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Abstract

We determine a strong form of the decomposition theorem for proper toric maps
over finite fields.
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1 Introduction, notation, basic toric geometry, statements

1.1 Introduction

For a general proper map of varieties over a finite field, the decomposition theorem in
[BBD] predicts that the direct image of the intersection cohomology complex becomes
semisimple after passage to an algebraic closure. In this paper, we prove Theorem 1.4.1
which establishes that, for proper toric maps of toric varieties, the above semisimplicity
already occurs over the finite field. The simple direct summands are described explicitly.
Recall that the semisimplicity is not known even for the cohomology of smooth projective
varieties over finite fields.

∗Partially supported by N.S.F. grant DMS-1301761 and by a grant from the Simons Foundation
(#296737 to Mark de Cataldo)
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If the proper toric fibration is surjective with connected fibers, then the direct sum-
mands appearing in the decomposition theorem are Tate-twisted intersection cohomology
complexes of closures of orbits on the target with constant coefficients; see Theorem 1.4.1.c.
For a general proper toric map f, we first Stein factorize the map f = h ◦ g, we apply the
above to the proper toric fibration g, we push forward each direct summand via the finite
toric map h and examine the result; see Theorem 1.4.1.a and Lemma 2.4.1.

In order to carry out what above, we first prove Theorem 1.4.1.b, which here we state
in the special case when the domain is smooth: the cohomology of the fibers over closed
points is trivial in odd degree, and in even degree is pure with eigenvalues of Frobenius
given by a suitable power of the cardinality of the finite field. The triviality in odd degree,
for example, implies that, in the context of proper toric maps, a plane cubic with a node
may not appear as a fiber of a proper toric map (of course, it may appear as the image of
one).

This paper is a companion paper to [dMM], where the precise form of the decomposition
theorem for proper toric varieties over C, as well as an analogue of the purity statement
above, are proved with different methods. The main purpose of [dMM] is to then introduce
a topological/combinatorial invariant of proper toric fibrations that detects, for example,
whether a given orbit contributes a direct summand to the decomposition theorem. This
turns out to be related to seemingly subtle combinatorial positivity questions.

The purpose of this paper is also to offer a sample computation in the context of
Qℓ-adic cohomology over finite fields in a manner which we hope is accessible to the non-
expert. There are two main differences with the situation over C : 1) as mentioned above,
in general the conclusion of decomposition theorem over an algebraic closure of a finite
field does not seem to hold in its full-strength over a finite field (see §2.1); 2) even if toric
maps are defined over Z, the local systems appearing as coefficients in the decomposition
theorem depend on the characteristic of the ground field (see Remark 2.4.2).

1.2 Notation

This paper deals with proper toric maps of toric varieties over a finite field. Our main
references are [BBD, Ful].

Toric varieties and toric maps are defined over the ring of integers, hence over any
ground field. We view a toric variety Z = Z(∆) as the one associated with a fan ∆ in
a lattice N ∼= Zn so that dimZ = n. If helpful, we add subscripts: ∆Z , etc. We view ∆
also as a poset: τ ≤ σ iff the cone τ is a face of the cone σ iff V (τ) ⊇ V (σ) (reversed
inclusion for the closures of the orbits O(τ) and O(σ)). The support of the fan ∆ in NR

is denoted by |∆|. The n-dimensional torus T ⊆ Z acts on Z with smooth action map
act : Z×T → Z. Each orbit O(σ) carries a distinguished point zσ which is rational over the
prime subfield of the ground field. We denote by Ω the resulting partition Z =

∐

σ O(σ)
into locally closed smooth subvarieties.

A toric map is a toric map f : X → Y of toric varieties, i.e. the one associated with a
map fN : NX → NY of the lattices with the following property: every cone σ ∈ ∆X has
image contained inside a cone of ∆Y . This gives rise to the map of posets f∆ : ∆X → ∆Y ,
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sending σ 7→ σ := the smallest cone in ∆Y containing the image fN (σ). If σ ∈ ∆X , then
f(xσ) = yσ.

A toric map is proper iff f−1
NR

(|∆Y |) = |∆X |. A proper toric fibration is a proper toric
map f : X → Y such that f∗OX = OY . If f is proper toric, then f is a proper toric
fibration iff fN is surjective. A proper toric fibration is surjective with connected fibers. A
proper toric map which is surjective and with connected fibers is not necessarily a proper
toric fibration (e.g. Frobenius).

