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Algebraic quantum Hamiltonians on the plane

V.V. Sokolov 1

1 Landau Institute for Theoretical Physics, Moscow, Russia

ABSTRACT. We consider second order differential operators P with polynomial

coefficients that preserve the vector space Vk of polynomials of degrees not greater

then k. We assume that the metric associated with the symbol of P is flat and that

the operator P is potential. In the case of two independent variables we obtain some

classification results and find polynomial forms for the elliptic A2 and G2 Calogero-

Moser Hamiltonians and for the elliptic Inosemtsev model.

1. Introduction

In the paper [1] a transformation that brings the elliptic Calogero-Moser operator

H = ∆+ g

3
∑

i>j

℘(xi − xj), (1.1)

where g is arbitrary constant, to a differential operator with polynomial coefficients. This

problem is easily reduced to two-dimensional case. Indeed, in variables yi = xi −
Y
3
, where

Y =
∑3

i=1 xi the Laplacian is given by

∆ = −3
∂2

∂Y 2
−

2

3

( ∂2

∂y21
+

∂2

∂y22
−

∂2

∂y1∂y2

)

.

The variable Y is separated and we reduce (1.1) to

H = −
1

3

( ∂2

∂y21
+

∂2

∂y22
−

∂2

∂y1∂y2

)

+ ḡ

3
∑

i>j

℘(yi − yj), (1.2)

where y3 = −y1 − y2. It turns out that the change of variables

x =
℘′(y1)− ℘′(y2)

℘(y1)℘′(y2)− ℘(y2)℘′(y1)
, y =

℘(y1)− ℘(y2)

℘(y1)℘′(y2)− ℘(y2)℘′(y1)
(1.3)

and a gauge transformation of the form L→ fLf−1, where f is an appropriate function in x, y,

bring (1.2) to a differential operator of the form

L = a(x, y)
∂2

∂x2
+ 2b(x, y)

∂2

∂x∂y
+ c(x, y)

∂2

∂y2
+ d(x, y)

∂

∂x
+ e(x, y)

∂

∂y
+ f(x, y) (1.4)

with polynomial coefficients. We call L polynomial form of (1.2). The set of coefficients a, b,

and c is called the symbol of L.

A polynomial form for the elliptic case have been found in [1] by a deformation of known

[2] polynomial form of the trigonometric model. Concerning polynomial forms for the elliptic

Calogero-Moser see [3].

http://arxiv.org/abs/1503.05185v1
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The goal of this paper is a description and an investigation of a class of operators of the form

(1.4) that contains polynomial forms o many operators related to simple Lie algebras [4]. This

class is selected by postulating of some properties of polynomial form for operator (1.2).

It is clear that for this polynomal form L

1: the contravariant metric g defining by the symbol of L is flat �

and

2: L can be reduced to a self-adjoint operator by a gauge transformation L→ fLf−1. �

Furthermore, it can be shown that for some special values of the parameter ḡ in (1.2)

3: the operator L preserves the vector space Vn of all polynomials P (x, y) such that degP 6 n

for some n > 2. �

and that

4: L is invariant with respect to the involution x̃ = x, ỹ = −y. �

In Section 2 we consider diffrential operators of second order with one independent variable.

In this case the assumptions 1-2 are automatically satisfied. We describe all operators that

satisfy Property 3. As a result we arrive at the polynomial forms for the Lame operator and

for the more general Darboux operator [5].

Our main goal is to investigate two-dimensional polynomial operators (1.4) that satisfy

Properties 1-3. In Section 3.1 we describe operators that satisfy Property 3, define an action

of the group SL3 on the vector space of such operators, and find some of invariants for this

action.

In Section 3.2 we find all operators with elliptic and trigonometric symbols (see Definition 1)

that satisfy Properties 1-4. As a result, we arrive at polynomials forms for the elliptic A2 and

G2-Hamiltonians and for the Inozemtsev elliptic model. The A2 and G2 polynomial forms are

equivalent to ones presented in []. The polynomial form for the Inozemtsev model is probably

new. Possibly it can be deduce from the rational form found in [6]. It would be interesting to

find the Hamiltonians in the Schrodinger form corresponding to five trigonometric sysmbols

obtained during the classification.

