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ORBIFOLD GROMOV-WITTEN INVARIANTS OF WEIGHTED BLOW-UP
AT SMOOTH POINTS

WEIQIANG HE AND JIANXUN HU1

ABSTRACT. In this paper, one considers the change of orbifold Gromov-Witten invariants under

weighted blow-up at smooth points. Some blow-up formula forGromov-Witten invariants of

symplectic orbifolds is proved. These results extend the results of manifolds case to orbifold

case.
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1. INTRODUCTION

The theory of Gromov-Witten invariant or quantum cohomology is probably one of the most

important theories in mathematical physics (especially inthe string theory), and it has many

applications in algebraic geometry and symplectic geometry. Roughly speaking, given a sym-

plectic manifold (M , ω), Gromov-Witten invariant ofM is the number of pseudo-holomophic

curves intersecting with some fixed homology classes ofM . There have been a great deal of

activities to establish the mathematical foundation of thetheory of quantum cohomology or

Gromov-Witten invariants. Y. Ruan and G. Tian [RT] first established for semi-positive sym-

plectic manifolds. Then semi-positivity condition has been removed by many authors such as

Li-Tian[LT], Fukaya-Ono[FO], Ruan[R] and so forth. In 2001, Li-Ruan [LR] defined the rela-

tive Gromov-Witten invariants and established the degeneration formula. Via this formula, we

calculate Gromov-Witten invariants ofM when it can be ‘symplecticly’ cut into two symplectic
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manifolds. On the basis of degeneration formula, The secondnamed author [H] set up a blow-

up type formula of Gromov-Witten invariants, which tells the relations between Gromov-Witten

invariants of a symplectic manifold M and some special invariants of its blow-ups at a smooth

point or along a smooth curve.

Orbifolds, which were firstly introduced by I. Sataki [S] in 1956, are a kind of generaliza-

tion of manifolds. Roughly speaking, an orbifold is a manifold equipping with some local

group action. During last few years, symplectic geometers pay more and more attentions to the

category of orbifold. They worked out that many symplectic surgeries of manifolds (such as

symplectic cutting, symplectic gluing, blowing up and flops) can be generalized to orbifolds.

Moreover, numerous new characteristic emerges in the orbifold category because of the local

group action. Chen-Ruan [CR1] established a new cohomologytheory called Chen-Ruan co-

homology, which is a good generalization of ordinary cohomology. In 2000, Chen-Ruan [CR2]

generalized the quantum cohomology theory to orbifold and established the orbifold Gromov-

Witten theory. In 2010, B. Chen together with his collaborators [CLSZ] defined the relative

orbifold Gromov-Witten invariants and generalized the degeneration formula to the category

of orbifolds. In algebraic geometry, Abramovich and Fantechi [AF] also obtained a similar

degenertion formula.

In this paper, we will follow [H] to study the change of orbifold Gromov-Witten invariants

under weighted blow-up at smooth points. We will construct weighted blow-up in terms of

symplectic cutting as in [G] and use the degeneration formula to extend some blow-up formula

of [H] to the orbifold case.

Throughout this paper, letG be a compact symplectic orbifold (groupoid) of dimension 2n, G̃
be the weighted blow-up ofG at a smooth point. Denote byp : G̃ → G the natural projection (cf.

Remark 2.13 (3)). Denote byΨG
(A,g,m,(g))(α1, . . . , αm) the genusg Gromov-Witten invariants of

G with degreeA, ΨG
(A,m,(g))(α1, . . . , αm) the genus 0 GW invariants ofG with degreeA. In this

paper, we establish some relations between Gromov-Witten invariants ofG and its blow-upG̃.

More precisely, we showed

Theorem 1.1.Suppose thatG is a compact symplectic orbifold of dimension2n andp : G̃ −→
G is the weighted blow-up ofG at smooth point.αi ∈ H∗

CR(G), i = 1, 2, · · · , m. Then for genus

g ≤ 1, n ≥ 2, we have

ΨG
(A,g,m,(g))(α1, . . . , αm) = ΨG̃

(p!(A),g,m,(g))
(p∗α1, . . . , p

∗αm),

wherep!(A) = PDp∗PD(A), PD stands for the Poincare dual.

If the (real) dimension ofG is 4 or 6, then we can remove the genus condition and prove

Theorem 1.2. Under the assumption of Theorem 1.1. If1 ≤ n ≤ 3, then for any genusg, we

have

ΨG
(A,g,m,(g))(α1, . . . , αm) = ΨG̃

(p!(A),g,m,(g))
(p∗α1, . . . , p

∗αm),

wherep!(A) = PDp∗PD(A), PD stands for the Poincare dual.
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2. PRELIMINARIES

In this section, we will briefly review the notions of orbifold in terms of orbifold atlas and

proper étale groupoids. Then we recall the definition of ordinary cohomology of orbifold

and the Chen-Ruan cohomology. Next we will focus on a concrete example of orbifold, the

weighted projective space and show how to construct weighted blow-up. Finally we will intro-

duce the Gromov-Witten theory of orbifold and the degeneration formula. The main references

for this section are [ALR, CLSZ, CR1, CR2, G, S].

2.1. Orbifolds and orbifold groupoids. Let X be a paracompact Hausdorff space. Ann-

dimensional orbifold chart for an open subsetU of X is a triple(Ũ , G, π) given by a connected

open subset̃U ⊂ Rn, together with an effective smooth action of a finite groupG such that

π : Ũ → U is the induced quotient map. An embedding of orbifold charts

φij : (Ũi, Gi, πi) →֒ (Ũj , Gj, πj)

is a smooth embeddingφij : Ũi →֒ Ũj , covering the inclusionιij : Ui →֒ Uj. As shown in

[MP1], such an embedding induces an injective group homomorphismλij : Gi → Gj such that

φij isGi-equivariant in the sense that

φij(x · g) = φij(x) · λij(g),

for x ∈ Ũi andg ∈ Gi.

Definition 2.1. An orbifold atlas onX is a collection of orbifold chartsU = {(Ũi, Gi, φi, Ui)}
for an open covering{Ui} of X such that

(1) {Ui} is closed under finite intersection.

(2) Given any inclusionUi ⊂ Uj , there is an embedding of orbifold chartsφij : (Ũi, Gi, πi, Ui) →֒
(Ũj, Gj , πj, Uj).

Two orbifold atlasesU andV are equivalent if there is a common orbifold atlasW refining

U andV. An (effective) orbifoldX = (X,U) is a paracompact Hausdorff spaceX with an

equivalence class of orbifold atlases or a maximal orbifoldatlas. Given an orbifoldX = (X,U)
and a pointx ∈ X, let (Ũ , G, π) be an orbifold chart aroundx, then the local group atx is

defined to be the stabilizer of̃x ∈ π−1(x), uniquely defined up to conjugation.

There is also the conception of orbibunlde, which is the generalization of vector bundle:

Definition 2.2. Given a uniformized topological spaceX and a topological spaceE with a

surjective continuous mappr : E −→ X, an orbifold structure of rankk for E over U consists

the following data:

(1) An orbifold atlas(V,G, π) of X.