Unless mentioned otherwise, we work with schemes (separated and of finite type) over
a finite field 0F, of which we fix an algebraic closure F.

We denote schemes over 0F by using the pre-fix 0−, which we remove after pulling-back
to F : e.g. if 0f : 0X → 0Y is an 0F-map, then we can pull it back to the F-map f : X → Y ;
similarly, for the complexes below. A standard notation is X0 etc.; we depart from it for
graphical reasons.

We work with the “derived” category of mixed complexes Db
m(0X,Qℓ), endowed with

the middle perversity t-structure [BBD], p.126, p.101, p.71, whose elements we simply call
complexes.

By graded vector space M∗, we mean Z-graded: M∗ = ⊕j∈ZM
j = M even ⊕Modd. We

say that M∗ is even if Modd = {0}.
Given a finite extension 0F ⊆ 1F ⊆ F, we have the open inclusion of Galois (pro-finite)

groups 1G := Gal(F/1F) ⊆ 0G := Gal(F/0F). If 0C is a complex on 0X, then the Z-graded
object H∗(X,C) is a continuous1 0G-module. If x ∈ 0X(F) is a closed point with residue
field a finite extension 1F, then the graded object H∗(C)x is a 1G-module. The weight-like
properties of the cohomology groups and stalks we consider are well-defined independently
of the finite field extension one works with; see [BBD], 5.1.12. Instead of insisting on 0G,

1G, etc., by abuse of notation, we simply talk about G-modules and their weights.
Given a variety 0X, we have the associated shifted intersection complex I0X ; if 0X is

smooth, then I0X = Qℓ0X
. For convenience, we also use the intersection complex I0X :=

I0X [dim 0X], which is a perverse sheaf on 0X. The intersection cohomology groups of a
variety 0X are IH∗(X) := H∗(X,IX).

We have the notions of even, mixed, and pure G-module M∗ : e.g. M∗ is said to be
pure of weight w if M j is pure of weight w + j for every j.

A graded G-module M∗ is said to be Tate if it is even and each M2k ∼= Q
⊕sk
ℓ (−k), for

some sk ∈ Z≥0.
A complex 0C on 0X is said to be punctually pure of weight w if the graded G-

modules H∗(C)x are pure of weight w for every closed point x ∈ 0X(F). Similarly, we have
the notion of 0C being even, and of 0C being Tate. In particular, we have the notion of

0C being pure, punctually pure, even and Tate; e.g. see Theorem 1.4.1.
By a result of O. Gabber, the intersection complex I0X of a variety is pure of weight

zero. The Tate-shifted I0X(−k) is pure of weight 2k, and IX is pure of weight dimX. By
a result of P. Deligne, if 0f : 0X → 0Y is a proper map of varieties, then R 0f∗I0X is pure

1continuity will not be mentioned further
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of weight zero. However, in general, I0X and R 0f∗I0X are neither punctually pure, even,
nor Tate.

A complex on a toric variety is said to be Ω-constructible if its restriction to each orbit
has lisse2 cohomology sheaves. A skyscraper constant sheaf at the origin of the affine line
is Ω-constructible, whereas one at the point 1 is not. The intersection complex of a toric
variety 0Z is Ω-constructible. The direct image complex R 0f∗I0X via a proper toric map

0f , may fail to be Ω-constructible, e.g. the second closed embedding above (the first one
is not a toric map, according to the definitions).

Given a toric map 0f : 0X → 0Y define the cohomology graded sheaf on Y R∗ :=
⊕jR

jf∗IX . Denote the restriction of R∗ to an orbit O(σ) ⊆ Y by R∗
σ, and its stalk at

a closed point y ∈ 0Y (F) by R∗
y –this is a graded G-module–. If 0f is proper, then

proper base change yields R∗
y = H∗(f−1(y),IX) (pull-back/restriction symbols are mostly

omitted throughout the paper).

1.3 Some basic toric algebraic geometry

In this section, we work over an arbitrary ground field. Let Z = Z(∆) be a toric variety
and let f : X → Y be a toric map. We simply offer a list of the properties we need; for
proofs and/or references, see [dMM].

1.3.1 Toric affine open cover, orbit closures and partial order. Z is covered by
the open affine toric subvarieties Uζ =

∐

ρ≤ζ O(ρ), where ζ ∈ ∆. We have: V (ζ) := O(ζ) =
∐

ρ≥ζ O(ρ), and τ ≤ σ iff V (τ) ⊇ O(ζ).

