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6 SIEGEL–VEECH CONSTANTS FOR STRATA OF MODULI

SPACES OF QUADRATIC DIFFERENTIALS

ELISE GOUJARD

Abstract. We present an explicit formula relating volumes of strata of mero-
morphic quadratic differentials with at most simple poles on Riemann sur-
faces and counting functions of the number of flat cylinders filled by closed
geodesics in associated flat metric with singularities. This generalizes the re-
sult of Athreya, Eskin and Zorich in genus 0 to higher genera.

1. Introduction

1.1. Cylinders and saddle connections on half-translation surfaces. Amero-
morphic quadratic differential q with at most simple poles on a Riemann surface
S of genus g defines a flat metric on S with conical singularities. If q is not the
global square of a holomorphic 1-form on S, the metric has a non-trivial linear
holonomy group, and in this case (S, q) is called a half-translation surface. In this
paper we consider only quadratic differentials satisfying the previous condition. If
α = {α1, . . . , αn} ⊂ {−1} ∪ N is a partition of 4g − 4, Q(α) denotes the moduli
space of pairs (S, q) as above, where q has exactly n singularities of orders given
by α. It is a stratum in the moduli space Qg of pairs (S, q) with no additional
constraints on q.

In what follows we will refer to a half-translation surface (S, q) simply as S.
A saddle connection on S is a geodesic segment on S joining a pair of conical

singularities or a singularity to itself without any singularities in its interior. Note
that maximal flat cylinders filled by parallel regular closed geodesics have their
boundaries composed by one or several parallel saddle connections. In this paper
we will evaluate the number of such cylinders on S in terms of the volumes of some
strata, using the study of saddle connections by Masur and Zorich in [31].

1.2. Rigid collections of saddle connections. A saddle connection persists un-
der any small deformation of S inside the stratum Q(α). Moreover Masur and
Zorich noticed in [31] that in some cases any small deformation which shortens
a specific saddle connection shortens also some other saddle connections. More
precisely, they give the following result (Proposition 1 of [31]):

Proposition 1 (Masur-Zorich). Let {γ1, . . . , γm} be a collection of saddle connec-
tions on a half-translation surface S. Then any sufficiently small deformation of S
inside the stratum preserves the proportions |γ1| : |γ2| : · · · : |γm| of the lengths of

the saddle connections if and only if the saddle connections are ĥomologous.

Roughly two saddle connections are ĥomologous if they define the same anti-
invariant cycle in the orientation double cover. The precise definition will be recalled

in § 2.1. In particular two ĥomologous saddle connections are parallel with ratios
of lengths equal to 1 or 2.
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The geometric types of possible maximal collections of ĥomologous saddle con-
nections γ = {γ1, . . . , γm} on S are called configurations of saddle connections.
Masur and Zorich classified all configurations of saddle connections in [31] in terms
of combinatorial data.

We assume in the sequel that S belongs to a connected stratum (unless the non
connectedness is stated explicitly), and we will not make a distinction when we
speak about configurations for the surface S or for the stratum Q(α), the second
means that we look at all possible configurations on almost every surface S ∈ Q(α).

We are interested in collections of ĥomologous saddle connections, such that some
of the saddle connections bound at least one cylinder filled by parallel regular closed
geodesics. We refer to the geometric type of these collections as “configurations
containing cylinders” or “configurations with cylinders”.

It is proved in [31] that such cylinders have in fact each of their two boundaries
composed by exactly one or two saddle connections in the collection, and that if
there are several cylinders in the configuration, the lengths of their waist curves are
either the same or have the ratio 1:2. Namely, some cylinders have their width twice
larger than the width of the other cylinders. The boundary of the first cylinders are
composed either by one or two saddle connections, and the boundary of the latter
cylinders are composed by exactly one saddle connection. We will refer to cylinders
of the first type as “thick cylinders” and to cylinders of the second type as “thin
cylinders”. We call the length of the minimal saddle connection in the collection
or equivalently the width of any thin cylinder the “length of the configuration”.

Let γ be a maximal collection of ĥomologous saddle connections on S. Then
the complimentary region of these saddle connections and the cylinders bounded
by these saddle connections is the union of some surfaces with boundaries. Each
of them might be obtained by a specific surgery from a flat surface belonging to a
stratum Q(αi) or H(βj). The union of these strata Q(α′) = ∪i,jQ(αi) ∪ H(βj) is
called the boundary stratum for the configuration C. This distinction is meaningful:
the boundary stratum corresponds to the degeneration of the stratum Q(α) as the
lengths of the saddle connections in the collection tend to 0.

1.3. Counting saddle connections. Let S be a half-translation surface in a con-
nected stratum Q(α), and C a configuration with cylinders on S. It means that in

some given direction, there is a collection of ĥomologous saddle connections of type
C on S. Note that by results of [15] in many other directions, one can usually find

another collection of ĥomologous saddle connections of same type C.
We introduce N(S, C, L) the number of directions on S in which we can find a

collection of saddle connections of type C, with the length of the smallest saddle
connection smaller than L. Since we are interested in cylinders we introduce also
Ncyl(S, C, L) that counts each appearance of the configuration C with weight equal
to the number of the cylinders of width smaller than L, and Narea(S, C, L) that
counts each appearance of the configuration C with weight equal to the area of the
cylinders of width smaller than L.

For each of these numbers, we introduce the corresponding Siegel–Veech con-
stant, that gives the asymptotic of these numbers as L goes to infinity:

(1) c∗(C) = lim
L→∞

N∗(S, C, L) · (Area of S)

πL2
.
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The stratum Q(α) is equipped with a natural PSL(2,R)-invariant measure induced
by the Lebesgue measure in period coordinates. Eskin and Masur showed in [15]
that the numbers (1) are in fact constant on a full measure set of the stratum Q(α).
Combining these results with the results of Veech [33], one concludes that all these
constants are strictly positive.

1.4. Application of Siegel–Veech constants. One of the principal reasons why
the Siegel–Veech constants are more and more intensively studied during the last
years [1, 3, 4, 6, 14, 34] is the relation between them and the Lyapunov exponents
of the Hodge bundle along the Teichmüller flow: the key formula of [14] expresses
the sum of the positive Lyapunov exponents for any stratum Q(α) as a sum of
a very explicit rational function in α and the Siegel–Veech constant carea(Q(α)).
The Lyapunov exponents are closely related to the deviation spectrum of measured
foliations on individual flat surfaces [21, 22, 36, 37], which opens applications to
billiards in polygons, interval exchanges, etc.

A recent breakthrough of A. Eskin and M. Mirzakhani provides, in particular,
new tools allowing to prove that the SL(2,R)-orbit closure of certain individual
flat surfaces is an entire stratum. By the theorem of J. Chaika and A. Eskin [8],
almost all directions for such a flat surface are Lyapunov-generic. This allows to
use all the technology mentioned above to compute, for example, the diffusion rate
of billiards with certain periodic obstacles. The final explicit answer (as 2/3 for the
diffusion rate in the windtree model studied in [13]) is a certain Lyapunov exponent
as above. These kinds of quantitative answers or estimates are often reduced to
computation of the appropriate Siegel–Veech constants.

The Kontsevich formula [25] for the sum of the Lyapunov exponents over a
Teichmüller curve and recent results of S. Filip [20] showing that every orbit closure
is a quasiprojective variety suggest that an adequate intersection theory of the
strata might provide algebro-geometric tools to evaluate Siegel–Veech constants (see
also [27] in this connection). However, such intersection theory is not developed
yet, and we are limited to analytic tools in our evaluation of Siegel–Veech constants.

1.5. Principal results. Now we are ready to state the main theorem of this paper.

Theorem 1. Let C be an admissible configuration for a connected stratum Q(α) of
quadratic differentials. Let q1 denote the number of thin cylinders, q2 the number of
thick cylinders in the configuration C, and q = q1+q2 the total number of cylinders.
Assume that the boundary stratum Q(α′) is non empty, and q ≥ 1. Then the
Siegel–Veech constants associated to C are the following:

c(C) =
M

2q+2

(dimC Q(α′)− 1)!

