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MULTIPLICATIVE SUB-HODGE STRUCTURES OF CONJUGATE

VARIETIES

STEFAN SCHREIEDER

Abstract. For any subfield K ⊆ C, not contained in an imaginary quadratic extension
of Q, we construct conjugate varieties whose algebras of K-rational (p, p)-classes are not
isomorphic. This compares to the Hodge conjecture which predicts isomorphisms when
K is contained in an imaginary quadratic extension of Q; additionally, it shows that the
complex Hodge structure on the complex cohomology algebra is not invariant under the
Aut(C)-action on varieties. In our proofs, we find simply connected conjugate varieties
whose multilinear intersection forms on H2(−,R) are not (weakly) isomorphic. Using
these, we detect non-homeomorphic conjugate varieties for any fundamental group and
in any birational equivalence class of dimension ≥ 10.

1. Introduction

For a smooth complex projective variety X and an automorphism σ of C, the conjugate
variety Xσ is defined via the fiber product diagram

Xσ

��

// X

��

Spec(C)
σ∗

// Spec(C).

To put it another way, Xσ is the smooth variety whose defining equations in some projec-
tive space are given by applying σ to the coefficients of the equations of X . As abstract
schemes – but in general not as schemes over Spec(C) – X and Xσ are isomorphic. This
has several important consequences for the singular cohomology of conjugate varieties.
For instance, pull-back of forms induces a σ-linear isomorphism between the algebraic de
Rham complexes ofX andXσ. This induces an isomorphism of complex Hodge structures

H∗(X,C) ⊗σ C
∼

Ð→H∗(Xσ,C),(1)

where ⊗σC means that the tensor product is taken where C maps to C via σ, see [4]. In
particular, Hodge and Betti numbers of conjugate varieties coincide.

The singular cohomology with Qℓ-coefficients coincides on smooth complex projective
varieties with ℓ-adic étale cohomology. Since étale cohomology does not depend on the
structure morphism to Spec(C), we obtain isomorphisms of graded Qℓ-, resp. C-algebras,

H∗(X,Qℓ)
∼

Ð→ H∗(Xσ,Qℓ) and H∗(X,C)
∼

Ð→ H∗(Xσ,C),(2)

depending on an embedding Qℓ ⊆ C. Since the latter isomorphism is C-linear, it is not
induced by (1).

Only recently, F. Charles discovered that there are however aspects of singular coho-
mology which are not invariant under conjugation:
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Theorem 1 (F. Charles [3]). There exist conjugate smooth complex projective varieties
with distinct real cohomology algebras.

It is the aim of this paper to further investigate to which extent cohomological data is
invariant under the Aut(C)-action on varieties.

1.1. Algebras of K-rational (p, p)-classes. For any subfield K ⊆ C, we denote the
space of K-rational (p, p)-classes on X by

Hp,p(X,K) ∶=Hp,p(X) ∩H2p(X,K);

the corresponding graded K-algebra is denoted by H∗,∗(X,K). The Hodge conjecture
predicts that H∗,∗(X,Q) is generated by algebraic cycles. Since each algebraic cycle
Z ⊆X induces a canonical cycle Zσ ⊆Xσ and vice versa, the Hodge conjecture implies

Conjecture 2. The graded Q-algebra H∗,∗(−,Q) is conjugation invariant.

Apart from the (few) cases where the Hodge conjecture is known, and apart from
Deligne’s result [5] which settles Conjecture 2 for abelian varieties, the above conjecture
remains wide open, see [4, 19].

The above consequence of the Hodge conjecture motivates the investigation of potential
conjugation invariance of H∗,∗(−,K) for an arbitrary field of coefficients K ⊆ C. If
K = Q(iw) with w2 ∈ N is an imaginary quadratic extension of Q, then the real part, as
well as 1/w times the imaginary part of a Q(iw)-rational (p, p)-class is Q-rational. Hence,

H∗,∗(−,Q(iw)) ≅H∗,∗(−,Q) ⊗Q Q(iw).

It follows that the Hodge conjecture predicts the conjugation invariance of H∗,∗(−,K),
when K is contained in an imaginary quadratic extension of Q. In this paper, we are
able to settle all remaining cases:

Theorem 3. Let K ⊆ C be a subfield, not contained in an imaginary quadratic exten-
sion of Q. Then there exist conjugate smooth complex projective varieties whose graded
algebras of K-rational (p, p)-classes are not isomorphic.

By Theorem 3, there are conjugate smooth complex projective varieties X , Xσ with

H∗,∗(X,C) ≇H∗,∗(Xσ,C).

This shows the following:

Corollary 4. The complex Hodge structure on the complex cohomology algebra of smooth
complex projective varieties is not invariant under the Aut(C)-action on varieties.

Corollary 4 is in contrast to (1) and (2) which show that the complex Hodge structure
in each degree, as well as the C-algebra structure of H∗(−,C) are Aut(C)-invariant. The
above corollary also shows that there is no embedding Qℓ ↪ C which guarantees that the
isomorphism (2), induced by isomorphisms between ℓ-adic étale cohomologies, respects
the complex Hodge structures.

Theorem 3 will follow from Theorems 5 and 6 below. Firstly, if K is different from R

and C, then Theorem 3 follows from

Theorem 5. Let K ⊆ C be a subfield, not contained in an imaginary quadratic extension
of Q. If K is different from R and C, then there exist for any p ≥ 1 and in any dimension
≥ p + 1 conjugate smooth complex projective varieties X, Xσ with

Hp,p(X,K) ≇Hp,p(Xσ,K).



MULTIPLICATIVE SUB-HODGE STRUCTURES OF CONJUGATE VARIETIES 3

It is worth noting that Theorem 5 does not remain true if one restricts to smooth
complex projective varieties that can be defined over Q, see Remark 18.

Next, the case K = R in Theorem 3 follows from the case where K = C since

H∗,∗(X,R) ⊗R C ≅H∗,∗(X,C)

holds; so it remains to deal with K = C. As the isomorphism type of the C-vector space
Hp,p(−,C) coincides on conjugate varieties, we now really need to make use of the algebra
structure of H∗,∗(−,C). Remarkably, it turns out that it suffices to use only a very little
amount of the latter, namely the symmetric multilinear intersection form

H1,1(X,C)⊗n Ð→ H2n(X,C),

where n = dim(X). We explain our result, Theorem 6 below, in the next subsection.

1.2. Multilinear intersection forms on H1,1(−,K) and H2(−,K). We say that two
symmetric K-multilinear forms V ⊗n → K and W⊗n → K on two given K-vector spaces
V and W are (weakly) isomorphic if there exists a K-linear isomorphism V ≅ W which
respects the given multilinear forms (up to a multiplicative constant). IfK is closed under
taking n-th roots, then weakly isomorphic intersection forms are already isomorphic.

For a smooth complex projective variety X of dimension n, cup product defines sym-
metric multilinear forms

H1,1(X,K)⊗n Ð→H2n(X,K) ≅K and H2(X,K)⊗n Ð→ H2n(X,K) ≅K,

where H2n(X,K) ≅ K is the canonical isomorphism that is induced by integrating de
Rham classes over X . The weak isomorphism types of the above multilinear forms are de-
termined by the isomorphism types of the graded K-algebras H∗,∗(X,K) and H2∗(X,K)
respectively.

By the Lefschetz theorem, the Hodge conjecture is true for (1,1)-classes and so it is
known that the isomorphism type of the intersection form on H1,1(−,Q) is conjugation
invariant. Additionally, it follows from (2) that the isomorphism types of the intersection
forms on H2(−,Qℓ) and H2(−,C) are invariant under conjugation. Our result, which
settles the case K = C in Theorem 3, contrasts these positive results:

Theorem 6. There exist in any dimension ≥ 4 simply connected conjugate smooth com-
plex projective varieties whose R-multilinear intersection forms on H2(−,R), as well as
C-multilinear intersection forms on H1,1(−,C), are not weakly isomorphic.

The examples we will construct in the proof of Theorem 6 in Section 6 are defined over
cyclotomic number fields. For instance, one series of examples is defined over Q[ζ12]; their
complex (1,1)-classes are spanned by Q[√3]-rational ones. This yields examples X , Xσ

such that the intersection forms on the equidimensional vector spaces H1,1(X,Q[√3])
and H1,1(Xσ,Q[√3]) are not weakly isomorphic, see Corollary 29.

It follows from Theorem 6 that the even-degree real cohomology algebra H2∗(−,R), as
well as the subalgebra SH2(−,R) which is generated by H2(−,R), is not invariant under
conjugation. Since Charles’s examples have dimension ≥ 12 and fundamental group Z8,
Theorem 6 generalizes Theorem 1 in several different directions. Another generalization
of Theorem 1, namely Theorem 7 below, is explained in the following subsection.

1.3. Applications to conjugate varieties with given fundamental group. Con-
jugate varieties are homeomorphic in the Zariski topology but in general not in the an-
alytic one. Historically, this was first observed by Serre in [13], who constructed con-
jugate varieties whose fundamental groups are infinite but non-isomorphic. The first
non-homeomorphic conjugate varieties with finite fundamental group were constructed
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by Abelson [1]. His construction however only works for non-abelian finite groups which
satisfy some strong cohomological condition.

Other examples of conjugate varieties which are not homeomorphic (or weaker: not
deformation equivalent) are constructed in [2, 3, 8, 10, 15]. Again, the fundamental
groups of these examples are of special shapes. In particular, our conjugate varieties in
Theorem 6 are the first known non-homeomorphic examples which are simply connected.
This answers a question, posed more than 15 years ago by D. Reed in [11]. Reed’s
question was our initial motivation to study conjugate varieties and leads us to the more
general problem of determining those fundamental groups for which non-homeomorphic
conjugate varieties exist. Since the fundamental group of smooth varieties is a birational
invariant, the problem of detecting non-homeomorphic conjugate varieties in a given
birational equivalence class refines this problem. Building upon the examples we will
construct in the proof of Theorem 6, we will be able to prove the following:

Theorem 7. Any birational equivalence class of complex projective varieties in dimen-
sion ≥ 10 contains conjugate smooth complex projective varieties whose even-degree real
cohomology algebras are non-isomorphic.

Theorem 7 implies immediately:

Corollary 8. Let G be the fundamental group of a smooth complex projective variety.
Then there exist conjugate smooth complex projective varieties with fundamental group
G, but non-isomorphic even-degree real cohomology algebras.

In Theorem 34 in Section 8 we show that the examples in Theorem 7 can be chosen to
have non-isotrivial deformations. This is in contrast to the observation that the previously
known non-homeomorphic conjugate varieties tend to be rather rigid, cf. Remark 35.