1.3.2 Toric varieties of contractible type. The toric variety Z is said to be of
contractible type if it is of the form (Z, z) = (Uζ , zζ), where the cone ζ spans NR. In this
case, z is the unique torus fixed point.

1.3.3 The local product structure of Z along orbits. Given ζ ∈ ∆, any splitting
N ∼= Nζ ⊕N(ζ) of lattices determines a splitting T ∼= Tζ ×T (ζ) of tori, and an equivariant
isomorphism of toric varieties:

Uζ
∼= Uζ′ ×O(ζ), (1)

where ζ ′ is the cone ζ, viewed in Nζ ⊆ N. One virtue of (1) is that U
0
′ is of contractible

type and the product assertion is useful in the context of inductive arguments; the same
is true for (2) below. The isomorphism (1) depends on the choices. The fan in Nζ′ :=
Nζ ⊆ N given by ζ ′ and its faces yields a canonical closed embedding (Uζ′ , zζ′) → (Uζ , zζ),
compatible with the non canonical (1).

1.3.4 The local product structure of a proper toric fibration over the Uσ. Let
f be a proper toric fibration. Let σ ∈ ∆Y . There is a non canonical equivariant splitting

2the notion of lisse sheaf is the Qℓ-adic analogue of a locally constant sheaf
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as in (1), and a non canonical equivariant isomorphism of toric maps, compatible with (1):

(f−1(Uσ) → Uσ) ∼=

(

f−1(U ′
σ)×O(σ)

fσ′×Id
−→ Uσ′ ×O(σ)

)

. (2)

The resulting natural restriction-over-Uσ′ -map fσ′ is a toric fibration onto a base of con-
tractible type, and we have a natural identification f−1(yσ) = f−1

σ′ (yσ′). In particular, we
get a (TX → TY (σ))-equivariant non canonical decomposition:

f−1(O(σ)) ∼= f−1(yσ)×O(σ). (3)

1.3.5 Canonical factorization of induced maps between orbits. Let ξ ∈ ∆X and
consider the natural map of tori φ : (O(ξ), xξ) → (O(ξ), yξ) induced by f. The image

is a closed subtorus i : (O′(ξ), yξ) → (O(ξ), yξ)), and there is the following canonical
factorization into maps of tori:

φ : O(ξ)
a

−→ A
b

−→ B
c

−→ O′(ξ)
i

−→ O(ξ), (4)

where: a is a toric fibration (non canonically a product projection); b is a geometric
quotient map, étale and Galois, by the action of a finite Abelian subgroup of the torus A;
i is the natural closed embedding above; c is a universal homeomorphism.

1.3.6 The Stein factorization of a toric map. Let f : X → Y be a proper toric
map. There is the canonical toric Stein factorization:

f : X
g
→ Z

h
→ Y, (5)

where g is a proper toric fibration (g∗OX = OZ ; surjective with connected fibers), and h
is toric finite. The normalization of the image f(X) is a toric variety.

1.3.7 Toric resolutions, toric Chow envelopes, toric completions. There is a
proper birational toric map g : W → X such that W is nonsingular; one can choose W to
be quasi projective, so that g is then projective. In particular, if f is proper, then there is
a projective toric map g : W → X such that h := f ◦ g is projective toric.
There is a toric completion of X, i.e. an open immersion j : X → X such that j is a toric
map and X is toric complete.
There are toric completions X ⊆ X and Y ⊆ Y and a proper toric map f : X → Y
extending f.

1.3.8 Equivariant complexes. In what follows, we work over a field that is either
finite or algebraically closed. Let act : Z×T → Z be the torus action on a toric variety. A
complex C on Z is equivariant3 if there is an isomorphism act∗C ∼= π∗

ZC. We can extend
this notion to the torus invariant subschemes of Z. The intersection complex IV (σ) of
the closure of an orbit is equivariant. Given ν ∈ N, we have the associated co-character
λν : Gm → T, and the associated notions of λν-equivariance. If f : X → Y is a proper
toric fibration, then Rf∗ preserve equivariance.

