, p. 142]. For example, Herzog and Kunz showed that a Noetherian local ring of dimension one and analytically irreducible is a Gorenstein ring if and only if its associate value semigroup is symmetric.

We will now show that the selfreciprocity of $Q_{\{p, q\}}(x)$ implies that $S(p, q)$ is symmetric (a well-known result, see, e.g., [18, Corollary 4.7]).

Theorem 5 Let S be a numerical semigroup. Then S is symmetric if and only if $P_{S}(x)$ is selfreciprocal.

Proof. If $s \in S \cap(F(S)-S)$, then $s=F(S)-s_{1}$ for some $s_{1} \in S$. This implies that $F(S) \in S$, a contradiction. Thus S and $F(S)-S$ are disjoint sets. Since every integer $n \geq F(S)+1$ is in S and every integer $n \leq-1$ is in $F(S)-S$, the assertion is equivalent to showing that

$$
\begin{equation*}
\sum_{\substack{0 \leq j \leq F(S) \\ j \in S}} x^{j}+\sum_{\substack{0 \leq j \leq F(S) \\ j \in S}} x^{F(S)-j}=1+x+\cdots+x^{F(S)}, \tag{17}
\end{equation*}
$$

if and only if $P_{S}(x)$ is selfreciprocal. On noting by (1) that

$$
x^{F(S)+1} P_{S}\left(\frac{1}{x}\right)-P_{S}(x)=1-x^{F(S)+1}+(x-1)\left(\sum_{\substack{0 \leq j \leq F(S) \\ j \in S}} x^{j}+\sum_{\substack{0 \leq j \leq F(S) \\ j \in S}} x^{F(S)-j}\right),
$$

we see that $x^{F(S)+1} P_{S}(1 / x)=P_{S}(x)$ if and only if (17) holds. Clearly (17) holds if and only if S is symmetric.

Using the latter result and Theorem 4 we infer the following classical fact.

Theorem 6 A numerical semigroup of embedding dimension 2 is symmetric.
Theorem 4 together with Theorem 3 shows that if $e(S)=2$, then $P_{S}(x)$ can be written as a product of cyclotomic polynomials. This leads to the following problem.

Problem 1 Characterize the numerical semigroups S for which $P_{S}(x)$ can be written as a product of cyclotomic polynomials.

Since $P_{S}(0) \neq 0$, the product cannot involve $\Phi_{1}(x)=x-1$ and so it is selfreciprocal. Therefore, by Theorem 5 such an S must be symmetric. Ciolan et al. [6] make some progress towards solving this problem and show, e.g., that $P_{S}(x)$ can be written as a product of cyclotomic polynomials also if $e(S)=3$ and S is symmetric.

5 Gap distribution

The non-negative integers not in S are called the gaps of S. E.g., the gaps in $S(4,7)$ are $1,2,3,5,6,9,10,13$ and 17 . The number of gaps of S is called the genus of S, and denoted by $N(S)$. The set of gaps is denoted by $G(S)$. The following well-known result holds, cf. [15, Lemma 7.2.3] or [18, Corollary 4.7].

Theorem 7 We have $2 N(S) \geq F(S)+1$ with equality if and only if S is symmetric.

Proof. The proof of Theorem 5 shows that $2 \#\{0 \leq j \leq F(S): j \in S\} \leq F(S)+1$ with equality if and only if S is symmetric. Now use that $\#\{0 \leq j \leq F(S): j \in$ $S\}=F(S)+1-N(S)$.

From (2) and Theorem 1 we infer the following well-known result due to Sylvester:

$$
\begin{equation*}
F(S(p, q))=p q-p-q \tag{18}
\end{equation*}
$$

From Theorem 6. Theorem 7 and (18), we obtain another well-known result of Sylvester:

$$
\begin{equation*}
N(S(p, q))=(p-1)(q-1) / 2 \tag{19}
\end{equation*}
$$

For four different proofs of (18) and more background see [15, pp. 31-34]; the shortest proof of (18) and (19) the author knows of is in the book by Wilf [23, p. 88].