1.4. Constructions and methods of proof. Using products of special surfaces with
projective space, we will prove Theorem 5 in Section 3. The key idea is to construct
real curves in the moduli space of abelian surfaces, respectively Kummer K3 surfaces,
on which dim(H1,1(−,K)) is constant. Using elementary facts about modular forms, we
then prove that each of our curves contains a transcendental point, i.e. a point whose
coordinates are algebraically independent over Q. The action of Aut(C) being transitive
on the transcendental points of our moduli spaces, Theorem 5 follows as soon as we have
seen that our assumptions on K ensure the existence of two real curves as above on which
dim(Hp,p(−,K)) takes different (constant) values.

For the proof of Theorem 6 in Section 6 we use Charles–Voisin’s method [3, 18], see
Section 4. We start with simply connected surfaces Y ⊆ PN with special automorphisms,
constructed in Section 5. Then we blow-up five smooth subvarieties of Y × Y × PN , e.g.
the graphs of automorphisms of Y . In order to keep the dimensions low, we then pass to
a complete intersection subvariety T of this blow-up. If dim(T ) ≥ 4, then the cohomology
of T encodes the action of the automorphisms on H2(Y,R) and H1,1(Y,C). The latter
can change under the Aut(C)-action, which will be the key ingredient in our proofs.

In order to prove Theorem 7 in Section 7, we start with a smooth complex projective
variety Z of dimension ≥ 10, representing a given birational equivalence class. From our
previous results, we will be able to pick a four-dimensional variety T and an automorphism
σ of C with Z ≅ Zσ, such that T and T σ have non-isomorphic even-degree real cohomology
algebras. Since T is four-dimensional, we can embed it into the exceptional divisor of the
blow-up Ẑ of Z in a point and define W = BlT (Ẑ). Then, W σ = BlTσ(Ẑσ) is birational
to Zσ ≅ Z. Moreover, we will be able to arrange that b2(T ) is larger than b4(Z)+4. This
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will allow us to show that any isomorphism between H2∗(W,R) and H2∗(W σ,R) induces
an isomorphism between H2∗(T,R) and H2∗(T σ,R). Theorem 7 will follow.

1.5. Conventions. Using Serre’s GAGA principle [14], we usually identify a smooth
complex projective variety X with its corresponding analytic space, which is a Kähler
manifold. For a codimension p subvariety V inX , we denote the corresponding (p, p)-class
in H∗(X,Z) by [V ].

2. Preliminaries

2.1. Cohomology of blow-ups. In this subsection we recall important properties about
the cohomology of blow-ups, which we will use (tacitly) throughout Sections 4, 6 and 7.

Let Y ⊆ X be Kähler manifolds and let X̃ = BlY (X) be the blow-up of X in Y with
exceptional divisor D ⊆ X̃ . We then obtain a commutative diagram

D

p

��

j
// X̃

π

��

Y
i

// X,

where i denotes the inclusion of Y into X and j denotes the inclusion of the exceptional
divisor D into X̃ . Let r denote the codimension of Y in X , then we have the following,
see [17, p. 180].

Lemma 9. There is an isomorphism of integral Hodge structures

Hk(X,Z)⊕ (r−2⊕
i=0

Hk−2i−2(Y,Z)) ∼

Ð→ Hk (X̃,Z) ,
where on Hk−2i−2(Y,Z), the natural Hodge structure is shifted by (i+1, i+1). On Hk(X,Z),
the above morphism is given by π∗. On Hk−2i−2(Y,Z) it is given by j∗ ○ hi ○ p∗, where h
denotes the cup product with c1(OD(1)) ∈H2(D,Z) and j∗ is the Gysin morphism of the
inclusion j ∶ D ↪ X̃.

By the above lemma, each cohomology class of X̃ is a sum of pullback classes from X

and push forward classes from D. The ring structure on H∗(X̃,Z) is therefore uncovered
by the following lemma.

Lemma 10. Let α,β ∈ H∗(D,Z) and η ∈H∗(X,Z). Then,

π∗(η) ∪ j∗(α) = j∗(p∗(i∗η) ∪α) and j∗(α) ∪ j∗(β) = −j∗(h ∪ α ∪ β),
where h = c1(OD(1)) ∈H2(D,Z).
Proof. Using i ○ p = π ○ j, the first assertion follows immediately from the projection
formula. For the second assertion, one first proves

(3) j∗(α) ∪ j∗(β) = j∗(1) ∪ j∗(α ∪ β)
by realizing that the dual statement in homology holds. Next, note that j∗(1) = c1(OX̃(D)).
Moreover, the restriction of OX̃(D) to D is isomorphic to OD(−1). This implies −h =
j∗(j∗(1)) and so the projection formula yields:

−j∗(h ∪α ∪ β) = j∗(1) ∪ j∗(α ∪ β).
This concludes the proof by (3). �
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2.2. Eigenvalues of conjugate endomorphisms. Let X be a smooth complex projec-
tive variety with endomorphism f and let σ be an automorphism of C. Via base change,
f induces an endomorphism fσ of Xσ. If an explicit embedding of X into some projective
space PN with homogeneous coordinates z = [z0 ∶ . . . ∶ zN] is given, then fσ is determined
by

fσ(σ(z))) = σ(f(z))
for all z ∈ X , where σ acts on each homogeneous coordinate simultaneously. On coho-
mology, we obtain linear maps

f∗ ∶ Hp,q(X)Ð→ Hp,q(X) and (fσ)∗ ∶ Hp,q(Xσ)Ð→ Hp,q(Xσ).
These maps commute with the σ-linear isomorphism

Hp,q(X) ∼

Ð→ Hp,q(Xσ)
induced by (1). This observation proves:

Lemma 11. The set of eigenvalues of (fσ)∗ on Hp,q(Xσ) is given by the σ-conjugate of
the set of eigenvalues of f∗ on Hp,q(X).
2.3. The j-invariant of elliptic curves. Recall that the j-invariant of an elliptic curve
E with affine Weierstrass equation y2 = 4x3 − g2x − g3 equals

j(E) = g3
2

g3
2
− 27g2

3

.

Two elliptic curves are isomorphic if and only if their j-invariant coincide. From the
above formula, we deduce j(Eσ) = σ(j(E)) for all σ ∈ Aut(C). For an element τ in the
upper half plane H, we use the notation

Eτ ∶= C/(Z + τZ) and j(τ) ∶= j(Eτ).(4)

Then, j induces an isomorphism between any fundamental domain of the action of the
modular group SL2(Z) on H and C. Moreover, j is holomorphic on H with a cusp of
order one at i ⋅ ∞.

2.4. Kummer K3 surfaces and theta constants. Let M ∈ M2(C) be a symmetric
matrix whose imaginary part is positive definite. Then,

AM ∶= C2/(Z2
+MZ2)

is a principal polarized abelian surface. The associated Kummer K3 surface K3(AM)
is the quotient of the blow-up of AM at its 16 2-torsion points by the involution ⋅(−1).
Equivalently, K3(AM) is the blow-up of AM/(−1) at its 16 singular points.

Let LM be a symmetric line bundle on AM which induces the principal polarization on
AM . The linear series ∣L⊗2M ∣ then defines a morphism AM Ð→ P3. This morphism induces
an isomorphism of AM/(−1) with a degree four hypersurface

{FM = 0} ⊆ P3.

The coefficients of FM are given by homogeneous degree 12 expressions in the coordinates
of Riemann’s second order theta constant Θ2(M) ∈ P3, see [7] and also [12, Example 1.1].
This constant is defined as

Θ2(M) ∶= [Θ2[0,0](M) ∶ Θ2[1,0](M) ∶ Θ2[0,1](M) ∶ Θ2[1,1](M)].(5)

Here, for δ ∈ {0,1}2, the complex number Θ2[δ](M) denotes the Fourier series

Θ2[δ](M) ∶= ∑
n∈Z2

e2πi⋅QM(n+δ/2),(6)
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where QM(z) is the quadratic form ztMz, associated to M .
The above discussion allows us to calculate conjugates of K3(AM) explicitly.

Lemma 12. If σ(Θ2(M)) = Θ2(M ′) holds for some automorphism σ ∈ Aut(C), then
K3(AM)σ ≅K3(AM ′).

Proof. As mentioned above, the coefficients of FM and FM ′ are polynomial expressions in
the coordinates of Θ2(M) and Θ2(M ′) respectively. The action of σ therefore maps the
polynomial FM to FM ′ and hence {FM = 0} to {FM ′ = 0}. Moreover, this action maps the
16 singular points of {FM = 0} to the 16 singular points of {FM ′ = 0}. The lemma follows
from the above description of K3(AM) and K3(AM ′) as smooth models of {FM = 0} and{FM ′ = 0} respectively. �

Remark 13. The linear series ∣L⊗3M ∣ defines an embedding of AM into P8. It is in principle
possible to use this embedding in order to calculate conjugates Aσ

M of AM . In the preceding
section we only presented the analogous (easier) calculation for the associated Kummer
K3 surface which will suffice for our purposes.

3. Proof of Theorem 5

In this section, we prove Theorem 5 from the introduction. For this purpose, let us fix a
subfield K ⊆ C, different from R and C, which is not contained in an imaginary quadratic
extension of Q. We then need to construct for any p ≥ 1 and in any dimension n ≥ p + 1
conjugate smooth complex projective varieties X , Xσ with Hp,p(X,K) ≇ Hp,p(Xσ,K).
After taking products with Pn−2, it clearly suffices to settle the case p = 1 and n = 2.

We denote by KR ∶= K ∩R the real subfield of K. The proof of Theorem 5 for p = 1
and n = 2 is now divided into four different cases. Cases 1 and 2 deal with KR ≠ Q; in
Cases 3 and 4 we settle KR = Q.

In Cases 1–3 we will consider for τ ∈ H the elliptic curve Eτ with associated j-invariant
j(τ) from (4), and use the following

Lemma 14. Let L ⊂ C be a subfield. Then we have for any a, b ∈ R>0,

dim(H1,1(Eia ×Eib,L)) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2, if a/b ∉ L and a ⋅ b ∉ L,
3, if a/b ∈ L and a ⋅ b ∉ L, or if a/b ∉ L and a ⋅ b ∈ L,
4, if a/b ∈ L and a ⋅ b ∈ L.

Proof. For j = 1,2, we denote the holomorphic coordinate on the j-th factor of Eia ×Eib

by zj = xj + iyj . Then there are basis elements

α1, β1 ∈ H1(Eia,Z) and α2, β2 ∈ H1(Eib,Z),
such that

dz1 = α1 + ia ⋅ β1 ∈H1,0(Eia) and dz2 = α2 + ib ⋅ β2 ∈ H1,0(Eib).
We deduce that the following four (1,1)-classes form a basis of H1,1(Eia ×Eib):

α1 ∪ β1, α2 ∪ β2, α1 ∪ α2 + ab ⋅ β1 ∪ β2 and α1 ∪ β2 + (a/b) ⋅ α2 ∪ β1.