3the standard definition of equivariance requires the usual cocycle condition; we do not need it here
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1.3.9 The retraction lemma. This is where the notion of toric variety of contractible
type starts playing a role. Let f : X → Y be a proper toric fibration onto (Y, y) of con-
tractible type and let C be an equivariant complex on X (the ground field is algebraically
closed, or finite). The natural graded map below is an isomorphism:

H∗(X,C) = H∗(Y,Rf∗C)
=

−→ (R∗f∗C)y, (6)

where it is understood that if the ground field is finite, then we have passed to an algebraic
closure, and we have an isomorphism of G-modules. Special case: C = IX ; then, by
coupling with proper base change:

IH∗(X) = (R∗f∗ IX)y = H∗
(

f−1(y),IX
)

. (7)

Special case of the special case: f = IdY ; then:

IH∗(Y ) = H∗(IY )y. (8)

1.4 The decomposition theorem for proper toric maps over finite fields

Let 0f : 0X → 0Y be a proper toric map over a finite field 0F. Let 0f = 0h ◦ 0g : 0X →

0Z → 0Y be the Stein factorization. For every ζ ∈ ∆0Z , define, recalling (4):

Evζ := {b ∈ Z | b+ dimX − dimV (ζ) even} , βζ :=
b+ dimX − dimV (ζ)

2
,

0O
′(ζ) := 0h(0O(ζ)), 0Lζ = 0h∗Qℓ0O(ζ) a lisse sheaf on 0O

′(ζ) ⊆ 0O(ζ).

Theorem 1.4.1 (DT for proper toric maps over finite fields)

a) Let 0f : 0X → 0Y be a proper toric map. There is a DT isomorphism in Db
m(0Y ,Qℓ) :

Rf∗I0X
∼=

⊕

ζ∈∆
0Z

⊕

b∈Evζ

I
sζ,b

0O′(ζ)
(0Lζ)(−βζ)[−b], (9)

where: 0O
′(ζ) := 0h(0O(ζ)); the sheaves 0Lζ = 0h∗Qℓ0O(ζ) on 0O

′(ζ) are lisse,

semisimple, pure of weight zero; the sζ,b ∈ Z≥0 are subject to:

i) sζ,b = sζ,−b, for every b ∈ Evζ ;

ii) if 0f is projective, then sζ,b ≥
∑

l≥1 sζ,b+2l, for every b ≥ 0 in Evζ .

b) In particular: the pure weigth zero R 0f∗ I0X is punctually pure, even and Tate; for
every y ∈ 0Y (F), the G-module (R∗f∗IX)y = H∗(f−1(y),IX) is pure, even and Tate.

c) Let 0f is a proper toric fibration and, for σ ∈ ΩY , let Evσ, and βσ as above. There
is a DT isomorphism in Db

m(0Y ,Qℓ) :

Rf∗I0X
∼=

⊕

σ∈Ω
0Y

⊕

b∈Evσ

I
sσ,b

0V (σ)(−βσ) [−b], (10)

where the sσ,b ∈ Z≥0 are subject to the conditions analogous to i) and ii) above.
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Remark 1.4.2 Even though statement a) implies statements b) and c), we prove the
three assertions in the following order: assertion b) is proved by Corollary 2.2.6; assertion
c) is proved by Theorem 2.3.1; assertion a) is proved by Theorem 2.4.3, which builds on
assertion c).

Remark 1.4.3 We may re-write the DT isomorphisms using the shifted IX by setting
2k = 2β, etc. In the case of a proper toric fibration we get, with sσ,b as in (9):

R 0f∗ I0X
∼=

⊕

σ∈∆
0Y

⊕

k∈Z

I
sσ,2k−dim0X+dim0V (σ)

0V (σ) (−k)[−2k]. (11)

While (10) emphasizes duality, (11) emphasizes eveness.

Remark 1.4.4 (DT for proper toric maps over algebraically closed fields) The-
orem 1.4.1 over finite fields implies the analogous results over any algebraically closed
field (remove 0− and (−β)). In fact, assume that charK 6= 0 and form the tower of field
extensions 0F ⊆ F ⊆ K given by the prime subfield of K and by its algebraic closure in K.
Theorem 1.4.1 over a finite field implies immediately the desired conclusions for K = F.
One then pulls-back further to K and concludes when charK 6= 0.
According to [BBD], §6, especially §6.1.10, Lemme 6.2.6 and Théorème 6.2.5, relating
the situation over an algebraically closed field of characteristic zero to the one over an
algebraic closure of a finite field, the desired conclusion in characteristic zero follows from
the one in positive characteristic.
If the ground field is C and we use the classical topology, then one can reach analogous
conclusions by using the theory of mixed Hodge modules.