By miracle, all known operators L satisfying Properties 1-3 turn out to be integrable (i.e.

possess differential operators that commute with L).

It is clear that if a differential operator obeys Property 3, we can find several eigenvalues

and corresponding polynomial eigenvectors by means of linear algebra. In [7] such operators

are called quasi-exact solvable.
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For the elliptic models the flat metric g depends on the elliptic parameter. One of the reasons

why such a metric could be interesting in itself is that families of contravariant metrics with

linear dependence on a parameter are closely related to the Frobenius manifolds [8]

Acknowledgments. The author is grateful to M. Matushko, A. Turbiner, and E. Ferapontov

for useful discussions. He is also grateful to MPIM(Bonn) for hospitality and financial support.

2. Differential operators with one independent variable

Suppose that an order m polynomial operator of the form

Q =

m
∑

i=0

ai(x)
di

dxi
(2.1)

preserves the vector space Vn of all polynomials of degree 6 n, where n > m.

Conjecture (A. Turbiner [9]). Any such operator Q is a (non-commutative) polynomial of

order m in first order generators

J1 = 1, J2 =
d

dx
, J3 = x

d

dx
, J4 = x2

d

dx
− nx. �

Notice that the Lie algebra generated by J1, ..., J4 is isomorphic to gl(2).

For small m this statement can be straightforwardly verified using the following

Lemma 1. If operator (2.1) preserves the vector space Vn, where n > m, then the degree of

the polynomial ai is not greater then m+ i.

Proof. Define a weighting scheme in the ring of differential operators with polynomial

coefficients by setting weight(x) = 1 and weight ∂
∂x

= −1. LetQ =
∑p

i=−mQi be the decomposition

of Q into the sum of homogeneous differential operators Qi, where weight(Qi) = i. We have to

show that p 6 m. Indeed, if p > m then Qp(x
n) = Qp(x

n−1) = · · · = Qp(x
n−m) = 0. Since the

kernel of the differential operator Qp of order m contains m+1 linearly independent functions,

we get Qp ≡ 0. �

It follows from Lemma 1 that any operator P of second order that preserves Vn has the

following structure:

P = (a4x
4 + a3x

3 + a2x
2 + a1x+ a0)

d2

dx2
+ (b3x

3 + b2x
2 + b1x+ b0)

d

dx
+ c2x

2 + c1x+ c0. (2.2)

Taking into account that P (xn) and P (xn−1) have to be polynomials of degree not greater then

n, we find that the constants in the coefficients of (2.2) are connected by the following identies

b3 = 2(1− n) a4, c2 = n(n− 1) a4, c1 = n(a3 − na3 − b2). (2.3)
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The transformation group

x→
s1x+ s2

s3x+ s4
, P → (s3x+ s4)

−nP (s3x+ s4)
n, (2.4)

acts on the nine-dimensional vector space of such operators. The coefficient a(x) at the second

derivative is a fourth order polynomial, which transforms as follows

a(x) → (s3x+ s4)
4a
(c1x+ c2

c3x+ c4

)

. (2.5)

If a(x) has four distinct roots on the Riemann sphere, we call the operator P elliptic. In the

elliptic case using transformations (2.5), we may reduce a to

a(x) = 4 x(x− 1)(x− κ),

where κ 6= 0, 1 is the elliptic parameter.

Define parameters n1, ..., n5 by identities

b0 = 2(1 + 2n1), b1 = −4
(

(κ+ 1)(n1 + 1) + κn2 + n3

)

, b2 = −2 (3 + 2n1 + 2n2 + 2n3),

n = −
1

2
(n1 + n2 + n3 + n4), n5 = c0 + n2(1− n2) + κn3(1− n3) + (n1 + n3)

2 + κ(n1 + n2)
2.