(2) A uniformizing system(V ×Ck, G, π̃) forE. The action ofG onV ×Ck is an extension

of the action ofG on V given by g(x, v) = (gx, ρ(x, g)v), whereρ : V × G −→
Aut(Ck) is a smooth map satisfying :

ρ(gx, h) ◦ ρ(x, g) = ρ(x, h ◦ g), g, h ∈ G, x ∈ V
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(3) The natural projection map̃pr : V × Ck −→ V satisfiesπ ◦ p̃r = pr ◦ π̃.

In particular, for a complex orbibundleE of rank 1 over the groupoidG, we have

Lemma 2.3. Suppose(Cn × C, G, π̃) is a uniformizing system forE , then:

(1)The mapρ : Cn ×G −→ Aut(C)(= C∗) can remove the first variable, i.e.

ρ(x, g) = ρ(0, g), ∀x ∈ Cn, ∀g ∈ G.

(2)The action matrix of G overCn × C is of the form:

(
∗ 0

0 a(g)

)
.

The proof of the lemma is straightforward. Fixg ∈ G, observe that the eigenvalue ofρ(x, g)

is the same whenx change (since the eigenvalue is “discrete” data, but the change is continu-

ous.) BecauserankE = 1, then the only element of the matrixρ(x, g) is just its eigenvalue, so

we get the first part, then the second part is trivial.

Remark2.4. Using the language of groupoids, [ALR] generalizes the definition of orbifold

structure to noneffective group action. In this paper, we will follow their notation, useG and|G|
to denote a general orbifold and its underlying topologicalspace,E to denote orbibundle. So

we have|G| = X, |E| = E.

Example 2.5.Define the action of the multiplicative groupC∗ onCn+1 − {0} by

λ · (z0, . . . , zn) = (λm0z0, . . . , λ
mnzn),

where themi are integers greater than or equal to one. The quotient

WP(m0, . . . , mn) = {Cn+1 − {0}}/C∗

is called a weighted projective space. We will give one of itsorbifold atlas in section 2.3.

Next we give the definition of orbifold morphisms or orbifoldmaps:

Definition 2.6. An orbifold morphismf : G −→ H is a given orbifold atlas{(Ũi, Gi, φi, Ui)}
of G and{(Ṽi, Hi, ψi, Vi)} of H, and an assignment of smooth maps{f̃i : Ũi → Ṽi} such that

for anyg ∈ Gi, there ish ∈ Hi so thath · f̃i(x) = f̃i(g ·x) for anyx ∈ Ũi. And if Ui ∩Uj 6= ∅,

fi andfj are compatible with respect to the orbifold structure ofUi ∩ Uj. (cf. [CR1] Def 2.1).

An orbifold morphismf induces a continuous map|f | : |G| −→ |H|.

Remark2.7. There is also a equivalence relation between orbifold morphisms, which is called

R-equivalence. If two morphism areR-equivalence, then we can treat them the same (See p.48

[ALR] for more details).
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2.2. Orbifold cohomology.

Let G be an orbifold . If|G| is compact, the de Rham cohomology of an orbifoldG, denoted

byH∗
orb(G), is defined to be the cohomology of theG-invariant de Rham complex(Ωp(G), d).

Roughly speaking, given an orbifold atlas{(Ũi, Gi, φi, Ui)} of G. An element inΩp(G) is an as-

signment{ωi ∈ Ωp(Ũi)} such thatg∗(ωi) = ωi for ∀g ∈ Gi, andφi∗(ωi)|Ui∩Uj
= φj∗(ωj)|Ui∩Uj

.

The differential operatord is induced by the differential operators ofΩp(Ũi). (See [ALR] for

details).

The Satake’s de Rham theorem [S] for an orbifoldG leads to an isomorphism

H∗
orb(G) ∼= H∗(|G|,R)

between the de Rham cohomology and the singular cohomology of the underlying topological

space. Since in this paper we just consider the caseR = R, we treat them the same, and denote

the cohomology group ofG byH∗(G).

Remark2.8. In the case thatG is effective andE is a complex line bundle, we can construct, via

Chern-Weil theory, a Chern classcw1(E) in the de Rham cohomology groupH2(G). ([CR1])

2.3. Weighted projective spaces.In this subsection, we recall some basic properties of weighted

projective spaces and orbibundles over them. For more detail, see [G].

The definition of weighted projective spacesWP(m) is described in Example 2.5(2). Now

we give a natural orbifold atlas on it. In fact, as is usually done for projective sapces, we can

consider the sets

Vi = {[z]m ∈ WP(m)|zi 6= 0} ⊂WP(m)

and the bijective mapsφi from Vi toCn/µmi
(m̂i) given by

φi([z]m) = (
z0

z
m0
mi

i

, . . . ,
ẑi
zi
, . . . ,

zn

z
mn
mi

i

)mi
,

wherez
1

mi

i is ami-root of zi, µmi
is the set ofmi-roots of 1 and(.)mi

is aµmi
-conjugacy class

in Cn/µmi
(m̂i) with µmi

acting onCn by

ξ · z = (ξq0z0, . . . , ξ
qnzn), ξ ∈ µmi

.

Then onφi(Vj ∩ Vi) ⊂ Cn/µmi
(m̂i),

φj ◦ φ−1
i ((z0, . . . , zn)mi

) = (
z0

z
m0
mj

j

, . . . ,
ẑj
zj
, . . . ,

1

z
mi
mj

j

, . . . ,
zn

z
mn
mj

j

)mj
,

soWP(m) has the structure of an orbifold where all singularities have cyclic structure groups.

We can easily see, using symplectic reduction, that weighted projective spaces are symplectic

orbifolds (Proposition 2.8 [G]).

Consider the natural projection map

π :WP(m) −→ CP n

[(z0, · · · , zn)] 7−→ [zm0
0 : · · · : zmn

n ].
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π is continuous and for allp ∈ CP n, π−1(p) is a discrete point set. So we have

H∗(WP(m)) = H∗(|WP(m)|,R) = H∗(CP n,R) = Rn+1. (2.1)

In the case of usual projective spaces, any line bundles overCP n is isomorphic to some line

bundleO(k) of Chern classk ∈ Z of the formS2n+1 ×S1 C with S1 acting onS2n+1 × C by

λ · (z, w) = (λz1, . . . , λzn, λ
kw).

Similarly, for any weighted projective spaceWP(m), we can define the orbibundleOm(p/r)

for any rationalp/r (r > 0), as the orbibundleS2n+1 ×S1 C → WP(rm), with S1 action on

S2n+1 × C given by

λ · (z, w) = (λrm1z1, . . . , λ
rmnzn, λ

pw).

There is a basic property for these line bundles (Remark 2.13[G]):

Proposition 2.9. The orbibundleOm(p/r) is isomorphic to the normal orbibundle ofWP(rm)

insideWP(rm, p)

The orbibundleOm(p/r) can be considered as elements of the rational Picard group of

WP(m) and we have a natural identification

Pic(WP(m))Q ∼= H2(WP(m),Q) ∼= Q

by assigning to a line orbibundle its first Chern class. Moreover, we have the following result

(Proposition 2.15 [G]):

Proposition 2.10. Every line bundle overWP(m) is isomorphic to someOm(χ)(χ ∈ Q) and

its Chern class is given by

c1(Om(χ)) =
χ

lcm(m0, . . . , mn)
.

2.4. Weighted blow-up. In this subsection, we recall the construction of weighted blow-up.

In this paper, we will only discuss weighted blow-up at a smooth point. See [G] for more

general case and more details.