2 Decomposition theorem for proper toric maps over finite

fields

2.1 General DT package over finite fields

The following is surely well-known and follows easily from some of the results in [BBD].
We could not find an adequate explicit reference.

Proposition 2.1.1 (DT and RHL over 0F) Let 0f : 0X → 0Y be a proper map of
separated 0F-schemes of finite type, let 0P be a pure perverse sheaf of weight w on 0X.
Then: the direct image complex R 0f∗0P is pure of weight w and splits non canonically
into the direct sum

⊕

b
pHb(R0f∗0P )[−b] of its shifted perverse direct image complexes;

the perverse sheaves pHb(R 0f∗0P ) are pure of weight w + b and admit the canonical de-
composition by supports as the direct sum

⊕

0Y
IC0Y(0Lb,0Y) of finitely many intersection

complexes of 0F-integral subvarieties 0Y ⊆ 0Y , with coefficients pure lisse sheaves 0Lb,0Y

of weight w + b− d0Y on suitable Zariski dense open subsetes 0Y
o ⊆ 0Y.

Assume, in addition, that 0f is projective and let 0η be the first Chern class of an 0f-ample
line bundle on 0X. Then the relative hard Lefschetz theorem (RHL) holds: for every i ≥ 0,
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the cup product map 0η
i : pH−i(R 0f∗0P ) −→ pH i(R 0f∗0P )(i) on the perverse cohomology

sheaves of the direct image is an isomorphism.

Proof. By Deligne’s fundamental result [BBD], 5.1.14, the direct image R 0f∗0P is pure
of weight w. The perverse sheaves pHb(R0f∗0P ) are pure of weight w + b by [BBD],
Thm. 5.4.1. They split as indicated by virtue of [BBD], Cor. 5.3.11, coupled with a
straightforward Noetherian induction.
In the projective case, the RHL is [BBD], Theorem 5.4.10, and the splitting into the
direct sum of shifted perverse cohomology sheaves is a formal consequence of RHL via the
Deligne-Lefschetz criterion.
The DT for a proper map can be derived formally as follows.
By using [BBD], Cor. 5.3.11, we first observe that we may assume that 0P is the inter-
mediate extension back to 0X of its own restriction to any Zariski-dense open subvariety.

We choose a Chow envelope 0h : 0W
0g

//

0X
0f

//

0Y of the map 0f , so that 0g and 0h
are projective and there is a Zariski dense open subvariety 0U ⊆ 0X over which 0g is an
isomorphism.
Let 0P

′ be the corresponding intermediate extension to 0W . Since 0g is projective, we can
apply the Deligne-Lefschetz splitting and deduce that 0P is a direct summand of R 0g∗0P

′.
The conclusion follows by applying what we have already proved for the projective 0g and
to 0h, and then by using the relation R 0h∗ = R 0f∗ ◦R 0g∗ to compare terms.

Remark 2.1.2 The lisse sheaves 0L on 0Y
o become semisimple, after pull-back to each

integral component of Yo. As we shall see, in the case of proper toric maps with 0P := I0X ,
the subvarieties 0Y, being torus orbits, are geometrically integral, and, in addition, the
coefficients 0L turn out to be are already semisimple. See Theorems 2.3.1, 2.4.3. The
indecomposable pure perverse sheaves on a 0Y are described in [BBD], Prop. 5.3.9]. Due
to my ignorance, I do not know if the pure lisse 0L may admit indecomposable direct
summands that present Jordan block-type factors of type En with n ≥ 2 : that would be
the only obstacle to the semisimplicity of the pure lisse coefficients 0L on 0Y .

2.2 First toric consequences of Proposition 2.1.1

Lemma 2.2.1 Let 0Z
0u→ 0U

0j
→ 0V be maps of schemes (separated and of finite type)

over a finite field and let 0C be a pure complex of weight w on 0V . Assume that: 0Z is
complete, 0j is an open immersion, u∗ : H∗(U,C) → H∗(Z,C) is an isomorphism, 0V is
smooth. If the -automatically pure– submodule of lowest weight w of H∗(V,C) is even and
Tate, then so is H∗(U,C).