(dimC Q(α) − 2)!

VolQ1(α
′)

VolQ1(α)
(2)

ccyl(C) =

(

q1 +
1

4
q2

)

c(C)(3)

carea(C) =
1

dimC Q(α)− 1
ccyl(C)(4)

where M =
MsMc

Mt
and Mc, Mt, Ms are combinatorial constants depending only

on the configuration C, explicitly given by equations (9), (12) and (20).
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When the boundary stratum is empty, the formulas are simpler and given in
§ 3.3.4.

This theorem is proved in section 3.3. Note that these formulas coincide in genus
0 with the formulas of [1], for the two configurations containing cylinders (named
“pocket” and “dumbell” in the article).

The ratio
carea(C)
ccyl(C)

=
1

dimC Q(α)− 1
can be interpreted as the mean area of a

cylinder in the configuration C. Note that it depends only on the dimension of the
ambient stratum.

For a fixed stratum Q(α) consider all admissible configurations, and denote
qmax(α) the maximal number of cylinders for all these configurations. We evaluate

this number in section A.2. The ratio
qmax(α)

dimC(Q(α)) − 1
represents the maximum

mean total area of the cylinders in stratum Q(α).

Proposition 2. We have

max
α∈Π(4g−4+k)

qmax(α ∪ {−1k})
2g − 3 + ℓ(α) + k

k fixed−−−−→
g→∞

1

3

g fixed−−−−→
k→∞

1

5

where Π(4g − 4 + k) denotes the set of partitions of 4g − 4 + k and l(α) is the
length of the partition α. Furthermore for any genus g and number of poles k the

bound is achieved for α ∈ Π(k′) ⊔ Π4(4g − 4 + k − k′), where k′ = k − 4

⌊

k

4

⌋

and

Π4(4g − 4 + k − k′) denote the set of partitions of 4g − 4 + k − k′ using only 4’s.

1.6. Historical remarks. The Siegel–Veech constants for the strata of Abelian
differentials were evaluated in the paper [16]; the relations between various Siegel–
Veech constants were studied in [34] and some further ones in a recent paper [6].
The computation in [16] involves a combination of rather involved combinatorial
and geometric constructions. To test the consistency of their theoretical predictions
numerically, the authors of [16] compare the formulas for the Lyapunov exponents
expressed in terms of the Siegel–Veech constants (reduced, in turn, to combinations
of volumes of the boundary strata) with numerics provided by experiments with
the Lyapunov exponents. These tests are based, in particular, on the results of
A. Eskin and A. Okounkov [17] providing the explicit values of the volumes of all
strata of Abelian differentials in small genera.

The description of combinatorial geometry of configurations of saddle connec-
tions for the strata of quadratic differentials is performed in the paper of H. Masur
and A. Zorich [31]; for the hyperelliptic components and for strata in genus zero
such description is given in the paper of C. Boissy [5].

The evaluation of the corresponding Siegel–Veech constants in genus zero was
recently performed by J. Athreya, A. Eskin, and A. Zorich [1]; see also the related
paper [2]. The results were also verified by computer experiments with Lyapunov
exponents combined with the knowledge of the volumes of the strata of quadratic
differentials in genus zero. (The authors prove in [1] an extremely simple explicit
formula for such volumes in genus zero conjectured by M. Kontsevich.)
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In the current paper we treat the strata of quadratic differentials in arbitrary
genus. We should point that, in the contrast to the strata of Abelian differentials,
the analogous results of A. Eskin, A. Okounkov [18], and R. Pandharipande [19] do
not provide explicit values for the volumes of the strata of quadratic differentials.
This is why in [23] we have computed the values of volumes of a large amount
of strata in low dimension, implementing the algorithm of Eskin and Okounkov.
These volumes were independently tested in [12]. In this paper we use these values
to obtain some exact values of Siegel–Veech constants for the strata of quadratic
differentials away from genus zero, and to show that our formulas for Siegel–Veech
constants are consistent with numerics coming from Lyapunov exponents of the
Hodge bundle over the Teichmüller flow. Furthermore, we have compared all our
results with the program POLYGON of Alex Eskin, which counts configurations of
saddle connections for individual translation surfaces.

1.7. Structure of the paper. The paper is divided into five parts. The first
two sections, theoretical, give the proof of Theorem 1, and develop the results on a
special family of strata: Q(1k,−1l). For the first strata of this type we compute the
exact values of Siegel–Veech constants and we obtain the exact values of the sums
of Lyapunov exponents of the Hodge bundle along the Teichmüller flow. These
values are important for applications to billiards, such as windtree models [13].

The computations of this first part generalize the computations presented in
the articles [16], and [1], but in higher genus, this theory does not easily yield the
exact values of Siegel-Veech constants, because the techniques involve phenomena of
higher complexity. This is why we present in a second part all explicit computations.

Section 5 develops the formula in the case of hyperelliptic components of strata.
For these components, the values of the volumes and the Siegel–Veech constants
are known, which enables us to check the coherence of the formulas in this case.

Section 6 is devoted to the application of the main formula for strata of small
dimension where we have explicit values of the volumes [23]. In particular for non-
varying strata we check the coherence of the main formula. In the other cases we
get new explicit Siegel–Veech constants that we can compare with the experimental
value of the sum of Lyapunov exponents. This comparison serves as an independent
test of coherence of our choice of numerous normalizations and a confirmation
that all discrete symmetries of relatively sophisticated configurations are taken into
consideration.

We complete the paper with the extension of some geometric results proved in
[6] for the strata of Abelian differentials to the strata of quadratic differentials.

1.8. Acknowledgements. I wish to thank my advisor Anton Zorich, for his guid-
ance and support during the preparation of this paper. I am grateful to Alex Eskin
to letting me use his program on configurations to check the computations of this
paper and for his enlightening explanations of the method of volume computations.
I thank Pascal Hubert for helpful remarks on the preliminary version of this paper,
Max Bauer for many helpful discussions related to Siegel–Veech constants. I thank
Anton Zorich and Charles Fougeron for providing me numerical data on Lyapunov
exponents. I am grateful to Howard Masur and Anton Zorich for letting me use
their pictures from [31]. I thank the anonymous referee for useful comments and
careful reading of the manuscript. I thank ANR GeoDyM for financial support.
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2. Preliminaries

2.1. Ĥomologous saddle connections. We recall here from [31] the notion of

ĥomologous saddle connections.

Any flat surface (S, q) in Q(α) admits a canonical ramified double cover Ŝ
p→ S

such that the induced quadratic differential on Ŝ is a global square of an Abelian
differential, that is p∗q = ω2 and (Ŝ, ω) ∈ H(α̂). Let Σ = {P1, . . . Pn} denote the

singular points of the quadratic differential on S, and Σ̂ = {P̂1, . . . P̂N} the singular

points of the Abelian differential ω on Ŝ. Note that the pre-images of poles Pi are
regular points of ω so do not appear in the list Σ̂. The subspace H1

−(Ŝ, Σ̂;C) anti-
invariant with respect to the action of the hyperelliptic involution provides local
coordinates in the stratum Q(α) in the neighborhood of S.

Let γ be a saddle connection on S. We denote γ′ and γ′′ its two lifts on Ŝ.
If [γ] = 0 downstairs, then [γ′] + [γ′′] = 0 upstairs, and in this case we define
[γ̂] := [γ′]. In the other case we have [γ′] + [γ′′] 6= 0 and we define [γ̂] := [γ′]− [γ′′].
We obtain an element of H1

−(Ŝ, Σ̂;C).

Then two saddle connections γ1 and γ2 are said to be ĥomologous if [γ̂1] = [γ̂2]

in H1(Ŝ, Σ̂,Z), under an appropriate choice of orientations of γ1, γ2.

