
ALGORITHMS FOR MUMFORD CURVES

RALPH MORRISON AND QINGCHUN REN

Abstract. Mumford showed that Schottky subgroups of PGL(2,K) give rise to certain
curves, now called Mumford curves, over a non-Archimedean field K. Such curves are founda-
tional to subjects dealing with non-Archimedean varieties, including Berkovich theory and
tropical geometry. We develop and implement numerical algorithms for Mumford curves
over the field of p-adic numbers. A crucial and difficult step is finding a good set of gener-
ators for a Schottky group, a problem solved in this paper. This result allows us to design
and implement algorithms for tasks such as: approximating the period matrices of the Ja-
cobians of Mumford curves; computing the Berkovich skeleta of their analytifications; and
approximating points in canonical embeddings. We also discuss specific methods and future
work for hyperelliptic Mumford curves.

1. Introduction

Curves over non-Archimedean fields are of fundamental importance to algebraic geometry
and number theory. Mumford curves are a family of such curves, and are interesting from
both a theoretical and computational perspective. In non-Archimedean geometry, they are
quotients of projective space by Schottky groups. In tropical geometry, which looks at the
images in Rn of curves under coordinate-wise valuation, these are balanced graphs with the
maximal number of cycles. For instance, the tropicalization of an elliptic Mumford curve
can be realized as a plane cubic in honeycomb form [CS].

LetK be an algebraically closed field complete with respect to a nontrivial non-Archimedean
valuation. Unless otherwise stated, | · | will denote a choice of norm on K coming from this
valuation. Let R = {x ∈ K|val(x) ≥ 0} be the valuation ring of K. This is a local ring
with unique maximal ideal M = {x ∈ K|val(x) > 0}. Let k = R/M denote the residue field
of K. We are most interested in the field of p-adic numbers Qp, which unfortunately is not
algebraically closed. (For this case, R = Zp, the ring of p-adic integers, and k = Fp, the
field with p elements.) Therefore for theoretical purposes we will often consider K = Cp,
the complete algebraic closure of Qp. (In this case R is much larger, and k is the algebraic
closure of Fp.) In most of this paper, choosing elements of Cp that happen to be elements
of Qp as inputs for algorithms yields an output once again in Qp. This “Qp in, Qp out”
property means we may take K to be Qp for our algorithmic purposes, while still considering
K = Cp when more convenient for the purposes of theory. Much of the theory presented
here works for other non-Archimedean fields, such as the field of Puiseux series C{{t}}.

We recall some standard definitions and notation for p-adic numbers; for further back-
ground on the p-adics, see [Ho]. For a prime p, the p-adic valuation valp : Q∗ → Z is defined
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by valp
(
pv m

n

)
= v, where m and n are not divisible by p. The usual p-adic norm | · |p on Q

is defined for a ∈ Q∗ by |a|p = 1
pvalp(a)

and for 0 by |0|p = 0. This means that large powers

of p are small in absolute value, and small powers of p are large in absolute value. We will
usually omit the subscript p from both | · |p and valp.

The completion of Q with respect to the p-adic norm is denoted Qp, and is called the field
of p-adic numbers. Each nonzero element b of Qp can be written uniquely as

b =
∞∑
n=v

anp
n,

where v ∈ Z, av 6= 0 and an ∈ {0, 1, . . . , p − 1} for all n. The p-adic valuation and norm
extend to this field, and such a sum will have val(b) = v and |b| = 1

pv
. In analog to decimal

expansions, we will sometimes write

b = . . . aNaN−1 . . . a3a2a1a0.a−1a−2 . . . av,

where the expression trails to the left since higher powers of p are smaller in p-adic absolute
value. We may approximate b ∈ Qp by a finite sum

b ≈
N∑
n=v

anp
n,

which will give an error of size at most 1
pN+1 .

Consider the group PGL(2, K), which acts on P1(K) by treating elements as column
vectors. That is, a matrix acts on the point (a : b) ∈ P1(K) by acting on the vector ( ab )
on the left. Viewed on an affine patch, the elements of this group act as fractional linear
transformations. We are interested in the action of certain subgroups of PGL(2, K) called
Schottky groups, because a Schottky group minimally generated by g ≥ 2 elements will give
rise to a curve of genus g.

Definition 1.1. A 2 × 2 matrix is hyperbolic if it has two eigenvalues with different valu-
ations. A Schottky group Γ ≤ PGL(2, K) is a finitely generated subgroup such that every
non-identity element is hyperbolic.

There are many equivalent definitions of Schottky groups, including the following useful
characterization.

Proposition 1.2. A subgroup of PGL(2, K) is Schottky if and only if it is free, discrete,
and finitely generated. If the generators are elements of Q2×2

p , we may replace “free” with
“torsion free.”

Let Γ be a Schottky group minimally generated by γ1, . . . , γg. The above proposition
implies that each element γ ∈ Γ can be written as a unique shortest product h1h2 · · ·hk,
where each hi ∈ {γ1, . . . , γg, γ

−1
1 , . . . , γ−1

g }. This product is called the reduced word for γ.
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Let Σ be the set of points in P1(K) that are fixed points of elements of Γ or limit points
of the fixed points. The group Γ acts nicely on Ω := P1(K) \ Σ; for this reason we will
sometimes refer to Σ as the set of bad points for Γ.

Theorem 1.3 (Mumford, [Mu1]). Let Γ = 〈γ1, . . . , γg〉 and Ω be as above. Then Ω/Γ is
analytically isomorphic to a curve of genus g. We call such a curve a Mumford curve.

In a companion paper to [Mu1] (see [Mu2]), Mumford also considered abelian varieties
over non-Archimedean fields. He showed that these could be represented as (K∗)g/Q, where
Q ∈ (K∗)g×g is called a period matrix for the abelian variety, and represents the multiplicative
subgroup generated by its columns.

Since their initial appearance in the 1970s, a rich theory behind Mumford curves has been
developed, largely in the 1980s in such works as [GP]. However, prior to the work in this
paper there have been few numerical algorithms for working with them (an exception being
a treatment of hyperelliptic Mumford curves, mostly genus 2, in [Ka] from 2007). We have
designed and implemented algorithms that accomplish Mumford curve-based tasks over Qp

previously absent from the realm of computation, and have made many seemingly theoretical
and opaque objects hands-on and tractable.

After discussing in Section 2 a technical hypothesis (“good position”) for the input for
our algorithms, we present our main algorithms in Section 3. They accomplish the following
tasks, where we denote Ω/Γ by C:

• Given a Schottky group Γ, find a period matrix Q for the abelian variety Jac(C)
(Algorithm 3.3).
• Given a Schottky group Γ, find a triple (G, `, h), where

– G is a graph,
– ` is a length function on G such that the metric graph (G, `) is the abstract

tropical curve which is a skeleton of Can (the analytification of C), and
– h is a natural equivalence h : Rg → G from the rose graph on g petals;

this data specifies a point in the tropical Teichmüller space described in [CMV]
(Algorithm 3.9).
• Given a Schottky group Γ, find points in a canonical embedding of the curve C into
Pg−1 (Algorithm 3.13).

In Section 4, we present an algorithm to achieve the “good position” hypothesis that allows
the other algorithms to run efficiently, which in doing so verifies that the input group is
Schottky (or proves that the group is not Schottky). This is the most important result of
this paper, as the algorithms in Section 3 rely heavily upon it.

We take advantage of a property that makes non-Archimedean valued fields like Qp special:
|x+y| ≤ max{|x|, |y|}. As a result, the error does not accumulate in the computation. Thus
we avoid a dangerous hazard present in doing numerical computation over R or C. The
computational problems are hard in nature. Efficient computation for similar problems is not
common in the literature even for genus 2 case. Our algorithms are capable of solving genus 2
and some genus 3 examples on a laptop in reasonable time (several minutes). However, they
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are less efficient for larger cases. The reason is that the running time grows exponentially
as the requirement on the precision of the output (in terms of the number of digits) grows.
One of the future goals is to find a way to reduce the running time for the algorithms.

Other future goals for Mumford curve algorithms (detailed in Section 5) include natural
reversals of the algorithms in Section 3. We are also interested in a particular family of
Schottky groups called Whittaker groups, defined in Subsection 5.2. These are the Schottky
groups that give rise to hyperelliptic Mumford curves. Some computations for genus 2 curves
arising from Whittaker groups were done in [Ka], including computation of Jacobians and
finding group representations from ramification points. Two desirable algorithms in this area
include:

• Given a Whittaker group W , find an affine equation for Ω/W .
• Given a totally split hyperelliptic curve C, find a Whittaker group W such that
C ∼= Ω/W .

The first can be accomplished if a particular presentation of W is available, and a brute
force algorithm in [Ka] can compute the second if the ramification points of C are in a nice
position. Future work removing these requirements and improving efficiency would make
hyperelliptic Mumford curves very easy to work with computationally.

Acknowledgements. We thank our advisor Bernd Sturmfels for guiding us through this
project. We also thank Matthew Baker, Melody Chan, Diane Maclagan and Thomas Scanlon
for helpful discussions and communications. Both authors were supported by the National
Science Foundation through grant DMS-0968882. Ralph Morrison was also supported in
part by UC Berkeley, and in part by the Max Planck Institute for Mathematics in Bonn.

Supplementary Material. We made extensive use of the software package sage [Sage].
Our supplementary files can be found at http://math.berkeley.edu/~ralph42/mumford_
curves_supp.html. We have also included the files in the arXiv submission of this paper,
and they can be obtained by downloading the source. There are minor changes in the
sage implementation from the description of the algorithms in this paper. The changes are
made only for convenience in implementation, and they do not affect the behavior of the
algorithms.

2. Good fundamental domains in P1 and (P1)an

This section introduces good fundamental domains and the notion of good position for
generators, both of which will play key roles in our algorithms for Mumford curves. Our
main algorithms in Section 3 require as input Schottky generators in good position, without
which the rate of convergence of approximations will drop drastically. For our method of
putting generators into good position, see Section 4.

We start with the usual projective line P1, then discuss the analytic projective line (P1)an.
Our treatment of good fundamental domains follows Gerritzen and van der Put [GP]. The

http://math.berkeley.edu/~ralph42/mumford_curves_supp.html
http://math.berkeley.edu/~ralph42/mumford_curves_supp.html
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notion is also discussed by Kadziela [Ka]. The introduction to the analytic projective line
follows Baker, Payne and Rabinoff [BPR].