Suppose that(G, ω) is a symplectic orbifold,H : G → R is a periodic hamiltonian function.

The hamiltonian vector fieldXH generates a circle action, which is compatible with the orbifold

structure ofG. ThenH = H−1(0) is a suborbifold preserved by circle action. Then we can

obtain a symplectic orbifoldH/S1 via symplectic reduction. More precisely, let

π : H → Z = H/S1.

Z admits a natural symplectic structureτ0 such that

π∗τ0 = i∗0ω,

wherei∗0 : H = H−1(0) → G is the inclusion. Set

G− = H−1((0,+∞)), G+ = H−1((−∞, 0)).
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Then after gluingZ with G+ andG− respectively, we get

G+
= G+

⊔
Z, G−

= G−
⊔

Z.

[L] shows that there is a natural symplectic form onG±
such that it isω when restricted onG±

and isτ0 onZ. The surgery obtainingG±
from G is called symplectic cutting. We also callG±

the symplectic cuts ofG.

Recall that blow-up is just a special case of symplectic cutting. Suppose thatp is a smooth

point ofG, then there is a Darboux uniformizing chart(z1, . . . , zn)nearp. Set the hamiltonian

function as:

H(z) = Σn
i=0|zi|2 − k, k > 0.

The inducedS1-action is given by:

λ · z = (λz0, . . . , λzn), λ ∈ S1.

Then we perform symplectic cutting onG and getG±
. We observe thatG+ ∼= CP n and call

G̃ := G−
the symplectic blow-up ofG. Roughly speaking, blow-up is obtained by cutting a disk

nearp and collapsing the boundary viaS1-action.

Similarly, if the hamiltonian function is:

H(z) = Σn
i=0mi · |zi|2 − k, mi ∈ Z+, k > 0.

Collapse the boundaryH−1(0) with the inducedS1-action:

λ · z = (λm0z0, . . . , λ
mnzn), λ ∈ S1, mi ∈ Z+.

After performing symplectic cutting, we get the weighted blow-upG̃ := G−
, andm = (m0, . . . , mn)

is called its weight.

Remark2.11. (1) We observe thatG+
is WP(m0, · · · , mn, 1). This can be obtained by

another description of symplectic cut given by Lerman [L]. Consider the symplectic

orbifold (G × C, ω ⊕
√
−1dw ∧ dw), set the Hamiltonian function as:

H(z, w) = H(z) + |w|2 = Σn
i=1mi · |zi|2 + |w|2 − k.

The induced circle action isλ · (z,w) = (λm0z0, · · · , λmnzn, λw). Lerman [L] shows

that:

G+
= {(z, w) ∈ G × C|H(z, w) = 0}/S1.

Then we easily getG+
= WP(m1, . . . , mn, 1) after a scaling.

(2) Since the exceptional divisorZ ∼= WP(m0, . . . , mn), from Proposition 2.8 and (1) we

know that the normal bundle ofZ in G±
isOm(±1) respectively.

(3) Because the normal bundle ofZ in G̃ is Om(−1), from the view of topology, blow-up

is removingp and gluingOm(−1) onG\{p} via the projection:

p : Om(−1) = S2n+1 ×S1 C −→ Cn+1

[(z, w)] 7−→ (wm0z0, . . . , w
mnzn).
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Note thatp−1(0) = WP(m), andp−1(Cn+1 − {0}) ∼= Cn+1 − {0}, which is similar to

the ordinary blow-up. The mapp also induces a natural projection mapp : |G̃| → |G|.

2.5. Orbifold Gromov-Witten theory and degeneration formula.

In this subsection, we briefly recall the definition of (absolute) Gromov-Witten theory of

an almost complex, compact orbifoldG. Then we recall the definition of relative Gromov-

Witten theory of a symplectic pair(G,Z). Finally we introduce the degeneration formula which

expresses absolute invariants in terms of relative Gromov-Witten invariants. One can see the

original paper [CR1, CR2, CLSZ] for details. But we need to introduce an important notion

before:

Let G = (X,U) be an orbifold, then the set of pairs

X̃ = {(x, (g)Gx
)|x ∈ X, g ∈ Gx},

where(g)Gx
is the conjugacy class ofg in the local groupGx, has a natural orbifold structure

given by

{
(
Ũg, ZG(g), π̃, Ũ

g/C(g)
)
|g ∈ G}.

Here for each orbifold chart((Ũ , G, π, U) ∈ U , ZG(g) is the centralizer ofg in G andŨg is the

fixed-point set ofg in Ũ . This orbifold, denoted by
∧G, is called the inertia orbifold ofG. The

inertia orbifold
∧G consists of disjoint union of sub-orbifolds ofG. To describe the connected

components of
∧G, we need to introduce an equivalence relation on the set of conjugacy classes

in local groups as in [CR1]. For eachx ∈ X, let (Ũx, Gx, πx, Ux) be a local orbifold chart at

x. If y ∈ Ux, up to conjugation, there is an injective homomorphism of local groupsGy → Gx,

hence the conjugacy class(g)Gx
is well-defined forg ∈ Gy. We define the equivalence to be

generated by the relation(g)Gy
∼ (g)Gx

. LetT1 be the set of equivalence classes, then
∧

G =
⊔

(g)∈T1

G(g),

whereG(g) = {(x, (g′)Gx
)|g′ ∈ Gx, (g

′)Gx
∼ (g)}. Note thatG(1) = G is called the non-twisted

sector andG(g) for g 6= 1 is called a twisted sector ofG. Similarly, thek-sectors
∧G[k] of G is

defined to be the orbifold on the set of all pairs

(x, (g1, · · · , gk)Gx
),

where(g1, · · · , gk)Gx
denotes the conjugacy class of k-tuples. Here two k-tuples(g

(i)
1 , · · · , g(i)k )Gx

,

i = 1, 2, are conjugate if there isg ∈ Gx such thatg(2)j = gg
(1)
j g−1 for all j = 1, · · · , k. The

k-sector orbifold
∧G[k] consists of disjoint union of sub-orbifolds ofG

∧
G[k] =

⊔

(g)∈Tk

G(g),

whereTk denotes the set of equivalence classes of conjugacy k-tuples in local groups.

The degree shifting numberι :
⊔

(g)∈T1 G(g) → Q, defined by Chen and Ruan in [CR1], is

determined by the canonical automorphismΦ on the normal bundle ofe = ⊔e(g) : ⊔G(g) → G

Ne =
⊔

(g)∈T1

N(g) =
⊔

(g)∈T1

e∗(g)TG/TG(g),
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where the automorphismΦ acting on the normal bundleN(g) overG(g) is given by the canonical

g-action on the complex vector bundle over the orbifold chartŨg of G. Over each connected

componentG(g), the normal bundleN(g) has an eigen-bundle decomposition

N(g) =
⊕

θ(g)∈Q∩(0,1)
N (θ(g))

whereΦ onN (θ(g)) is the multiplication bye2π
√
−1θ(g) . Then the degree shifting number

ι(g) =
∑

θ(g)

rankC(N (θ(g)))θ(g),

defines a locally constant function on
∧G.

Lemma 2.12.([ALR] ) There exists a natural orbifold isomorphismi : G(g) → G(g−1). Moreover

dimG(g) = dimG(g−1) = dimG − ι(g) − ι(g−1).