2.2. Configurations of saddle connections. A configuration is one of the geo-

metric type of all possible maximal collections of ĥomologous saddle connections.
We detail here precisely the information that characterizes the geometric type of a
collection (Definition 3 of [31]). Given such a collection of saddle connections on
a surface S, cutting along these saddle connections gives a union of surfaces with
boundaries. These surfaces can be either flat cylinders, or surfaces obtained by a
surgery from a surface of trivial or non trivial holonomy. These surfaces are called
boundary surfaces. We record the genus and the order of the singularities of all
these surfaces. We record also which type of surgery is applied to which singularity
on each surface with the precise angles. Finally we record the way the surfaces are
glued in the initial surface. All this information characterizes a configuration of

ĥomologous saddle connections.

2.3. Graphs of configurations. We recall here briefly how the graphs introduced
by Masur and Zorich in [31] encode all combinatorial information about a configu-
ration. We reproduce Figure 3 and Figure 6 of [31] describing the graphs on Figure
1 and Figure 2 in order to keep the paper self-contained. For a complete description
of the configurations using graphs see the original article [31].

Let S be a half-translation and γ a saddle connection of configuration C. The
graph of the configuration C is given by the following procedure: associate to each
boundary surface a vertex in the graph, with the following symbolic: a vertex ⊕
represents a surface of trivial holonomy, a vertex⊖ a surface of non trivial holonomy,
and a vertex ◦ a cylinder. There is an edge between two vertices if the boundaries
of the corresponding surfaces share a common saddle connection. At this stage we
obtain a graph described by Figure 1.

The surgeries performed on each surface are represented by local ribbon graphs
belonging to the list described in Figure 2. These local graphs are decorated with
numbers ki which are the numbers of horizontal geodesic rays emerging from the
zeros on which we perform the surgery, in an angular sector delimited by two

ĥomologous saddle connections. The union of these local ribbon graphs forms
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Figure 1. Figure 3 of [31]: Classification of admissible graphs.

globally a ribbon graph that can be drawn on the graph giving the organization of
the surfaces. The boundary of this ribbon graph has several connected components,
each of them represents a newborn zero. To compute the order of a newborn zero,
one can count the number of geodesic rays emerging from this point, that is, sum
all the ki’s met when one goes along the connected component of the boundary of
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Figure 2. Figure 6 of [31]: Classification of embedded local
ribbon graphs.
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the ribbon graph corresponding to the newborn zero. The cone angle around this
point is then π

∑

i(ki + 1). See Figure 7 in [31] for an example.

2.4. General strategy for the computation of Siegel–Veech constants. We
recall here the sketch of the general method developed in [16] to evaluate Siegel–
Veech constants in the Abelian case, transposed to the quadratic case in genus 0 in
[1].

Let VC(S) be the set of holonomy vectors of saddle connections on S of type C.
The number of configurations C in S such that the length of the ĥomologous saddle
connections is bounded is then

N(S, C, L) = 1

2
|VC(S) ∩B(0, L)|,

where the factor 1
2 compensates the fact that the saddle connections are not oriented

and so their holonomy vectors are defined up to a sign. If q is the number of cylinders
in the configuration and q1 the number of “thin” cylinders, we define as well

Ncyl(S, C, L) =
1

2

(

q

∣
∣
∣
∣
VC(S) ∩B

(

0,
L

2

)∣
∣
∣
∣
+ q1

∣
∣
∣
∣
VC(S) ∩ A

(
L

2
, L

)∣
∣
∣
∣

)

,

with A
(
L
2 , L

)
= B(0, L) \B

(
0, L

2

)
. Note that Ncyl(S, C, L) counts each realization

of configuration C with weight the number of cylinders of width smaller than L: if
the width of the thin cylinders is smaller than L/2 then all the q cylinders have
their width smaller than L, if the width of the thin cylinders is comprised between
L/2 and L, then the thick cylinders do not count.

Simplifying the last expression we get

(5) Ncyl(S, C, L) = q2N(S, C, L/2) + q1N(S, C, L)
where q2 is the number of thick cylinders (q = q1 + q2).

Finally we define

Narea(S, C, L) =
1

2

∑

v∈VC(S)∩B(0,L)

A(v)

where A(v) is the area of the cylinders of width smaller than L among those as-
sociated to the saddle connections of type C and holonomy vector ±v. Note that
Narea(S, C, L) weights only the cylinders which are counted by Ncyl(S, C, L).
Convention 1. Following [1] we denote Q1(α) the hypersurface in Q(α) of flat
surfaces of area 1/2 such that the area of the double cover is 1.

Let µ denote the natural PSL(2,R)-invariant measure on Q(α), called Masur-
Veech measure, induced by the Lebesgue measure in period coordinates. We choose
a normalization for µ in §3.1. This measure induces a measure µ1 on Q1(α) in the
following way: if E is a subset of Q1(α), we denote C(E) the cone underneath E
in the stratum Q(α):

C(E) = {S ∈ Q(α) s.t. ∃r ∈ (0,+∞), S = rS1 with S1 ∈ E}
and we define

µ1(E) = 2d · µ(C(E)),

with d = dimC Q(α), that is, the measure dµ disintegrates in dµ = r2d−1drdµ1.
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Eskin and Masur proved in [15] that the asymptotic

lim
L→∞

N∗(S, C, L) · (Area of S)

πL2

does not depend on the surface S for almost every surface in a connected component
of a stratum of Abelian or quadratic differentials. This constant is denoted by c∗(C)
and it is called the Siegel–Veech constant for the configuration C.
Remark 1. Note that it follows directly from this formula and the definition (5) of
Ncyl(S, C, L) that:

ccyl(C) =
(

q1 +
1

4
q2

)

c(C),

which is the equation (3) in Theorem 1.

Now let Q(α) be a connected stratum. The Siegel–Veech formula (cf [33], The-
orem 0.5) gives the existence of constants b∗(C) such that

1

Vol(Q1(α))

∫

Q1(α)

N∗(S, C, L)dµ1(S) = b∗(C)πL2

so necessarily b∗(C) = 2c∗(C) and we can express the Siegel–Veech constant as

c∗(C) = lim
ε→0

1

2πε2
1

Vol(Q1(α))

∫

Q1(α)

N∗(S, C, ε)dµ1(S).

Actually the integral is over the subset Qε
1(C) of Q1(α) formed by the surfaces with

at least one family of “short” saddle connections of type C, where “short” means of

length smaller than ε. We decompose this subset asQε
1(C) = Qε,thick

1 (C)∪Qε,thin
1 (C)

whereQε,thin
1 (C) is the set of surfaces having at least two distinct collections of short

saddle connections of type C. Eskin and Masur proved in [15] that this subset is so
small that we have

1

VolQ1(α)

∫

Qε,thin
1 (C)

N∗(S, C, ε)dµ1(S) = o(ε2).

Finally we obtain

(6) c∗(C) = lim
ε→0

1

2πε2
Vol∗ Qε

1(C)
VolQ1(α)

where Vol∗ Qε
1(C) is the weighted volume:

Vol∗ Qε
1(C) =

∫

Qε
1(C)

W∗(C, S)dµ1(S)

with W (C, S) = 1, Wcyl(C, S) is equal to the number of cylinders of width smaller
than ε, Warea(C, S) is equal to the area of the cylinders of length smaller than ε in
the configuration C on S.

The last step is the computation of Vol∗ Qε
1(C) in term of the volume of the

boundary stratum, see § 3.3.
Counting saddle connections of type C is related to a more general problem:

counting saddle connections with no fixed type. Introducing the number N(S,L)
of distinct holonomies of saddle connections shorter than L on S ∈ Q(α), the
corresponding Siegel–Veech constants

c∗(Q(α)) = lim
L→∞

N(S,L) · (Area of S)

πL2



SIEGEL–VEECH CONSTANTS 11

are also well-defined for almost every S ∈ Q(α) and depend only of the stratum.
Then we have naturally

c∗(Q(α)) =
∑

C
c∗(C).