Proof. This is standard; we freely use basic weight theory ([BBD], 5.1.14). It is enough to
show that j∗ is surjective. We have that: H∗(U,C) ∼= H∗(Z,C) has weights ≤ w, because

0Z is complete, so that the direct image coincides with the extraordinary direct image,
under which the property of having weights ≤ w is stable. H∗(U,C) has weights ≥ w
because the property of having weights ≥ w is stable under direct image. By combining

8



the two weight inequalities above, we see that H∗(U,C) is pure of weight w. Let 0i the
closed embedding complementary to 0j. In view of the fact that the property of having
weight ≥ w is stable under extraordinary inverse image, the long exact sequence of relative
cohomology H∗(V,C) → H∗(U,C) → H∗+1(V, i!i

!C) shows that j∗ is surjective.

Lemma 2.2.2 Let 0X be a toric variety over a finite field. The intersection complex I0X

is pure of weight zero and Ω-constructible.

Proof. Both are well-known. We offer a proof of purity for toric varieties based on the
DT. Of course, purity of the intersection complex for any Variety over a finite field is a
result of O. Gabber. We also prove Ω-constructibility as we need some of the details of
the proof in the proof of Lemma 2.2.3.
Let 0g : 0W → 0X be a proper toric resolution of the singularities of 0X. Proposition 2.1.1
implies that I0X , being a direct summand of the pure weight zero R0g∗Qℓ0W

, is pure of
weight zero.
The proof of Ω-constructibility is by induction on n := dim 0X. If n = 0, then we are done.
Assume the desired conclusion holds for every toric variety of dimension at most n− 1.
Since the open sets of the form 0Uσ are union of orbits and cover 0X as σ ranges in ∆X ,
we may assume that 0X = 0Uσ. In view of the local product structure 0Uσ

∼= 0Uσ′ ×0O(σ),
we may also assume that (0X, 0x) is of contractible type.
Since 0x is now an orbit, we may replace (0X, 0x) with 0X \ 0x. Now, 0X is covered by
the affine open sets of the form 0Uτ

∼= 0Uτ ′ × 0O(τ), with τ < σ, so that dim 0Uτ ′ ≤ n− 1,
and we are done.

Lemma 2.2.3 Let 0f : 0X → 0Y be a proper toric fibration over a finite field. The direct
image complex R 0f∗ I0X is Ω-constructible.

Proof. As in the proof of Lemma 2.2.2, we may assume that 0Y = 0Uσ.
According to (2), the intersection complex of 0f

−1(0Uσ) is a pull-back from the factor

0f
−1(0Uσ′). It follows that we may assume that (0Y , 0y) is of contractible type.

We conclude the proof by arguing by induction on the dimension of the base of contractible
type as in the proof of Lemma 2.2.2.

Lemma 2.2.4 Let 0f : 0X → 0Y be a proper toric fibration onto a base of contractible type
(0Y , 0y), all over a finite field. Then we have natural isomorphisms of graded G-modules:

IH∗(X) = (R∗f∗IX)y = H∗(f−1(y),IX). (12)

In particular, we have the natural isomorphism of graded G-modules:

IH∗(Y ) = H∗(IY )y. (13)

The graded G-modules above are pure, even and Tate.
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Proof. The first two assertions follow from the retraction lemma (7) and (8) and proper
base change.
We turn to the proof that the G-modules (12) are pure even and Tate.
By taking a projective toric resolution of 0X as in the proof of Lemma 2.2.2, we may
assume that 0X is smooth and quasi projective. In particular, we are now dealing with
cohomology, instead of intersection cohomology.
Choose a toric open embedding j : 0X → 0X with 0X toric smooth and projective.
It is well known that the graded G-module H∗(0X) is pure of weight zero, even and Tate:
it is generated by algebraic cycle classes [Ful].
We conclude by applying Lemma 2.2.1 to 0f

−1(0y) → 0X → 0X.