Now we come back to the discussion of orbifold Gromov-Wittentheory. First of all, we

consider the definition of orbifold Riemann surface or orbicurve.

Definition 2.13. A (nodal) orbicurveC is a nodal marked Riemann surface with an orbifold

structure as follows:

(1) The singular point set of each component is contained in the set of marked points and

nodal points;

(2) A neighborhood of a singular mark point is covered by the orbifold chart (D,Zr, φ),

where theZr-action is given by

z 7→ e2nπ
√
−1/rz, e2nπ

√
−1/r ∈ Zr.

(3) A singular nodal point must satisfy the balance condition, i.e one of its neighborhoods

can be uniformized by the chart(Ũ ,Zs, ψ), whereŨ = {(z, w) ∈ C2|zw = 1}, the

Zs-action is given by(z, w) 7→ (e2nπ
√
−1/sz, e−2nπ

√
−1/sw), e2nπ

√
−1/r ∈ Zs

Suppose(G, ω) is a symplectic orbifold with a tamed complex structureJ , C is an orbicurve

, f : C → G is aJ-holomorphic orbifold morphism. Ifx ∈ |C| is a singular point ofC, f maps

x to y ∈ |G|, and induces a homomorphism between their local groupλf : Zr → Gy. f is

called representable ifλf is injective for all singular pointx. Similar to the manifold case, we

can define:

Definition 2.14. A stable orbifold morphismf : C → G is a representable ,J-holomorphic

morphism from an orbicurveC to G with a finite automorphism. The moduli spaceMg,m,A(G)
consists of all the equivalence class of stable orbifold morphism of genusg, m marked points

and degreeA ∈ H2(|G|,Z). (f andf ′ are said to be equivalent if∃φ ∈ Aut(C) such that

f ′ = f ◦ φ up to anR-equivalence. )
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For each marked pointxi, there is an evaluation map

evi : Mg,m,A(G) →
∧

G
(C, f) 7→ (yi, (gi)Gyi

)

wheref mapsxi to yi, andgi = λf(σ). (Hereσ is the generator of the local groupZi of xi.)

We can use the decomposition of
∧G to decomposeMg,m,A(G) into components:

Mg,m,A(G) =
⊔

(gi)∈TG

Mg,m,A(G)((g1), . . . , (gm)),

whereMg,m,A(G)((g1), . . . , (gm)) is the component being mapped intoG(gi) by evi. For sim-

plicity, we set(g) = ((g1), . . . , (gm)), denote the component byMg,(g),A(G).
Chen-Ruan [CR2] observed that each component of the moduli space has a virtual funda-

mental class of the expected dimension.

Proposition 2.15.The moduli spaceMg,(g),A(G) carries a virtual fundamental cycle[Mg,(g),A(G)]vir
with the expected dimension

vdimMg,(g),A(G) = c1(A) + (n− 3)(1− g) +m− ι(g),

whereι(g) = Σm
i=1ι(gi) andι(gi) is the degree shifting number forG(g).

Now we can define the orbifold Gromov-Witten invariants as:

ΨG
(A,g,m,(g))(α1, . . . , αm) =

∫

[Mg,(g),A(G)]vir

∏

i

ev∗i (αi),

whereαi ∈ H∗(G(gi)).

Let (G,Z) be a relative pair, which means thatZ is a symplectic divisor ofG,N is its normal

bundle. Similar to manifold case, we will consider the moduli space of all theJ-holomorphic

mapsf : C → G intersecting divisorZ in finite relative marked point with prescribed contact

order. If we fix a relative marked pointx, f(x) = y, then there is an orbifold atlas(Ũ ,Zr, φ)

nearx, and(Ṽ , Gy, ψ) neary, such thatf can be lifted to be a smooth map̃f : Ũ → Ṽ . The

(fractional) contact orderℓx is defined to bed
r
. Hered is the contact order of̃f andr is the order

of the local group ofx.

Note that the moduli space can be compactified via similar scheme to the manifold case.

DenoteQ := P(N ⊕ C), we can gluem copies ofQ together with identifying one’s infinity

sectionZi,∞ to another’s zero sectionZi+1,0. Denote the result space byQm, andZi,∞ = Zi+1,0

byZi. SetGm := G ∧Z Qm. Then we have

Definition 2.16. A stable relative orbifold holomorphic morphismf : C → Gm is a repre-

sentable,J-holomorphic morphism satisfying:

(1) The rigid components are mapped intoG and the rubber components are mapped into

Qm.

(2) The relative marked points are mapped intoZm,∞ and the sum of fractional contact

orders equals toZ ·A.
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(3) The relative nodes are mapped into SingGm satisfying balanced condition that the two

branches at the node are mapped to different irreducible components ofGm and the

contact orders toZi,0 = Zi−1,∞ are equal.

(4) The automorphism group is finite.

f and f ′ are said to be equivalent if there existφ ∈ Aut(C) andψ ∈ Aut(Ql), such that

f ◦ φ = ψ ◦ f ′ up to anR-equivalence. The moduli spaceMg,l,A,Tk
(G,Z) consists of all stable

relative orbifold morphism with genusg, homologous classA, l absolute mark points,k relative

marked points with the contact orders prescribed byTk = (ℓ1, . . . , ℓk).

Similar to the case of manifold, For each absolute marked point xi, we have an evaluation

map:

evi : Mg,l,A,Tk
(G,Z) →

∧
G, i = 1, · · · , l.

For each relative marked pointyi, we have a relative evaluation map :

evrj : Mg,l,A,Tk
(G,Z) →

∧
Z.

Let (g) = {(g1), . . . , (gl)}, (h) = {(h1), . . . , (hk)}. The decomposition of
∧G and

∧Z in-

duces a decomposition of the moduli space as follows

Mg,l,A,Tk
(G,Z) =

⊔

(g),(h)

Mg,(g),A,(h),Tk
(G,Z).

Chen-Li-Sun-Zhao [CLSZ] and Abramovich-Fantechi [AF] show the following proposition.

Proposition 2.17. The moduli spaceMg,(g),A,(h),Tk
(G,Z) carries a virtual fundamental class

[Mg,(g),A,(h),Tk
(G,Z)]vir with the expected dimension

vdimMg,(g),A,(h),Tk
(G,Z) = c1(A) + (3− n)(g − 1) +m+ k − ιG(g) − ιG(h) −

∑

i

[ℓi], (2.2)

wheredimRM = 2n, ιG(g) =
∑

i ι
G
(gi)

, ιG(gi) is the degree shifting number of the componentG(gi)

of
∧G. ιG(h) is defined similarly.[ℓi] is the biggest integer less than the fractional contact order

ℓi.

The orbifold relative Gromov-Witten invariants are definedas

Ψ
(G,Z)
(A,g,(g),(h),Tk

)(α1, . . . , αm|β1, . . . , βk)

=
1

|Aut(Tk)|

∫

[Mg,(g),A,(h),Tk
(G,Z)]vir

∏

i

ev∗i (αi)
∏

j

evr,∗j (βj),

whereα ∈ H∗(G(gi)), βj ∈ H∗(Z(hj)), Tk = {(ℓ1, (h1), β1), . . . , (ℓk, (hk), βk)}.
Li-Ruan [LR] gave a degeneration formula which expresses the absolute Gromoc-Witten

invariants of a manifoldM in terms of the relative Gromov-Wiiten invariants of its symplectic

cuts. Chen-Li-Sun-Zhao[CLSZ] extended this degenerationformula to the orbifold case in

the differential category. Abramovich-Fantechi [AF] alsoobtained this formula in the case of

algebraic stacks.