The constant carea(Q(α)) is particularly important because the formula of [14] re-
lates it to the sum of Lyapunov exponents for the Teichmüller geodesic flow. So it
implies a lot of applications to the dynamics in polygonal billiards. Using the nu-
merical experiments on Lyapunov exponents performed in particular by A. Zorich,
V. Delecroix and C. Fougeron, the Eskin-Kontsevich-Zorich formula provides nu-
merical approximation for the constants carea(Q(α)), and that gives a way to check
computations on the constants carea(C). This is the main reason why we focus on
configurations containing cylinders: they are the only ones that contribute to the
constant carea(Q(α)).

Note that this computation is somehow an analog to one of Mirzakhani, but
in the flat world: in [32], Mirzakhani shows that the number of simple closed
geodesics on a hyperbolic surface is asymptotically cL6g−6, where the constant is
related to the Weil–Peterson volumes; doing a similar counting for flat metric with
singularities (in the same conformal class) we get cL2, where the constant is also
expressed in terms of the Masur–Veech volumes.

2.5. Strata that are not connected. In the last section we explained the method
to compute Siegel–Veech constants for connected strata. The classification of con-
nected components of strata is given in [29]. Most of the strata are connected, the
only ones that are not connected are the one that have a hyperelliptic component
(except some sporadic examples in genus 3 and 4), and in this case there is only
one supplementary component. The three types of strata containing hyperelliptic
components are recalled on § 5.

The general strategy for computing Siegel–Veech constants for the connected
strata can be adapted for connected components. For a connected component
Qcomp(α) we define the Siegel–Veech constants by the means:

c∗(Qcomp(α), C) = lim
ε→0

1

2πε2
1

Vol(Qcomp
1 (α))

∫

Qcomp
1 (α)

N(S, C, ε)dµ1(S).

Note that the connected components of Q1(α) are exactly the intersection of Q1(α)
with the connected components of Q(α). We have also the property that

c∗(C) = lim
L→∞

N∗(S, C, L) · (Area of S)

πL2
,

for almost every S in the component Qcomp(α).
So we will obtain the same evaluation:

(7) c∗(Qcomp(α), C) = lim
ε→0

1

2πε2
Vol∗ Qε

1(comp, C)
VolQ1(α)

.

We apply this method in the case of hyperelliptic components in section 5.

3. Computation of Siegel-Veech constant for connected strata

In this section, Q(α) will denote a connected stratum of quadratic differentials.
We will evaluate Siegel–Veech constants c∗(C) defined in § 2.4 using equation (6).
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3.1. Choice of normalization. We have to choose a normalization for the volume
element on a stratum Q(α), which is equivalent to choose a lattice in the space

H1
−(Ŝ, Σ̂;C) which gives the local model of the stratum Q(α) around S.

Convention 2. We follow the convention of [1] and choose, as lattice in H1
−(Ŝ, Σ̂;C)

of covolume 1, the subset of those linear forms which take values in Z ⊕ iZ on
H−

1 (Ŝ, Σ̂;Z), that we will denote by (H−
1 (Ŝ, Σ̂;Z))∗

C
.

This convention implies that the non zero cycles in H1(S,Σ,Z) (that is, those
represented by saddle connections joining two distinct singularities or closed loops
non homologous to zero) have half-integer holonomy, and the other ones (closed
loops homologous to zero) have integer holonomy.

Convention 3. We choose to label all zeros and poles. This affects the computation
of volumes, but it is easy to deduce the value of volumes of strata with anonymous
singularities.

3.2. Construction of a basis of H−
1 (Ŝ, Σ̂,Z). In this section we recall the generic

construction given in [1] of a basis of H−
1 (Ŝ, Σ̂,Z) from a basis of H1(S,Σ,Z), and

also a specific construction for each configuration. In the following sections we will
look at every configuration and use the specific basis associated to each configura-
tion in order to have a nice expression of the measure in terms of parameters of the
cylinders.

For a primitive cycle [γ] in H1(S,Σ,Z), that is, a saddle connection joining
distinct zeros or a closed cycle (absolute cycle), the lift [γ̂] is a primitive element of

H−
1 (Ŝ, Σ̂,Z).

3.2.1. “Generic” basis (cf [1] § 3.1.) Let k be the number of poles in Σ, a the
number of even zeroes and b the number of odd zeros (of order ≥ 1). Assume
that the zeros are numbered in the following way: P1, . . . Pa are the even zeros,
Pa+1, . . . , Pa+b are the odd zeros and Pa+b+1, . . . , Pn the poles, and take a simple
oriented broken line P1, . . . Pn−1. Take each saddle connection γi represented by
[Pi, Pi+1] for i going from 1 to n− 2, and a basis {γn−1, . . . , γn+2g−2} of H1(S,Z).

Lemma 1. The family {γ̂1, . . . , γ̂n+2g−2} is a basis of H−
1 (Ŝ, Σ̂,Z).

Proof. First it is clear that the elements γ̂1, . . . , γ̂n+2g−2 are primitive elements of

H−
1 (Ŝ, Σ̂,Z) and linearly independent. Moreover they do not generate a proper

sub-lattice of H−
1 (Ŝ, Σ̂,Z).

Each of the k poles lifts to a regular point in Ŝ so does not appear in the list
Σ̂. An even zero of order αi lifts to two zeros of degrees αi

2 , and an odd zero of
order αj lifts to a zero of degree αj + 1. So we have n = |Σ| = k + a + b and

N = |Σ̂| = 2a+ b. Thus if ĝ is the genus of Ŝ we have 4g− 4 = −k+
∑

αi≥1 αi and

2ĝ − 2 =
∑

αi≥1 αi + b and so

dimC(H1(Ŝ, Σ̂,Z)) = 2ĝ − 1 +N = (2g − 2 + n) + (2g − 1 + a+ b)

= dimC H−
1 (Ŝ, Σ̂,C) + dimC H+

1 (Ŝ, Σ̂,C).

This equality on dimensions shows that we can complete the family {γ̂1, . . . , γ̂n+2g−2}
with {γ′

1, . . . , γ
′
n−k−1, γ

′
n−1, . . . , γ

′
n+2g−2} to form a basis of H1(Ŝ, Σ̂,R) (the linear

independence is clear from the construction). The intersection matrix has integer
coefficients and is of determinant 1, so that ends the proof of the lemma. �
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3.2.2. Basis associated to a configuration. Fix a configuration C. As in [16], we
define an appropriate family {γ1, . . . , γn+2g−2} of H1(S,Σ,Z) for S ∈ C, which lifts

to a basis of H−
1 (Ŝ, Σ̂,Z), as follows:

• for each component of the principal boundary stratum Q(α′
i) take a family

{βi
1, . . . , β

i
ni+2gi−2} of H1(S

′
i,Σi,Z) such that {β̂i

1, . . . , β̂
i
ni+2gi−2} is a basis

of H−
1 (Ŝ′

i, Σ̂i,Z) as previously,

• for each ĥomologous cylinder take a curve δj joining its boundary singular-
ities (there might be an ambiguity in the choice of such a curve, cf § 3.3.1)

• take a saddle connection or a closed curve in the homology class of γ (we
denote ±v the holonomy of γ ).

Lifting this basis to H−
1 (Ŝ, Σ̂,Z) using theˆoperator provides a primitive basis of

H−
1 (Ŝ, Σ̂,Z), as previously.

We will keep the same notations for elements in (H−
1 (Ŝ, Σ̂;Z))∗

C

3.3. Computation. Fix a configuration C containing q cylinders (q ≥ 1). Now
we give a complete description of the measure µ in terms of parameters of the
configuration by disintegrating the volume element dµ.

By [15, 30] we have Vol∗ Qε
1(C) = Vol∗ Qε,thick

1 (C) + o(ε2), so we will describe µ
only on Qε,thick(C).