Then the operator H = hPh−1, where

h = x
n1

2 (x− 1)
n2

2 (x− κ)
n3

2

has the form

a(x)
d2

dx2
+
a′(x)

2

d

dx
+n5+n4(1−n4) x+

n1(1− n1)κ

x
+
n2(1− n2)(1− κ)

x− 1
+
n3(1− n3)κ(κ− 1)

x− κ
.

After the transformation x = f(y), where f ′2 = 4f(f − 1)(f − κ) we arrive at

H =
d2

dy2
+ n5 + n4(1− n4) f +

n1(1− n1)κ

f
+
n2(1− n2)(1− κ)

f − 1
+
n3(1− n3)κ(κ− 1)

f − κ
.

Here ni are arbitrary parameters. When n = −1
2
(n1 + n2 + n3 + n4) is a natural number, the

initial polynomial operator (2.2) preserves the finite-dimensional polynomial vector space Vn.

Another form of this Hamiltonian (up to an additive constant) is given by

H =
d2

dy2
+n4(1−n4)℘(x)+n1(1−n1)℘(x+ω1)+n2(1−n2)℘(x+ω2)+n3(1−n3)℘(x+ω1+ω2),

where ωi are half-periods of the Weierstrass function ℘(x). If n1 = n2 = n3 = 0 we get the

Lame operator. For generic case H defines the so called Darboux-Treibich-Verdier model [10].
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3. Two-dimensional case

3.1. Structure of operators having Property 3. The following statement describes the

vector space of differential oparators we are dealing with.

Theorem 1. An operator L of the form (1.4) with polynomial coefficients satisfies Property

3 iff the coefficients of L have the following structure

a = q1x
4 + q2x

3y + q3x
2y2 + k1x

3 + k2x
2y + k3xy

2 + a1x
2 + a2xy + a3y

2 + a4x+ a5y + a6;

b = q1x
3y + q2x

2y2 + q3xy
3 + 1

2

(

k4x
3 + (k1 + k5)x

2y + (k2 + k6)xy
2 + k3y

3
)

+

b1x
2 + b2xy + b3y

2 + b4x+ b5y + b6;

c = q1x
2y2 + q2xy

3 + q3y
4 + k4x

2y + k5xy
2 + k6y

3 + c1x
2 + c2xy + c3y

2 + c4x+ c5y + c6;

d = (1− n)
(

2(q1x
3 + q2x

2y + q3xy
2) + k7x

2 + (k2 + k8 − k6)xy + k3y
2
)

+ d1x+ d2y + d3;

e = (1− n)
(

2(q1x
2y + q2xy

2 + q3y
3) + k4x

2 + (k5 + k7 − k1)xy + k8y
2
)

+ e1x+ e2y + e3;

f = n(n− 1)
(

q1x
2 + q2xy + q3y

2 + (k7 − k1)x+ (k8 − k6)y
)

+ f1.

(3.1)

Proof. Define a weighting scheme in the ring of differential operators with polynomial

coefficients by setting weight(x) =weight(y) = 1 and weight ∂
∂x

= weight ∂
∂y

= −1. Let L =
∑m

i=−2 Li be the decomposition of L into the sum of homogeneous differential operators Li,

where weight(Li) = i. Let us prove that m 6 2. In other words we are going to show that the

degrees of polynomials a, b, c in (1.4) are not greater then 4, the degrees of d, e are not greater

then 3 and the degree of f is not greater then 2. Let

Lm = α
∂2

∂x2
+ 2β

∂2

∂x∂y
+ γ

∂2

∂y2
+ ν

∂

∂x
+ µ

∂

∂y
+ λ.

If m > 2 then it follows from Property 3 that Lp(x
iyj) = 0 for i+ j = n, n− 1, n− 2. Identities

Lp(x
n) = Lp(x

n−1) = Lp(x
n−2) = 0 imply α = ν = λ = 0. It follows from Lp(y

n) = Lp(y
n−1) =

Lp(y
n−2) = 0 that γ = µ = 0. Now the identity Lp(yx

n−1) = 0 leads to β = 0. Thus, m 6 2.