Suppose(G, ω) is a symplectic orbifold. After performing symplectic cutting onG we ob-

tain two symplectic orbifoldG±
. One can glue two pseudoholomorphic curve(u+, u−) in G+

,
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G−
with the balance condition to obtain a pseudoholomorphic curve u in G. Now we have a

projective map

π : G → G+ ∧Z G−
,

whereG+ ∧Z G−
is the orbifold obtained via gluingG±

along the divisorZ. π induces a

homomorphism

π∗ : H2(|G|,Z) → H2(|G+ ∧Z G−|,Z).
Then(u+, u−) defines a homology class[u+ + u−] ∈ H2(|G+ ∧Z G−|,Z). Moreover, we have

[u+ + u−] = π∗([u]).

Note thatπ∗ is not injective, and elements inker π∗ are called vanishing cycle (cf. [LR]). Let

[A] := A+ ker π∗. Define

ΨG
([A],g,m,(g))(α1, . . . , αm) =

∑

B∈[A]

ΨG
(B,g,m,(g))(α1, . . . , αm).

By Gromov’s compactness theorem, the summation of right hand side is finite.

While G degenerates toG+ ∧Z G−
, the moduli spaceMg,(g),[A](G) also degenerates to

Mg,(g),π∗[A](G+ ∧Z G−
), which consists of the components indexed by the possible relative

typeΓ of u±. Using the virtual neighborhood techniques [R, CLW], Chen-Li-sun-Zhao[CLSZ]

defined GW invariantsΦΓ for each component indexed byΓ and proved

ΨG
([A],g,m,(g)) =

∑
ΨΓ.

For simplicity, we will assume thatu± has just one component. Denote its index by

Γ = {A+, g+, m+, (g+), (h+), T+
k ;A−, g−, m−, (g−), (h−), T−

k }.

satisfying

(1) A+ + A− = π∗([A]), g = g+ + g− + k − 1, (g+) ∪ (g−) = (g),m+ +m− = m,

(2) (h+) = ((h−)−1), T+
k = T−

k .

Then we have the following degeneration formula

Theorem 2.18.Suppose thatα±
i ∈ H∗(

∧G±) with α+
i |∧Z = α−

i |∧Z defines a class(α+
i , α

−
i )

in H∗(
∧
(G+ ∧Z G−

)). Letαi = π∗(α+
i , α

−
i ) ∈ H∗(

∧G), i = 1, 2, · · · , m. Then for

Γ = {A+, g+, (g+), (h+), T+
k ;A−, g−, (g−), (h−), T−

k },

we have

ΨΓ(α1, . . . , αm) =
∑

I

C(Γ, I)Ψ
(G+

,Z)

(A+,g+,(g+),(h+),T+
k
)
(α+

i1
, . . . , α+

i
m+

|βI)

×Ψ
(G−

,Z)

(A−,g−,(g−),(h−),T−
k
)
(α−

j1
, . . . , α−

j
m− |β∗

I ),

where{i1, · · · , im+}∪{j1, · · · , jm−} = {1, · · · , m}, βI runs over all the tuples(β1, . . . , βk). βi
is a basis ofH∗(Z(hi)), andβ∗

I denotes the dual basis ofβI ,C(Γ, I) := |Aut(T (Γ, bI))|∏k
i=1 ℓi,

whereT (Γ, bI) = {(ℓ1, (h1), β1), . . . , (ℓk, (hk), βk)}
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Remark2.19. (1) In the rest of the paper, we only need this special case that u± has at most

one component. For the degeneration formula of generalΓ, see Theorem 6.2 in [CLSZ].

(2) For the case of blow-up at a point, we can show that there isno vanishing 2-cycle (cf.

Lemma 2.11 [LR]). Then we have

ΨG
(A,g,m,(g)) = ΨG

([A],g,m,(g)) =
∑

ΨΓ.

Remark2.20. Fix an indexΓ = {A+, g+, (g+), (h+), T+
k ;A−, g−, (g−), (h−), T−

k }, SetΓ± =

{A±.g±, (g±), (h±), T±
k }. Denote byMΓ the component ofMg,(g),π∗[A](G

+ ∧Z G−
) corre-

sponding toΓ, then from Proposition 2.15, we have

vdimMΓ = c1(A) + (n− 3)(1− g) +m− ιG(g).

Denote byMΓ± the corresponding moduli spacesMg±,m±,(g±),A±,(h±),T±
k
(G±

,Z) respectively.

From the degeneration formula, we know thatΨΓ is nonzero unless

vdimMΓ = vdimMΓ+ + vdimMΓ− − dim
∏

j

Z(hj).

It follows from Lemma 2.12 thatΨΓ in the degeneration formula is nonzero only if

vdimMΓ+ + vdimMΓ− (2.3)

=

k∑

i=1

(n− 1− ιZ(hi)
− ιZ

(h−1
i )

) + c1(A) + (n− 3)(1− g) +m− ιG(g).

This formula is a generalization of (5.1) in [LR] to the orbifold category.

3. PROOF OF MAIN THEOREMS

In this section, we will prove our weighted blow-up formulaeof orbifold Gromov-Witten

invariants at a smooth point. The core of our proof is the dimension counting of the moduli

spaces. Note that we do have a formula (2.2) for the expected dimension of the moduli space

Mg,(g),A,(h),Tk
(G,Z). Since the formula (2.2) contains an undesirable notation [], it will make

the computation unhandy. Before we prove our main results, we want to modify the formula

(2.2) to make it more easy to use.

After checking the orbifold structure a little more, we have

Proposition 3.1. The moduli spaceMg,(g),A,(h),Tk
(G,Z) is not empty only if for anyi

di ≡ ri(ι
G
(hi)

− ιZ(hi)
) mod(ri),

wheredi is the contact order,ri is the multiplicity of the i-th mark point.

Proof. Suppose(C, f) ∈ Mg,(g),A,(h),Tk
(G,Z), then near relative mark pointxi, we have a uni-

formizing chart(D,Zri,Φ), nearz = f(xi), we have a uniformizing chart(V ×C, Gz,Ψ),so we

can expressf = (f0, f1) as (cf. p21 of [CLSZ]):

f : D → V × C, f0(w) = (f(w), wdi +O(wdi+1)).
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Supposeλ(f) : Zri → Gz is the homomorphism induced byf1 and

λ(f)(σ) = hi,

whereσ is the generator ofZri .

By lemma 2.3, without loss of generality, we may assumehi is of the form:
(

∗ 0

0 a(hi)

)
.

Now, by the definition of degree shifting number, we have

a(hi) = e
2π(ιG

(hi)
−ιZ

(hi)
)
√
−1
.

Sincef0(gw) = λ(f)(g)◦f0(w) for anyw ∈ D, g ∈ Zri , therefore, for giveng = σ = e
2π

√
−1

ri ,

we have(just consider the fiber component):

e
2πdi

√
−1

ri wdi = (e
2π

√
−1

ri w)di = a(hi)w
di = e

2π(ιG
(hi)

−ιZ
(hi)

)
√
−1
wdi .