Definition 2.1. An open ball in P1 is either a usual open ball B(a, r) = {x ∈ K : |x−a| < r}
or the complement of a usual closed ball P1\B(a, r)+ = {∞} ∪ {x ∈ K : |x − a| > r}. A
closed ball is either a usual closed ball or the complement of a usual open ball.

The open balls generate a topology on P1. Both open balls and closed balls are simultane-
ously open and closed in this topology, as is the case for any non-Archimedean field due to
the ultrametric inequality |x + y| ≤ max{|x|, |y|}. Let |K×| denote the image of K× under
| · |. If r ∈ |K×|, the open ball and the closed ball are distinguished by whether there exist
two points x, y in the ball such that |x−y| equals the diameter. The complement of an open
ball is a closed ball, and vice versa.

Definition 2.2. A good fundamental domain F ⊂ P1 corresponding to the generators
γ1, . . . , γg is the complement of 2g open balls B1, . . . , Bg, B

′
1, . . . , B

′
g, such that corresponding

closed balls B+
1 , . . . , B

+
g , B

′+
1 , . . . , B

′+
g are disjoint, and that γi(P1\B′i) = B+

i and γ−1
i (P1\Bi) =

B′+i for all i. The interior of F is F ◦ = P1\(B+
1 ∪ · · · ∪B+

g ∪B′+1 ∪ · · · ∪B′+g ). The boundary
of F is F\F ◦.

The definition above implies that γi(P1\B′+i ) = Bi and γ−1
i (P1\B+

i ) = B′i for all i.

Example 2.3. (1) Let K = C3 and Γ be the group generated by

γ1 =

[
−5 32
−8 35

]
, γ2 =

[
−13 80
−8 43

]
Both matrices have eigenvalues 27 and 3. The matrix γ1 has left eigenvectors ( 1

1 ) and ( 4
1 ),

and γ2 has left eigenvectors ( 2
1 ) and ( 5

1 ). We use the convention that (z1 : z2) = z1/z2.
Then, F = P1\(B1 ∪ B′1 ∪ B2 ∪ B′2) where B1 = B(4, 1/9), B′1 = B(1, 1/9), B2 = B(5, 1/9),
B′2 = B(2, 1/9) is a good fundamental domain relative to the generators γ1 and γ2. One can
verify as follows. First rewrite

γ1z =
−5z + 32

−8z + 35
= 4 +

27(z − 1)− 81

−8(z − 1) + 27
.

Suppose that z ∈ B′1 = B(1, 1/9). Then, val(27(z − 1)) = 3 + val(z − 1) ≥ 3 + 2 = 5,
and val(81) = 4. So val(27(z − 1) − 81) = 4. Also, val(−8(z − 1) + 27) ≥ min (val(8(z −
1)), val(27)) > min (2, 3) = 2. So,

|γ1z − 4| =
∣∣∣∣ 27(z − 1)− 81

−8(z − 1) + 27

∣∣∣∣ > 3−4

3−2
= 1/9.

So γ1(B′1) ⊂ P1\B+
1 . The other three conditions can be verified similarly.

(2) Let K = C3 and Γ be the group generated by

γ1 =

[
−79 160
−80 161

]
, γ2 =

[
−319 1600
−80 401

]
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Both matrices have eigenvalues 81 and 1. The matrix γ1 has left eigenvectors ( 1
1 ) and ( 2

1 ),
and the matrix γ2 has left eigenvectors ( 4

1 ) and ( 5
1 ). Then, F = P1\(B1∪B′1∪B2∪B′2) where

B1 = B(2, 1/9), B′1 = B(1, 1/9), B2 = B(5, 1/9), B′2 = B(4, 1/9) is a good fundamental
domain relative to the generators γ1 and γ2.

(3) Let K = C3, and let Γ be the group generated by

γ1 =

[
121 −120
40 −39

]
, γ2 =

[
121 −240
20 −39

]
, γ3 =

[
401 −1600
80 −319

]
.

All three generators have eigenvalues 1 and 34. The element γ1 has eigenvectors ( 1
1 ) and

( 3
1 ). The element γ2 has eigenvectors ( 2

1 ) and ( 6
1 ). The element γ3 has eigenvectors ( 4

1 ) and
( 5

1 ). Then, F = P1\(B1 ∪ B′1 ∪ B2 ∪ B′2 ∪ B3 ∪ B′3) where B1 = B(1, 1/9), B′1 = B(3, 1/9),
B2 = B(2, 1/9), B′2 = B(6, 1/9), B3 = B(4, 1/9), B′3 = B(5, 1/9) is a good fundamental
domain relative to the generators γ1, γ2 and γ3.

The following lemma follows from Definition 2.2 by induction (see [Ka, Theorem 6.2]).

Lemma 2.4. Let F and γ1, . . . , γg be as in Definition 2.2, and let γ ∈ Γ \ {( 1 0
0 1 )} and

b ∈ P1(K). Write the reduced word for γ as h1h2 · · ·hk, where k ≥ 1 and hi ∈ {γ±1 , . . . , γ±g }
for all i. Assume that b /∈ B′j if hk = γj and b /∈ Bj if hk = γ−1

j . Then we have

γb ∈
{
B+
i , if h1 = γi,

B′+i , if h1 = γ−1
i .

Proof. To simplify notation we’ll outline the proof for the case where hi ∈ {γ1, . . . , γg} for
all i, and then describe how to generalize to the case of hi ∈ {γ±1 , . . . , γ±g }.

Write hi = γai for each i. Since hk = γak , we know by assumption that b /∈ B′ak . By
Definition 2.2 we have γak(P1 \ B′ak) = B+

ak
, so hkb ∈ B+

ak
. By the disjointness of the

2g closed balls, we know that hkb /∈ B′ak−1
, and since γak−1

(P1 \ B′ak−1
) = B+

ak−1
, we have

hk−1hkb ∈ B+
ak−1

. We may continue in this fashion until we find that h1h2 . . . hkb ∈ B+
a1

.

The only possible obstruction to the above argument in the case of hi ∈ {γ±1 , . . . , γ±g }
occurs if hi . . . hkb ∈ B′+ai and hi−1 = γai (or, similarly, if hi . . . hkb ∈ B+

ai
and hi−1 = γ−1

ai
),

since the above argument needs γai to act on P1\B′+ai . However, this situation arises precisely

when hi = γ−1
ai

= h−1
i−1, meaning that the word is not reduced. Since we’ve assumed h1 . . . hk

is reduced, we have the desired result. �

For a fixed set of generators of Γ, there need not exist a good fundamental domain. If
there exists a good fundamental domain for some set of free generators of Γ, we say that
the generators are in good position. Gerritzen and van der Put [GP, §I.4] proved that there
always exists a set of generators in good position. They also proved the following desirable
properties for good fundamental domains.

Theorem 2.5. Let Γ be a Schottky group, Σ its set of bad points, and Ω = P1\Σ.
(1) There exists a good fundamental domain for some set of generators γ1, . . . , γg of Γ.
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Let F be a good fundamental domain for γ1, . . . , γg, and let γ ∈ Γ.
(2) If γ 6= id, then γF ◦ ∩ F = φ.
(3) If γ /∈ {id, γ1, . . . , γg, γ

−1
1 , . . . , γ−1

g }, then γF ∩ F = ∅.
(4) ∪γ∈ΓγF = Ω.

The statements (2), (3), and (4) imply that Ω/Γ can be obtained from F by glueing the
boundary of F . More specifically, B+

i \Bi is glued with B′+i \B′i via the action of γi. We have
designed the following subroutine, which takes any point p in Ω and finds a point q in F such
that they are equivalent modulo the action of Γ. This subroutine is useful in developing the
algorithms in Section 3 and 4.

Subroutine 2.6 (Reducing a point into a good fundamental domain).

Input: Matrices γ1, . . . γg generating a Schottky group Γ, a good fundamental domain F =
P1\(B1 ∪ · · · ∪Bg ∪B′1 ∪ · · · ∪B′g) associated to these generators, and a point p ∈ Ω.

Output: A point q ∈ F and an element γ ∈ Γ such that q = γp.
1: Let q ← p and γ ← id.
2: while p /∈ F do
3: If q ∈ B′i, let q ← γiq and γ ← γiγ.
4: Otherwise, if q ∈ Bi, let q ← γ−1

i q and γ ← γ−1
i γ.

5: end while
6: return q and γ.

Proof. The correctness of this subroutine is clear. It suffices to prove that the algorithm
always terminates. Given p ∈ Ω, if p /∈ F , by Theorem 2.5, there exists γ◦ = h1h2 · · ·hk ∈ Γ
(where each hj is γi or γ−1

i for some i) such that γ◦p ∈ F . Without loss of generality, we
may assume that γ◦ is chosen such that k is the smallest. Steps 3,4 and Lemma 2.4 make
sure that we always choose q ← hkq and γ ← hkγ. Therefore, this subroutine terminates
with γ = γ◦. �

We can extend the definition of good fundamental domains to the analytic projective line
(P1)an. In general, analytification of an algebraic variety is defined in terms of multiplicative
seminorms. For our special case (P1)an, there is a simpler description. As detailed in [Ba],
(P1)an consists of four types of points:

• Type 1 points are just the usual points of P1.
• Type 2 points correspond to closed balls B(a, r)+ where r ∈ |K×|.
• Type 3 points correspond to closed balls B(a, r)+ where r /∈ |K×|.
• Type 4 points correspond to equivalence classes of sequences of nested closed balls
B+

1 ⊃ B+
2 ⊃ · · · such that their intersection is empty.

There is a metric on the set of Type 2 and Type 3 points, defined as follows: let P1 and
P2 be two such points and let B(a1, r1)+ and B(a2, r2)+ be the corresponding closed balls.

(1) If one of them is contained in the other, say B(a1, r1)+ is contained in B(a2, r2)+,
then the distance d(P1, P2) is logp(r2/r1).
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(2) In general, there is a unique smallest closed ball B(a3, r3)+ containing both of them.
Let P3 be the corresponding point. Then, d(P1, P2) is defined to be d(P1, P3) +
d(P3, P2).