Let S ∈ Qε,thick(C). Local coordinates near S are given by H1
−(Ŝ, Σ̂,C), and µ

is just Lebesgue measure in this coordinates. Choose now a basis associated to the
configuration C as above. It follows from the papers [16, 31] that the measure dµ in
Qε,thick(C) disintegrates as the product of the measure dµ′ on Q(α′) and a natural
measure dνT on the space of parameters T of the cylinders, that we describe in
§ 3.3.1:

dµ = M ′dµ′dνT

where M ′ denotes the number of ways to get a surface S in Qε,thick(C) when the
parameters of the configuration are fixed.

3.3.1. Description of the space T of the cylinders. Generally in a configuration, a
labeling of the zeros and a choice of a covering path of the graph of the configuration
induce a labeling of the cylinders. Sometimes some symmetries occur that exchange
the cylinders but stabilize the zeros, they are taken into account in §3.6. In the
following we assume that the cylinders are numbered.

Roughly T is described by coordinates ±v, h1, . . . , hq, t1, . . . tq representing the
width, the heights and the twists of the cylinders, defined such that hi + iti is the
holonomy of the curve δi. The problem here is that there might be an ambiguity
for the choice of this curve and so for the definition of the twist. In the following
we assume that the cylinders are horizontal, that is ±v represents the horizontal
direction in the surface S. First note that despite the fact that the surface has a non
trivial holonomy, for a given configuration C it is possible to choose an orientation
for each cylinder, for example by choosing an oriented path covering the graph
representing the configuration. So in each cylinder we have a notion of bottom, up,
left and right. Recall that thin cylinders are the one with each of their boundaries
formed by a single saddle connection of holonomy ±v, and so there is only one
singularity on each of their boundaries. For these cylinders we can define the twist
and the height of the cylinder as usual: starting from the only one singularity on
the bottom of the cylinder, draw a vertical segment going up and ending at a point
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P on the upper boundary of the cylinder. The length of this segment defines the
height of the cylinder. Starting from the point P and following the boundary in
the right horizontal direction, we meet the singularity on the upper boundary of
the cylinder, which is at distance t from P , and t defines the twist of the cylinder
(0 ≤ t < |v|). The next picture shows a particular case where the twist is ambiguous
for a thick cylinder.

no ambiguity ambiguity

Figure 3. Ambiguity for the definition of the twist

For the thick cylinders, we can define their twist as follows: for such a cylinder, if
one of its boundaries contains two distinct singularities (recall that the singularities
are labeled), then choose the one of the smaller index. We have now in each
case one distinguished singularity on each of the two boundaries. Consider the
shortest geodesic segments joining these two singularities (there might be two such
segments). Then their vertical coordinates coincide and define the height h of

the cylinder, and their horizontal coordinate coincide modulo 2|v|
ot

, where ot =

|Γup| ∨ |Γdown|, and Γup (resp. Γdown) is the group of symmetries of the upper
(resp. lower) boundary. In general for cylinders appearing in a configuration the
orders of these groups are 1 or 2, so ot is equal to 1 or 2. In the example of the
figure above, we have |Γdown| = 2, |Γup| = 1 so ot = 2. So we define the twist

as the value t ∈
[

0, 2|v|ot

)

equal to the horizontal coordinates reduced modulo 2|v|
ot

.

This ambiguity can appear only for thick cylinders having at least three or four
boundary saddle connections, that is, cylinders of local type ◦3.2 or ◦4.2 in graphs
of type c), d), or e) in the classification of Figure 1 and Figure 2.

We have
dνT = dhol(γ̂)dhol(δ̂1) . . .dhol(δ̂q).

Denote n(q) the number of the cycles γ, δ1, . . . , δq in H1(S,Σ,Z) that are not
homologous to 0 in H1(S,Σ,Z). Taking care of the normalization (Convention 2)
we get:

(8) dνT = Mc · dvdh1 . . . dhqdt1 . . . dtq

with Mc = 4n(q).
Note that with our choice of the basis, δ1, . . . , δq are always non homologous

to zero. And γ is homologous to zero if and only if the associated graph of the
configuration is of type a in the classification of Masur and Zorich (Figure 1): in
this case a vertex corresponding to a cylinder is separating the graph, and the
boundary of any cylinder in the configuration consists of a single saddle connection

(ĥomologous to γ). So we have:

(9) Mc =

{

4q if C is of type a

4q+1 otherwise
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We choose to enumerate the cylinders such that the q1 first cylinders have a
waist curve of holonomy ±v and the q2 remaining cylinders have a waist curve of
holonomy ±2v.

Consider now T ε
1 the space of parameters of the cylinders with the additional

constraint that the sum of the area of the ĥomologous cylinders is normalized (i.e.
equal to 1/2) and that |v| is bounded by ε. Then the cone C(T ε

1 ) underneath T ε
1

is given by the following equations:

|v|h ≤ 1

2
(10)

|v| ≤ ε
√

2|v|h(11)

where

h =

q1∑

k=1

hk + 2

q2∑

k=1

hq1+k.

3.3.2. Computation of c(C). The volume of T ε
1 is given by:

Vol(T ε
1 ) = dimR(T )νT (C(T ε

1 )) = 2(q + 1)νT (C(T ε
1 ))

with

νT (C(T ε
1 )) =

∫

C(T ε
1 )

dνT

and dνT given by (8). Note that the measure dv on Dε/± disintegrates into w ·
dw · dθ on [0, ε] × [0, π], and that integrating the measure of the twists dt1 . . . dtq

on [0, w)q1 ×
q
∏

i=q1+1

[

0,
2w

oti

)

gives a factor
2q2

Mt
wq , with

(12) Mt =

q
∏

i=q1+1

oti ,

so we get:

νT (C(T ε
1 )) = Mcπ

2q2

Mt

∫ ε
2

0

wq+1dw

∫

R
q
+

χ

{

w

2ε2
≤ h ≤ 1

2w

}

dh1 . . . dhq.

With the following changes of variables h′
q1+k = 2hq1+k we obtain:

νT (C(T ε
1 )) =

Mc

Mt
π

∫ ε
2

0

wq+1dw

∫

R
q
+

χ

{

w

2ε2
≤ h′ ≤ 1

2w

}

dh1 . . . dh
′
q.

with

h′ =
q1∑

i=1

hi +

q2∑

i=1

h′
q1+i.

Using the fact that
∫

R
q
+

χ

{

a ≤
q
∑

i=1

hi ≤ b

}

dh1 . . . dhq =
1

q!
(bq − aq),

since it is the difference of the volumes under two simplices in Rq, we obtain after
computation:

νT (C(T ε
1 )) =

Mcπε
2

Mt2q+1

q

(q + 1)!
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Thus:

Vol(T ε
1 ) =

Mcπε
2

Mt2q(q − 1)!
.

We assume now that Q(α′) is non empty, that is, the configuration C is not
made only by cylinders. Let S′ ∈ Q1(α

′), then the rescaled surface rSS
′ where

0 < rS ≤ 1 has area
r2S
2 . We define Ω(ε, rS) to be the subset of T formed by the

cylinders rescaled such that gluing them to rSS
′ after performing the appropriate

surgeries gives a surface S ∈ C(Qε
1(C)). Note that the possible variations of area

arising when performing the surgeries on rSS
′ are negligible [16, 31].

By definition Ω(ε, rS) is exactly formed by the rescaled surfaces rTT where 0 <

rT ≤ 1, r2T + r2S ≤ 1, and T ∈ T ε̃
1 , with ε̃ = ε

√

r2S + r2T . So we have, denoting
Cusp(ε) = Vol(T ε

1 ),

νT (Ω(ε, rS)) =

∫
√

1−r2
S

0

r2nT −1
T Cusp

(
ε̃

rT

)

drT

=
Mcπ

Mt2q(q − 1)!

∫
√

1−r2
S

0

r2nT −1
T ε2

r2S + r2T
r2T

drT

with nT = dimC(T ) = q + 1, which simplifies:

(13) νT (Ω(ε, rS)) =
Mcπε

2

Mt2q(q − 1)!

∫
√

1−r2
S

0

r2q−1
T (r2S + r2T )drT .