Then we get:
di
ri

− (ιG(hi)
− ιZ(hi)

) ∈ Z,

i.e. di ≡ ri(ι
G
(hi)

− ιZ(hi)
) mod(ri). �

From Proposition 3.1 and Proposition 2.17, it is easy to get another natural formula without

the notation [ ].

Corollary 3.2. If the moduli space is nonempty, then

vdimMg,(g),A,(h),Tk
(G,Z) = c1(A) + (3− n)(g − 1) +m+ k − ιG(g) − ιZ(h) −

∑

i

ℓi. (3.1)

Proof. If di ≡ ri(ι
G
(hi)

− ιZ(hi)
) mod(ri),then we have:

Σ[ℓi] = Σ[di/ri] = Σℓi −
∑

(ιG(hi)
− ιZ(hi)

) = Σℓi − (ιG(h) − ιZ(h))

Plugging it into the formula (2.2) in Proposition 2.17, we get the formula (3.1). �

In this paper, We will only consider the case of weighted blow-up at a smooth point. First

of all, we need to fix some notations. Suppose that the weightm = (m1, m2, . . . , mn) . Let G
be a compact symplectic orbifold of dimension2n andP0 the blown-up point, We perform the

m-weighted symplectic cutting forG atP0 as in Sect.2.4. We have

G+
=WP(m1, . . . , mn, 1), G−

= G̃.

Note that the common divisorZ ∼= WP(m1, . . . , mn) is the exceptional divisor iñG and the

infinity hyperplane inWP(m1, · · · , mn, 1) respectively.

Since the first Chern class of weighted projective space plays an important role in the dimen-

sion counting, therefore, we need to compute the first Chern class of weighted projective space.

For this purpose, we need the Euler’s sequence of weighted projective space as follows( see also

Lemma 3.21 of [M])
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Proposition 3.3. ([M]) SupposeWP(m) = WP(m1, . . . , mn). Then there exist an exact se-

quence given by

0 → C
ς−→

n⊕

i=1

Om(mi) → TWP(m) → 0,

whereC = WP(m)× C. The mapς is given byς(1) = (m1z1, . . . , mnzn).

From this Euler’s sequence, we have

Lemma 3.4. Suppose thatE ∈ H2n−2(WP(m1, · · · , mn, 1)) is the homology class represented

by the divisorZ as above andηE is its Poincare dual. Then

c1(TWP(m1, · · · , mn, 1)) = (

n∑

i=1

mi + 1)ηE. (3.2)

Proof. For simplicity, denoteWP(m) :=WP(m1, . . . , mn),WP(m′) := WP(m1, . . . , mn, 1).

Consider the orbifold embedding induced byZ:

s : WP(m) −→ WP(m′)

[(z1, . . . , zn)] 7−→ [(z1, . . . , zn, 0)]

which induce a map of cohomology groups:

s∗ : H∗(WP(m′)) −→ H∗(WP(m)),

and we have:

s−1(TWP(m′)) = TWP(m′)|Z = TWP(m)
⊕

N ,

whereN = NZ|WP(m′) = Om(1) (cf. Proposition 2.9). So from Proposition 3.3 and Whitney

sum formula, we have:

s∗c1(TWP(m′)) =
n∑

i=1

c1(Om(mi)) + c1(Om(1)) = (
n∑

i=1

mi + 1)e(Om(1)). (3.3)

DenoteΦ(N ) is the Thom class of orbi-bundleN , by the well-known relation among Euler

class, Thom class and Poincare dual, we have:

s∗(ηE) = s∗(Φ(N )) = s∗(Φ(Om(1))) = e(Om(1)). (3.4)

Combining (3.3) and (3.4) we get:

c1(TWP(m′))− (
n∑

i=1

mi + 1)ηE ∈ Ker(s∗). (3.5)

Now we consider the long exact sequence:

· · · → H2(WP(m′),WP(m)) → H2(WP(m′))
s∗−→ H2(WP(m)) → H3(WP(m′),WP(m)) → · · ·

Note that:

H2(WP(m′),WP(m)) = H2(WP(m′), U)
exision
====== H2(WP(m′)− Z, U −Z)

= H2(Cn,Cn − {0}) = 0,

whereU is a small neighborhood nearZ which is homotopic toZ.
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Sos∗ : H2(WP(m′)) −→ H2(WP(m)) is an injective. (In fact, it is an isomorphism.) This

fact together with (3.5) imply that:

c1(TWP(m′)) = (
n∑

i=1

mi + 1)c1(ηE).

�

Next we will follow [H] to decompose the proof of our main theorems into two comparison

theorems between absolute and relative Gromov-Witten invariants. The first coming theorem is

Theorem 3.5.Under the assumption of Theorem 1.1. Ifg ≤ 1, n ≥ 2, then

ΨG
(A,g,m,(g))(α1, . . . , αm) = Ψ

(G−
,Z)

(A−,g,m,(g))(α1, . . . , αm) (3.6)

Proof. We perform them-weighted symplectic cutting forG atP0. Then we get

G+
=WP(m1, · · · , mn, 1), G−

= G̃.

Now we want to apply the degeneration formula to compute the absolute GW invariants ofG
in the LHS of (3.6). From Remark 2.19 (2) and the degenerationformula, we only need to

consider the contribution of each componentΓ = {Γ+,Γ−} to the GW-invariants. According

to our convention,u± : C± −→ G± may have many connected componentsu±i : C±
i −→

G±, i = 1, . . . , l±. SupposeC±
i has genusg±i , g± =

∑
g±i with m±

i marked points. Note that

G+
= WP(m1, . . . , mn, 1). For the indexΓ+, from (3.1), we have

vdimMΓ+ =
∑

c1([u
+
i ]) + (3− n)(g+ − l+) +m+ + k − ιG(g+) − ιZ(h) −

∑
ℓi, (3.7)

where the last summation runs over all fractional contact orders inΓ+.

SinceZ ∼= WP(m1, . . . , mn) in WP(m1, . . . , mn, 1)), an intersection multiplicity calcula-

tion shows
∑

([u+i ] · ηE) =
∑
ℓi.

Therefore, from (3.2), we have

∑
c1([u

+
i ]) = (

n∑

i=1

mi + 1)(

k∑

i

ℓi). (3.8)

Combining (3.7) and (3.8), we have

vdimMΓ+ = (

n∑

i=1

mi)(

k∑

j=1

ℓj) + (3− n)(g+ − l+) +m+ + k − ιG(g+) − ιZ(h). (3.9)

Sinceαi ∈ H∗(G) and the blown-up pointP0 is a smooth point, we may assume that allαi

support away from the neighborhood ofP0. So we haveα+
i = 0, 1 ≤ i ≤ m. Therefore, if

m+ > 0, we have for anyβb ∈ H∗(Z),

Ψ
(G+

,Z)

(A+,g+,m+,(g+),{ℓ1,...,ℓk},(h))(α
+
i , βb) = 0.

This impliesΨΓ = 0 exceptm− = m.
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Now we assumem− = m, i.e.m+ = 0. From (2.3) and (3.9), we get:

vdimMΓ− = (n− 2)k −
k∑

i=1

ιZ
(h−1

i )
+ c1(A) + (3− n)(g − g+ + l+ − 1)

+ m− ιG(g) − (
n∑

i=1

mi)(
k∑

j=1

ℓj), (3.10)

wherek is the number of relative marked points onC+ or C−.