The metric can be extended to Type 4 points.
This metric makes (P1)an a tree with infinite branching, as we now describe. There is a

unique path connecting any two points P1 and P2. In case (1) above, the path is defined
by the isometry t 7→ B(a1, p

t)+, t ∈ [log (r1), log (r2)]. It is straightforward to check that
B(a1, r2)+ = B(a2, r2)+. In case (2) above, the path is the concatenation of the paths from
P1 to P3 and from P3 to P2. Then, Type 1 points become limits of Type 2 and Type 3 points
with respect to this metric. More precisely, if x 6= ∞, then it lies at the limit of the path
t 7→ B(x, p−t)+, t ∈ [0,+∞). Type 1 points behave like leaves of the tree at infinity. For any
two Type 1 points x, y, there is a unique path in (P1)an connecting them, which has infinite
length.

Definition 2.7. Let Σ be a discrete subset in P1. The subtree of (P1)an spanned by Σ,
denoted T (Σ), is the union of all paths connecting all pairs of points in Σ.

An analytic open ball B(a, r)an is a subset of (P1)an whose set of Type 1 points is just
B(a, r) and whose Type 2, 3, and 4 points correspond to closed balls B(a′, r′)+ ⊂ B(a, r)
and the limit of sequences of such closed balls. An analytic closed ball is similar, with B(a, r)
replaced with B(a, r)+. Just as in the case of balls in P1, the analytic closed ball (B+)an

is not the closure of Ban in the metric topology of (P1)an. The complement of an analytic
open ball is an analytic closed ball, and vice versa. In an analytic closed ball (B(a, r)+)an

such that r ∈ |K×|, the Gaussian point is the Type 2 point corresponding to B(a, r)+. An
analytic annulus is B\B′, where B and B′ are analytic balls such that B′ $ B. If B is an
analytic open (resp. closed) ball and B′ is an analytic closed (resp. open) ball, then B\B′
is an analytic open annulus (resp. analytic closed annulus). A special case of analytic open
annulus is the complement of a point in an analytic open ball.

Any element of PGL(2, K) sends open balls to open balls and closed balls to closed balls.
Thus, there is a well defined action of PGL(2, K) on (P1)an.

Definition 2.8. A good fundamental domain F ⊂ (P1)an corresponding to the generators
γ1, . . . , γg is the complement of 2g analytic open balls Ban

1 , . . . , Ban
g , B

′an
1 , . . . , B′ang , such that

the corresponding analytic closed balls (B+
1 )an, . . . , (B+

g )an, (B′+1 )an, . . . , (B′+g )an are disjoint,

and that γi((P1)an\B′ani ) = (B+
i )an and γ−1

i ((P1)an\Ban
i ) = (B′+i )an. The interior of F is

F ◦ = (P1)an\((B+
1 )an∪ . . . ∪(B+

g )an∪(B′+1 )an∪ . . . ∪(B′+g )an). The boundary of F is F\F ◦.
Definition 2.8 implies that γi((P1)an\(B′+i )an) = Ban

i and γ−1
i ((P1)an\(B+

i )an) = B′ani .
We now argue that there is a one-to-one correspondence between good fundamental do-

mains in P1 and good fundamental domains in (P1)an. (This fact is well-known, though
seldom explicitly stated in the literature; for instance, it’s taken for granted in the later
chapters of [GP].) If P1\(B1 ∪ · · · ∪ Bg ∪ B′1 ∪ · · · ∪ B′g) is a good fundamental domain

in P1, then (P1)an\(Ban
1 ∪ · · · ∪ Ban

g ∪ B′an1 ∪ · · · ∪ B′ang ) is a good fundamental domain in
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(P1)an. Indeed, since the closed balls B+
1 , . . . , B

+
g , B

′+
1 , . . . , B

′+
g are disjoint, and the corre-

sponding analytic closed balls consist of points corresponding to closed balls contained in
B+

1 , . . . , B
+
g , B

′+
1 , . . . , B

′+
g and their limits, the analytic closed balls are also disjoint. Con-

versely, if (P1)an\(Ban
1 ∪ · · · ∪Ban

g ∪B′an1 ∪ · · · ∪B′ang ) is a good fundamental domain in (P1)an,

then P1\(B1 ∪ · · · ∪ Bg ∪ B′1 ∪ · · · ∪ B′g) is a good fundamental domain in P1, because the
classical statement can be obtained from the analytic statement by considering only Type 1
points. This correspondence allows us to abuse notation by not distinguishing the classical
case and the analytic case. Theorem 2.5 is also true for analytic good fundamental domains.

Another analytic object of interest to us is the minimal skeleton of the analytification
of the genus g curve Ω/Γ (a task that is part of Algorithm 3.9), so we close this section
with background information on this object. The following definitions are taken from Baker,
Payne and Rabinoff [BPR], with appropriate simplification.

Definition 2.9. (1) The skeleton of an open annulus B\B′ is the straight path between
the Gaussian point of B and the Gaussian point of B′.

(2) Let C be a smooth curve over K. A semistable vertex set V is a finite set of Type
2 points in Can such that Can\V is the disjoint union of open balls and open annuli.
The skeleton corresponding to V is the union of V with all skeleta of these open
annuli.

(3) If genus(C) ≥ 2, then Can has a unique minimal skeleton. The minimal skeleton is
the intersection of all skeleta. If genus(C) ≥ 2 and C is complete, then the mini-
mal skeleton is a finite metric graph. We sometimes call this minimal skeleton the
abstract tropical curve of Can.

Definition 2.10. An algebraic semistable model of a smooth curve C over K is a scheme
X over R whose generic fiber XK is isomorphic to C and whose special fiber Xk satisfies

• Xk is a connected and reduced curve, and
• all singularities of Xk are ordinary double points.

Work towards algorithmic computation of semistable models is discussed in such works as
[AW, §1.2] and [BW, §3.1], though such computation is in general a hard problem.

Semistable models are related to skeleta in the following way: take a semistable model X of
C. Associate a vertex for each irreducible component of Xk. For each ordinary intersection of
two irreducible components in Xk, connect an edge between the two corresponding vertices.
The resulting graph is combinatorially a skeleton of Can.

3. Algorithms Starting With a Schottky Group

If we have a Schottky group Γ = 〈γ1, . . . , γg〉 in terms of its generators, there are many
objects we wish to compute for the corresponding curve Ω/Γ, such as the Jacobian of the
curve, the minimal skeleton of the analytification of the curve, and a canonical embedding
for the curve. In this section we present algorithms for numerically computing these three
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objects, given the input of a Schottky group with generators in good position. For an
algorithm that puts arbitrary generators of a Schottky group into good position, see Section 4.

Remark 3.1. Several results in this section are concerned with the accuracy of numerical
approximations. Most of our results will be of the form∣∣∣∣estimate

actual
− 1

∣∣∣∣ = size of error term ≤ a small real number of the form p−N ,

where we think of N � 0. This is equivalent to

estimate

actual
− 1 = error term = a p-adic number of the form bpN ,

where |b| ≤ 1. So, since |pN | = p−N , the size of the error term is a small power of p, while
the error term itself is a large power of p (possibly with a constant that doesn’t matter
much).

Rearranging the second equation gives

estimate = actual + actual · bpN ,
meaning that we are considering not the absolute precision of our estimate, but rather the
relative precision. In this case we would say that our estimate is of relative precision O(pN).
So if we desire relative precision O(pN), we want the actual error term to be pN (possibly
with a constant term with nonnegative valuation), and the size of the error term to be at
most p−N .

3.1. The Period Matrix of the Jacobian. Given a Schottky group Γ = 〈γ1, . . . , γg〉, we
wish to find a period matrix Q so that Jac(Ω/Γ) ∼= (K∗)g/Q. First we’ll set some notation.
For any parameters a, b ∈ Ω, we introduce the following analytic function in the unknown z,
called a theta function:

Θ(a, b; z) :=
∏
γ∈Γ

z − γa
z − γb .

Note that if Γ is defined over Qp and a, b, z ∈ Qp, then Θ(a, b; z) ∈ Qp ∪ {∞}. (This is an
instance of “Qp in, Qp out.”) For any α ∈ Γ and a ∈ Ω, we can specialize to

uα(z) := Θ(a, αa; z).

It is shown in [GP, II.3] that the function uα(z) is in fact independent of the choice of a.
This is because for any choice of a, b ∈ Ω we have

Θ(a, αa; z)

Θ(b, αb; z)
=
∏
γ∈Γ

(
z − γa
z − γαa

z − γαb
z − γb

)
=
∏
γ∈Γ

(
z − γa
z − γb

z − γαb
z − γαa

)
=
∏
γ∈Γ

z − γa
z − γb ·

∏
γ∈Γ

z − γαb
z − γαa =

∏
γ∈Γ

z − γa
z − γb ·

∏
γ∈Γ

z − γb
z − γa

=Θ(a, b; z) ·Θ(b, a; z) = 1.
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From [GP, VI.2] we have a formula for the period matrix Q of Jac(Ω/Γ):

Theorem 3.2. The period matrix Q for Jac(Ω/Γ) is given by

Qij =
uγi(z)

uγi(γjz)
,

where z is any point in Ω.

As shown in [GP, II.3], the choice of z does not affect the value of Qij.
Theorem 3.2 implies that in order to compute each Qij, it suffices to find a way to compute

Θ(a, b; z). Since a theta function is defined as a product indexed by the infinite group Γ,
approximation will be necessary. Recall that each element γ in the free group generated by
γ1, . . . , γg can be written in a unique shortest product h1h2 · · ·hk called the reduced word,
where each hi ∈ {γ1, . . . , γg, γ

−1
1 , . . . , γ−1

g }. We can approximate Θ(a, b; z) by replacing the
product over Γ with a product over Γm, the set of elements of Γ whose reduced words have
length ≤ m. More precisely, we approximate Θ(a, b; z) with

Θm(a, b; z) :=
∏
γ∈Γm

z − γa
z − γb ,

where

Γm = {h1h2 . . . hk | 0 ≤ k ≤ m,hi ∈ {γ±1 , . . . γ±g }, hi 6= h−1
i+1 for any i}.

With this approximation method, we are ready to describe an algorithm for computing Q.

Algorithm 3.3 (Period Matrix Approximation).

Input: Matrices γ1, . . . γg ∈ Q2×2
p generating a Schottky group Γ in good position, and an

integer n to specify desired relative precision.
Output: An approximation for a period matrixQ for Jac(Ω/Γ) up to relative precisionO(pn).