Additional information on the gaps is given by the so-called Sylvester sum

$$
\sigma_{k}(p, q):=\sum_{s \notin S(p, q)} s^{k} .
$$

By (19) we have $\sigma_{0}(p, q)=(p-1)(q-1) / 2$. By (1) and Theorem 4 we infer that

$$
\begin{equation*}
\sum_{j \notin S(p, q)} x^{j}=\frac{1-Q_{\{p, q\}}(x)}{1-x} . \tag{20}
\end{equation*}
$$

It is not difficult to derive a formula for $\sigma_{k}(p, q)$ for arbitrary k. On substituting $x=e^{z}$ and recalling the Taylor series expansion $e^{z}=\sum_{k \geq 0} z^{k} / k!$, we obtain from (20) and (11) the identity

$$
\begin{equation*}
\sum_{k=0}^{\infty} \sigma_{k}(p, q) \frac{z^{k}}{k!}=\frac{e^{p q z}-1}{\left(e^{p z}-1\right)\left(e^{q z}-1\right)}-\frac{1}{e^{z}-1} \tag{21}
\end{equation*}
$$

We obtain from (21), on multiplying by z and using the Taylor series expansion (7), that

$$
\sum_{m=1}^{\infty} m \sigma_{m-1}(p, q) \frac{z^{m}}{m!}=\sum_{i=0}^{\infty} B_{i} p^{i} \frac{z^{i}}{i!} \sum_{j=0}^{\infty} B_{j} q^{j} \frac{z^{j}}{j!} \sum_{k=0}^{\infty} \frac{(p q z)^{k}}{(k+1)!}-\sum_{m=0}^{\infty} B_{m} \frac{z^{m}}{m!} .
$$

Equating coefficients of z^{m} then leads to the following result.
Theorem 8 [17]. For $m \geq 1$ we have

$$
m \sigma_{m-1}(p, q)=\frac{1}{m+1} \sum_{i=0}^{m} \sum_{j=0}^{m-i}\binom{m+1}{i, j, m+1-i-j} B_{i} B_{j} p^{m-j} q^{m-i}-B_{m} .
$$

Using this formula we find e.g. that $\sigma_{1}(p, q)=\frac{1}{12}(p-1)(q-1)(2 p q-p-q-1)$ (this result is due to Brown and Shiue [3]) and $\sigma_{2}(p, q)=\frac{1}{12}(p-1)(q-1) p q(p q-p-q)$. The proof we have given here of Theorem 8 is due to Rødseth [17], with the difference that we gave a different proof of the identity (21).

By using the formula (9) for power sums we obtain from Theorem 8 the identity

$$
m \sigma_{m-1}(p, q)=\sum_{r=0}^{m}\binom{m}{r} p^{m-r-1} B_{m-r} q^{r} S_{r}(p)-B_{m}
$$

giving rise to the following recursion formula for B_{m} :

$$
B_{m}=\frac{m}{p^{m}-1} \sigma_{m-1}(p, q)+\frac{q^{m}}{p\left(1-p^{m}\right)} \sum_{r=0}^{m-1}\binom{m}{r}\left(\frac{p}{q}\right)^{r} B_{r} S_{m-r}(p)
$$

On taking $p=4$ and $q=7$, we obtain the recursion for B_{m} stated in the introduction.

Tuenter [20] established the following characterization of the gaps in $S(p, q)$. For every finite function f,

$$
\sum_{n \notin S}(f(n+p)-f(n))=\sum_{n=1}^{p-1}(f(n q)-f(n)),
$$

where p and q are interchangeable. He shows that by choosing f appropriately one can recover all earlier results mentioned in this section and in addition the identity

$$
\prod_{n \notin S(p, q)}(n+p)=q^{p-1} \prod_{n \notin S(p, q)} n .
$$

Wang and Wang 21] obtained results similar to those of Tuenter for the alternate Sylvester sums $\sum_{s \notin S(p, q)}(-1)^{s} s^{k}$.