After evaluation, we obtain:

νT (Ω(ε, rS)) =
Mcπε

2

Mt2q+1(q + 1)!
(1− r2S)

q(r2S + q).

Now if Ms denotes the number of ways to obtain a surface S ∈ C(Qε
1(C)) by gluing

rTT ∈ Ω(ε, rS) to rSS
′ ∈ Q(α′) (see (20)), the total measure of the cone C(Qε

1(C))
is:

µ(C(Qε
1(C))) = Ms Vol(Q1(α

′))

∫ 1

0

r2nS−1
S νT (Ω(ε, rS))drS(14)

=
MsMcVol(Q1(α

′))πε2

Mt2q+1(q + 1)!

∫ 1

0

r2nS−1
S (r2S + q)(1 − r2S)

qdrS
︸ ︷︷ ︸

I

An easy recurrence or a change of variables gives the following lemma:

Lemma 2.

J(a, q) =

∫ 1

0

r2a+1(1− r2)qdr =
1

2

q!a!

(a+ q + 1)!

We recognize

I = J(nS , q) + qJ(nS − 1, q).

After simplification we get:

I =
(q + 1)!(nS − 1)!

2(nS + q + 1)!
(nS + q).
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So, denoting M =
MsMc

Mt
we obtain:

µ(C(Qε
1(C))) = Mπε2 Vol(Q1(α

′))
(nS − 1)!(nS + q)

2q+2(nS + q + 1)!

As we have

VolQε
1(C) = dimR(Q(α))µ(C(Qε

1(C)))
it follows from the definition of the Siegel–Veech constant that:

c(C) = M dimC(Q(α))
(nS − 1)!(nS + q)

2q+2(nS + q + 1)!

VolQ1(α
′)

VolQ1(α)
.

Recall that dimCQ(α) = dimC Q(α′) + dimC T = nS + q+1. We obtain finally the
formula (2) of Theorem 1.

3.3.3. Computation of carea(C). Here we want to compute carea(C), so we have to
count surfaces with weight the area of cylinders with waist curve smaller than ε, by
definition. Note that, since there are q1 cylinders of waist curve of length w = |v|
and q2 of waist curve of length 2w, if w ≤ ε

2 (when the area is renormalized), all
cylinders count (with weight their area), and if ε

2 ≤ w ≤ ε, only the thin cylinders
count (with weight their area). Equation (11) contains two cases

(15) w = |v| ≤ ε

2

√
2area

and

(16)
ε

2

√
2area ≤ w ≤ ε

√
2area

of different weights. So the domain of integration of C(T ε
1 ) splits into two parts as

shown in the following picture.

2w

ε2

w

2ε2

1

2w

all
cylinders
count (15)

1/ε

1/2ε

h

wε/2 ε
only the q1 small
cylinders count (16)

Figure 4. Domain of integration

This gives the following weight function:

W area(w, hi) =







χ

{

2w

ε2
≤ h ≤ 1

2w

}

+

∑q1
i=1 hi

h
χ

{

w

2ε2
≤ h ≤ 2w

ε2

}

if w ≤ ε

2
,

∑q1
i=1 hi

h
χ

{

w

2ε2
≤ h ≤ 1

2w

}

if
ε

2
≤ w ≤ ε.
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Now the weighted volume of T ε
1 is given by:

Volarea(T ε
1 ) = dimR(T )ν

area
T (C(T ε

1 )) = 2(q + 1)νareaT (C(T ε
1 ))

with

νareaT (C(T ε
1 )) =

∫

C(T ε
1 )

W area(|v|, hi)dνT

and dνT given by (8).
Following step by step the computations of the last paragraph, using the same

change of variables, we have

νareaT (C(T ε
1 )) =

Mc

Mt
π

[
∫ ε

2

0

wq+1dw

∫

R
q
+

(

χ

{

2w

ε2
≤ h′ ≤ 1

2w

}

+

∑q1
i=1 hi

h′ χ

{

w

2ε2
≤ h′ ≤ 2w

ε2

})

dh1 . . . dh
′
q

+

∫ ε

ε
2

wq+1dw

∫

R
q

+

∑q1
i=1 hi

h′ χ

{

w

2ε2
≤ h′ ≤ 1

2w

}

dh1 . . .dh
′
q

]

.

with

h′ =
q1∑

i=1

hi +

q2∑

i=1

h′
q1+i.

Note that, since the variables hi play symmetric roles, we have:
∫

R
q
+

∑q1
i=1 hi

∑q
i=1 hi

χ

{

a ≤
q
∑

i=1

hi ≤ b

}

dh1 . . .dhq =
q1

q

∫

R
q
+

χ

{

a ≤
q
∑

i=1

hi ≤ b

}

dh1 . . . dhq.

So computations are similar to the previous ones, and we obtain:

Volarea(T ε
1 ) =

Mcπε
2

Mt2q+2q!
(4q1 + q2).

Assume that Q(α′) is not empty. Now in (13) we have to multiply the integrand

by the ratio of the area of the cylinders by the total area of the surface
r2T

r2
S
+r2

T

. We

obtain:

νareaT (Ω(ε, rS)) = Mcπε
2(4q1+q−2)

Mt2q+2q!

∫
√

1−r2
S

0 r2q+1
T drT

= Mcπε
2(4q1+q2)

Mt2q+2q!
(1−r2S)q+1

2(q+1) .

Then:

µarea(C(Qε
1(C))) = M VolQ1(α

′)
πε2(4q1 + q2)

2q+3(q + 1)!

∫ 1

0

(1− r2S)
q+1r2nS−1

S drS .

Using again Lemma 2 we obtain:

µarea(C(Qε
1(C))) = M VolQ1(α

′)
πε2(4q1 + q2)

2q+4

(nS − 1)!

(nS + q + 1)!
.

So at the end we have:

(17) carea(C) = M
4q1 + q2
2q+4

(dimC Q(α′)− 1)!

(dimC Q(α) − 1)!

VolQ1(α
′)

VolQ1(α)
.

Comparing to equation (2) and (3) we obtain the relation (4), which ends the
proof of Theorem 1.
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3.3.4. Special case. Assume that Q(α′) is empty that is, the configuration is made
only by cylinders. This arises only on strata Q(−14), Q(2,−12) and Q(2, 2). Then
the computations are much easier. Indeed we have in this case

VolQε
1(C) = Vol T ε

1 =
Mcπε

2

Mt2q(q − 1)!

and

Volarea Qε
1(C) = Volarea T ε

1 =
Mcπε

2

Mt2q+2q!
(4q1 + q2)

so, since the ratio of the area of the cylinders over the total area is 1, we obtain the
following proposition.

Proposition 3. If the configuration C is only made by cylinders, then

c(C) = Mc

Mt2q+1(q − 1)! VolQ1(α)

ccyl(C) =
4q1 + q2

4
c(C)

carea(C) =
1

q
ccyl(C)(18)

3.4. Volume of the boundary strata. Consider a stratum Q(α) =
∏m

i=1 Q(αi)
of disconnected flat surfaces. Following the notations of [1] and generalizing the
result of 4.4 we obtain the following lemma:

Lemma 3.

VolQ1(α) =
1

2m−1

∏
(dimC Q(αi)− 1)!

(dimC Q(α)− 1)!

m∏

i=1

VolQ1(αi)

Let Hr(α) be the hyperboloid of surfaces of area r in the Abelian stratum H(α).
We have the following relation between hyperboloids in this case:

Lemma 4.

VolH1/2(α) = 2dimC H(α) VolH1(α)

So the final formula for a boundary stratum Q(α′) =
∏H(αi)

∏Q(βj) with m
connected components is:

(19) carea(C) = M
4q1 + q2
2m+q+3

∏

i(ai − 1)!2ai VolH1(αi)
∏

j(bj − 1)! VolQ1(βj)

(dimC Q(α) − 1)! VolQ1(α)

where ai = dimC H(αi) and bj = dimC Q(βj).