1: Choose suitable p-adic numbers a and z as described in Theorem 3.6.
2: Based on n, choose a suitable positive integer m as described in Remark 3.7.
3: for 1 ≤ i, j ≤ g do
4: Compute Qij = Θm(a, γi(a); z)/Θm(a, γi(a); γj(z))
5: end for
6: return Q.

The complexity of this algorithm is in the order of the number of elements in Γm, which
is exponential in m. The next issue is that to achieve certain precision in the final result,
we need to know how large m needs to be. Given a good fundamental domain F for the
generators γ1, . . . , γg, we are able to give an upper bound on the error in our estimation of
Θ by Θm. (Algorithm 3.3 would work even if the given generators were not in good position,
but would in general require a very large m to give the desired convergence. See Example
3.8(4).)
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To analyze the convergence of the infinite product

Θ(a, γi(a); z) =
∏
γ∈Γ

z − γa
z − γγia

,

we need to know where γa and γγia lie. We can determine this by taking the metric of (P1)an

into consideration. Assume that∞ lies in the interior of F . Let S = {P1, . . . , Pg, P
′
1, . . . , P

′
g}

be the set of points corresponding to the set of closed balls {B+
1 , . . . , B

+
g , B

′+
1 , . . . , B

′+
g } from

the characterization of the good fundamental domain. Let c be the smallest pairwise distance
between these points. This distance c will be key for determining our choice of m in the
algorithm.

Proposition 3.4. Let F , S, and c be as above. Suppose the reduced word for γ is h1h2 · · ·hk,
where k ≥ 0. Then d(γPi, S) ≥ kc for all i unless hk = γ−1

i , and d(γP ′i , S) ≥ kc unless
hk = γi.

Proof. We will prove this proposition by induction. If k = 0, there is nothing to prove. Let
k > 0, and assume that the claim holds for all integers n with 0 ≤ n < k. Without loss
of generality, we may assume h1 = γ1. Let B+ be the closed disk corresponding to Pi. By
Lemma 2.4, we have γ(B+) ⊂ B1. This means P1 lies on the unique path from γPi to ∞.
Since we assumed ∞ ∈ F , p1 lies on the unique path from γPi to any point in S. Thus,

d(γPi, S) = d(γPi, P1)

= d(γ−1
1 γPi, γ

−1
1 P1)

= d(h2h3 · · ·hkPi, P ′1).

Let P = Pj if h2 = γj and P = P ′j if h2 = γ−1
j . By the same argument as above, P lies on the

unique path from h2h3 · · ·hkPi to P ′1. The reducedness of the word h1h2 . . . hk guarantees
that P 6= P ′1. So

d(γPi, S) = d(h2h3 · · ·hkPi, P ′1)

= d(h2h3 · · ·hkPi, P ) + d(P, P ′1)

≥ (k − 1)c+ c = kc.

The last step follows from the inductive hypothesis. The proof of the second part of this
proposition is similar. �

Proposition 3.5. Let F , S, and c be as above. Let z ∈ F and a ∈ B′+i \B′i such that a, z,
and∞ are distinct modulo the action of Γ. Suppose the reduced word for γ ∈ Γ is h1h2 · · ·hk.
If k ≥ 2 and hk 6= γ−1

i , then ∣∣∣∣ z − γaz − γγia
− 1

∣∣∣∣ ≤ p−c(k−1).

Proof. Our choice of a guarantees that both a and γia are in F . Without loss of generality,
we may assume that hk = γ1. Then, both hka and hkγia are in B+

1 . So both γa and γγia
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lie in h1h2 · · ·hk−1B
+
1 , which is contained in some B = Bj or B′j. By Proposition 3.4, the

points in (P1)an corresponding to the disks h1h2 · · ·hk−1B
+
1 and B+ have distance at least

c(k− 1). This implies diam(h1h2 · · ·hk−1B
+
1 ) ≤ p−c(k−1)diam(B+). Therefore, |γa− γγia| ≤

p−c(k−1)diam(B+). On the other hand, since z /∈ B and γγia ∈ B, we have |z − γγia| ≥
diam(B+). This means that∣∣∣∣ z − γaz − γγia

− 1

∣∣∣∣ =

∣∣∣∣γγia− γaz − γγia

∣∣∣∣ ≤ p−c(k−1)diam(B+)

diam(B+)
= p−c(k−1),

as claimed. �

We are now ready to prove our approximation theorem, which is a new result that allows
one to determine the accuracy of an approximation of a ratio of theta functions. It is similar
in spirit to [Ka, Theorem 6.10], which is an approximation result for a particular subclass of
Schottky groups called Whittaker groups (see Subsection 5.2 of this paper for more details).
Our result is more general, as there are many Schottky groups that are not Whittaker.

Theorem 3.6. Suppose that the given generators γ1, . . . , γg of Γ are in good position, with
corresponding good fundamental domain F and disks B1, . . . , Bg, B

′
1, . . . , B

′
g. Let m ≥ 1. In

Algorithm 3.3, if we choose a ∈ B′+i \B′i and z ∈ B′+j \B′j such that a 6= z, then∣∣∣∣Θm(a, γi(a); z)/Θm(a, γi(a); γj(z))

Θ(a, γi(a); z)/Θ(a, γi(a); γj(z))
− 1

∣∣∣∣ ≤ p−cm,

where c is the constant defined above.

Proof. Our choice of z guarantees that both z and γjz are in F . Thus, if ∞ lies in the
interior of F , then this theorem follows directly from Proposition 3.5. The last obstacle is
to remove the assumption on ∞. We observe that Qij is a product of cross ratios:

Θ(a, γia; z)

Θ(a, γia; γjz)
=
∏
γ∈Γ

(z − γa)(γjz − γγia)

(z − γγia)(γjz − γa)
.

Therefore, each term is invariant under any projective automorphism of P1. Under such an
automorphism, any point in the interior of F can be sent to ∞. �

As a special case of this approximation theorem, suppose that we want to compute the
period matrix for the tropical Jacobian of C, which is the matrix (val(Qij))g×g. We need
only to compute Qij up to relative precision O(1). Thus, setting m = 0 suffices. In this case,
each of the products Θm(a, γi(a); z), Θm(a, γi(a); γj(z)) has only one term.

Remark 3.7. If we wish to use Algorithm 3.3 to compute a period matrix Q with rela-
tive precision O(pn) (meaning that we want p−cm ≤ p−n in Theorem 3.6), we must first
compute c. As above, c is defined to be the minimum distance between pairs of the points
P1, . . . , Pg, P

′
1, . . . , P

′
g ∈ (P1)an corresponding to the balls B1, . . . , Bg, B

′
1, . . . , B

′
g that charac-

terize our good fundamental domain. Once we have computed c (perhaps by finding a good
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fundamental domain using the methods of Section 4), then by Theorem 3.6 we must choose
m such that cm ≥ n, so m = dn/ce will suffice.

Example 3.8. (1) Let Γ be the Schottky group in Example 2.3(1). Choose the same
good fundamental domain, with B1 = B(4, 1/9), B′1 = B(1, 1/9), B2 = B(5, 1/9), and
B′2 = B(2, 1/9). The four balls correspond to four points in the tree (P1)an. We need to find
the pairwise distances between the points P1, P ′1, P2, and P ′2 in (P1)an. Since the smallest ball
containing both B+

1 and B′+1 is B+(1, 1/3), both P1 and P ′1 are distance val((1/3)/(1/9)) =
val(3) = 1 from the point corresponding to B+(1, 1/3), so P1 and P ′1 are distance 2 from
one another. Similar calculations give distances of 2 between P2 and P ′2, and of 4 between
P1 or P ′1 and P2 or P ′2. In fact, the distance between Pi and P ′i equals the difference in the
valuations of the two eigenvalues of γi. This allows us to construct the subtree of (P1)an

spanned by P1, P2, P
′
1, P

′
2 as illustrated in Figure 1. The minimum distance between them

is c = 2. To approximate Q11, we take a = 10 and z = 19. To compute Q up to relative
precision O(p10), we need 2m ≥ 10 (this is the equation cm ≥ n from Remark 3.7), so
choosing m = 5 works. The output of the algorithm is Q11 = (. . . 220200000100)3. Similarly,
we can get the other entries in the matrix Q:

Q =

[
(. . . 220200000100)3 (. . . 0101010101)3

(. . . 0101010101)3 (. . . 220200000100)3

]
.

(2) Let Γ be the Schottky group in Example 2.3(2). Choose the same good fundamental
domain. Again, we need m = 5 for relative precision O(p10). The algorithm outputs

Q =

[
(. . . 12010021010000)3 (. . . 002000212200)3

(. . . 002000212200)3 (. . . 12010021010000)3

]
.

(3) Let Γ be the Schottky group in Example 2.3(3). Choose the same good fundamental
domain. The minimum distance between the corresponding points in (P1)an is 2, so we may
take m = 10/2 = 5 to have relative precision up to O(p10). Our algorithm outputs

Q =

(. . . 11201000010000)3 (. . . 12020022210)3 (. . . 20020002120)3

(. . . 12020022210)3 (. . . 10101010010000)3 (. . . 020201120.1)3

(. . . 20020002120)3 (. . . 020201120.1)3 (. . . 21010100010000)3

 .
(4) Let K = C3 and Γ be the group generated by

γ1 =

[
−5 32
−8 35

]
, γ2 = γ100

1

[
−13 80
−8 43

]
The group is the same as in part (1) of this set of examples, but the generators are not in
good position. To achieve the same precision, m needs to be up to 100 times greater than in
part (1), because the γ2 in part (1) now has a reduced word of length 101. Since the running
time grows exponentially in m, it is not feasible to approximate Q using Algorithm 3.3 with
these generators as input.
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3.2. The Abstract Tropical Curve. This subsection deals with the problem of construct-
ing the corresponding abstract tropical curve of a Schottky group over K, together with
some data on its homotopy group. This is a relatively easy task, assuming that the given
generators γ1, . . . , γg are in good position, and that we are also given a fundamental do-
main F = P1\(B1 ∩ · · · ∩ Bg ∩ B′1 ∩ · · · ∩ B′g). Without loss of generality, we may assume

that ∞ ∈ F ◦. Let P1, . . . , Pg, P
′
1, . . . , P

′
g ∈ (P1)an be the Gaussian points of the disks

B1, . . . , Bg, B
′
1, . . . , B

′
g.