It is easy to verify that the conditions L2(x
iyj) = 0 for i + j = n, n − 1 and L1(x

iyj) = 0 for

i + j = n are equivalent to (3.1). The operator L2 contains 3 parameters qi, in L1 we have 8

parameters ki and L0, L−1, L−2 are arbitrary. �

Remark 1. It is easy to verify that (3.1) is equivalent to the fact that L is a quadratic

polynomial in generators

J1 =
∂

∂x
, J2 =

∂

∂y
, J3 = x

∂

∂x
, J4 = y

∂

∂x
, J5 = x

∂

∂y
, J6 = y

∂

∂y
,
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J7 = x(x
∂

∂x
+ y

∂

∂y
− n), J8 = y(x

∂

∂x
+ y

∂

∂y
− n) . (3.2)

These operators form a Lie algebra isomorphic to sl(3). �

Operators Ji in the case of arbitrary number k of independent variables have been presented

in [2]. The Lie algebra generated by them is isomorphic to sl(k+1). Apparently, any polynomial

operator that preserves the vector space of polynomials Vn for sufficiently large n is a polynomial

in the generators Ji. Following the line of proofs of Lemma 1 and Theorem 1, one can easily

prove the following statement toward this conjecture.

Theorem 2. Suppose differential operator of order m

L =
∑

i1+···+ik6m

ai1,...,ik∂
i1
x1
· · ·∂ikxk

with polynomial coefficients preserves the vector space of all polynimials in x1, ..., xk of degree

6 k, where k > m. Then deg (ai1,...,ik) 6 m+ i1 + · · ·+ ik. �

The dimension of the space of all operators of the form (3.1) equals 36. The group SL3 acts

on this vector space as follows

x̃ =
P

R
, ỹ =

Q

R
, L̃ = R−nLRn, (3.3)

where P,Q,R are first degree polynomials in x and y. The SL3 representation defined by

formula (3.3) is a sum of irreducible representations with representation spaces V1, V2 and V3

of dimensions 27, 8 and 1 correspondingly. The vector space V1 is spanned by coefficients of the

symbol. As a basis in V2 one can choose

x1 = 5k7 − k5 − 7k1, x2 = 5k8 − k2 − 7k6, x3 = 5d1 + 2(n− 1)(2a1 + b2),

x4 = 5e1 + 2(n− 1)(2b1 + c2), x5 = 5d2 + 2(n− 1)(2b3 + a2), x6 = 5e2 + 2(n− 1)(2c3 + b2),

x7 = 5d3 + 2(n− 1)(a4 + b5), x8 = 5e3 + 2(n− 1)(b4 + c5).

The generic orbit of the SL3 action on V2 has dimension 6. Two polynomial invariants of this

action are given by

I1 = x23 − x3x6 + x26 + 3x4x5 + 3(n− 1)(x1x7 + x2x8),

and

I2 = 2x33 − 3x23x6 − 3x3x
2
6 + 2x36 + 9x4x5(x3 + x6)+

9(n− 1)(x1x3x7 + x2x6x8 − 2x1x6x7 − 2x2x3x8 + 3x2x4x7 + 3x1x5x8).
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Assume now that an operator L given by (3.1) obeys Property 4. Then the coefficients of L

have to satisfy the additional symmetry conditions

a(x,−y) = a(x, y), b(x,−y) = −b(x, y), c(x,−y) = c(x, y),

d(x,−y) = d(x, y), e(x,−y) = −e(x, y), f(x,−y) = f(x, y).

This symmetry is not destroyed by a subgroup

x̃ =
αx+ β

γx+ δ
, ỹ =

y

γx+ δ
, αδ − βγ = 1. (3.4)

of the group (3.3) isomorphic to SL2. Transformations L̃ = c1L + c2 and ỹ = c3y are also

allowed.

Transformations (3.4) act on 15-dimensional vector space of coefficients of polynomials a, b, c.