Remark 2.2.5 (Description of H∗(f−1(y),IX), f proper toric) Let f : X → Y be a
proper toric map over an algebraically closed field and let y ∈ Y be a closed point. Let
f = h ◦ g : X → Z → Y be the toric Stein factorization. The fiber f−1(y) is a disjoint
union of the finitely many fibers g−1(zl), with {zl} = h−1(y). Clearly, H∗(f−1(y),IX) =
⊕lH

∗(g−1(zl),IX). Fix zl and take the U(ζ) with z ∈ O(ζ). By using the local product
structure (2) over Uζ , we may assume that zl = zζ and that (Z, zζ ) is of contractible type.
By combining the proofs of lemmata 2.2.4 and 2.2.2, we obtain the following description:
H∗(f−1(y),IX) is a finite direct sum of subquotients of the graded vector spaces H∗(Wl,Qℓ)
given by the cohomology of nonsingular projective toric varieties Wl. The description
remains valid in the context of G-modules if the ground field is the algebraic closure of a
finite field. Similarly, over C, in the context of the classical Euclidean topology with the
rational mixed Hodge structures of the theory of mixed Hodge modules.

Corollary 2.2.6 Let 0f : 0X → 0Y be a proper toric map over a finite field. Then the
pure weight zero complexes I0X and R 0f∗ I0X are punctually pure, even and Tate.

Proof. The second statement implies the first one by taking 0f = Id0X .
Since the desired conclusions are stable under direct images via finite toric maps, in view
of the toric Stein factorization of the map 0f, we may assume that 0f is a proper toric
fibration.
Since the desired conclusions are statements about the stalks and the direct image complex
is Ω-constructible, it is enough to verify that for every distinguished point 0yσ of any orbit

0O(σ) ⊆ 0Y , the graded G-module (R∗f∗IX)yσ is pure, even and Tate. This follows
immediately from Lemma 2.2.4.

Remark 2.2.7 The punctual purity etc. of the intersection complex of a toric variety is
proved in [DL]. The statement for the direct image seems new.

2.3 Proof of Theorem 1.4.1.c on proper toric fibrations

The following theorem proves Theorem 1.4.1.c.
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Theorem 2.3.1 (Proper toric fibrations: DT semisimplicity and RHL over 0F)
Let 0f : 0X → 0Y be a proper toric fibration. There are isomorphisms in Db

m(0Y ,Qℓ) :

R 0f∗I0X
∼=

⊕

σ∈∆
0Y

⊕

b∈Z

0Jσ,b [−b], (14)

0Jσ,b
∼=

{

0 b+ dimX − dimV (σ) odd,

0I
sσ,b
σ

(

− b+dimX−dimV (σ)
2

)

b+ dimX − dimV (σ) even.
(15)

The integers sσ,b are subject to the following relations:

i) sσ,b = sσ,−b (Poincaré-Verdier duality); if b+dimX−dimV (σ) is odd, then sσ,b = 0.

ii) If 0f is projective, then for every b ≥ 0, sσ,b ≥
∑

l≥1 sσ,b+2l (RHL).

Proof. Proposition 2.1.1, coupled with the Ω-constructibility of the direct image complex
in Lemma 2.2.2, implies the existence of an isomorphism (14), where each 0Jb,σ is of the
form 0IV (σ)(0Lb,σ), with 0Lb,σ lisse, pure of weight b+ dimX − dimV (σ) on 0O(σ).

By Ω-constructibility, for each j, σ, the mixed sheaf 0R
j
σ (see the end of §1.2 on notation)

is lisse on the orbit 0O(σ).
The local product structure of 0f (3) implies that 0R

j
σ is given by the continuous repre-

sentation:
ρjσ : π1(0O(σ), yσ) −→ π1(0yσ, yσ) −→ GLQℓ

(

Rj
yσ

)

, (16)

where the first homomorphism stems from the natural constant 0F-map 0O(σ) → 0yσ, and
the second one from the G-module structure on Rj

yσ : this means that the lisse sheaf 0R
j
σ

is the pull-back of a lisse sheaf on 0yσ, namely, the G-module Rj
yσ .

By combining with Corollary 2.2.6, we see that 0R
j
σ is zero for j odd and that, for j even,

we have 0R
j
σ
∼= Q

r
ℓ 0O(σ)(−j/2), for some r ≥ 0.

The already-proved existence of an isomorphism (14) as above, implies that 0Lb,σ is a direct

summand of 0R
j
σ for j = b+dimX − dimV (σ), so that we have 0Lb,σ

∼= Q
s
ℓ0Oσ

(−j/2), for
some integer s, equal to zero if j is odd. This proves (15), as well as the second part of
assertion i).
Finally, given (14) and (15), assertion ii) and the first part of i) are immediate consequences
of the relative hard Lefschetz theorem, and of Verdier duality, respectively.