The lemma follows. �

Case 1: KR is uncountable.
The restriction of the j-invariant to i ⋅ R≥1 is injective. Since KR is uncountable, it

follows that there is some λ ≥ 1 in KR such that j(iλ) is transcendental.
By assumptions, KR is different from R. The additive action of KR on R has therefore

more than one orbit and so R≥1 ∖KR is uncountable. As above, it follows that there is
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some µ ∈ R≥1 ∖KR such that j(iµ) is transcendental. Hence, there is some σ ∈ Aut(C)
with σ(j(iλ)) = j(iµ). Since j(i) = 1, it follows from the discussion in Section 2.3 that

X ∶= Eiλ ×Ei with Xσ ≅ Eiµ ×Ei.

Since λ ∈K and µ ∉K, it follows from Lemma 14 that H1,1(X,K) and H1,1(Xσ,K) are
not equidimensional. This concludes Case 1.

Case 2: KR is countable and KR ≠ Q.
Here we will need the following lemma.

Lemma 15. Let λ ∈ R>0 be irrational, and let U ⊆ R>0 be an uncountable subset. Then
there is some µ ∈ U such that j(µ) and j(λµ) are algebraically independent over Q.

Proof. For a contradiction, suppose that j(µ) and j(λµ) are algebraically dependent over
Q for all µ ∈ U . Since the polynomial ring in two variables over Q is countable, whereas U
is uncountable, we may assume that j(µ) and j(λµ) satisfy the same polynomial relation
for all µ ∈ U . Any uncountable subset of R contains an accumulation point. Hence, the
identity theorem yields a polynomial relation between the holomorphic functions j(τ)
and j(λτ) in the variable τ ∈ H. That is,

n

∑
l=0

cl(j(τ)) ⋅ j(λτ)l = 0,
where cl(j(τ)) is a polynomial in j(τ) which is nontrivial for l = n. We may assume that
n is the minimal integer such that a polynomial relation as above exists. The modular
form j(τ) does not satisfy any nontrivial polynomial relation since it has a cusp of order
one at i∞. Thus, n ≥ 1. For k ∈ Z, we have j(τ) = j(τ + k) and so the above identity
yields

n

∑
l=0

cl(j(τ)) ⋅ (j(λτ)l − j(λτ + λk)l) = 0,
for all k ∈ Z. Since λ is irrational, λτ and λτ + λk do not lie in the same SL2(Z) orbit
and so j(λτ) − j(λτ + λk) is nonzero for all k ∈ Z. Thus,

n

∑
l=1

cl(j(τ)) ⋅ l−1∑
h=0

j(λτ)hj(λτ + λk)l−1−h = 0.
If we now choose a sequence of integers (km)m≥1 such that λkm tends to zero modulo Z,
then the above identity tends to the identity

n

∑
l=1

cl(j(τ)) ⋅ l ⋅ j(λτ)l−1 = 0.
This contradicts the minimality of n. Lemma 15 follows. �

Since KR is countable, it follows that for any t > 0,

Ut ∶= {µ ∈ R≥1 ∣ tµ2 ∉K}
is uncountable. By assumptions in Case 2, KR contains a positive irrational number λ.
Additionally, we pick a positive irrational number λ′ ∉K.

Then, by Lemma 15, there are elements µ ∈ Uλ and µ′ ∈ Uλ′ such that j(iµ) and j(iλµ),
as well as j(iµ′) and j(iλ′µ′), are algebraically independent over Q. It follows that for
some σ ∈ Aut(C), we have

X ∶= Eiλµ ×Eiµ with Xσ ≅ Eiλ′µ′ ×Eiµ′ .

Since λ ∈ K and λµ2, λ′, λ′µ′2 ∉ K, it follows from Lemma 14 that H1,1(X,K) and
H1,1(Xσ,K) are not equidimensional. This concludes Case 2.
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Case 3: K is uncountable and KR = Q.
Since K is uncountable, there are elements τ, τ ′ ∈ H with τ, τ ′ ∈ K such that j(τ) and

j(τ ′) are algebraically independent over Q. Also, there are positive numbers µ,µ′ ∈ R>0
with µµ′, µ/µ′ ∉KR = Q such that j(iµ) and j(iµ′) are algebraically independent over Q.
For some σ ∈ Aut(C), we then have

X ∶= Eτ ×Eτ ′ with Xσ ≅ Eiµ ×Eiµ′ .

Since τ, τ ′ ∈K, the spaceH1,1(X,K) is at least three-dimensional. Conversely, H1,1(Xσ,K)
is two-dimensional by Lemma 14. This concludes Case 3.

Case 4: K is countable and KR = Q.
This case is slightly more difficult; instead of products of elliptic curves, we will use

Kummer K3 surfaces and their theta constants, see Section 2.4. We begin with the
definition of certain families of such surfaces. For t = t1 + it2 ∈ C with t1 ≠ 0 and µ ∈ R>0,
we consider the symmetric matrix

M(µ, t) ∶= i µ
2t1
⋅ ( 2t1 1

1 ∣t∣2 ) .
For a suitable choice of t ∈ C, the matrix −iM(µ, t) is positive definite for all µ > 0 and so
the abelian surface AM(µ,t) as well as its associated Kummer K3 surface exist. For such

t, we have the following lemma, where Â denotes the dual of the abelian surface A.

Lemma 16. Let L ⊆ C be a subfield, let µ > 0 and let t = t1 + it2 ∈ C such that −i ⋅M(µ, t)
is positive definite. If t1, ∣t∣2 and det(M(µ, t)) do not lie in L, then

dim(H1,1(K3(ÂM(µ,t)),L)) = {17, if (∣t∣2 + 2t1 ⋅L) ∩L = ∅,
18, otherwise.

Proof. Fix t ∈ C and µ > 0 such that −i ⋅M(µ, t) is positive definite and assume that
t1, ∣t∣2 and det(M(µ, t)) do not lie in L. The rational degree two Hodge structure of a
Kummer surface K3(A) is the direct sum of 16 divisor classes with the degree two Hodge

structure of A. It therefore remains to investigate the dimension of H1,1(ÂM(µ,t),L).
We denote the holomorphic coordinates on C2 by z = (z1, z2), where zj = xj + iyj . The

cohomology of ÂM(µ,t) is given by the homology of AM(µ,t) and so

α1 = dx1, α2 = dx2, α3 = µ/(2t1) ⋅ (2t1dy1 + dy2) , α4 = µ/(2t1) ⋅ (dy1 + ∣t∣2dy2)
form a basis of H1(ÂM(µ,t),Q). Next, H1,1(ÂM(µ,t)) has basis dz1∪dz1, dz1∪dz2, dz2∪dz1
and dz2∪dz2. This basis can be expressed in terms of αj∪αk, where 1 ≤ j < k ≤ 4. Applying
the Gauß algorithm then yields the following new basis of H1,1(ÂM(µ,t)):

Ω1 ∶= α2 ∪ α4 + α1 ∪α3,

Ω2 ∶= α1 ∪ α4 − ∣t∣2 ⋅ α1 ∪ α3,

Ω3 ∶= α2 ∪ α3 − 2t1 ⋅ α1 ∪ α3,

Ω4 ∶= α3 ∪ α4 − det(M(µ, t)) ⋅ α1 ∪ α2.

From this description it follows that if a linear combination ∑λiΩi is L-rational, then all
λi lie in L. Moreover, since det(M(µ, t)) ∉ L, the coefficient λ4 needs to vanish.

Since t1, ∣t∣2 ∉ L, neither Ω2 nor Ω3 is L-rational. We conclude that H1,1(ÂM(µ,t),L)
is two-dimensional if ∣t∣2 + 2t1 ⋅ l1 = l2 has a solution l1, l2 ∈ L, and it is one-dimensional
otherwise. The lemma follows. �
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In the following we will stick to parameters t that are contained in a sufficiently small
neighborhood of 1/3+3i. For such t, the matrix −i⋅M(µ, t) is positive definite. The reason
for the explicit choice of the base point 1/3+3i is due to the fact that it slightly simplifies
the proof of the subsequent lemma. In order to state it, we call a point in P3 transcendental
if its coordinates in some standard affine chart are algebraically independent over Q.
Equivalently, z ∈ P3 is transcendental if and only if P (z) ≠ 0 for all nontrivial homogeneous
polynomials P with rational coefficients. That is, the transcendental points of P3 are
those which lie in the complement of the (countable) union of hypersurfaces which can
be defined over Q. It is important to note that Aut(C) acts transitively on this set of
points.

Lemma 17. There is a neighborhood V ⊆ C of 1/3 + 3i, such that for all t = t1 + it2 ∈ V
with 1, t1 and ∣t∣2 linearly independent over Q, the following holds. Any uncountable
subset U ⊆ R>0 contains a point µ ∈ U with:

(1) The matrix −i ⋅M(µ, t) is positive definite.
(2) The determinant of M(µ, t) is not rational.
(3) The theta constant Θ2(M(µ, t)) is a transcendental point of P3.

Proof. We define the quadratic form

Q(z) ∶= 2t1z21 + 2z1z2 + ∣t∣2z22 ,
where z = (z1, z2) ∈ R2. For δ ∈ {0,1}2, the homogeneous coordinate Θ2[δ](M(µ, t)) of
the theta constant Θ2(M(µ, t)) is then given by

Θ2[δ](M(µ, t)) = ∑
n∈Z2

exp(−πµ
t1
⋅Q(n + δ/2)) ,(7)

see (6). At the point t = 1/3 + 3i, we have

Q(z)∣t=1/3+3i = 2
3
⋅ (z1 + 3z2/2)2 + 137

18
⋅ z22 .

This shows that there is a neighborhood V of 1/3 + 3i such that −i ⋅M(µ, t) is positive
definite for all t ∈ V and all µ > 0. For such t, the function in (7) is a modular form in
the variable i ⋅ µ ∈ H, see [6].

Let us now pick some t ∈ V with 1, t1 and ∣t∣2 linearly independent over Q. Then
−i ⋅M(µ, t) is positive definite and so det(M(µ, t)) is a nonzero multiple of µ2. After
possibly removing countably many points of U , we may therefore assume

det(M(µ, t)) ∉ Q
for all µ ∈ U .