Let Rg be the rose graph on g leaves (with one vertex and g loops), and let r1, . . . , rg be
the loops. A homotopy equivalence h : Rg → G must map r1, . . . , rg to g loops of G that
generate π1(G), so to specify h it will suffice to label g such loops of G with {s1, . . . , sg} and
orientations. It is for this reason that we call h a marking of G.

Algorithm 3.9 (Abstract Tropical Curve Construction).

Input: Matrices γ1, . . . γg ∈ Q2×2
p generating a Schottky group Γ, together with a good

fundamental domain F = P1\(B1 ∩ · · · ∩Bg ∩B′1 ∩ · · · ∩B′g).
Output: The triple (G, `, h) with (G, `) the abstract tropical curve as a metric graph with

a h a marking presented as g labelled oriented loops of G.
1: Construct the subtree in (P1)an spanned by P1, . . . , Pg, P

′
1, . . . , P

′
g, including lengths.

2: Label the unique shortest path from Pi to P ′i as si, remembering orientation.
3: Identify each Pi with P ′i , and declare the length of the new edge containing Pi = P ′i to

be the sum of the lengths of the edges that were joined to form it.
4: Define h by the labels si, with each si now an oriented loop.
5: return the resulting labeled metric graph (G, `, h).

Proof. The proof is essentially given in [GP, I 4.3]. �

Remark 3.10. It’s worth noting that this algorithm can be done by hand if a good fun-
damental domain is known. If P1, P2 ∈ (P1)an are the points corresponding to the disjoint
closed balls B(a1, r1)+ and B(a2, r2)+, then the distance between P1 and P2 is just the sum of
their distances from P3 corresponding to B(a3, r3)+, where B(a3, r3)+ is the smallest closed
ball containing both a1 and a2. The distance between Pi and P3 is just val(r3/ri) for i = 1, 2.
Once all pairwise distances are known, constructing (G, `) is simple. Finding h is simply
a matter of drawing the orientation on the loops formed by each pair (Pi, P

′
i ) and labeling

that loop si. This process is illustrated three times in Example 3.12.

Remark 3.11. The space parameterizing labelled metric graphs (G, `, h) (identifying those
with markings that are homotopy equivalent) is called Outer space, and is denoted Xg. It
is shown in [CMV] that Xg sits inside tropical Teichmüller space as a dense open set, so
Algorithm 3.9 can be viewed as computing a point in tropical Teichmüller space.

Example 3.12. (1) Let Γ be the Schottky group in Example 2.3(1). Choose the same
good fundamental domain, with B1 = B(4, 1/9), B′1 = B(1, 1/9), B2 = B(5, 1/9), and
B′2 = B(2, 1/9). We have constructed the subtree of (P1)an spanned by P1, P2, P

′
1, P

′
2 as
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Figure 1. The tree in Example 3.12(1), and the abstract tropical curve.
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22 s1 s2

illustrated in Figure 1 in Example 3.8(1). After identifying P1 with P ′1 and P2 with P ′2,
we get the “dumbbell” graph shown in Figure 1, with both loops having length 2 and the
connecting edge having length 2.

(2) Let Γ be the Schottky group in Example 2.3(2). Choose the same good fundamental
domain. The subtree of (P1)an spanned by P1, P2, P

′
1, P

′
2 is illustrated in Figure 2. After

identifying P1 with P ′1 and P2 with P ′2, we get the “theta” graph shown in Figure 2, with
two edges of length 2 and one edge of length 2.

(3) Let Γ be the Schottky group in Example 2.3(3). The subtree of (P1)an spanned by
P1, P2, P3, P

′
1, P

′
2, P

′
3 is illustrated in Figure 3. After identifying P1 with P ′1, P2 with P ′2 and

P3 with P ′3, we get the “honeycomb” graph shown in Figure 3, with interior edges of length
1 and exterior edges of length 2.

3.3. Canonical Embeddings. From [GP, VI.4], we have that

ωi(z) := wi(z)dz =
u′γi(z)

uγi(z)
dz

are g linearly independent analytic differentials on Ω that are invariant under the action
of Γ. Therefore, they define g linearly independent differentials on C = Ω/Γ. Gerritzen
and van der Put [GP, VI.4] also state that these form a basis of the space of Γ-invariant
analytic differentials. Since the space of algebraic differentials on C has dimension g, it must
be generated by these g differentials. Therefore, the canonical embedding has the following
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Figure 2. The tree in Example 3.12(2), and the abstract tropical curve.

1

4

2

5

P ′
2

P ′
1

P2

P1

1

1

1

1
2

s1

s2 2

2

2

s2

s1

Figure 3. The tree in Example 3.12(3), and the abstract tropical curve.
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form:

C → Pg−1,

z 7→
(
u′γ1(z)

uγ1(z)
: . . . :

u′γg(z)

uγg(z)

)
.
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It therefore suffices to approximate the derivative u′α(z). A näıve approach is to consider
the approximation

u′α(z) ≈ uα(z + h)− uα(z)

h
.

We can do better by taking advantage of the product form of uα(z):

u′α(z) =
d

dz

∏
γ∈Γ

z − γa
z − γαa

=
∑
γ∈Γ

(
d

dz

(
z − γa
z − γαa

) ∏
γ′∈Γ,γ′ 6=γ

z − γ′a
z − γ′αa

)

= uα(z)
∑
γ∈Γ

d

dz

(
z − γa
z − γαa

)(
z − γa
z − γαa

)−1

= uα(z)
∑
γ∈Γ

γa− γαa
(z − γa)(z − γαa)

.

Algorithm 3.13 (Canonical Embedding).

Input: Matrices γ1, . . . , γg ∈ Q2×2
p generating a Schottky group Γ in good position, an

element z ∈ K, and an integer n to determine precision.
Output: An approximation for the image of z under the canonical embedding Ω/Γ→ Pg−1

determined by the choice of generators.
1: Based on n, choose a suitable positive integer m as described in Remark 3.15.
2: for i = 1 to g do
3: Choose a suitable element a ∈ K as described in Proposition 3.14.
4: Compute

wi =
∑
γ∈Γm

γa− γγia
(z − γa)(z − γγia)

.

5: end for
6: return (w1 : · · · : wg).

With appropriate choice of a, we can provide a lower bound on the precision of the result
in terms of m. Fortunately, we can choose different values of a to approximate∑

γ∈Γ

γa− γγia
(z − γa)(z − γγia)

for different γi. As in Proposition 3.5, we choose a ∈ B′+i \B′i to ensure that both a and γia
are in F .
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Proposition 3.14. If we choose a ∈ B′+i \B′i in Algorithm 3.13, and assuming z ∈ F , then∣∣∣∣∣∑
γ∈Γm

γa− γγia
(z − γa)(z − γγia)

− u′γi(z)

uγi(z)

∣∣∣∣∣ ≤ p−mc−logp(d),

where c is the minimum pairwise distance between P1, . . . , Pg, P
′
1, . . . , P

′
g, and d is the mini-

mum diameter of B1, . . . , Bg, B
′
1, . . . , B

′
g.

Proof. Let γ ∈ Γ have reduced word γ = h1h2 · · ·hk. We have seen in the proof of Proposition
3.5 that |γa− γγia| ≤ p−(k−1)cdiam(B+), |z − γa| ≥ diam(B+) and |z − γγia| ≥ diam(B+),
where B is one of B1, . . . , Bg, B

′
1, . . . , B

′
g. Thus,∣∣∣∣ γa− γγia

(z − γa)(z − γγia)

∣∣∣∣ ≤ p−(k−1)cdiam(B+)

diam(B+)2

≤ p−(k−1)cd−1

= p−(k−1)c−logp(d).

Since the difference between our approximation and the true value is the sum over terms
where γ has reduced words of length ≥ m+ 1, we conclude that the error has absolute value
at most p−mc−logp(d). �

In the last proposition, we assumed z ∈ F . If z /∈ F , we can do an extra step and replace
z by some γz such that γz ∈ F , with the help of Subroutine 2.6. This step does not change
the end result because the theta functions are invariant under the action of Γ.

Remark 3.15. If we wish to use Algorithm 3.13 to compute a period matrix Q with accuracy
up to the nth p-adic digit, we must first compute c and d. Recall that c is defined to be the
minimum distance between pairs of the points P1, . . . , Pg, P

′
1, . . . , P

′
g ∈ (P1)an corresponding

to the balls B+
1 , . . . , B

+
g , B

′+
1 . . . , B′+g that characterize our good fundamental domain, and d

is the minimum diameter of B1, . . . , Bg, B
′
1, . . . , B

′
g. Once we have computed c and d, then

by Proposition 3.14 we must choose m such that p−mcd−1 ≤ p−n. We could also think of it
as choosing m such that mc+ logp(d) ≥ n.

Remark 3.16. As was the case with Algorithm 3.3, we may run Algorithm 3.13 even if the
input generators are not in good position, and it will approximate images of points in the
canonical embedding. However, we will not have control over the rate of convergence, which
will in general be very slow.

Example 3.17. Let Γ be the Schottky group in Example 2.3(3). Choose the same good
fundamental domain. We will compute the image of the field element 17 under the canonical
embedding (we have chosen 17 as it is in Ω for this particular Γ). The minimum diameter
is d = 1/9, and the minimum distance is c = 2. To get absolute precision to the order of
p−10, we need p−mcd−1 ≤ p−10, i.e. m ≥ 6. Applying Algorithm 3.13 with m = 6 gives us
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the following point in P2:

((. . . 2100012121)3 : (. . . 2211022001.1)3 : (. . . 2221222111.1)3).

This point lies on the canonical embedding of the genus 3 Mumford curve Ω/Γ. Any
genus 3 curve is either a hyperelliptic curve or a smooth plane quartic curve. However, it
is impossible for a hyperelliptic curve to have the skeleton in Figure 3 (see [Ch, Theorem
4.15]), so Ω/Γ must be a smooth plane quartic curve. Its equation has the form

C1x
4 + C2x

3y + C3x
3z + C4x

2y2 + C5x
2yz + C6x

2z2

C7xy
3 + C8xy

2z + C9xyz
2 + C10xz

3 + C11y
4 + C12y

3z + C13y
2z2 + C14yz

3 + C15z
4.