The representation spaces for irreducible components of this SL2-representation have dimensions

5, 3, 3, 3, 1. Let us write the coefficients a, b and c in the form

a = P +Qy2, b =
1

4
(P ′ −R)y+

1

2
Q′y3, c = S +

( 1

12
P ′′ −

1

4
R′ + T

)

y2+
1

2
Q′′y4. (3.5)

where degP = 4, degQ = degR = deg S = 2, and deg T = 0. Then the coefficients of these

polynomials correspond to irreducible components. Namely, under transformations (3.4) each

of these polynomials changes by the rule

Ũ(x) = (γx+ δ)degU U
(αx+ β

γx+ δ

)

. (3.6)

Definition 1. Symbol (3.5) of operator L is called elliptic if the polynomial P has four

different roots on the Riemann sphere. It is called trigonometric if P has the only one double

root. Sometimes we will call operators with elliptic (trigonometric) symbols elliptic (trigonometric).

�

In the elliptic case we may reduce P (x) to one of the following forms:

P (x) = x(x− 1)(x− κ) or P (x) = (x2 − 1)(x2 − κ)

by transformations (3.4). In the trigonometric case we may assume without loss of generality

that

P (x) = x(x− 1) or that P (x) = (x2 − 1)x2.

Example 1. For any constants α 6= 0, β, λ trigonometric operator (1.4) with coefficients

a = x2(x2 + y2) + αx2 + βy2, b = xy(x2 + y2) + (α− β)xy, c = y2(x2 + y2) + βx2 + αy2,

d = 2(n− 1)x(λ− x2 − y2), e = 2(n− 1)y(λ− x2 − y2), f = n(n− 1)(x2 + y2)



8

satisfies Properties 1-4. The operator possesses the discrete group of symmetries isomorphic to

D4, generated by the reflections

x→ −x, y → y, x→ x, y → −y, x→ y, y → x. (3.7)

3.2. Classification of flat symbols. The contravariant metric associated with an operator

of the form (1.4) is defined by

g1,1 = a, g1,2 = g2,1 = b, g2,2 = c. (3.8)

This metric is flat iffR1,2,1,2 = 0, where R1,2,1,2 is the only non-trivial component of the curvature

tensor. This is equivalent to an identity of the form

2
(

b2axx − 2abbxx + a2cxx + 2bcaxy − 2(b2 + ac)bxy + 2abcxy+

c2ayy − 2bcbyy + b2cyy

)

×D + first order terms = 0,
(3.9)

where we denote by D(x, y) the determinant a(x, y)c(x, y)− b(x, y)2. In this paper we assume

that D 6= 0.

Example 2. The elliptic symbol

a = (x2 − 1)(x2 − κ) + (x2 + κ) y2, b = xy (x2 + y2 + 1− 2κ), (3.10)

c = (κ− 1)(x2 − 1) + (x2 + 2− κ) y2 + y4

is flat. It defines a linear pencil of polynomial contravariant flat metrics [8].

The main observation our classification is based upon is the following

Lemma 2. Suppose that a, b, c are given by (3.5) with P (x) 6= 0, S(x) 6= 0 and the

corresponding metric (3.8) is flat; then any root of the polynomial S is a root of the polynomial

P.

Proof. Substituting (3.5) to (3.9) and setting y = 0, we get

P
(

−4PS2P ′′+8PSP ′S ′+S2P ′2+4PS2R′−4PRSS ′+8P 2SS ′′−12P 2S ′2+16QS3−R2S2
)

= 0

It follows from here that S is a divisor of P 2S ′2. If the roots of S are distinct this proves the

statement. If S has a double root, then substituting S = S2
1 , where S1 is a polynomial of first

order, into above expression, we find that S1 is divisor of P 2S ′2
1 . �

In the elliptic case without loss of generality we set P (x) = x(x− 1)(x− κ). The polynomial

P has the roots 0, 1,∞, κ, which can be arbitrarely permuted by some transformations (3.6).

It follows from Lemma 2 that there are two alternatives: A: S has a multiple root, which is

one of the roots of P ; and B: S has two distinct roots. We may put S = σx2 in Case A

and S = σx(x− 1) in Case B. The constant σ can be normalized to 1 by a scaling of y.
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In both cases seven unknown coefficients of the polynomials Q,R, T can be easily found from

the system of algebraic equations equivalent to (3.9).