2.4 Proof of Theorem 1.4.1.a on proper toric maps

Let 0f : 0X → 0Y be a proper toric map over a finite field 0F and let 0f = 0h◦ 0g its Stein
factorization. Since 0g is a proper toric fibration, i.e. the subject of Theorem 2.3.1, we
turn our attention to the finite map 0h : 0Z → 0Y , with image 0f(0X), a closed subvariety
of 0Y .

Given ζ ∈ ∆0Z , we have the map of tori 0h(ζ) : 0O(ζ) → O(ζ), with image 0O
′(ζ) ⊆

O(ζ).We denote the evident resulting finite map on the closures by 0h(ζ) : 0O(ζ) → 0O′(ζ).

11



Lemma 2.4.1 The Qℓ-adic sheaf 0Lζ := 0h(ζ)∗Qℓ0O(ζ) on 0O
′(ζ) is lisse, semisimple,

pure, punctually pure of weight zero; the geometric monodromy has eigenvalues roots of
unity.
The direct image R 0h∗ 0IV (ζ) = I

0O′(ζ)(0Lζ) is pure of weight zero, punctually pure, even
and Tate.

Proof. The map of tori 0h(ζ) admits the canonical factorization (4). Recalling that the
map being factored is finite: the map 0a must be the identity. The map 0b is a quotient
by a finite abelian group, Γ := Ker 0b, whose order is not divisible by char 0F; in particular
it is étale, and Galois. The map 0c is a universal homeomorphism. The map 0i is the
evident closed embedding.
Since 0a, 0c and 0i are universal homeomorphisms onto their image, they do not effect the
direct image calculations and can be ignored.
It follows that 0Lζ is naturally identified the ordinary direct image sheaf 0b∗Qℓ, with 0b
the ètale quotient by the action of the finite abelian group Γ. All the listed properties of

0Lζ follows easily from this description.
The equality statement about the direct image complex follows by observing that we have
the following natural identifications:

R 0h∗ I0V (ζ) = 0h∗ I0V (ζ) = 0h(ζ)∗I0V (ζ) = I
0O′(ζ)(0Lζ) : (17)

the first one is because h is finite. The second one is because the third term is merely
a re-writing of the second; the third identification follows from the fact that the direct
image under the finite map 0h(ζ) is t-exact for the middle perversity t-structure and hence
preserves intersection complexes with twisted coefficients; clearly, the coefficients of the
direct image can be read on a Zariski-dense open subset, so that they are given by 0Lζ .
Finally, the last statement follows by the just-established equality and from Corollary
2.2.6, applied to 0X := 0V (ζ) : for the properties in question are stable under finite direct
image.

Remark 2.4.2 The rank of the local system 0Lζ is the cardinality of the abelian group
Γ, which depends on the characteristic of the finite field 0F.

We can now show that Theorem 2.3.1 for proper toric fibrations over 0F has the follow-
ing natural counterpart for proper toric maps over 0F, which, in turn, establishes Theorem
1.4.1.a.

Theorem 2.4.3 (Proper toric maps: DT semisimplicity and RHL over 0F) Let

0f : 0X → 0Y be a proper toric map over the finite field 0F. There are isomorphisms in
Db

m(0Y ,Qℓ) :

R 0f∗I0X
∼=

⊕

ζ∈∆
0Z

⊕

b∈Z

0Jζ,b[−b], (18)
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0Jζ,b
∼=

{

0, b+ dimX − dimV (ζ) odd,

0IC
sζ,b

0O′(ζ)
(0Lζ)

(

− b+dimX−dimV (ζ)
2

)

, b+ dimX − dimV (ζ) even.
(19)

The complex R 0f∗I0X is pure of weight zero, punctually pure, even and Tate.
The integers sζ,b are subject to the following relations:

i) sζ,b = sζ,−b (Poincaré-Verdier duality); if b+dimZ−dimV (ζ) is odd, then sζ,b = 0.

ii) If 0f is projective, then for every b ≥ 0, sζ,b ≥
∑

l≥1 sζ,b+2l,ζ (RHL).

Proof. We have the Stein factorization 0f = 0h ◦ 0g. We first apply Theorem 2.3.1.(15) to
the proper fibration 0g. We form the R 0g∗ of each resulting direct summand. We apply
Lemma 2.4.1, which remains valid also after arbitrary Tate twists, to each resulting term.
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