On the other hand, if

1

2

∑
degαi 6= c1(A) + (3− n)(g − 1) +m− ιG(g),

by the definition of the orbifold Gromov-Witten invariant, we have

ΨG
(A,g,m,(g))(α1, . . . , αm) = ΨG̃

(p!(A),g,m,(g))(p
∗α1, . . . , p

∗αm) = 0.

Then the theorem holds trivially. Therefore, we may also assume

1

2

∑
degαi = c1(A) + (3− n)(g − 1) +m− ιG(g). (3.11)

(3.10) and (3.11) imply that:

1

2

∑
degαi−vdimMΓ− = (

n∑

i=1

mi)(

k∑

j=1

ℓj)+(3−n)(g+−l+)+
k∑

j=1

ιZ
(h−1

j )
−(n−2)k. (3.12)

Next, we first prove the following lemma:

Lemma 3.6. If l+ ≥ 1, k > 0, g ≤ 1, n ≥ 2, then

1

2

∑
degαi − vdimMΓ− > 0.

Proof. Sincek ≥ l+ ≥ 1, g+ ≤ g ≤ 1, n ≥ 2, it is easy to see that

(3− n)(g+ − l+) + k ≥ 0.

From (3.12), it suffices to prove that

(
n∑

i=1

mi)(
k∑

j=1

ℓj) +
k∑

j=1

ιZ
(h−1

j )
− (n− 1)k > 0.

In fact, we will prove that, for1 ≤ j ≤ k

(
n∑

i=1

mi)ℓj + ιZ
(h−1

j )
− (n− 1) > 0. (3.13)

The proof of (3.13) is nothing but direct checking. For simplicity, we drop the indexj. The

orbifold J-holomorphic mapu+ : C −→ G+ ∼= WP(m1, . . . , mn, 1) maps the relative marked

pointx to (p, (h)) ∈ ∧Z with fractional contact orderℓ, where
∧Z is the inertia orbifold of

Z. Thenℓ = d
r

, whered is the contact order of the lifting map andr is the order ofh.
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Supposep = [(z1, . . . , zn, w)] ∈ WP(m1, . . . , mn, 1), sincep ∈ Z, there is somei s.t.

zi 6= 0. Without loss of generality, we assumez1 6= 0, thenp is on the standard orbifold chart

U1 = {[(z1, . . . , zn, w)]|z1 6= 0} of WP(m1, . . . , mn, 1): (c.f. Sect. 2.3)

ϕ : U1 −→ Cn/Zm1

[(z1, . . . , zn, w)] 7−→ (
z2

z
m2
m1
1

, . . . ,
zn

z
mn
m1
1

,
w

z
1

m1
1

)m1 ,

whereξ ∈ Zm1 acts onCn as:ξ · (y1, . . . , yn) = (ξm2y1, . . . , ξ
mnyn−1, ξyn). Now we compute

the degree shifting numberιZ(h−1). Suppose the mapλu+ : Gx → Zm1 which is induced byu+

maps the generator ofGx to ξ = e
2lπı
m1 ∈ Zm1 , (0 ≤ l ≤ m1 − 1). Then

ξ−1 · (y1, . . . , yn) = (e
− 2m2lπı

m1 y1, . . . , e
− 2mnlπı

m1 yn−1, e
− 2lπı

m1 yn)

And the orbifold chart ofZ is just the projection of the first n-1 components ofCn. By the

definition of degree shifting number, we have:

ιZ(h−1) =

n∑

i=2

lim1 − lmi

m1
(3.14)

whereli is minimal integer s.t.lim1−lmi

m1
≥ 0, li ≥ 0.

On the other hand, it is easily to see thatιG(h)− ιZ(h) = l
m1

. Recall that in the proof of corollary

3.2, we have

q := ℓ− (ιG(h) − ιZ(h)) = [ℓ] ∈ N

So

ℓ = q + (ιG(h) − ιZ(h)) =
qm1 + l

m1
(3.15)

Put (3.14) and (3.15) into the left-handside of (3.13), we denotel1 := l and get

(
n∑

i=1

mi)ℓ+ ιZ(h−1) − (n− 1) = (
n∑

i=1

mi)
qm1 + l

m1

+
n∑

i=2

lim1 − lmi

m1

− (n− 1)

= (qm1 + l) +
n∑

i=2

qm1mi + lmi + lim1 − lmi

m1

− (n− 1)

= (
n∑

i=1

mi)q +
n∑

i=1

li − (n− 1)

=
n∑

i=1

(miq + li − 1) + 1.

Note thatli, q ∈ N, and :

(1)If q ≥ 1, then it is easily see thatmiq + li − 1 ≥ 0, (3.13) holds;

(2)If q = 0, l ≥ 1, then from (3.14), we haveli ≥ 1, ∀i, thenmiq + li − 1 ≥ 0, (3.13) holds;

(3)If q = 0, l = 0, then from (3.14), we haveli = 0, ∀i, then the relative mark pointx is a

smooth point of contact order0, contradicting to the definition of relative mark point.

Summarizing, we complete the proof of the lemma. �
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Now we come back to the proof of the comparison theorem. Ifk > 0, by the definition of

relative Gromov-Witten invariant and Lemma 3.6, we have foranyβb ∈ H∗
CR(Z,C),

Ψ
(G−

,Z)
(A−,g−,m,(g),{ℓ1,...,ℓk},(h))(α

−
i , βb) = 0.

Therefore,ΨΓ = 0 except forΓ = {A−, g,m, (g)}. This completes the proof of the comparison

theorem. �

Remark3.7. In fact, Lemma 3.6 still holds wheng ≥ 2, n=2 or 3. This fact can be easily seen

in the proof.

Next, we consider the case ofG̃ and prove our second comparison theorem.

Theorem 3.8.Under the assumption of Theorem 1.1. Ifg ≤ 1, n ≥ 2, then

ΨG̃
(p!(A),g,m,(g))

(p∗(α1), . . . , p
∗(αm)) = Ψ

(G−
,Z)

(p!(A)−,g,m,(g))
(α1, . . . , αm) (3.16)

Proof. We perform the orbifold symplectic cutting with trivial weight along the exceptional

divisorE. We have

G̃
+

= P(O(m1,...,mn)(−1)⊕O), G̃
−
= G̃.

Now we apply the gluing theorem to compute the contribution of each gluing component. In

fact, we will prove that the contribution of relative stableJ-holomorphic curves iñG which

touch the exceptional divisorE to the GW-invariant of̃G is zero. We consider the component

Γ = {p!(A)+, g+, m+, (g+), {ℓ1, . . . , ℓk}, (h+); p!(A)−, g−, m−, (g−), {ℓ1, . . . , ℓk}, (h−)},

with (h+) = ((h−)−1).