For a contradiction, we now assume that there is no µ ∈ U such that Θ2(M(µ, t)) is a
transcendental point of P3. Since the polynomial ring in four variables over Q is countable,
we may then assume that there is one homogeneous polynomial P with P (Θ2(M(µ, t))) =
0 for all µ ∈ U . Since U ⊆ R>0 is uncountable, it contains an accumulation point. Then
the identity theorem yields

P (Θ2(M(−iτ, t))) = 0,(8)

where the left hand side is considered as holomorphic function in τ ∈ H.
For τ → i∞, the modular form Θ2[δ](M(−iτ, t)) from (7) is dominated by the summand

where the exponent Q(n) with n ∈ N2
+ δ is minimal. After possibly shrinking V , these

minima nδ ∈ N2
+ δ of Q(n) are given as follows:

n0,0 = (0,0), n1,0 = ±(1/2,0), n0,1 = ±(−1,1/2) and n1,1 = ±(−1/2,1/2).
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Noting that Q(n0,0) vanishes, we conclude that for τ → i∞, the monomial

Θ2[0,0](M(−iτ, t))h ⋅Θ2[1,0](M(−iτ, t))j ⋅Θ2[0,1](M(−iτ, t))k ⋅Θ2[1,1](M(−iτ, t))l
is dominated by the summand

2 ⋅ exp (πiτ
t1
⋅ (j ⋅Q(n1,0) + k ⋅Q(n0,1) + l ⋅Q(n1,1))) .

The left hand side in (8) is then dominated by those summands for which

j ⋅Q(n1,0) + k ⋅Q(n0,1) + l ⋅Q(n1,1)
is minimal. We will therefore arrive at a contradiction as soon as we have seen that this
summand is unique. That is, it suffices to see that Q(n1,0), Q(n0,1) and Q(n1,1) are
linearly independent over Q. In order to see the latter, we calculate

Q(n1,0) = t1/2, Q(n0,1) = ∣t∣2/4 + 2t1 − 1 and Q(n1,1) = ∣t∣2/4 + t1/2 − 1/2.
The claim is now obvious since 1, t1 and ∣t∣2 are linearly independent over Q by assump-
tions. This finishes the proof of the lemma. �

We are now able to conclude Case 4. Let V be the neighborhood of 1/3+3i from Lemma
17. Since KR = Q and since K is not contained in any imaginary quadratic extension of
Q, we may pick some t = t1 + it2 ∈ K ∩ V which is not quadratic over Q. Then t1 is not
rational since otherwise (t − t1)2 would lie in KR = Q, which yielded a quadratic relation
for t over Q. It follows that 1, t + t = 2t1 and t ⋅ t = ∣t∣2 are linearly independent over
Q, as otherwise t would lie in K and so t + t = 2t1 ∈ KR = Q were rational. Hence, the
assumptions of Lemma 17 are satisfied and so there is some µ ∈ R>0 such that the pair(µ, t) satisfies (1)–(3) in Lemma 17.

Next, we consider t′ = t′
1
+ 3i ∈ V with 1, t′

1
and t′2

1
linearly independent over Q. Since

V is a neighborhood of 1/3 + 3i, there are uncountably many values for t′
1
such that t′

has the above property. We claim that we can choose t′
1
within this uncountable set such

that additionally

2t′1λ1 = λ2 + ∣t′∣2(9)

has no solution λ1, λ2 ∈K. In order to prove this, suppose that t′
1
is a solution of (9) for

some λ1, λ2 ∈K. Since ∣t′∣2 is a real number, it follows that t′
1
lies in the set of quotients

x/y where x and y are imaginary parts of some elements of K. Since K is countable, so is
the latter set. Our claim follows since we can choose t′

1
within an uncountable set. That

is, we have just shown that there is a point t′ = t′
1
+ 3i ∈ V with 1, t′

1
and ∣t′∣2 linearly

independent over Q such that additionally, (9) has no solution in K. Then again the
assumptions of Lemma 17 are met and so there is some µ′ ∈ R>0 such that the pair (µ′, t′)
satisfies (1)–(3) in Lemma 17.

Since (µ, t) and (µ′, t′) satisfy Lemma 17, Θ2(M(µ, t)) and Θ2(M(µ′, t′)) are transcen-
dental points of P3. Because Aut(C) acts transitively on such points it follows that there
is some automorphism σ ∈ Aut(C) with

σ(Θ2(M(µ, t))) = Θ2(M(µ′, t′)).
As the functor A ↦ Â on the category of abelian varieties commutes with the Aut(C)-
action, it therefore follows from Lemma 12 that

X ∶=K3(ÂM(µ,t)) with Xσ ≅K3(ÂM(µ′,t′)).
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By our choices, t1, ∣t∣ and det(M(µ, t)) lie in R∖Q and the same holds for the pair (µ′, t′).
Since KR = Q, it follows that (µ, t) as well as (µ′, t′) satisfy the assumptions of Lemma
16. Since (9) has no solution in K, whereas

2t1λ1 = λ2 + ∣t∣2
has the solution λ1 = t and λ2 = t2 in K, it follows from Lemma 16 that H1,1(X,K) and
H1,1(Xσ,K) are not equidimensional. This concludes Case 4 and hence finishes the proof
of Theorem 5.

Remark 18. Theorem 5 does not remain true if one restricts to smooth complex projec-
tive varieties which can be defined over Q. Indeed, for each smooth complex projective
variety X there is a finitely generated extension KX of Q such that for all p ≥ 0 the group
Hp,p(X,C) is generated by KX-rational classes. As there are only countably many vari-
eties over Q, it follows that there is an extension K of Q which is generated by countably
many elements such that for each smooth complex projective variety X over Q and for
each p ≥ 0, the dimension of Hp,p(X,K) equals hp,p(X). The above claim follows, since
hp,p(X) is invariant under conjugation.

4. Charles–Voisin’s construction

In this section we carry out a variant of a general construction method due to F.
Charles and C. Voisin [3, 18]. The proofs of Propositions 19 and 20 below will then be
the technical heart of the proof of Theorem 6 in Section 6.

We start with a smooth complex projective surface Y with b1(Y ) = 0 and automor-
phisms f, f ′ ∈ Aut(Y ). Then we pick an embedding

i ∶ Y ↪ PN

and assume that f∗ and f ′∗ fix the pullback i∗h of the hyperplane class h ∈H2(PN ,Z).
For a general choice of points u, v, w and t of PN and y of Y , the following smooth

subvarieties of Y × Y × PN are disjoint:

Z1 ∶= Y × y × u, Z2 ∶= ΓidY
× v, Z3 ∶= Γf ×w, Z4 ∶= Γf ′ × t, Z5 ∶= y × Γi,(10)

where Γ denotes the graph of a morphism. The blow-up

X ∶= BlZ1∪...∪Z5
(Y × Y × PN)

of Y ×Y ×PN along the union Z1 ∪ . . . ∪Z5 is a smooth complex projective variety. Since
b1(Y ) = 0 and dim(Y ) = 2, it follows from the description of the cohomology of blow-ups,
see Section 2.1, that the cohomology algebra of X is generated by degree two classes.

Next, let σ be any automorphism of C. Then the automorphisms f and f ′ of Y induce
automorphisms fσ and f ′σ of Y σ. Since conjugation commutes with blow-ups, we have

Xσ = BlZσ
1
∪...∪Zσ

5
(Y σ
× Y σ

× PN) ,
where we identified PN with its conjugate PNσ

, and where

Zσ
1 = Y

σ
× yσ × uσ, Zσ

2 = ΓidY σ × v
σ, Zσ

3 = Γfσ ×wσ, Zσ
4 = Γf ′σ × t

σ, Zσ
5 = y

σ
× Γiσ .

Here uσ, vσ, wσ and tσ are points on PN , yσ ∈ Y σ, and iσ ∶ Y σ ↪ PN is the inclusion,
induced by i. The pullback of the hyperplane class via iσ is denoted by iσ∗hσ.

In the next proposition, we will assume that the surface Y has the following properties.

(A1) There exist elements α,β ∈H1,1(Y,Q) with α2 = β2 = 0 and α ∪ β ≠ 0.
(A2) The sets of eigenvalues of f∗ and f ′∗ on H2(Y,C) are distinct.
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Then, for a smooth complete intersection subvariety

T ⊆X,

with dim(T ) ≥ 4, the following holds.

Proposition 19. Suppose that (A1) and (A2) hold, and let K ⊆ C be a subfield. Then
any weak isomorphism between the K-multilinear intersection forms on H2(T,K) and
H2(T σ,K) induces an isomorphism of graded K-algebras

ψ ∶H∗(Y,K) ∼

Ð→H∗(Y σ,K),
with the following two properties:

(P1) In degree two, ψ maps i∗h to a multiple of iσ∗hσ.
(P2) The isomorphism ψ commutes with the induced actions of f and f ′, i.e.

ψ ○ f∗ = (fσ)∗ ○ ψ and ψ ○ (f ′)∗ = (f ′σ)∗ ○ ψ.
Proposition 19 has an analog for isomorphisms between intersection forms onH1,1(−,K).

In order to state it, we need the following variant of (A2):

(A3) The sets of eigenvalues of f∗ and f ′∗ on H1,1(Y,C) are distinct and Aut(C)-
invariant.

Note that f∗ and f ′∗ are defined on integral cohomology and so their sets of eigenvalues
on H2(Y,C) – but not on H1,1(Y,C) – are automatically Aut(C)-invariant. For this
reason, we did not have to impose this additional condition in (A2).

Proposition 20. Suppose that (A1) and (A3) hold, and let K ⊆ C be a subfield which is
stable under complex conjugation. Then any weak isomorphism between the K-multilinear
intersection forms on H1,1(T,K) and H1,1(T σ,K) induces an isomorphism of graded K-
algebras

ψ ∶ H∗,∗(Y,K) ∼

Ð→H∗,∗(Y σ,K),
which satisfies (P1) and (P2) of Proposition 19.

Remark 21. The assumption (A1) in the above propositions is only needed if dim(T ) = 4.
In the following two subsections we prove Propositions 19 and 20 respectively; impor-

tant steps will be similar to Charles–Voisin’s arguments in [3, 18].

4.1. Proof of Proposition 19. Suppose that there is a K-linear isomorphism

φ′ ∶ H2(T,K) ∼

Ð→ H2(T σ,K),(11)

which induces a weak isomorphism between the respective multilinear intersection forms.
By the Lefschetz hyperplane theorem, the natural maps

(12) Hk(X,K) Ð→ Hk(T,K) and Hk(Xσ,K)Ð→Hk(T σ,K)
are isomorphisms for k < n and injective for k = n, where n ∶= dim(T ). Using this we will
identify classes on X and Xσ of degree ≤ n with classes on T and T σ respectively.