6 A reproof of Theorem 2]

As mentioned previously, the gaps for $S(4,7)$ are given by $1,2,3,5,6,9,10,13$ and 17. One could try to break this down in terms of gap blocks, that is blocks of consecutive gaps, (also known in the literature as deserts [7, Definition 16])): $\{1,2,3\},\{5,6\},\{9,10\},\{13\}$, and $\{17\}$. It is interesting to compare this with the distribution of the element blocks, that is finite blocks of consecutive elements in S. For $S(4,7)$ we get $\{0\},\{4\},\{7,8\},\{11,12\}$ and $\{14,15,16\}$. The longest gap block we denote by $g(G(S))$ and the longest element block by $g(S)$.

The following result gives some information on gap blocks and element blocks in a numerical semigroup of embedding dimension 2. Recall that the smallest positive integer of S is called the multiplicity and denoted by $m(S)$.

Lemma 4

1) The longest gap block, $g(G(S))$, has length $m(S)-1$.
2) The longest element block, $g(S)$, has length not exceeding $m(S)-1$.
3) If S is symmetric, then $g(S)=m(S)-1$.

Proof. 1) Let $S=\left\{s_{0}, s_{1}, s_{2}, s_{3}, \ldots\right\}$ be the elements of S written in ascending order, i.e., $0=s_{0}<s_{1}<s_{2}<\cdots$. Since $s_{0}=0$ and $s_{1}=m(S)$ we have $g(G(S)) \geq m(S)-1$. Since all multiples of $m(S)$ are in S, it follows that actually $g(G(S))=m(S)-1$.
2) If $g(S) \geq m(S)$, it would imply that we can find $k, k+1, \ldots, k+m(S)-1$ all in S such that $k+m(S) \notin S$. This is clearly a contradiction.
3) If S is symmetric, then we clearly have $g(S)=g(G(S))=m(S)-1$.

Remark. The second observation was made by my intern Alexandru Ciolan. It allows one to prove Theorem 10 .

Finally, we will generalize a result of Hong et al. [9].
Theorem 9 If $p, q>1$ are coprime integers, then $g\left(Q_{\{p, q\}}(x)\right)=\min \{p, q\}-1$.
Proof. Note that $g\left(Q_{\{p, q\}}(x)\right)$ equals the maximum of the longest gap block length and the longest element block length and hence by Lemma 4 equals $m(S(p, q))-$ $1=\min \{p, q\}-1$.

This result can be easily generalized further.
Theorem 10 We have $g\left(P_{S}(x)\right)=m(S)-1$.
Proof. Using that $P_{S}(x)=(1-x) H_{S}(x)$ and Lemma 4 we infer that $g\left(P_{S}(x)\right)=$ $\max \{g(S), g(G(S))\}=m(S)-1$.

7 The LLL-diagram revisited

It is instructive to indicate (we do this in boldface) the gaps of $S(p, q)$ in the LLL-diagram. They are those elements $\alpha p+\beta q$ with $0 \leq \alpha \leq q-1,0 \leq$ $\beta \leq p-1$ for which $\alpha p+\beta q>p q$. Note that the Frobenius number equals $(q-1) p+(p-1) q-p q$ and so appears in the top right hand corner of the LLL-diagram. We will demonstrate this (again) for $p=5$ and $q=7$.

28	33	$\mathbf{3}$	$\mathbf{8}$	$\mathbf{1 3}$	$\mathbf{1 8}$	$\mathbf{2 3}$
21	26	31	$\mathbf{1}$	$\mathbf{6}$	$\mathbf{1 1}$	$\mathbf{1 6}$
14	19	24	29	34	$\mathbf{4}$	$\mathbf{9}$
7	12	17	22	27	32	$\mathbf{2}$
0	5	10	15	20	25	30

As a check we can verify that $N(S(p, q))=(p-1)(q-1) / 2$ integers appear in boldface.