3.5. Evaluation of Ms. The general formula for Ms is given by:

(20) Ms =
K

|Γ(C)|
For each surface Si in the principal boundary, the number of geodesic rays coming
from a boundary singularity on Si can be read on the local ribbon graph repre-
senting Si: each boundary singularity is represented by a connected component of
the local ribbon graph, summing the orders kij along this connected component
gives the number of geodesic rays emerging form this singularity. If the surface
as several boundary singularities, then one has to multiply the number of geodesic
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rays obtained for each of them, to get the combinatorial constant responsible for
the gluing of Si in the configuration. Multiply the numbers obtained for each Si to
get the final combinatorial constant K. Note that for surfaces of trivial holonomy
the surgeries are made on rays pointing in the same direction, so there are less
choices for the ki’s.

So for surfaces of non-trivial holonomy the constant K is given by the formula:

K =
∏

bound.comp.

∑

ki in b.c.

ki,

and for surfaces of trivial holonomy the constant K is given by the formula:

K = 2
∏

bound.comp.

∑

ki in b.c.

ki

2
.

Γ(C) denotes the symmetries of the configuration C that generalize the γ 7→ −γ
symmetry in the Abelian case.

|Γ(C)| =
∏

i

|Γ(Si)|

and

|Γ(Si)| =







2 if Si is a torus of trivial holonomy

2 if Si is in a connected hyperelliptic stratum and the surgery

applies to one or two fix points of the hyperellptic involution

or to two points exchanged by the involution

1 otherwise

3.6. Counting configurations. Recall that by convention, all zeros and poles are
numbered, so several configurations can share the same type C due to this labeling.

For each type of configuration C, denote N(C) the number of configurations of
this type: two configurations sharing the same type will be distinct if the label of
one of the newborn singularities or the subset of labels of interior singularities of
one of the boundary surfaces differ in the two configurations.

For a connected stratum Q(α) (or a connected component of a stratum), we have

carea(Q(α)) =
∑

admissible C
N(C)carea(C).

Recall that types of configurations identify with decorated global ribbon graphs
embedded in the sphere described by Definition 3 of [31]. Unless such a graph
presents a decorated ribbon graph symmetry, there is a well-defined way to label the
connected components of the ribbon graph and the boundary surfaces.

We define a decorated ribbon graph symmetry as a symmetry of ribbon graph
which preserves the decorations, that correspond here to the type of boundary sur-
faces (⊕ or ⊖), the boundary singularities ki and the set of interior singularities for
each boundary surface. In the case of configurations these symmetries correspond
to rotations of angle π of the sphere that the ribbon graphs are embedded in, so
they are of order 2. As an example, the following type of configuration possesses
this symmetry. For types of configurations that do not posses this symmetry, N(C)
is evaluated as follows. For a stratum Q(α) with α = {da1

1 , . . . , dam
m }, let C be

a configuration without symmetry. Then we can label all boundary surfaces (say
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3

3

0

0

{−12}

1

3

1

3

{2}

{2}

Figure 5. Decorated ribbon graph symmetry

there are r such surfaces). For the boundary surface Sj , let D
int
j = {da

j
1

1 , . . . , d
aj
m

m }
denote the set of interior singularity orders of Sj . We can also label the connected
components of the ribbon graph (say there are s such components). Recall that
each connected component of the ribbon graph corresponds to one or two new-
born singularities (depending of the number of components of its boundary). For

the k-th connected component of the ribbon graph let Dnb
k = {db

k
1

1 , . . . d
bkm
m ) denote

the set of singularity orders of the newborn zeros (note that bki ≤ 2). We have

ai =
∑

j a
j
i +

∑

k b
k
i and the number of ways to give names to the singularities is

(21) N(C) =
m∏

i=1

ai!
∏r

j=1 a
j
i ! ·
∏s

k=1 b
k
i !

=

m∏

i=1

(
ai

a1i , . . . , a
r
i , b

1
i , . . . , b

s
i

)

.

For configurations that possess the symmetry, we have to divide this number by
2 if the symmetry acts non trivially on the connected components of the ribbon
graph or on the boundary surfaces possessing interior singularities. If the symmetry
stabilizes the connected components of the ribbon graph and the boundary surfaces,
but acts non trivially on the cylinders, we also have to divide this number by 2 to
take into account that there is no canonical numbering of the cylinders here (cf
§6.3.6 for an example).

On the previous example, the symmetry preserves the boundary surface ⊖ but
exchanges the two surfaces ⊕ possessing an interior singularity of order 2. Here
α = {−12, 22, 92}. Thus for this type of configuration N(C) is given by

N(C) = 1

2
· 2!

2!0!0!
· 2!

0!1!1!
· 2!

0!0!0!
= 2.

4. Strata Q(1k,−1l), with k − l = 4g − 4 ≥ 0

The strata Q(1k,−1l) are particularly interesting for two reasons. First, they
correspond to strata of maximal dimension at genus and number of poles fixed.
Second, their boundary strata belong to the same family, so that gives recursion
formulas for Siegel–Veech constants and volumes.

The strata Q(12,−12) and Q(14) are hyperelliptic and will be studied in § 5. In
the general case there are only four types of configurations, so we give here their
complete description and apply the formula for the Siegel–Veech constant carea(C)
to each of them.

4.1. Configurations.

Proposition 4. There are only four types of configurations that contain cylinders
for strata Q(1k,−1l), they are described in Figure 6.
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Configurations with cylinders Boundary strata
General configurations for g ≥ 1

C1(k1, l1)

11 00
{1k2 ,−1l2−1}{1k1 ,−1l1−1}

(⋆)







l1 + l2 − 2 = l

k1 + k2 + 2 = k

k1 − l1 = 4g1 − 4

k2 − l2 = 4g2 − 4

ki ≥ 0, li ≥ 1, (ki, li) 6= (1, 1)

Qg1(1
k1 ,−1l1) and

Qg2(1
k2 ,−1l2), for

g1 + g2 = g

C2 1

1

0

0
{1k−2,−1l}

Qg−1(1
k−2,−1l+2),

for k ≥ 2

C3

1 0
{1k−3,−1l}

0

0 1 1

Qg−1(1
k−3,−1l+1)

for k ≥ 3, H(0)

C4

1 0
{1k−1,−1l−2}

0

0

Qg(1
k−1,−1l−1)

for l ≥ 2
Additional configurations for g = 1, 2

Q(12,−12)

0

0

0
0

11

H(0)

Q(14)

1 1 0
0

∅ ∅
0

0 1 1

H(0),H(0)

Figure 6. Configurations containing cylinders for strata
Q(1k,−1l), with kl = 4g − 4 and g ≥ 1.

Proof. We recall that graphs representing configurations are classified by Theorem
2 in [31]. Then the proof is based on the observation that there not many ways
to create zeros of order 1 or poles (see also Lemma 6 in § A). We recall that the
order of a newborn zero is given by the formula

∑
(ki +1)− 2 where the ki are the

orders of the boundary singularities along the boundary component of the ribbon
graph that corresponds to the newborn zero (see § 1.4 of [31] for more details), and
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we have ki ≥ 0. A boundary component admits at least one boundary singularity.
So there is only one possibility for a pole: there is only one boundary singularity,
which is equal to 0. For a zero of order 1 there are 3 possibilities:

• one boundary singularity of order 2,
• two boundary singularities of order 1 and 0,
• three boundary singularities of order 0.

The first case is realizable when the global graph representing the configuration
contains a loop with only one vertex. But in this case we can see that either there
will be another newborn zero of higher order, or there will be no cylinders in the
configuration. The third case can also be eliminated because boundary components
with exactly three boundary singularities arise only around vertices of type +3.1
in the graph, and the parities of the boundary singularities in this case are odd.