Using linear algebra over Q3, we can solve for its 15 coefficients by computing 14 points on
the curve and plugging them into the equation. The result is

C1 = 1, C2 = (. . . 11101)3, C3 = (. . . 00211)3,
C4 = (. . . 1020.2)3, C5 = (. . . 110.21)3, C6 = (. . . 1002.1)3,
C7 = (. . . 122)3, C8 = (. . . 222.02)3, C9 = (. . . 222.02)3,
C10 = (. . . 21101)3, C11 = (. . . 2122)3, C12 = (. . . 2201)3,
C13 = (. . . 0202.2)3, C14 = (. . . 10102)3, C15 = (. . . 01221)3.

For the Newton subdivision and tropicalization of this plane quartic, see the following sub-
section, in which we consider the interactions of the three algorithms of Section 3.

3.4. Reality Check: Interactions Between The Algorithms. We close Section 3 by
checking that the three algorithms give results consistent with one another and with some
mathematical theory. We will use our running example of a genus 3 Mumford curve from
Examples 3.8(3), 3.12(3), and 3.17, for which we have computed a period matrix of the
Jacobian, the abstract tropical curve, and a canonical embedding.

First we will look at the period matrix and the abstract tropical curve, and verify that
these outputs are consistent. Recall that for the period matrix Q of Jac(Ω/Γ), we have

Qij =
uγi(z)

uγi(γjz)
.

Motivated by this, we define

Q : Γ× Γ→ K∗

(α, β) 7→ uα(z)

uα(βz)
,

where our choice of z ∈ Ω does not affect the value of Q(α, β). (Note that Qij = Q(γi, γj).)
As shown in [GP, VI, 2], the kernel of Q is the commutator subgroup [Γ,Γ] of Γ, and Q is

symmetric and positive definite (meaning |Q(α, α)| < 1 for any α 6≡
[
1 0
0 1

]
mod [Γ,Γ]).

Moreover, the following theorem holds (see [Pu2, Theorem 6.4]).
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Theorem 3.18. Let G be the abstract tropical curve of Ω/Γ, and let π1(G) be its homotopy
group, treating G as a topological space. There is a canonical isomorphism φ : Γab → π1(G)ab

such that val(Q(γ, γ′)) = 〈φ(γ), φ(γ′)〉, where 〈p1, p2〉 denotes the shared edge length of the
oriented paths p1 and p2.

The map φ is made very intuitive by considering the construction of G in Algoirthm 3.9:
a generator γi of Γ yields two points Pi, P

′
i ∈ (P1)an (corresponding to balls containing the

eigenvalues of γi), and these points are glued together in constructing G. So γi corresponds
to a loop around the cycle resulting from this gluing; after abelianization, this intuition is
made rigorous.

Consider the matrix Q computed in Example 3.8(3). Worrying only about valuations, we
have

val(Q) =

4 1 1
1 4 −1
1 −1 4

 .
For i = 1, 2, 3, let si be the oriented loop in G arising from gluing Pi and P ′i . In light of
Theorem 3.18, we expect to find shared edge lengths

〈s1, s1〉 = 〈s2, s2〉 = 〈s3, s3〉 = 4,

〈s1, s2〉 = 〈s1, s3〉 = 1,

and

〈s2, s3〉 = −1.

That is, each cycle length should be 4, and the common edge of each distinct pair of cycles
should have length 1, with the orientation of s1 agreeing with the orientation of s2 (respec-
tively, s3) on the shared edge and the orientation of s2 disagreeing with the orientation of
s3 on the shared edge. This is indeed what we found in Example 3.12(3), with edge lengths
and orientations shown in Figure 3. This example has shown how the outputs of Algorithms
3.3 and 3.9 can be checked against one another.

We will now consider the relationship between the abstract tropical curve and the canonical
embedding for this example. In particular, we will compute a tropicalization of the curve
from the canonical embedding and see how this relates to the abstract tropical curve.

To compute the tropicalization of the curve, we will start with the quartic planar equation
computed in Example 3.17. The Newton polytope of this quartic is a triangle with side length
4. We label each integral point inside or on the boundary of the Newton polytope by the
valuation of the coefficient of the corresponding term, ignoring the variable z. For example,
the point (1, 2) is labeled −2 because the valuation of the coefficient of xy2z is val(C8) = −2.
We then take the lower convex hull, giving a subdivision of the Newton polytope as shown in
Figure 4. The tropicalization of the curve is combinatorially the dual graph of this polytope,
and using the max convention of tropical geometry it sits in R2 as shown in Figure 4, with
the common point of the three cycles at (0, 0).
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Figure 4. The Newton polytope of the plane quartic curve in Example 3.17,
and the corresponding tropical curve in R2 (drawn using the max convention).
Each edge of infinite length has weight 2, and all other edges have weight 1.

0 0 −1 0 0

0 −2 −2 0

−1 −2 −1

0 0

0

Let us compare the cycles in the tropicalization with the cycles in the abstract tropical
curve. We know from [BPR, §6.23] that this tropicalization is faithful since all vertices are
trivalent and are adjacent to at least one edge of weight one. This means that lattice lengths
on the tropicalization should agree with lengths of the abstract tropical curve. Each cycle
in the tropicalization has five edges, and for each cycle two edges are length 1

2
and three are

length 1. This gives a length of 4, as we’d expect based on Example 3.12(3). Moreover, each
shared edge has lattice length 1, as was the case in the abstract tropical curve. Thus we
have checked the outputs of Algorithms 3.9 and 3.13 against one another.

4. From Generators in Bad Position to Generators in Good Position

The previous section describes several algorithms that compute various objects from a set
of free generators of a Schottky group, assuming that the generators are in good position, and
(in Algorithm 3.9) that a good fundamental domain is given together with the generators.
This content of this section is what allows us to make this assumption. We give an algorithm
(Algorithm 4.8) that takes an arbitrary set of free generators of a Schottky group and outputs
a set of free generators that are in good position, together with a good fundamental domain.
This algorithm can be modified as described in Remark 4.10 to perform a “Schottky test”; in
particular, given a set of g invertible matrices generating a group Γ, the modified algorithm
will either

• return a set of g free generators of Γ in good position together with a good funda-
mental domain, which is a certificate that Γ is Schottky;
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• return a relation satisfied by the input matrices, which is a certificate that the gen-
erators do not freely generate the group; or
• return a non-hyperbolic, non-identity matrix γ ∈ Γ, which is a certificate that Γ is

not Schottky.

Before presenting Algorithm 4.8, we will first develop some theory for trees, and then define
useful subroutines. Our starting point is a remark in Gerritzen and van der Put’s book:

Proposition 4.1. [GP, III 2.12.3] Let Γ be Schottky and Σ and Ω be as usual. Let T (Σ)
be the subtree of (P1)an spanned by Σ. Then the minimal skeleton of Ω/Γ is isomorphic
to T (Σ)/Γ.

This statement is essential for our algorithm, because it helps reducing problems involving
(P1)an to problems involving the much simpler tree T (Σ). Though T (Σ) is not finite, it is a
finitely branching tree: it consists of vertices and edges such that each vertex is connected
with finitely many edges. A good fundamental domain in (P1)an can be obtained from a
good fundamental domain in T (Σ), defined as follows:

Definition 4.2. A principal subtree T of T (Σ) is a connected component of T (Σ)\{e} for
some edge e of T (Σ). An extended principal subtree is T+ = T ∪ {e}.
Definition 4.3. A good fundamental domain S in T (Σ) for a set of free generators γ1, . . . , γg
of Γ is the complement of 2g principal subtrees T1, . . . , Tg, T

′
1, . . . , T

′
g, such that T+

1 , . . . , T
+
g ,

T ′+1 , . . . , T ′+g are disjoint, and that γi(T (Σ)\T ′+i ) = Ti and γ−1
i (T (Σ)\T+

i ) = T ′i . The interior

of S is S◦ = T (Σ)\(T+
1 ∪ · · · ∪ T+

g ∪ T ′+1 ∪ · · · ∪ T ′+g ). The boundary of S is S\S◦.
In other words, S is a connected finite subtree of T (Σ) with 2g boundary edges (Ri, Qi) and

(R′i, Q
′
i), where Qi, Q

′
i /∈ S, such that γi(R

′
i, Q

′
i) = (Qi, Ri). Given this data, the principal

subtree Ti (resp. T ′i ) is the connected component of T (Σ)\(Ri, Qi) (resp. T (Σ\(R′i, Q′i))
that is disjoint from S. Given a good fundamental domain S in T (Σ), one can find a good
fundamental domain in (P1)an as follows. Without loss of generality, we may assume that
the retraction of ∞ to T (Σ) is in the interior of S. Then, Qi and Ri correspond to two
nested balls B(ai, ri)

+ ⊂ B(ai, Ri)
+. Define Bi = B(ai,

√
riRi). Define B′i similarly.

Proposition 4.4. Let Bi, B
′
i be as above. Then F = (P1)an\(B1 ∪ · · · ∪Bg ∪B′1 ∪ · · · ∪B′g)

is a good fundamental domain.

Proof. Let Qi, Ri be as above. Let Pi be the midpoint of the segment of the boundary edge
(Qi, Ri). Then, Pi corresponds to the ball B+

i . Let π denote the retraction from (P1)an to
T (Σ). Again, we may assume π(∞) is in the interior of S. For any P ∈ B+

i , the unique path
from P to ∞ passes through Pi. Therefore, π(P ) lies on the union of Ti with the segment
(Pi, Qi), which is a subset of T+

i . Hence, the condition that T+
i and T ′+i are disjoint implies

that the retraction of the B+
i and the B′+i are disjoint. Thus, the B+

i and B′+i are disjoint.
Let (Q′i, R

′
i) be the boundary edge of T ′i , and let P ′i be its midpoint. Since γi(Q

′
i, R

′
i) =

(Ri, Qi), it sends the midpoint P ′i to Pi. Since B′i is a connected component in (P1)an\{P ′i},
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the element γi must send B′i to a connected component of (P1)an\{Pi}. One of the connected
components in (P1)an\{Pi} is (P1)an\B+

i . Since γi sends Q′i ∈ B′i to Ri ∈ (P1)an\B+
i , it must

send B′i to (P1)an\B+
i . Similarly, γ−1

i sends Bi to (P1)an\B′+i . Thus F is a good fundamental
domain in (P1)an. �

One can establish properties of S similar to Theorem 2.5. They can be derived either
combinatorially or from Proposition 4.4.

The following algorithm constructs a good fundamental domain S in T (Σ).