On comparing coefficients in the identity $(1-x) \sum_{j \in S(p, q)} x^{j}=\sum_{j \geq 0} a_{\{p, q\}}(j) x^{j}$ we get the following reformulation of Theorem 4 at the coefficient level.

Theorem 11 If $p, q>1$ are coprime integers, then

$$
a_{\{p, q\}}(k)= \begin{cases}1 & \text { if } k \in S(p, q), k-1 \notin S(p, q) \\ -1 & \text { if } k \notin S(p, q), k-1 \in S(p, q) \\ 0 & \text { otherwise }\end{cases}
$$

Corollary 2 The non-zero coefficients of $Q_{\{p, q\}}$ alternate between 1 and -1 .
The next result gives an example where an existing result on cyclotomic coefficients yields information about numerical semigroups.

Theorem 12 Let p, q, ρ and σ be as in Lemma 1. If $S=S(p, q)$, then there are $\rho \sigma-1$ gap blocks and $\rho \sigma-1$ element blocks.

Proof. In view of Theorem 11 we have $a_{\{p, q\}}(k)=1$ if and only if k is at the start of an element block (including the infinite block $[F(S)+1, \infty) \cap \mathbb{Z}$). Moreover, $a_{\{p, q\}}(k)=-1$ if and only if k is at the end of a gap block. The proof is now completed by invoking Corollary 1 .

Using Lemma 2 and Theorem 11 our folklore result can now be reformulated in terms of the LLL-diagram.

Theorem 13 Let $p, q>1$ be coprime integers and denote $S(p, q) \cap\{0, \ldots, p q-1\}$ by T. The integers $k \in T$ such that $k-1 \notin T$ are precisely the integers in the lower left corner of the LLL-diagram. The integers $k \notin T$ such that $k-1 \in T$ are precisely the integers in the upper right corner. If k is not in the lower left or upper right corner, then either $k \in T$ and $k-1 \in T$ or $k \notin T$ and $k-1 \notin T$.

Denote $S(p, q)$ by S. Note that the upper right integer in the lower left corner of the LLL-diagram equals $F(S)+1$ and that the remaining integers in the lower left corner are all $<F(S)$. This observation together with (19) then leads to the following corollary of Theorem 13,

Corollary 3 If $p, q>1$ are coprime integers, then

$$
\left\{\begin{array}{l}
\{0 \leq k \leq F(S): k \in S, k-1 \in S\}=(p-1)(q-1) / 2-\rho \sigma+1 ; \\
\{0 \leq k \leq F(S): k \in S, k-1 \notin S\}=\rho \sigma-1 \\
\{0 \leq k \leq F(S): k \notin S, k-1 \in S\}=\rho \sigma-1 \\
\{0 \leq k \leq F(S): k \notin S, k-1 \notin S\}=(p-1)(q-1) / 2-\rho \sigma-1 .
\end{array}\right.
$$

The distribution of the quantity $\rho \sigma$ that appears at various places in this article has been recently studied using deep results from analytic number theory by Bzdęga [4] and Fouvry [8]. In particular they are interested in counting the number of integers $m=p q \leq x$ with p, q distinct primes such that $\theta(m)$, the number of non-zero coefficients of Φ_{m}, satisfies $\theta(m) \leq m^{1 / 2+\gamma}$, with $\gamma>0$ fixed. (Note that by Corollary 1 we have $\theta(m)=2 \rho \sigma-1$.)

Acknowledgement. I like to thank Matthias Beck, Scott Chapman, Alexandru Ciolan, Pedro A. García-Sánchez, Nathan Kaplan, Bernd Kellner, Jorge Ramírez Alfonsín, Ali Sinan Sertoz, Paul Tegelaar and the three referees for helpful comments. Alexandru Ciolan pointed out to me that $g(S) \leq m(S)-1$, which allows one to prove Theorem 10 .