We denote by SH2(−,K) the subalgebra of H∗(−,K) that is generated by H2(−,K).
Its quotient by all elements of degree ≥ r+1 is denoted by SH2(−,K)≤r. Since dim(T ) ≥ 4,
we obtain from (12) canonical isomorphisms

SH2(X,K)≤4 ∼

Ð→ SH2(T,K)≤4 and SH2(Xσ,K)≤4 ∼

Ð→ SH2(T σ,K)≤4.
Claim 1. The isomorphism φ′ from (11) induces a unique isomorphism

φ ∶ SH2(X,K)≤4 ∼

Ð→ SH2(Xσ,K)≤4
of graded K-algebras.
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Proof. In degree two, we define φ to coincide with φ′ from (11). Since the respective
algebras are generated in degree two, this determines φ uniquely as homomorphism of
K-algebras; we have to check that it is well-defined though. In order to see the latter, let
α1, . . . , αr and β1, . . . , βr be elements in H2(T,K). Then we have to prove:

∑
i

αi ∪ βi = 0 ⇒ ∑
i

φ′(αi) ∪ φ′(βi) = 0.
Let us assume that ∑i αi ∪ βi = 0. Since φ′ induces a weak isomorphism between the
corresponding intersection forms, this implies

∑
i

φ′(αi) ∪ φ′(βi) ∪ η = 0 in H2n(T σ,K),
for all η ∈ SH2(T σ,K)2n−4. The class ∑i φ

′(αi)∪φ′(βi)∪η lies in SH2(T σ,K) and hence
it is a pullback of a class on X . Therefore, the above condition is equivalent to saying
that

∑
i

φ′(αi) ∪ φ′(βi) ∪ η ∪ [T σ] = 0 in H2N+8(Xσ,K),
for all η ∈ SH2(Xσ,K)2n−4. Since the cohomology ofX is generated by degree two classes,
Poincaré duality shows

∑
i

φ′(αi) ∪ φ′(βi) ∪ [T σ] = 0 in H2N−2n+12(Xσ,K).
Since [T σ] is the (N +4−n)-th power of some hyperplane class on Xσ, the Hard Lefschetz
theorem implies

∑
i

φ′(αi) ∪ φ′(βi) = 0 in H4(Xσ,K),
as we wanted. Similarly, one proves that φ′−1 induces a well-defined inverse of φ. This
finishes the proof of the claim. �

From now on, we will work with the isomorphism φ of K-algebras from Claim 1 instead
of the weak isomorphism of intersection forms φ′ from (11).

In order to describe the degree two cohomology of X , we denote by Di ⊆X the excep-
tional divisor above Zi and we denote by h the pullback of the hyperplane class of PN to
X . Then, by Lemma 9:

(13) H2(X,K) = ( 5

⊕
i=1

[Di] ⋅K)⊕H2(Y × Y,K)⊕ h ⋅K.
Similarly, we denote by Dσ

i ⊆ Xσ the conjugate of Di by σ and we denote by hσ the
pullback of the hyperplane class of PN to Xσ. This yields:

(14) H2(Xσ,K) = ( 5

⊕
i=1

[Dσ
i ] ⋅K)⊕H2(Y σ

× Y σ,K)⊕ hσ ⋅K.
Next, we pick a base point 0 ∈ Y and consider the projections

Y × Y Ð→ Y × 0 and Y × Y Ð→ 0 × Y.

Using pullbacks, this allows us to view H∗(Y × 0,K) and H∗(0 × Y,K) as subspaces of
H∗(Y × Y,K). By assumption, the first Betti number of Y vanishes and so we have a
canonical identity

H2(Y × Y,K) = H2(Y × 0,K)⊕H2(0 × Y,K),(15)

of subspaces of H2(X,K). A similar statement holds on Xσ.
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Claim 2. The isomorphism φ respects the decompositions in (13) and (14), that is:

φ(H2(Y × Y,K)) = H2(Y σ
× Y σ,K),(16)

φ([Di] ⋅K) = [Dσ
i ] ⋅K for all i = 1, . . . ,5,(17)

φ(h ⋅K) = hσ ⋅K.(18)

Proof. In order to prove (16), we define S to be the linear subspace of H2(X,K) which
is spanned by all classes whose square is zero. By the ring structure of the cohomology
of blow-ups (cf. Lemma 10), S is contained in H2(Y × Y,K). Furthermore, let S2 be
the subspace of H4(X,K) which is given by products of elements in S. By assumption
(A1), this subspace contains H4(Y × 0,K) and H4(0 × Y,K). By the ring structure of
the cohomology of X , it then follows that H2(Y × Y,K) in (13) is equal to the linear
subspace of H2(X,K) that is spanned by those classes whose square lies in S2.

By Lefschetz’s theorem on (1,1)-classes, the cohomology of Y σ also satisfies (A1).
Hence, H2(Y σ

× Y σ,K) inside SH2(Xσ,K)≤4 has a similar intrinsic description as we
have found for H2(Y × Y,K) inside SH2(X,K)≤4. This proves (16).

In order to prove (17) and (18), we need the following Lemma, also used in [3, 18]. In
order to state it, we define for i = 1, . . . ,5 the following kernels:

Fi ∶= ker (∪[Di] ∶ H2(Y × Y,K) Ð→H4(X,K)) .(19)

Using Lemma 9 and 10, we obtain the following Lemma, which is the analogue of Charles’s
Lemma 7 in [3].

Lemma 22. Using the identification (15), the kernels Fi ⊆ H2(Y × Y,K) are given as
follows:

F1 = {(0, β) ∶ β ∈H2(Y,K)} ,(20)

F2 = {(β,−β) ∶ β ∈ H2(Y,K)} ,(21)

F3 = {(f∗β,−β) ∶ β ∈H2(Y,K)} ,(22)

F4 = {(f ′∗β,−β) ∶ β ∈H2(Y,K)} ,(23)

F5 = {(β,0) ∶ β ∈H2(Y,K)} .(24)

In addition to the above lemma, we have as in [3] the following.

Lemma 23. Let α ∈ H2(Y × Y,K) be a non-zero class. Then the images of

∪α,∪h,∪[D1], . . . ,∪[D5] ∶ H2(Y × Y,K)Ð→ H4(X,K)
are in direct sum, ∪h is injective and

dim(ker∪α) < b2(Y ).(25)

Proof. Apart from (25), the assertions in Lemma 23 are immediate consequences of the
ring structure of the cohomology of blow-ups, see Lemma 9 and 10.

In order to proof (25), we write
α = α1 + α2

according to the decomposition (15). Without loss of generality, we assume α1 ≠ 0. Then,
∪α restricted to H2(0 × Y,K) is injective. Moreover, by Poincaré duality there is some
β1 ∈H2(Y × 0,K) with

β1 ∪α1 ≠ 0
Then, β1 ∪α is nontrivial and does not lie in the image of ∪α restricted to H2(0 × Y,K).
Thus, dim(im(∪α)) > b2(Y ) and (25) follows. �
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Of course, the obvious analogues of Lemma 22 and 23 hold on Xσ.
Note the following elementary fact from linear algebra. If a finite number of linear

maps l1, . . . , lr between two vector spaces have images in direct sum, then the kernel of a
linear combination ∑λili is given by intersection of all ker(li) with λi ≠ 0.

By Lemma 22, each Fi has dimension b2(Y ) and hence the above linear algebra fact
together with Lemma 23 shows that there is a permutation ρ ∈ Sym(5) with

φ ([Di] ⋅K) = [Dσ
ρ(i)] ⋅K.

We are now able to prove (18). For some real numbers a0, . . . , a5 and for some class
βσ ∈H2(Y σ

× Y σ,K) we have

φ(h) = a0hσ + 5

∑
j=1

aj[Dσ
j ] + βσ.

For i = 1, . . . ,4, the cup product h ∪ [Di] vanishes and hence

a0h
σ
∪ [Dσ

ρ(i)] +
5

∑
j=1

aj[Dσ
j ] ∪ [Dσ

ρ(i)] + βσ
∪ [Dσ

ρ(i)] = 0.
Since the cup product [Dσ

j ] ∪ [Dσ
k ] vanishes for j ≠ k, we deduce

a0h
σ
∪ [Dσ

ρ(i)] + aρ(i)[Dσ
ρ(i)]2 + βσ

∪ [Dσ
ρ(i)] = 0

for all i = 1, . . . ,4. From Lemma 9, it follows that aρ(i) vanishes for all i = 1, . . . 4.
If i is such that ρ(i) ∈ {1, . . . 4}, then

hσ ∪ [Dσ
ρ(i)] = 0 and so βσ

∪ [Dσ
ρ(i)] = 0.

By Lemma 22, the intersection ⋂j≠k Fj is zero for each k = 1, . . . ,5. Since the same holds
on Xσ, we deduce that βσ vanishes. Hence,

φ(h) = a0hσ + aρ(5)[Dσ
ρ(5)].

In H4(X,K) we have the identity

h ∪ [D5] = (i∗h) ∪ [D5] ∈H2(Y × Y ) ∪ [D5],
and similarly on Xσ. Since (16) is already proven, we deduce

a0h
σ
∪ [Dσ

ρ(5)] + aρ(5)[Dσ
ρ(5)]2 ∈H2(Y σ

× Y σ) ∪ [Dσ
ρ(5)].

This implies aρ(5) = 0. Since φ is an isomorphism, a0 ≠ 0 follows, which proves (18).
It remains to prove (17). That is, we need to see that ρ ∈ Sym(5) is the identity. This

will be achieved by a similar argument as in [3, Lem. 11].
Note that h ∪ [Di] as well as hσ ∪ [Dσ

i ] vanish for i ≠ 5 and are nontrivial for i = 5.
Since (18) is already proven, ρ(5) = 5 follows.

By assumption on Y , f∗ and f ′∗ fix i∗h. Therefore, the intersection F2 ∩ F3 ∩ F4 is
nontrivial. Conversely, F1 ∩ Fi = 0 for all i = 2,3,4. Since analogue statements hold on
Xσ, we obtain ρ(1) = 1.

Next, we use that Fi ⊕ Fj = H2(Y × Y,K) for all i = 1,5 and j = 2,3,4. This allows us
to define for 2 ≤ j, k ≤ 4 endomorphisms gj,k of F1 via the following composition:

gj,k ∶ F1 ↪ F5 ⊕ Fj

pr1
Ð→ F5 ↪ F1 ⊕Fk

pr1
Ð→ F1.

There is a canonical identification between F1 andH2(Y,K). Using Lemma 22, a straight-
forward calculation then shows:

g3,2 = f∗, g4,2 = f ′∗, g4,3 = (f ′ ○ f−1)∗, gj,j = id and gj,k = g−1k,j,(26)

for all 2 ≤ j, k ≤ 4.
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Analogue to (19), we define

F σ
i ∶= ker (∪[Dσ

i ] ∶ H2(Y σ
× Y σ,K)Ð→ H4(Xσ,K)) .