Proposition 1. In Case A the condition R1,2,1,2 = 0 is equivalent to

P (x) = x(x− 1)(x− κ), S(x) = x2, R(x) = −
5

3
(x2 − 2x+ 3κ− 2κx),

Q(x) =
1

9
(x2 − x+ 1 + κ2 − κx− κ), T = 0. �

Proposition 2. In Case B we get

P (x) = x(x− 1)(x− κ), S(x) = x(x− 1), R(x) = −3(x2 − 2κx+ κ),

Q(x) =
1

2
(x2 − 2κx+ 2κ2 − κ), T =

1

3
(2κ− 1). �

It is easy to verify that the symbol from Proposition 2 can be converted into the symbol (3.10)

from Example 2 by a transformation of the form (3.4).

Consider now the trigonometric case P (x) = (x− x0)
2(x− x1)(x−x2). According to Lemma

2 we have the following non-equivalent possibilities:

a : S(x) = (x− x1)
2, b : S(x) = (x− x1)(x− x2),

c : S(x) = (x− x0)(x− x1), d : S(x) = (x− x0)
2.

Without loss of generality we fix x0 = ∞, x1 = 0, x2 = 1 or, in other words, P = x(x− 1).

Proposition 3. In Case a there exists only one trigonometric symbol given by

P = x(x− 1), S = x2, Q =
1

9
, R =

5

3
(3− 2x), T = 0, �

Proposition 4. In Case b we get

P = x(x− 1), S = x(x− 1), Q = 1, R = 3(1− 2x), T = −
2

3
, �

Proposition 5. In Case c we have

P = x(x− 1), S = x, Q =
1

2
, R = 3, T =

1

3
. �

Proposition 6. In Case d there exist two families of trigonometric symbols depending on

arbitrary parameter σ. Up to scalings they are given by

a(x, y) = x(x− 1), b(x, y) = 0, c(x, y) = 1 + σy2

and by

a(x, y) = (2x− 1)2y2+ σ(4x2 − 4x− y2), b(x, y) = 2(2x− 1) y (1+ y2), c(x, y) = 4(1+ y2)2.

�
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3.3. Property 2 and linear terms for elliptic symbols. Property 2 means that we can

reduce L to a potential form

L̄ = ∆g + U

by a gauge transform L̄ = hLh−1 with a proper function h. Here ∆g is the Laplace-Beltrami

operator corresponding to the metric (3.8). It is easy to show that it is possible iff the coefficients

of (1.4) satisfies the relation

∂

∂y

(be− cd+ c(ax + by)− b(bx + cy)

D

)

(3.11)

=
∂

∂x

(bd − ae + a(bx + cy)− b(ax + by)

D

)

,

where D = ac− b2. Properties 1 and 2 guaranty that L can be reduced to the form

L̄ =
∂2

∂x2
+

∂2

∂y2
+ U(x, y)

by a gauge transform and by a proper (complex) change of variables.

Notice that given polynomial symbol of operator (1.4), (3.1), condition (3.11) is equivalent

to a system of algebraic linear equations for the coefficients of polynomials d and e. So, for any

symbol from Section 3.2 we can easily found admissible d and e. The coefficient f is uniquely

defined up to an additive constant by formulas (3.1).

For example, for the elliptic symbol from Proposition 1 condition (3.11) leeds to

d =
1

9
(1− n)

(

3(5x2 − 4x− 4κx+ 3κ) + (2x− 1− κ) y2
)

,

e =
2

9
(1− n) y

(

9x+ y2 − 6κ− 6
)

, f =
1

9
n(n− 1)

(

6x+ y2
)

.

Therefore, in this case we have no arbitrary constants in d and e except for the coupling constant

n and the elliptic parameter κ.

However there is a non-trivial observation concerning parameters in d and e. Due to the

involution y → −y the symbol admits the transformation x̄ = x, ȳ = y2. For polynimial symbol

thus obtained we can again find addmissible d and e. It turns out that now they contain an

additional parameter becides n and κ ! We consider the corresponding model in the next Section

in details.