Subroutine 4.5 (Good Fundamental Domain Construction).

Input: An “agent” knowing all vertices and edges of T = T (Σ), and the map T (Σ) →
T (Σ)/Γ, where Γ is defined over Qp.

Output: A good fundamental domain S in T (Σ).
1: Choose a vertex P of T . Let P1, . . . , Pk be all neighbors of P in T .
2: Let V ← {P}, E ← ∅, O ← {(P, P1), . . . , (P, Pk)}, I ← ∅, A← ∅.
3: while O 6= φ do
4: Choose (Q,Q′) ∈ O, remove it from O and add it to E.
5: Let Q,Q1, . . . , Qk be all neighbors of Q′ in T .
6: Add Q′ to V .
7: for each Qk do
8: With the help of the “agent” in the input, determine if (Qk, Q

′) is conjugate to
some edge (R,R′) ∈ O, i.e. γQk = R and γQ′ = R′ for some γ ∈ Γ.

9: if so then
10: Remove (R,R′) from O.
11: Add (Q′, Qk), (R,R

′) to I.
12: Add γ to A.
13: else
14: Add (Qk, Q

′) to O.
15: end if
16: end for
17: end while
18: return S = V ∪ E ∪ I. (The edges in I are the boundary edges, and A is a set of free

generators of Γ in good position.)

Proof. Consider the map from T (Σ) to G = T (Σ)/Γ. Let P be as in Step (1). Suppose that
a “fire” starts at P ∈ T (Σ) and the image of P in G. In each step, when we choose the edge
(Q,Q′) in Step (4) and add a vertex Q′ to V in Step (5), we “propagate” the fire from Q to
Q′, and “burn” Q′ together with halves of all edges connecting to Q′. Also, we “burn” the
corresponding part in G. Suppose two fires meet each other in G. In this case, both halves
of an edge in G are burned, but it corresponds to two half burned edges in T (Σ). If so, we
stop the fire by removing the edges from O and adding them to I (Step (9)). The algorithm
terminates when the whole graph G is burned. The burned part S ′ of T (Σ) is a lifting of G.
Then, V is the set of vertices of S ′, E is the set of whole edges in S ′, and I is the set of half
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edges in S ′. The fact that they form a good fundamental domain follows from the method
in the proof of [GP, I (4.3)]. �

This algorithm requires an “agent” knowing everything about T (Σ). It is hard to construct
such an “agent” because T (Σ) is infinite. Therefore, we approximate T (Σ) by a finite subtree.
One candidate is T (Σm), where Σm is the set of fixed points of elements of Γm. Recall that
Γm is the set of elements of Γ whose reduced words in terms of the given generators have
lengths at most m. We take one step further: we approximate T (Σ) by T (Γma), where a is
any point in Σ.

Lemma 4.6. For any a ∈ K, we have T (Γa) ⊃ T (Σ). Furthermore, if a ∈ Σ, then
T (Γa) = T (Σ).

Proof. For any g ∈ Γ, the fixed point corresponding to the eigenvalue with larger absolute
value is the limit of the sequence a, ga, g2a, . . . . The other fixed point is the limit of the
sequence a, g−1a, g−2a, . . . . Therefore, every point in Σ is either in Γa or a limit point of Γa.
Therefore, T (Γa) ⊃ T (Σ). The second statement is clear. �

We can construct a complete list of vertices and edges in T (Γma). Then, the map from
T (Γma) to T (Σ)/Γ can be approximated in the following way: for each pair of vertices P,Q
(resp. edges e, f in T (Γma) and each given generator γi, check if γiP = Q (resp. γie = f).
If so, then we identify them. Note that this method may not give the correct map, because
two vertices P and Q in T (Γma) may be conjugate via the action of some h1h2 · · ·hk ∈ Γ,
where some intermediate step hlhl+1 · · ·hkP /∈ T (Γma). Due to this flaw, we need a way to
certify the correctness of the output.

Subroutine 4.7 (Good Fundamental Domain Certification).

Input: Generators γ1, . . . , γg ∈ Q2×2
p of a Schottky group Γ, and a quadruple (V,E, I, A),

where V is a set of vertices in T (Σ), E and I are sets of edges of T (Σ), I contains k pairs
of edges (Pi, Qi), (P

′
i , Q

′
i), where Pi, P

′
i ∈ V , Qi, Q

′
i /∈ V , and A contains k elements ai

in Γ.
Output: TRUE if S = V ∪ E ∪ I is a good fundamental domain in T (Σ) for the set of

generators A, and I is the set of boundary edges. FALSE otherwise.
1: If k 6= g, return FALSE.
2: If S is not connected, return FALSE.
3: If any element of I is not a terminal edge of S, return FALSE.
4: If any (Pi, Qi) 6= ai(Q

′
i, P

′
i ), return FALSE.

5: Choose P in the interior of S.
6: for h ∈ {γ1, . . . , γg, γ

−1
1 , . . . , γ−1

g } do
7: Using a variant of Subroutine 2.6, find point P ′ ∈ S and group element γ ∈ 〈a1, . . . , ak〉

such that P ′ = γ(hP ).
8: If P 6= P ′, return FALSE.
9: end for

10: return TRUE.
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Proof. Steps 1–4 verify that S satisfies the definition of a good fundamental domain in T (Σ)
for the set of generators a1, . . . , ag. In addition, we need to verify that a1, . . . , ag generate
the same group as the given generators γ1, . . . , γg. This is done by Steps 5–9. If P = P ′ in
Step 8, then there exists γ ∈ 〈a1, . . . , ak〉 such that γhP = P . We are assuming ai ∈ Γ in
the input, so γh ∈ Γ. Since the action of Γ on (P1)an\Σ is free, we have γh = id. Thus,
h ∈ 〈a1, . . . , ak〉. If P = P ′ for all h, then Γ = 〈a1, . . . , ak〉.

Otherwise, if P 6= P ′ in Step 8 for some h, then there exists γ′ ∈ Γ such that γ′P = P ′.
For any γ ∈ 〈a1, . . . , ak〉 other than identity, we have γP ′ /∈ s◦ by a variant of Lemma 2.4.
Therefore, Γ 6= 〈a1, . . . , ak〉. �

If the certification fails, we choose a larger m and try again, until it succeeds. We are
ready to state our main algorithm for this section:

Algorithm 4.8 (Turning Arbitrary Generators into Good Generators).

Input: Free generators γ1, . . . , γg ∈ Q2×2
p of a Schottky group Γ.

Output: Free generators a1, . . . , ag of Γ, together with a good fundamental domain F =
(P1)an\(B1 ∪ · · · ∪Bg ∪B′1 ∪ · · · ∪B′g) for this set of generators.

1: Let m = 1.
2: Let a be a fixed point of some γi.
3: Compute all elements in Γma.
4: Find all vertices and edges of T (Γma).
5: Approximate the map T (Γma)→ T (Σ)/Γ.
6: Use Subroutine 4.5 to construct a subgraph S = V ∪ E ∪ I of T (Γma) and a subset
A ⊂ Γ.

7: Use Subroutine 4.7 to determine if S = V ∪E∪I is a good fundamental domain in T (Σ).
8: If not, increment m and go back to Step 2.
9: Compute Bi and B′i from S using the method in Proposition 4.4.

10: return generators A and good fundamental domain F = (P1)an\(B1 ∪ · · · ∪ Bg ∪ B′1 ∪
· · · ∪B′g).

Proof. The correctness of the algorithm follows from the proof of Subroutine 4.7. It suffices
to prove that the algorithm eventually terminates. Assume that we have the “agent” in
Subroutine 4.5. Since Subroutine 4.5 terminates in a finite number of steps, the computation
involves only finitely many vertices and edges in T (Σ). If m is sufficiently large, T (Σm) will
contain all vertices and edges involved in the computation. Moreover, for any pair of vertices
or edges in T (Σm) that are identified in T (Σ)/Γ, there exists a sequence of actions by the given
generators of Γ that sends one of them to the other, so there are finitely many intermediate
steps. If we make m even larger so that T (Σm) contains all these intermediate steps, we get
the correct approximation of the map T (Σ)→ T (Σ)/Γ. This data is indistinguishable from
the “agent” in the computation of Subroutine 4.5. Thus, it will output the correct good
fundamental domain. �
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Remark 4.9. The performance of the algorithm depends on how “far” the given generator
is from a set of generators in good position, measured by the lengths of the reduced words of
the good generators in terms of the given generators. If the given generators is close to a set
of generators in good position, then a relatively small m is sufficient for T (Γma) to contain
all relevant vertices. Otherwise, a larger m is needed. For example, in the genus 2 case,
this algorithm terminates in a few minutes for our test cases where each given generator has
a reduced word of length ≤ 4 in a set of good generators. However, the algorithm is not
efficient on Example 3.8 (4), where one of the given generators has a reduced word of length
101. One possible way of speeding up the algorithm is to run the non-Euclidean Euclidean
algorithm developed by Gilman [Gi] on the given generators.

Remark 4.10. We may relax the requirement that the input matrices freely generate a
Schottky group by checking that every element in Γm not coming from the empty word is
hyperbolic before Step 3. If the group is Schottky and freely generated by the input matrices,
the algorithm will terminate with a good fundamental domain. Otherwise, Step 7 will never
certify a correct good fundamental domain, but the hyperbolic test will eventually fail when
a non-hyperbolic matrix is generated. In particular, if the identity matrix is generated by a
nonempty word, the generators are not free (though they may or may not generate a Schottky
group); and if a non-identity hyperbolic matrix is generated, the group is not Schottky. Thus,
Algorithm 4.8 is turned into a Schottky test algorithm. Again, the non-Euclidean Euclidean
algorithm in [Gi] is a possible ingredient for a more efficient Schottky test algorithm.

5. Future Directions: Reverse Algorithms and Whittaker Groups

In this section we describe further computational questions about Mumford curves. Algo-
rithms answering these questions would be highly desirable.

5.1. Reversing The Algorithms in Section 3. Many of our main algorithms answer
questions of the form “Given A, find B”, which we can reverse to “Given B, find A.” For
instance:

• Given a period matrix Q, determine if the abelian variety (K∗)g/Q is the Jacobian
of a Mumford curve, and if it is approximate the corresponding Schottky group.
• Given an abstract tropical curve G, find a Schottky group whose Mumford curve has
G as its abstract tropical curve.
• Given a polynomial representation of a curve, determine if it is a Mumford curve,

and if it is approximate the corresponding Schottky group.