These subspaces are described by the corresponding statements of Lemma 22. Thus,
the above construction yields for any 2 ≤ j, k ≤ 4 endomorphisms gσj,k of F σ

1
. Using the

canonical identification of F σ
1
with H2(Y σ,K), these endomorphisms are given by

gσ3,2 = (fσ)∗, gσ4,2 = (f ′σ)∗, gσ4,3 = (f ′ ○ f−1)σ∗, gσj,j = id and gσj,k = (gσk,j)−1,(27)

for all 2 ≤ j, k ≤ 4.
Since φ maps [D1] to a multiple of [Dσ

1
], it follows that the restriction of φ to F1

induces a K-linear isomorphism

ψ ∶ F1 = H2(Y,K) ∼

Ð→ H2(Y σ,K) = F σ
1 .(28)

Since φ maps Fi isomorphically to F σ
ρ(i)

, the above isomorphism satisfies

ψ ○ gj,k = gσρ(j),ρ(k) ○ψ(29)

for all 2 ≤ j, k ≤ 4.
We now denote the eigenvalues of gj,k by Eig(gj,k), and similarly for gσj,k. Since f and f ′

are automorphisms, it follows from (A2) and (26) that Eig(g3,2) and Eig(g4,2) are distinct
Aut(C)-invariant sets of roots of unity. By Lemma 11 and since gj,k = g−1k,j, we deduce:

Eig(g3,2) = Eig(g2,3) = Eig(gσ3,2) = Eig(gσ2,3),
Eig(g4,2) = Eig(g2,4) = Eig(gσ4,2) = Eig(gσ2,4).

Since g4,3 = g2,3 ○ g4,2 and g3,4 = g2,4 ○ g3,2, it also follows that each of the sets Eig(g3,4),
Eig(g4,3), Eig(gσ3,4) and Eig(gσ

4,3) is distinct from Eig(g2,3) and Eig(g4,2). Therefore, (29)
implies that ρ respects the subsets {2,3} and {2,4}. Hence, ρ = id, as we wanted. This
finishes the proof of Claim 2. �

Since b1(Y ) = 0 and dim(Y ) = 2, the cohomology algebra H∗(0 ×Y,K) is a subalgebra
of SH2(X,K)≤4. Restriction of φ therefore extends the K-linear isomorphism ψ from
(28) to an isomorphism

ψ ∶ H∗(Y,K) ∼

Ð→ H∗(Y σ,K)(30)

of graded K-algebras which we denote with the same letter. Since ρ in the proof of Claim
2 is the identity, it follows from (26), (27) and (29) that ψ satisfies (P2).

In order to prove (P1), we note that

ker (∪[D5] ∶ F1 ⊕ h ⋅K Ð→ H4(X,K)) = (i∗h − h) ⋅K,
where i∗h ∈ F1 =H2(0×Y,K). A similar statement holds on Xσ. Since φ maps F1 to F σ

1
,[D5] ⋅K to [Dσ

5
] ⋅K and h ⋅K to hσ ⋅K, it follows that φ maps i∗h ⋅K to iσ∗hσ ⋅K. This

finishes the proof of Proposition 19.

4.2. Proof of Proposition 20. As in the proof of Proposition 19, we use (12) in order
to identify classes of degree ≤ n on T with classes on X . Further, SH1,1(−,K) denotes
the subalgebra of H∗(−,K) that is generated by H1,1(−,K); its quotient by elements of
degree ≥ r + 1 is denoted by SH1,1(−,K)≤r .

Let us now suppose that there is a K-linear isomorphism

φ′ ∶ H1,1(T,K) ∼

Ð→ H1,1(T σ,K),(31)

which induces a weak isomorphism between the respective intersection forms. Then we
have the following analogue of Claim 1 in the proof of Proposition 19:
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Claim 3. The isomorphism from (11) induces a unique isomorphism

φ ∶ SH1,1(X,K)≤4 ∼

Ð→ SH1,1(Xσ,K)≤4
of graded K-algebras.

Proof. As in the proof of Claim 1, this claim reduces to showing the following: Suppose
we have K-rational (1,1)-classes α1, . . . , αr and β1, . . . , βr on T such that

∑
i

φ′(αi) ∪ φ′(βi) ∪ η ∪ [T σ] = 0 in H2N+8(Xσ,K),(32)

for all η ∈ SH1,1(Xσ,K)2n−4. Then, ∑i φ
′(αi) ∪ φ′(βi) vanishes.

In order to prove the latter, let ω be the hyperplane class on Xσ with [T σ] = ωN+4−n.
With respect to this Kähler class we obtain a decomposition into primitive pieces:

∑
i

φ′(αi) ∪ φ′(βi) = δ0 ⋅ ω2
+ δ1 ∪ ω + δ2,

where δj ∈Hj,j(X,C)pr. Since ω is an integral class, it follows that δj lies in Hj,j(X,K)pr .
The above identity then shows δ2 ∈ SH1,1(X,K).

At this point, we use the assumption in Proposition 20 which ensures that K is stable
under complex conjugation. Indeed, this assumption allows us to choose for j = 0,1,2 the
following K-rational classes:

ηj ∶= δj ⋅ ωn−2−j ∈ SH1,1(Xσ,K)2n−4.
For j = 0,1,2, we put η = ηj in (32). Then, the Hodge–Riemann bilinear relations yield
δj = 0 for j = 0,1,2. This finishes the proof of Claim 3. �

Exploiting the isomorphism of K-algebras φ from Claim 3, the proof of Proposition
20 is now obtained by changing the notation in the corresponding part of the proof of
Proposition 19. This finishes the proof of Proposition 20.

5. Some simply connected surfaces with special automorphisms

In this section we construct for any integer g ≥ 1 a simply connected surface Yg of
geometric genus g and with special automorphisms. In the proof of Theorem 6 in Section
6, we will then apply the construction from Section 4 to these surfaces. In Section 7, we
will use the examples from Section 6 in order to prove Theorem 7. It is only the proof of
the latter theorem where it will become important that b2(Yg) tends to infinity if g does.

5.1. Hyperelliptic curves with special automorphisms. For g ≥ 1, let Cg denote
the hyperelliptic curve with affine equation y2 = x2g+1 − 1, see [16]. The complement of
this affine piece in Cg is a single point which we denote by ∞. For a primitive (2g+1)-th
root of unity ζ2g+1, the maps

(x, y)↦ (ζ2g+1 ⋅ x, y) and (x, y)↦ (x,−y)
induce automorphisms of Cg which we denote by ηg and ι respectively. Then, ι has the(2g + 2) fixed points

(1,0), (ζ2g+1,0), . . . , (ζ2g2g+1,0) and ∞.
The automorphism ηg fixes ∞ and performs a cyclic permutation on the remaining fixed

points. The corresponding permutation matrix has eigenvalues 1, ζ2g+1, . . . , ζ
2g
2g+1.

The holomorphic 1-forms
xi−1

y
⋅ dx,
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where i = 1, . . . , g, form a basis of H1,0(Cg). Therefore, η∗g has eigenvalues ζ2g+1, . . . , ζ
g
2g+1

on H1,0(Cg). Moreover, ι acts on H1(Cg,Z) by multiplication with −1.

5.2. The elliptic curve Ei. Let Ei be the elliptic curve C/(Z⊕iZ), cf. Section 2.3. Mul-
tiplication by i and −1 induces automorphisms ηi and ι of Ei respectively. The involution
ι has four fixed points. The action of ηi fixes two of those fixed points and interchanges
the remaining two. On H1,0(Ei), the automorphisms ι and ηi act by multiplication with
−1 and i respectively.

5.3. Products modulo the diagonal involution. For g ≥ 1, we consider the product
Cg ×Ei, where Cg and Ei are defined above. On this product, the involution ι acts via

the diagonal. This action has 8g + 8 fixed points. Let C̃g ×Ei be the blow-up of these
fixed points. Then,

Yg ∶= C̃g ×Ei/ι(33)

is a smooth surface. For instance, Y1 =K3(C1 ×Ei) is a Kummer K3 surface, see Section
2.4.

Lemma 24. The surface Yg is simply connected.

Proof. It suffices to prove that the normal surface

Y ′g ∶= (Cg ×Ei)/ι
is simply connected. Projection to the second coordinate induces a map

π ∶ Y ′g Ð→ P1.

Let U ⊆ P1 be the complement of the 4 branch points of Ei → P1. Then, restriction of π
to V ∶= π−1(U) yields a fiber bundle π∣V ∶ V → U with fiber Cg. Since U is homotopic to
a wedge of 3 circles, the long exact homotopy sequence yields a short exact sequence

0Ð→ π1(Cg)Ð→ π1(V )Ð→ π1(U)Ð→ 0 .

Since π has a section, this sequence splits. Since V is the complement of a divisor in Y ′g ,
the natural map π1(V ) → π1(Y ′g ) is surjective, see [9, Prop. 2.10]. Therefore, the above
split exact sequence shows that π1(Y ′g ) is generated by the fundamental group of a general
fiber together with the image of the fundamental group of a section of π. The latter is
clearly trivial. Furthermore, the inclusion of a general fiber Cg ↪ Y ′g is homotopic to the
inclusion of a special fiber Cg/ι ≅ P1, which is simply connected. It follows that the image
of π1(Cg)→ π1(Y ′g ) is trivial. This proves the lemma. �

Definition 25. Let Yg be as in (33). Then we define the automorphisms f and f ′ of Yg
to be induced by ηg × id and id×ηi respectively.

Lemma 26. The surface Yg with automorphisms f and f ′ as above satisfies (A1)–(A3).

Proof. In order to describe the second cohomology of Yg, we denote the exceptional P1-
curves of Yg by D1, . . . ,D8g+8. Then, for any field K:

H2(Yg,K) =H2(Cg ×Ei,K)⊕ (8g+8⊕
i=1

[Di] ⋅K) .(34)

It follows from the discussion in Section 5.1 (resp. 5.2) that the action of f (resp. f ′) on
H2(Yg,C) has eigenvalues 1, ζ2g+1, . . . , ζ2g2g+1 (resp. ±1,±i). Moreover, the same statement
holds for their actions on H1,1(Yg,C). This proves (A2) and (A3).