4. A2 and G2 elliptic models

Applying the transformation x̄ = x, ȳ = y2 to the symbol from Proposition 1, we get a new

polynomial symbol with

a = x(x− 1)(x− κ) +
1

9
(1− x+ x2 − κ− κx+ κ2) y,
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b =
1

3
(7x2 − 8x− 8κx+ 9κ) y +

1

9
(2x− 1− κ) y2, (4.1)

c = 4x2y +
4

3
(4x− 3− 3κ) y2 +

4

9
y3.

The determinant D for this symbol is given by

D = −
y

27
K, K = k3y

3 + 6k2y
2 + 9k1y + 108k0,

where

k3 = (κ− 1)2, k0 = x3(x− 1)(x− κ),

k2 = (κ+ 1)x2 + 2(κ2 − 4κ+ 1)x− (κ− 2)(κ+ 1)(2κ− 1),

k1 = x4 + 8(κ+ 1)x3 − 2(4κ2 + 23κ+ 4)x2 + 36κ(κ+ 1)x− 27κ2.

The transformation x̄ = x, ȳ = y2 changes the weighting scheme in the ring of differential

operators. For the new variables we have weight(x) = 1, weight(y) = 2, weight ∂
∂x

= −1 and

weight ∂
∂y

= −2. Denote by Wn the vector space spanned by monomials xiyj, where i+ 2j 6 n.

Theorem 3. An operator L of the form (1.4) with polynomial coefficients preserves Wn,

n > 4, iff the coefficients of L have the following structure

a = k1x
4 + k2x

2y + k3x
3 + k4xy + a1y + a2x

2 + a3x+ a4;

b = 2k1x
3y + 2k2xy

2 + k4y
2 + k5x

4 + k6x
2y + b1xy + b2x

3 + b3y + b4x
2 + b5x+ b6;

c = 4k1x
2y2 + 4k2y

3 + 4k5x
3y − 4(k3 − k6)xy

2 + c1y
2 + c2yx

2+

c3x
4 + c4xy + c5x

3 + c6y + c7x
2 + c8x+ c9;

d = (1− n)
(

2k1x
3 + 2k2xy + k4y

)

+ k7x
2 + d1x+ d2;

e = 2(3− 2n)
(

k1x
2y + k2y

2 − k3xy
)

+ 2(2− n)
(

k5x
3 + k6xy

)

+ 2k7xy + e1y + e2x
2 + e3x+ e4;

f = (n− 1)n
(

k1x
2 + k2y − k3x

)

− n k7x+ f1. �

(4.2)

We will skip the "spectral"parameter f1 in all futher formulas.

Writing L in the form (4.2), where a, b and c are defined by (4.1), we find that condition

(3.11) implies

d =
1

9
(1− n)(6x+ y)(2x− 1− κ) +

s

3
(x2 − 2x− 2κx+ 3κ),

e =
2

9
(9x2 + 12xy + y2 − 9y − 9κy) +

2s

3
(3x2 + xy − y − κy)+

2(n− 1)

9
(9x2 − 15xy − 2y2 + 9y + 9κy),

f =
n(n− 1)

9
(3x+ y)−

s

3
nx.
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We see that this formulas involve an extra parameter s.

Introduce parameters mi by identities

n = −3m1 −m2, s = 1 + 3m1 + 3m2.

Then

hLh−1 = ∆g +m2(1−m2)
x2

y
+ 3m1(1−m1)

P 2

K
+ λ. (4.3)

Here ∆g is the Laplace-Beltrami operator, h = K
m1

2 y
m2

2 , and

P = 3x3 − 6(κ+ 1) x2 + (y + κy + 9κ) x− 2(κ2 − κ + 1)y,

λ =
κ+ 1

3
(3m1 +m2)(1 + 3m1 + 3m2).

Now we are to find a transformation of the form x = ϕ(y1, y2), y = ψ(y1, y2)
2 that brings ∆g

to the form (cf. (1.2))

∆ = −
1

3

(

∂2

∂y21
+

∂2

∂y22
−

∂2

∂y1∂y2

)

.