References

[1] G. Bachman, On ternary inclusion-exclusion polynomials, Integers 10 (2010) A48 623-638.
[2] M. Beck and S. Robins, Computing the continuous discretely. Integer-point enumeration in polyhedra, Undergraduate Texts in Mathematics. Springer, New York, 2007.
[3] T.C. Brown and P. J.-S. Shiue, A remark related to the Frobenius problem, Fibonacci Quart. 31 (1993) 32-36.
[4] B. Bzdęga, Sparse binary cyclotomic polynomials, J. Number Theory 132 (2012) 410-413.
[5] L. Carlitz, The number of terms in the cyclotomic polynomial $F_{p q}(x)$, Amer. Math. Monthly 73 (1966) 979-981.
[6] A. Ciolan, P.A. García-Sánchez and P. Moree, Cyclotomic numerical semigroups, in preparation.
[7] J.I. Farrán and C. Munuera, Goppa-like bounds for the generalized FengRao distances, International Workshop on Coding and Cryptography (WCC 2001) (Paris), Discrete Appl. Math. 128 (2003) 145-156.
[8] É. Fouvry, On binary cyclotomic polynomials, Algebra Number Theory 7 (2013) 1207-1223.
[9] H. Hong, E. Lee, H.-S. Lee and C.-M. Park, Maximum gap in (inverse) cyclotomic polynomial, J. Number Theory 132 (2012) 2297-2315, available at http://dx.doi.org/10.1016/j.jnt.2012.04.008.
[10] H. Hong, E. Lee, H.-S. Lee and C.-M. Park, Simple and exact formula for minimum loop length in Ate_{i} pairing based on Brezing-Weng curves, Des. Codes Cryptogr. 67 (2013) 271-292.
[11] T.Y. Lam and K.H. Leung, On the cyclotomic polynomial $\Phi_{p q}(x)$, Amer. Math. Monthly 103 (1996) 562-564.
[12] H. W. Lenstra, Vanishing sums of roots of unity, Proceedings, Bicentennial Congress Wiskundig Genootschap (Vrije Univ., Amsterdam, 1978), Part II, 249-268, Math. Centre Tracts 101, Math. Centrum, Amsterdam, 1979.
[13] I. Niven, H.S. Zuckerman and H.L. Montgomery, An introduction to the theory of numbers, 5th edition, John Wiley \& Sons, Inc., New York, 1991.
[14] H. Rademacher, Topics in analytic number theory, Die Grundlehren der mathematischen Wissenschaften 169, Springer-Verlag, New YorkHeidelberg, 1973.
[15] J.L. Ramírez Alfonsín, The Diophantine Frobenius problem, Oxford Lecture Series in Mathematics and its Applications 30, Oxford University Press, Oxford, 2005.
[16] J.L. Ramírez Alfonsín and Ø.J. Rødseth, Numerical semigroups: Apéry sets and Hilbert series, Semigroup Forum 79 (2009) 323-340.
[17] Ø.J. Rødseth, A note on Brown and Shiue's paper on a remark related to the Frobenius problem, Fibonacci Quart. 32 (1994) 407-408.
[18] J.C. Rosales and P.A. García-Sánchez, Numerical semigroups, Developments in Mathematics 20, Springer, New York, 2009.
[19] R. Thangadurai, On the coefficients of cyclotomic polynomials, Cyclotomic fields and related topics (Pune, 1999), 311-322, Bhaskaracharya Pratishthana, Pune, 2000.
[20] H.J.H. Tuenter, The Frobenius problem, sums of powers of integers, and recurrences for the Bernoulli numbers, J. Number Theory 117 (2006), 376386.
[21] W. Wang and T. Wang, Alternate Sylvester sums on the Frobenius set, Comput. Math. Appl. 56 (2008) 1328-1334.
[22] S.H. Weintraub, Several proofs of the irreducibility of the cyclotomic polynomials, Amer. Math. Monthly 120 (2013) 537-545.
[23] H.S. Wilf, Generatingfunctionology, Academic Press, Inc., Boston, MA, 1990.

Max-Planck-Institut für Mathematik,
Vivatsgasse 7, D-53111 Bonn, Germany.
e-mail: moree@mpim-bonn.mpg.de