By (34), nontrivial rational (1,1)-classes on Cg and Ei induce classes α and β in
H1,1(Yg,Q) which satisfy (A1). This finishes the prove of the lemma. �
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6. Multilinear intersection forms on H2(−,R) and H1,1(−C)
Here we prove Theorem 6. This will be achieved by Lemma 27 and Theorem 28 below,

where more precise statements are proven.
Let n ≥ 4 and g ≥ 1. Moreover, let Yg be the simply connected surface with automor-

phisms f and f ′ from Definition 25. We pick an ample divisor on Yg which is fixed by f
and f ′. A sufficiently large multiple of this divisor gives an embedding

i ∶ Yg ↪ PN

with n ≤ N + 4 such that the actions of f and f ′ fix the pullback of the hyperplane class.
Next, let

Xg ∶= BlZ1∪...∪Z5
(Yg × Yg × PN)

be the blow-up of Yg × Yg × PN along Z1 ∪ . . . ∪ Z5, where Zi is defined in (10). Since
n ≤ N + 4, Xg contains a smooth n-dimensional complete intersection subvariety

Tg,n ⊆ Xg.(35)

Since Yg, f and f ′ are defined over Q[ζ8g+4] = Q[ζ2g+1, i], so is Xg and we may assume
that the same holds true for Tg,n.

Lemma 27. Let n ≥ 2, then the variety Tg,n from (35), as well as each of its conjugates,
is simply connected.

Proof. Since Yg is simply connected by Lemma 24, so is Xg. By the Lefschetz hyperplane
theorem, Tg,n is then simply connected for n ≥ 2.

Since the curves Cg and Ei in the definition of Yg are defined over Z, it follows that Yg is
isomorphic to any conjugate Y σ

g . Thus, Y
σ
g is simply connected and the above reasoning

shows that the same holds true for T σ
g,n, as long as n ≥ 2. This proves the lemma. �

The next theorem, which implies Theorem 6 from the introduction, shows that cer-
tain automorphisms σ ∈ Aut(C) which act nontrivially on Q[ζ8g+4] change the analytic
topology as well as the complex Hodge structure of Tg,n.

Theorem 28. Let g ≥ 1 and n ≥ 4 be integers and let σ ∈ Aut(C) with σ(i) = i and
σ(ζ2g+1) ≠ ζ2g+1 or vice versa. Then, the R-multilinear intersection forms on H2(Tg,n,R)
and H2(T σ

g,n,R), as well as the C-multilinear intersection forms on H1,1(Tg,n,C) and
H1,1(T σ

g,n,C), are not weakly isomorphic.

Proof. For ease of notation, we assume σ(i) = i and σ(ζ2g+1) = ζ−12g+1. The general case is
proven similarly.

Since the curves Cg and Ei from Sections 5.1 and 5.2 are defined over Z, it follows that
the isomorphism type of Yg is invariant under any automorphism of C. Hence, we may
identify Yg with Y σ

g . Under this identification, f ′σ = f ′ since i is fixed by σ. Moreover,
fσ = f−1, since it is induced by the automorphism

η−1g × id ∈ Aut(Cg ×Ei).
Suppose that the R-multilinear intersection forms on H2(Tg,n,R) and H2(T σ

g,n,R) are
weakly isomorphic. By Lemma 26, Proposition 19 applies and we obtain an R-algebra
automorphism of H∗(Yg,R) with properties (P1) and (P2). By (P1),

ψ(i∗h) = b ⋅ i∗h
for some b ∈ R×. Since the square of i∗h generates H4(Yg,R), it follows that in degree 4,
the automorphism ψ is given by multiplication with a positive real number.
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We extend ψ now C-linearly and obtain an automorphism

ψ ∶H∗(Yg,C) ∼

Ð→ H∗(Yg,C),
which we denote by the same letter and which satisfies

ψ ○ f = f−1 ○ψ and ψ ○ f ′ = f ′ ○ ψ.(36)

Let us now pick nontrivial classes ω ∈ H1,0(Cg) and ω′ ∈ H1,0(Ei) with η∗gω = ζ2g+1 ⋅ ω
and η∗i ω

′ = i ⋅ ω′. Then, ω ∪ ω′ lies in H1,1(Yg) and we consider ψ(ω ∪ ω′) in H2(Yg,C).
By (36), f−1 and f ′ act on this class by multiplication with ζ2g+1 and −i respectively. We
claim that the only class in H2(Yg,C) with this property is ω ∪ ω′ and so

ψ(ω ∪ ω′) = λ ⋅ ω ∪ ω′(37)

for some non-zero λ ∈ C. Indeed, since ηi interchanges two of the fixed points of ι on
Ei and fixes the remaining two, f ′∗ has eigenvalues ±1 on the subspace of exceptional
divisors in (34). Therefore, ψ(ω ∪ ω′) needs to be contained in H2(Cg ×Ei,C). On this
subspace, f−1∗ and f ′∗ are given by (η−1g × id)∗ and (id×ηi)∗ respectively. Our claim
follows by the explicit description of ηg and ηi in Sections 5.1 and 5.2.

Together with its complex conjugate, equation (37) shows:

ψ(ω ∪ ω′ ∪ ω ∪ ω′) = −∣λ∣2 ⋅ ω ∪ ω′ ∪ ω ∪ ω′.
Since the above degree four class generates H4(Yg,C), we deduce that ψ is given in degree
four by multiplication with −∣λ∣2. As we have seen earlier, this number should be positive,
which is a contradiction. This finishes the proof of the first assertion in Theorem 28.

For the proof of the second assertion, assume that the C-multilinear intersection forms
on H1,1(Tg,n,C) and H1,1(T σ

g,n,C) are weakly isomorphic. By Lemma 26 and Proposition
19, this yields an automorphism ψ of H1,1(Yg,C) which satisfies (36). Then, f−1 and f ′

act on ψ(ω∪ω′) by multiplication with ζ2g+1 and −i respectively. This is a contradiction,
since H1,1(Yg,C) does not contain such a class. This finishes the proof of the theorem. �

Recall from (35) that Tg,n is defined over the cyclotomic number field Q[ζ8g+4]. This
number field contains the totally real subfield

Kg ∶= Q[ζ8g+4 + ζ−18g+4].
For instance, K1 = Q[√3]. From Theorem 28, we deduce the following

Corollary 29. Let Kg ⊆K ⊆ C be fields, and let σ ∈ Aut(C) with σ(i) = i and σ(ζ2g+1) ≠
ζ2g+1 or vice versa. Then the intersection forms on the equidimensional vector spaces
H1,1(Tg,n,K) and H1,1(T σ

g,n,K) are not weakly isomorphic.

Proof. By Theorem 28 it suffices to prove that the (1,1)-classes on Tg,n are spanned
by Kg-rational ones. Modulo divisor classes, H1,1(Tg,n) is given by H1,1(Yg)⊕H1,1(Yg).
Furthermore, modulo divisors, H1,1(Yg) is given by the ι-invariant classes on Ei×Cg. The
complex Hodge structure of Ei and Cg is generated by Q[i]- and Q[ζ2g+1]-rational classes
respectively, see [16] for the latter. We may now arrange that the induced generators
of H1,1(Yg) are invariant under complex conjugation and thus lie in the subspace of Kg-
rational classes. This concludes the proof of the corollary. �

Remark 30. Our types of arguments are consistent with Conjecture 2 in the sense that
they cannot detect conjugate varieties with non-isomorphic algebras of Q-rational (p, p)-
classes. This is because the essential ingredient in the proof of Theorem 28 is a variety
Y with an automorphism whose action on Hp,p(Y,K) has a set of eigenvalues which is
not Aut(C)-invariant. (In our arguments, this role is played by the surface Yg with the
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automorphism f ○ f ′.) For K = Q, the characteristic polynomial of such an action has
rational coefficients and so the above situation cannot happen.

Remark 31. Using Freedman’s classification of simply connected topological 4-manifolds,
one can prove that simply connected conjugated smooth complex projective surfaces are
always homeomorphic. On the other hand, Theorem 6 shows that in any dimension at
least 4, there are simply connected conjugate smooth complex projective varieties which
are not homeomorphic. The case of dimension three remains open.

7. Non-homeomorphic conjugate varieties in each birational equivalence

class

In this section we prove Theorem 7. For this purpose, let Z be a given smooth complex
projective variety of dimension ≥ 10. Next, let Tg,4 be the four-dimensional smooth
complex projective variety, defined in (35). By (13) and (34), the second Betti number
of Tg,4 equals 24g + 26. We may therefore choose an integer g ≥ 1 with

b2(Tg,4) > b4(Z) + 4.(38)

From some projective space, Z is cut out by finitely many homogeneous polynomials.
We denote the field extension of Q which is generated by the coefficients of these poly-
nomials by L. Since L is finitely generated, and after possibly replacing g by a suitable
larger integer, we may pick an automorphism σ of C which fixes L and i but not ζ2g+1.

Since Tg,4 has dimension 4, it can be embedded into P9. The assumption dim(Z) ≥ 10
therefore ensures that we may fix an embedding of Tg,4 into the exceptional divisor of the

blow-up Ẑ of Z in a point p ∈ Z. We then define the following element in the birational
equivalence class of Z:

W ∶= BlTg,4
(Ẑ).(39)

Since conjugation commutes with blow-ups, the σ-conjugate of W is given by

W σ = BlTσ
g,4
(Ẑσ),(40)

where Ẑσ is the blow-up of Zσ in a point pσ ∈ Zσ and T σ
g,4 is embedded in the exceptional

divisor of this blow-up. Since σ fixes L, we have Zσ ≅ Z. Therefore, W and W σ are both
birational to Z. Hence, Theorem 7 follows from the following result.

Theorem 32. Let W and σ be as above. Then the graded even-degree real cohomology
algebras of W and W σ are non-isomorphic.

Proof. For a contradiction, let us assume that there is an isomorphism

γ ∶ H2∗(W,R) Ð→H2∗(W σ,R)
of graded R-algebras. Using pullbacks, we regardH2∗(Z,R) ⊆ H2∗(Ẑ,R) andH2∗(Zσ,R) ⊆
H2∗(Ẑσ,R) as subalgebras of H2∗(W,R) and H2∗(W σ,R) respectively. By Lemma 9,

H2(W,R) = H2(Z,R)⊕ [H] ⋅R⊕ [D] ⋅R,(41)

H2(W σ,R) = H2(Zσ,R)⊕ [Hσ] ⋅R⊕ [Dσ] ⋅R,(42)

where H ⊂ Ẑ and Hσ ⊂ Ẑσ are the exceptional divisors above the blown-up points, and

j ∶D ↪W and jσ ∶Dσ ↪W σ

are the exceptional divisors of the blow-ups along Tg,4 and T σ
g,4 respectively.
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Any cohomology class of positive degree on Z is Poincaré dual to a homology class which
does not meet the center of the blow-up Ẑ → Z. This shows that for any η ∈ Hk(Z,R),
with k ≥ 1, and for any α ∈H∗(D,R),

η ∪ [H] = 0 and η ∪ j∗(α) = 0.
A similar statement holds on W σ and we will use these properties tacitly.