A particular subclass of Schottky groups called Whittaker groups are likely a good starting
point for these questions.

5.2. Whittaker Groups. We will outline the construction of Whittaker groups (see [Pu1]
for more details), and discuss possible algorithms for handling computations with them. We
are particularly interested in going from a matrix representation to a polynomial represen-
tation, and vice versa.
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If s ∈ PGL(2, K) is an element of order 2, then s will have two fixed points, a and b, and
is in fact determined by the pair {a, b} as

s =

[
a b
1 1

] [
1 0
0 −1

] [
a b
1 1

]−1

,

as long as ∞ 6= a, b. Let s0, . . . , sg be g + 1 elements of PGL(2, K) of order 2. Write their
fixed points as {a0, b0}, . . . , {ag, bg}, and assume without loss of generality that ∞ 6= ai, bi
for all i. Let B0, . . . , Bg denote the smallest open balls containing each pair, and assume that
the corresponding closed balls B+

0 , . . . , B
+
g are all disjoint. Then the group Γ := 〈s0, . . . , sg〉

is in fact the free product 〈s0〉 ∗ · · · ∗ 〈sg〉.
Note that Γ is not a Schottky group, since its generators are not hyperbolic. However, we

can still consider its action upon P1 \ Σ = Ω. To fix some notation, we will choose a, b ∈ Ω
such that a /∈ Γb and ∞ /∈ Γa ∪ Γb and will define

G(z) := Θ(a, b; z) =
∏
γ∈Γ

z − γ(a)

z − γ(b)
.

(In our previous definition of theta functions, we took Γ to be Schottky, but the definition
works fine for this Γ as well.) If we choose a and b such that |G(∞)−G(s0∞)| < 1/2, then
G will be invariant under Γ, which gives a morphism Ω/Γ → P1. This will have only one
pole, so it is an isomorphism.

Now, let W be the kernel of the map ϕ : Γ → Z/2Z defined by ϕ(si) = 1 for all i. Then
W = 〈s0s1, s0s2, . . . , s0sg〉, and is in fact free on those generators. One can show that W is
a Schottky group of rank g, and we call a group that arises in this way a Whittaker group.
We already know that Ω/W is a curve of genus g; in fact, we have more than that.

Theorem 5.1 (Van der Put, [Pu1]). If W is a Whittaker group, then Ω/W is a totally
split hyperelliptic curve of genus g, with affine equation y2 =

∏g
i=0(x − G(ai))(x − G(bi)).

Conversely, if X be a totally split hyperelliptic curve of genus g over K, then there exists
a Whittaker group W such that X ∼= Ω/W , and this W is unique up to conjugation in
PGL(2, K).

Remark 5.2. There is a natural map Ω/W → Ω/Γ ∼= P1. This is the expected morphism
of degree 2 from the hyperelliptic curve to projective space, ramified at 2g + 2 points.

If we are content with an algorithm taking s0, s1, . . . , sg as the input representing a Whit-
taker group W (so that W = 〈s0s1, . . . , s0sg〉), the above theorem tells us how to compute
the ramification points of the hyperelliptic Mumford curve Ω/W .

Example 5.3. Let’s construct an example of a Whittaker group of genus 2 with K = Q3.
We need to come up with matrices s0, s1, s2 of order 2 with fixed points sitting inside open
balls whose corresponding closed balls are disjoint. We will choose them so that the fixed
points of s0 are 0 and 9; of s1 are 1 and 10; and of s2 are 2 and 11. (The smallest open balls
containing each pair of points has radius 1

3
, and the corresponding closed balls of radius 1

3
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are disjoint.) The eigenvalues will be 1 and −1, and the eigenvectors are the fixed points
(written projectively), so we can take

s0 =

[
0 9
1 1

]−1 [
1 0
0 −1

] [
0 9
1 1

]
=

[
−1 0
−2

9
1

]
s1 =

[
1 10
1 1

]−1 [
1 0
0 −1

] [
1 10
1 1

]
=

[
−11

9
20
9

−2
9

11
9

]
s2 =

[
2 11
1 1

]−1 [
1 0
0 −1

] [
2 11
1 1

]
=

[
−13

9
44
9

−2
9

13
9

]
.

So the group

Γ =

〈[
−1 0
−2

9
1

]
,

[
−11

9
20
9

−2
9

11
9

]
,

[
−13

9
44
9

−2
9

13
9

]〉
is generated by those three elements of order 2 (and is in fact the free product of the groups
〈s0〉, 〈s1〉, and 〈s2〉), and its subgroup

W = 〈s0s1, s0s2〉 =

〈[
59
81

20
9

− 4
81

11
9

]
,

[
29
81

44
9

− 8
81

13
9

]〉
is a Whittaker group of rank 2.

The quotient Ω/W is a hyperelliptic curve of genus 2, with six points of ramification
G(0), G(1), . . . , G(5), where G is the theta function for Γ with suitably chosen a and b.

Question 1. As long as we know the 2-torsion matrices s0, s1, . . . , sg that go into making
a Whittaker group, we can find the ramification points of the corresponding hyperelliptic
curve. But what if we don’t have that data?

• If we are given W = 〈γ1, . . . , γg〉, can we algorithmically determine whether or not
W is Whittaker?
• If we knowW = 〈γ1, . . . , γg〉, can we algorithmically find s0, s1, . . . , sg from γ1, . . . , γg?
• If we know W is Whittaker but cannot find s0, s1, . . . , sg, is there another way to find

the ramification points of Ω/W?

A good first family of examples to consider is Schottky groups generated by two elements.
These give rise to genus 2 curves, which are hyperelliptic, so the groups must in fact be
Whittaker.

Having discussed going from a Whittaker group to a set of ramification points, we now
consider the other direction: going from the ramification points of a totally split hyperelliptic
curve and finding the corresponding Whittaker group. This more difficult, though a brute
force method was described by Kadziela in [Ka], and was used to compute several genus 2
examples over Q5. We will outline his approach.

After a projective transformation, we may assume that the set of fixed points of the group
Γ is of the form

S = {0, b0, a1, b1, . . . ag−1, bg−1, 1,∞},
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where
0 < |b0| < |a1| ≤ . . . ≤ |bg−1| < 1,

and where the generators of Γ are the 2-torsion matrices si with fixed points {ai, bi} (taking
a0 = 0, ag = 1, and bg =∞). Let us choose parameters for the theta function associated to
Γ as 0 and 1, and write

G(z) = Θ(0, 1; z) =
∞∏
n=0

Ln(z),

where

Ln(z) :=
∏

γ∈Γ,`(γ)=n

z − γ(0)

z − γ(1)

is the sub product of Θ over all matrices in Γ with reduced length exactly n.

Theorem 5.4 (Kadziela’s Main Approximation Theorem, [Ka]). Assume S and G are as
above, and let π denote the uniformizer. Then

G(0) = 0, G(1) =∞, G(∞) = 1,

and for z ∈ S − {0, 1,∞},
• G(z) ≡ 0 mod π

• G(z) ≡
{
−4b0 mod π2 if z = b0,

−2z mod π2 if z 6= b0

• G(z) mod πt −∏t−2
i=0 Li(z) mod πt =

∏t−2
i=0 Li(z mod πt) for t ≥ 3.

LetX be a totally split hyperelliptic curve of genus g, which after projective transformation
we may assume has its set of ramification points in the form

R = {0, r0, . . . , r2g−2, 1,∞}
where 0 < |r0| < |r1| ≤ . . . ≤ |r2g−2| < 1. We know X ∼= Ω/W for some Whittaker group W .
To find W it will suffice to find the fixed points S of the corresponding group Γ, so given R
we wish to find S. We know S = Θ−1(R), but Θ is defined by S, and we cannot immediately
invert a function we do not yet know. This means we must gradually approximate candidates
for both S and Θ that give the desired property that Θ(S) = R. To simplify notation, we
will sometimes write S = {0, x0, x1, . . . , x2g−2, 1,∞} instead of in terms of ai’s and bi’s.

The following algorithm follows the description in [Ka, §6]. Although we have not imple-
mented it, Kadziela used a Magma implementation of it to compute several genus 2 examples
over Q5.

Algorithm 5.5 (From Ramification Points to Whittaker Group).

Input: Set of ramification points R = {0, r0, . . . , r2g−2, 1,∞} ⊂ Qp ∪ {∞}, and desired
degree of precision d ≥ 3

Output: The set of fixed points S = {x0, . . . , x2g−2, 1,∞} of Γ, approximated mod πd,
such that Ω/W has ramification points R for the corresponding Whittaker group of Γ.
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1: Sort r0, . . . , r2g−1 in increasing absolute value and rename.
2: if |r0| = |r1| then
3: return “NOT VALID”
4: end if
5: Define xi = 0 for 0 ≤ i ≤ 2g − 2. (Approximation mod π.)
6: Let m = max{k | rk ≡ 0 mod π2}.
7: Set ` = 0 and GOOD=FALSE
8: while GOOD=FALSE do
9: Set x0 = −1

4
ri mod π2, and all other xj’s to the −1

2
rk mod π2.

10: Test if i is the right choice using Theorem 5.4; if it is, set GOOD=TRUE
11: Set ` = `+ 1.
12: end while
13: for 3 ≤ t ≤ d do
14: Set DONE=FALSE.
15: while DONE=FALSE do
16: Choose v ∈ (OK/mOK)2g−1, set x = (x mod πt−1) + vπt.
17: Compute

∏t−2
n=0 Ln(xi) for 0 ≤ i ≤ 2g − 2.

18: if this set equals {r0 mod πt, . . . r2g−1 mod πt} then
19: Set DONE=TRUE.
20: else
21: Set DONE=FALSE.
22: end if
23: end while
24: end for
25: return x0, . . . x2g−1.

This algorithm is in some sense a brute force algorithm, as for each digit’s place from 3rd

to dth it might in principal try every element of (OK/mOK)2g−1, essentially guessing the xi’s
digit by digit (lines 13 through 24). It is nontrivial that such a brute force method could even
work, but this is made possible by Theorem 5.4 as it tells us how to check whether a choice
of element in (OK/mOK)2g−1 is valid mod πm. As with the other algorithms presented in
this paper, future algorithms improving the efficiency would be greatly desirable.
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