DenoteΓ± = {p!(A)±, g±, m±, (g±), {ℓ1, · · · , ℓk}, (h±). Then from (2.3) we have:

vdimMΓ+ + vdimMΓ−

=
k∑

i=1

(n− 1− ιZ(hi)
− ιZ

(h−1
i )

) + c1(p
!(A)) + (3− n)(g − 1) +m− ιG̃(g). (3.17)

Now we want to calculatevdimMΓ+ . As in the proof of Theorem 3.5, we assumeu± :

Σ± → G± hasl± connected componentsu±i : Σ±
i → G±, i = 1, . . . , l± andΣ±

i has antiemetic

genusg±i , g± = Σg±i with m±
i marked points. Then we have the same formula ofvdimMΓ+

as (3.7). Now we calculate
∑
c1([u

+
i ]) in (3.7) as follows:

Observe that we obtaiñG
+

by performing the symplectic cutting twice. We also note that G̃
+

is independent of the order of these two orbifold symplecticcuttings. Therefore, if we commute

the order of these two symplectic cuttings, it is easy to see:

P(O(m1,...,mn)(−1)⊕O) ∼= W̃P(m1, . . . , mn, 1)

whereW̃P(m1, . . . , mn, 1) is obtained by performing(m1, . . . , mn)-weighted blow-up on the

smooth point[(0, . . . , 0, 1)] of WP(m1, . . . , mn, 1).

LetE denotes the zero section ofP(O(m1,...,mn)(−1)⊕O), andH denotes the infinity section.

Then we have:

E ∼= H ∼= WP(m1, . . . , mn)
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Now we need to consider the cohomology group of̃WP(m1, . . . , mn, 1). Godinho [G] gave

an interpretation of the underlying space of blow-up in terms of connected sum, see Lemma 5.1

of [G]. The following Proposition is just the special case ofp = 1.

Proposition 3.9. SupposeG is a symplectic orbifold, the weightedm-blow-up ofG at a smooth

pointx is given by the connected sum:

G̃ = G#WP(m, 1).

From this Proposition and (2.1), we have:

H2(W̃P(m1, . . . , mn, 1)) = R⊕ R

and the generator is easily to seen to beηE andηH , whereηE andηH is the Poincare dual ofE

andH. Now we have:

(
∑

c1([u
+
i ])) ·H = p!(A)+ ·H =

∑
ℓi,

(
∑

c1([u
+
i ])) · E = p!(A)+ · E = p!(A) · E = A · p∗(E) = 0.

And we have an analog of Lemma 3.4:

Lemma 3.10.

c1(TW̃P(m1, . . . , mn, 1)) = (
n∑

i=1

mi + 1)ηH − (
n∑

i=1

mi − 1)ηE . (3.18)

Proof. Similar to the proof of Lemma 3.4, denoteWP(m) := WP(m1, . . . , mn), W̃P(m′) :=

W̃P(m1, . . . , mn, 1). Supposec1(W̃P(m′)) = aηH + bηE . Consider the orbifold embedding

induced byE:

s : WP(m) →֒ W̃P(m′)

which induces a map of cohomology groups:

s∗ : H∗(W̃P(m′)) −→ H∗(WP(m)).

And we have:

s−1(TW̃P(m′)) = TW̃P(m′)|E = TWP(m)
⊕

N ,

whereN = NE|W̃P(m′) = Om(−1). So via Proposition 3.9 and Whitney sum formula, we have:

s∗c1(TW̃P(m′)) =
n∑

i=1

c1(Om(mi)) + c1(Om(−1)) = (
n∑

i=1

mi − 1)e(Om(1)). (3.19)

DenoteΦ(N ) is the Thom class of orbi-bundleN , by the well-known relation among Euler

class, Thom class and Poincare dual, we have:

s∗(ηE) = s∗(Φ(N )) = s∗(Φ(Om(−1))) = e(Om(−1)) = −e(Om(1)). (3.20)

Combining (3.19) and (3.20), we get

c1(TW̃P(m′)) + (
n∑

i=1

mi − 1)ηE ∈ Ker(s∗).
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Now we consider the long exact sequence

· · · → H2(W̃P(m′), E)
j∗−→ H2(WP(m′))

s∗−→ H2(WP(m)) → H3(W̃P(m′), E) → · · ·

Note that

H2(W̃P(m′), E) = H2(WP(m′), U)
exision
====== H2(W̃P(m′)− E,U − E)

= H2(NH|W̃P(m′),NH|W̃P(m′) −H),

whereU is a small neighborhood nearE which is homotopic toE. Now we can know that

Ker(s∗) = j∗H2(W̃P(m′), E) is generated byj∗Φ(NH|W̃P(m′)) = ηH . Then we get:

b = −(
n∑

i=1

mi − 1).

We can use the same method to get:

a =
n∑

i=1

mi + 1.

Finally we have:

c1(TW̃P(m1, . . . , mn, 1)) = (

n∑

i=1

mi + 1)ηH − (

n∑

i=1

mi − 1)ηE .

This completes the proof of the Lemma. �

Next, we come back to the proof of Theorem 3.8. From (3.18), wehave

∑
c1([u

+
i ]) = (

n∑

i=1

mi + 1)(
k∑

i

ℓi).

The same argument as in proof of Theorem 3.5 shows that we onlyneed to prove

1

2

∑
degαi − vdimMΓ− = (

n∑

i=1

mi)(
k∑

j=1

ℓj) + (3− n)(g+ − l+) +
k∑

j=1

ιZ
(h−1

j )
− (n− 2)k

> 0.

The proof of the last inequality is totally the same as the proof of Lemma 3.6. This completes

the proof of the second comparison Theorem.

�

Summarizing Theorem 3.5 and Theorem 3.8 and note thatA− = p!(A)−, we get the blow-up

formula

Theorem 3.11.If g ≤ 1, n ≥ 2, then

ΨG
(A,g,m,(g))(α1, . . . , αm) = ΨG̃

(p!(A),g,m,(g))
(p∗(α1), . . . , p

∗(αm)).

From Remark 3.7, we can also conclude that:

Theorem 3.12.If dimRG =4 or 6, then

ΨG
(A,g,m,(g))(α1, . . . , αm) = ΨG̃

(p!(A),g,m,(g))
(p∗(α1), . . . , p

∗(αm)).
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Remark3.13. Unfortunately, we do not know wether Theorem 3.12 holds whenn = 1 or g ≥ 2,

since Lemma 3.6 may fail in that case. We conjecture that the conditiong ≤ 1 is a technical

one, butn ≥ 2 is not. We will study this problem in the future.

4. APPLICATION

In this section, we will give an application of our main result Theorem 3.12. Uniruledness

is an important property in the birational classification ofalgebraic manifold. In [HLR], Hu,

Li and Ruan introduces the concept of symplectic uniruledness via Gromov-Witten invariant: a

symplectic manifold(M,ω) is symplectic uniruled if there is a nonzero genus zero GW invariant

involving a point class.

Note that the symplectic uniruledness is easily to generalize to orbifold, we can obtain a result

about uniruledness in the category of orbifold:

Corollary 4.1. If the condition ofG andG̃ are as in Theorem 3.12, then

G is symplectic uniruled⇒ G̃ is symplectic uniruled.

Proof. SupposeG is symplectic uniruled, then∃A ∈ H2(|G|,Z) andα2, . . . , αm ∈ H∗(G), such

thatΨG
(A,g,m,(g))([pt], α2, . . . , αm) 6= 0. By Theorem 3.12, we have

ΨG̃
(p!(A),g,m,(g))

([pt], p∗(α2), . . . , p
∗(αm)) 6= 0

. SoG̃ is symplectic uniruled. �
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