The restriction of −[H] to H ⊂ Ẑ is given by c1(OH(1)); its restriction to Tg,4 is
therefore ample. By Lemma 9, we have

b4(W ) = b4(Z) + b2(Tg,4) + 2.
It then follows from (38) that the second primitive Betti number of Tg,4 is bigger than
b4(W )/2. Since Tg,4 is four-dimensional, and since −[H] restricts to an ample class
on Tg,4, it follows that H2(Z,R) ⊕ [H] ⋅ R inside H2(W,R) is given by those classes
whose multiplication on H4(W,R) has kernel of dimension bigger than b4(W )/2. A
similar statement holds for H2(Zσ,R)⊕[Hσ] ⋅R inside H2(W σ,R) and so γ needs to take
H2(Z,R)⊕ [H] ⋅R to H2(Zσ,R)⊕ [Hσ] ⋅R. Since γ is an isomorphism, it follows that

γ([D]) = ασ
+ a ⋅ [Hσ] + b ⋅ [Dσ](43)

holds for some ασ ∈ H2(Zσ,R) and b ≠ 0.
Cup product with [D] on H2(W,R) has two-dimensional image, spanned by [D]∪ [H]

and [D]2. For any βσ ∈ H2(Zσ,R), the following classes are therefore linearly dependent:

γ([D]) ∪ βσ, γ([D]) ∪ [Hσ] and γ([D]) ∪ [Dσ].
Since b ≠ 0, this is only possible if ασ

∪ βσ = 0 for all βσ. Hence, ασ = 0.
Since ασ = 0, it follows from [D] ∪ [H] ≠ 0 that γ([H]) ∈ H2(Zσ,R)⊕ [Hσ] ⋅R cannot

be contained in H2(Zσ,R) and hence

γ([H]) = α̃σ
+ c ⋅ [Hσ]

for some α̃σ ∈ H2(Zσ,R) and c ≠ 0. As cup product with [H] on H2(W,R) has two-
dimensional image, the above argument which showed ασ = 0, also implies α̃σ = 0. Thus,
γ takes [H] ⋅R to [Hσ] ⋅R. It follows that γ takes H2(Z,R) to H2(Zσ,R), since these
are the kernels of cup product with [H] and [Hσ] respectively.

Since Tg,4 is four-dimensional, we have [H]5 ∪ [D] = 0. Then application of γ yields:

c5 ⋅ [Hσ]5 ∪ (a ⋅ [Hσ] + b ⋅ [Dσ]) = 0.
Since [Hσ]5 ∪ [Dσ] vanishes, whereas [Hσ]6 is nontrivial, it follows from c ≠ 0 that
a vanishes. Thus, γ maps [D] ⋅ R to [Dσ] ⋅ R and we conclude that γ respects the
decompositions (41) and (42).

The latter implies that γ induces an R-linear isomorphism between the ideals ([D]) ⊆
H2∗(W,R) and ([Dσ]) ⊆ H2∗(W σ,R). In order to state the key-property of this iso-
morphism, we identify cohomology classes on Tg,4 and T σ

g,4 with their pullbacks to the
exceptional divisors D and Dσ respectively.

Lemma 33. For every α ∈H2k(Tg,4,R), there exists a unique ασ ∈H2k(T σ
g,4,R) such that

γ([D] ∪ j∗(α)) = [Dσ] ∪ jσ∗ (ασ).
Proof. For 0 ≤ k ≤ 2, let us fix some α ∈H2k(Tg,4,R) and note that

H2k+2(W σ,R) = H2k+2(Zσ,R)⊕ [Hσ]k+1 ⋅R⊕ jσ∗ (H2k(Dσ,R)).
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Since γ maps [D] to a multiple of [Dσ], and since products of [Dσ] with positive-degree
classes on Zσ always vanish, the above identity shows

γ([D] ∪ j∗(α)) = [Dσ] ∪ jσ∗ (ασ) + e ⋅ [Dσ] ∪ [Hσ]k+1 ,
for some ασ ∈ H2k(Dσ,R) and e ∈ R. The restrictions of −[H] to Tg,4 and −[Hσ] to T σ

g,4

are ample classes ω ∈H2(Tg,4,R) and ωσ ∈H2(T σ
g,4,R) respectively.

Now suppose that α in the above formula is primitive with respect to ω. Then the cup
product of the above class with γ([H])5−2k vanishes. Since γ([H]) is a multiple of [Hσ],

[Dσ] ∪ jσ∗ (ασ
∪ (ωσ)5−2k) + e ⋅ (−1)k+1jσ∗ ((ωσ)6−k) = 0.

This implies firstly that e = 0 and secondly that ασ
∪ (ωσ)5−2k vanishes as class on Dσ.

By the Hard Lefschetz Theorem, the latter already implies that ασ, which a priori is only
a class on Dσ, is in fact a primitive class on T σ

g,4.
For arbitrary α ∈ Hk(Tg,4,R), the existence of ασ now follows – since γ takes [H] ⋅R to[Hσ] ⋅R – from the Lefschetz decompositions with respect to ω and ωσ; the uniqueness

is immediate from Lemma 9. This concludes Lemma 33. �

By Lemma 33, we are now able to define an R-linear map

φ ∶ H2∗(Tg,4,R)Ð→H2∗(T σ
g,4,R),

by requiring

γ([D] ∪ j∗(α)) = b ⋅ γ([D]) ∪ jσ∗ (φ(α))
for all α ∈H∗(Tg,4,R), where b is, as above, the nontrivial constant with γ([D]) = b ⋅[Dσ].
Applying the same argument to γ−1, we obtain an R-linear inverse of φ.

By Theorem 28, φ cannot be an isomorphism of algebras and so we will obtain a
contradiction as soon as we have seen that φ respects the product structures. For this
purpose, let α and β denote even-degree cohomology classes on Tg,4. Then, by Lemma 9
and 10, it suffices to prove

b ⋅ γ([D])3 ∪ jσ∗ (φ(α ∪ β)) = b ⋅ γ([D])3 ∪ jσ∗ (φ(α) ∪ φ(β)).
Using (3), the latter is seen as follows:

b ⋅ γ([D])3 ∪ jσ∗ (φ(α ∪ β)) = γ([D])2 ∪ γ([D] ∪ j∗(α ∪ β))
= γ([D]2 ∪ j∗(1) ∪ j∗(α ∪ β))
= γ([D] ∪ j∗(α) ∪ [D] ∪ j∗(β))
= b2 ⋅ γ([D])2 ∪ jσ∗ (φ(α)) ∪ jσ∗(φ(β))
= b2 ⋅ γ([D])2 ∪ jσ∗ (1) ∪ jσ∗ (φ(α) ∪ φ(β))
= b ⋅ γ([D])3 ∪ jσ∗(φ(α) ∪ φ(β)).

This concludes the proof of Theorem 32. �

8. Examples with non-isotrivial deformations

In this section we prove that the examples in Theorem 7 may be chosen to have non-
isotrivial deformations. Here, a family (Xs)s∈S of varieties over a connected base S is
called non-isotrivial if there are two points s0, s1 ∈ S with Xs0 ≇ Xs1. The idea of the
proof is to vary the blown-up point p ∈ Z in the construction of Section 7. In order to
state our result, we write X ∼ Y if two varieties X and Y are birationally equivalent.
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Theorem 34. Let Z be a smooth complex projective variety of dimension ≥ 10. Then
there is a non-isotrivial family (Wp)p∈U of smooth complex projective varieties Wp over
some smooth affine variety U , and an automorphism σ ∈ Aut(C) such that for all p ∈ U :

Wp ∼ Z ∼W σ
p and H2∗(Wp,R) ≇ H2∗(W σ

p ,R).
Proof. As in Section 7, we may pick some σ ∈ Aut(C) and some g ≥ 1 such that

Z ≅ Zσ, σ(i) = i, σ(ζ2g+1) ≠ ζ2g+1 and b2(Tg,4) > b2(Z) + 4.
Next, let U ⊆ Z be a Zariski open and dense subset with trivial tangent bundle. Let

∆ ⊆ U × Z be the graph of the inclusion U ↪ Z and consider the blow-up Bl∆(U × Z).
The normal bundle of ∆ in U × Z is trivial, since U has trivial tangent bundle. Hence,
the exceptional divisor of Bl∆(U × Z) is isomorphic to ∆ × Pn−1. Since n ≥ 10, we may
fix an embedding of ∆ × Tg,4 into this exceptional divisor and consider the blow-up

Bl∆×Tg,4
(Bl∆(U ×Z)).

Projection to the first coordinate then gives a family

(Wp)p∈U
of smooth complex projective varieties, birational to Z. Then, for all p ∈ U , the conjugate
varieties Wp and W σ

p are as in (39) and (40) respectively. Thus, Wp ∼ Z and W σ
p ∼ Zσ.

By Theorem 32 and since Z ≅ Zσ, we obtain for all p ∈ U :

Wp ∼ Z ∼W σ
p and H2∗(Wp,R) ≇H2∗(W σ

p ,R).
To conclude Theorem 34, it therefore remains to prove

Claim 4. After replacing Z by another representative of its birational equivalence class,
and for a suitable choice of U , the family (Wp)p∈U is non-isotrivial.

Let us prove this claim. By the arguments of Theorem 32, one sees that any iso-
morphism g ∶ Wp → Wq induces an isomorphism g∗ on cohomology which respects the
decomposition (41). This implies that g respects the exceptional divisors and thus in-
duces an isomorphism of Z which takes p to q.

The above argument, applied to p = q, shows that Wp admits no automorphism which
takes points from the exceptional divisors to Z −{p}. In particular, Wp contains a Zariski
open subset with trivial tangent bundle and with two points that cannot be interchanged
by an automorphism of Wp. Since Wp is birational to Z, we may therefore, after possibly
replacing Z by another representative of its birational equivalence class, assume that U
already contains points p and q which cannot be interchanged by any automorphism of
Z. Then, as we have seen, Wp and Wq are not isomorphic. This finishes the proof of
Claim 4 and so concludes Theorem 34. �

Remark 35. In contrast to Theorem 34, most of the previously known examples of non-
homeomorphic pairs of conjugate varieties tend to be rather rigid and do in general not
occur in non-isotrivial families. This was already observed by D. Reed in [11]. However, it
is often possible to obtain non-isotrivial families as products of previously known examples
with non-rigid varieties, e.g. one could take products of Serre’s examples [13] with a
smooth hypersurface of degree at least 4 in P3, since the latter are simply connected and
come in non-isotrivial families.
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