Loking for a transformation of the form of formal series

ϕ =
∞
∑

i=0

ϕi(y2)y
i
1, ψ =

∞
∑

i=1

ψi(y2)y
i
1,

we find several first coefficients of these series in terms of ϕ0 and its derivatives, derive a first

order ODE for ϕ0, and after all write the transformation in the following closed form

x =
f(y1)

2f ′(y2)− f(y1)
2f ′(y2)

f(y1)f ′(y2)− f(y1)f ′(y2)
, y = −12

(

f(y1)f(y2)(f(y1)− f(y2))

f(y1)f ′(y2)− f(y1)f ′(y2)

)2

,

where f ′2 = 4f(f − 1)(κ− f). Under this transformation the operator (4.3) becomes

H = −
1

3

(

∂2

∂y21
+

∂2

∂y22
−

∂2

∂y1∂y2

)

+ V (y1, y2),

where

V = (m1 − 1)m1

(

℘(y1 − y2) + ℘(2y1 + y2) + ℘(y1 + 2y2)
)

+

+
(m2 − 1)m2

3

(

℘(y1) + ℘(y2) + ℘(y1 + y2)
)

.

This is just the elliptic G2 Calogero-Moser model [4]. The elliptic A2-model corresponds to the

special case m2 = 0. The invariants of the ℘-function are related to the parameter κ as follows

g2 =
4

3
(κ2 − κ+ 1), g3 = −

4

27
(κ− 2)(κ+ 1)(2κ− 1).

The polynomial form of the G2-model preserves Wn if n = −3m1 −m2 is a natural number.
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5. The Inozemtsev elliptic model

In this section we investigate the model related to the symbol from Proposition 2 written in

the form (3.10). Polynomials d and e for symbol (3.10) depend on three arbitrary parameters

becides n and κ. But due toD4-symmetry the symbol admits the transformation x̄ = x2, ȳ = y2.

As a result of this transformation and a scaling we get

a = x(x− 1)(x− κ) + (1− κ) x(x+ κ) y,

b = x(x+ 1− 2κ) y + (1− κ) x y2,

c = (1− x) y + (x+ 2− κ) y2 + (1− κ) y3.

For this symbol we still may use the anzats of Theorem 1.

It follows from (3.11) that

d = λ1x(x+ y − κy) + λ2(1 + y − κy) + p x,

e = λ1y(x+ y − κy) + λ3(x− 1) + q y,

f = λ4(x+ y − κy) + λ5,

where

κp + (1− κ)q + λ1(2κ− 1) + λ2(2− κ) + λ3(1− κ2) = 0.

Thus, d and e depend on five arbitrary parameters ! Define constants m,n0, n1, n2, n3 from

relations

2λ1 = 3 + 4m+ 2n1 + 2n2 + 2n3, 2λ2 = κ(1 + 2n2), 2λ3 = −1− 2n1,

−2λ4 = n0(1 + 4m+ 2n0 + 2n1 + 2n2 + 2n3),

2p = −1− 3κ− 4κm+ 2n1 − 4κn1 − 2n2 − 2κn2 − 2n3,

2q = 4− 3κ+ 4m− 4κm+ 4n1 − 2κn1 + 2n2 − 4κn2 + 2n3.

Let us put L̄ = −4L, where L is the operator (1.4) with the polynomial coefficients defined

above. Reducing the operator L to the Schrodinger form by the transformation

x̄ = f(x)f(y), ȳ =
(f(x)− 1)(f(y)− 1)

κ− 1
,

where

f ′2 = 4f(f − 1)(f − κ),

and by a proper gauge transformation, we get

H = ∆+ 2m(m− 1)
(

℘(x+ y) + ℘(x− y)
)

+

3
∑

i=0

ni(ni − 1)(℘(x+ ωi) + ℘(y + ωi)),

where ω1, ω2 are the half-periods of the Weierstrass function ℘(x), ω0 = 0, and ω3 = ω1 + ω2.
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This is so called Inozemtsev BC2 Hamiltonian [11]. Its polynomial form preserves Vk if

k = −
1

2
(2m+

∑

ni)

is a natural number.
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