So the only remaining possibility is the second one. We can reformulate this
discussion by saying that there is only one way to get a cone angle 3π: one has
to glue a cone angle π with a cone angle 2π. Looking carefully at all the ways
to have boundary singularities of order 1 or 0 in the local ribbon graphs and the
consequence on the boundary components in the global graph, we reduce the case
to only two possibilities: the boundary singularity of order 0 arises only as a cone
angle around points on the boundary of a cylinder, and the one of order 1 arises
either by creating a hole adjacent to a pole in a surface of non trivial holonomy
(i.e. for vertices of type −1.1 and −2.2), or by breaking up a marked point on
a surface of trivial holonomy (i.e. for vertices of type +2.1). Note that the last
surgery creates two points of cone angle π, so gluing each of them to a cylinder will
create two newborn zeros.

This situation is illustrated in the following pictures (Figure 7).

1 0
0 0 11

Figure 7. Newborn zeros of order 1

For a pole, similar considerations give that there is only one way to get a pole
(and not creating zeros of order ≥ 2), by pinching the boundary of a cylinder
(Figure 8).

Note that, since the interior singularities are zeros of order 1 or poles, the only
boundary strata are H(0) and Q(1K ,−1L).

These remarks allow us to eliminate most of the configurations, and to keep only
the four possible types of configurations described on Figure 6. �

0 0

Figure 8. Newborn poles
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As an example, Table 1 details the boundary strata (except H(0)) of the stratum
Q(17,−13).

Number of poles
0 1 2 3 4 5 6

G
en
u
s 0 × × × × Q(−14) Q(1,−15) Q(12,−16)

1 × × Q(12,−12) Q(13,−13) Q(14,−14) Q(15,−15) Q(16,−16)

2 Q(14) Q(15,−1) Q(16,−12) Q(17,−13) Q(18,−14) Q(19,−15) Q(110 ,−16)

Stratum Boundary strata
Table 1. Boundary strata of principal strata

In general, the boundary strata of Q(1k,−1l) are those of same genus with at
most l − 1 poles, those of lower genus with at most l + 2 poles, and H(0).

Note that, in this list, all values of volumes in genus 0 are known (cf [1]), equation
(28) gives the values of volumes for the first entries in genus 1 and 2 (hyperelliptic
case); and [23] gives the values of the other strata of dimension up to 10 (cf § 4.3).

4.2. Siegel–Veech constants.

Corollary 1. Let d = 2g−2+k+l = 1
2 (3k+l) be the complex dimension of the stra-

tum Q(1k,−1l). The Siegel–Veech constants associated to the four configurations
described in Figure 6 are the following:

carea(C1(k1, l1)) =
1

4

(d1 − 1)!(d2 − 1)!

(d− 1)!

VolQ1(1
k1 ,−1l1)VolQ1(1

k2 ,−1l2)

VolQ1(1k,−1l)

where di = dimC Q(1ki ,−1li) = 1
2 (3ki + li).

carea(C2) = 2
(d− 3)!

(d− 1)!

VolQ1(1
k−2,−1l+2)

VolQ1(1k,−1l)

carea(C3) =
π2

3

(d− 5)!

(d− 1)!

VolQ1(1
k−3,−1l+1)

VolQ1(1k,−1l)

carea(C4) =
1

2

(d− 3)!

(d− 1)!

VolQ1(1
k−1,−1l−1)

VolQ1(1k,−1l)

If (k, l) /∈ {(2, 2), (4, 0)}, and if all the four configurations appear in a stratum
Q(1k,−1l), then the Siegel–Veech constant for the whole stratum is given by:

carea(Q(1k,−1l)) =
∑

admissible (k1,l1)

1

2
· k! · l!
k1!k2!(l1 − 1)!(l2 − 1)!

· carea(C1(k1, l1))

+
k(k − 1)

2
· carea(C2) +

k(k − 1)(k − 2)

2
· carea(C3) +

kl(l− 1)

2
· carea(C4)

For the additional configurations in genera 1 and 2, see § 5.

Proof. The proof is a straightforward application of Theorem 1 for configurations
given in Figure 6. In order to illustrate the theorem, we explain in details what are
the combinatorial data and the possible symmetries for each configuration.
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(1) Configuration 1 (Figure 9):
This configuration happens only for genus g ≥ 1, and for ki, li satisfy-

ing the constraints (⋆). The last constraint excludes the stratum Q(1,−1)
which is empty. Figure 9 shows on the left the ribbon graph encoding the
configuration, and on the right a topological picture for this configuration.
There are two boundary surfaces and two newborn singularities of order
1, corresponding to the two connected components of the ribbon, and pro-
duced by gluing a cylinder to a hole made on a pole of a boundary surface.

11 00

Q(1k2 ,−1l2)

{1k2 ,−1l2−1}{1k1 ,−1l1−1}
Q(1k1 ,−1l1)

Figure 9. Configurations C1(k1, l1) for Q(1k,−1l) in genus g ≥ 1

The configuration is of type a), the cylinder has its waist curve homol-
ogous to zero so by (9), we have Mc = 41. With this type of configuration
there is no ambiguity for the twist so Mt = 1 (see (12)). There is only one
choice for the ray we make the surgery along, and no local symmetry, so
Ms = 1 (see (20)).

We obtain the following combinatorial data for this configuration:

• M =
Mc ·Ms

Mt
= 4

• q1 = 1, q2 = 0, since the cylinder is thin,
• dimC Q(1ki ,−1li) = 2gi − 2 + ki + li =

1
2 (3ki + li) = di

Applying formula (19), with m = 2 (two connected components for the
boundary stratum) we get:

carea(C1(k1, l1)) = 4 · 4

26
(d1 − 1)!(d2 − 1)! VolQ1(1

k1 ,−1l1)VolQ1(1
k2 ,−1l2)

(d− 1)! VolQ1(1k,−1l)

If (k1, j1) 6= (k2, l2) the number of configurations of this type is (see
§ 3.6) is obtained by applying formula (21) with Dnb

1 = Dnb
2 = {1}, Dint

1 =
{1k1 ,−1−l1−1} and Dint

2 = {1k2 ,−1−l2−1}:

N(C1(k1, l1)) =
k!

k1!k2!
· l!

(l1 − 1)!(l2 − 1)!
.

If (k1, l1) = (k2, l2) = (k2 − 1, l
2 + 1), there is a decorated ribbon graph

symmetry that exchanges the two boundary surfaces and the two connected
components of the ribbon. In this case

N(C1(
k

2
− 1,

l

2
+ 1) =

1

2
· k!
((

k
2 − 1

)
!
)2 · l!

((
l
2

)
!
)2 .

Noting that the configuration C(k−k1− 2, l− l1+2) is the symmetric of
the configuration C(k1, l1), the contribution of these types of configurations
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for all admissible (k1, l1) is

∑

admissible (k1,l1)

1

2
· k!

k1!k2!
· l!

(l1 − 1)!(l2 − 1)!
· carea(C1(k1, l1).

(2) Configuration 2 (Figure 10):
This configuration happens only for genus g ≥ 1 and for number of zeros

k ≥ 2.

1

1

0

0

{1k−2,−1l}
Q(1k−2,−1l+2)

Figure 10. Configuration C2 for Q(1k,−1l) in genus g ≥ 1 and
k ≥ 2

Here the waist curve of the (thin) cylinder is non homologous to zero.
We get the following combinatorial data:

• Mc = 42, Mt = 1, Ms = 1
• q1 = 1, q2 = 0
• dimC Q(1k−2,−1l+2) = 2g + k + l − 4 = d2
We get:

carea(C2) = 42 · 4

25
(d− 3)! VolQ1(1

k−2,−1l+2)

(d− 1)! VolQ1(1k,−1l)

There is here a decorated ribbon graph symmetry that stabilizes the
boundary stratum and exchanges the two connected components of the
ribbon, that is the two newborn singularities. Also we have

N(C2) =
1

2
· k!

(k − 2)!

configurations of this type (see § 3.6).
(3) Configuration 3 (Figure 11):

This configuration happens only for genus g ≥ 1 and for number of zeros
k ≥ 3.

1 0{1k−3,−1l}

Q(1k−3,−1l+1) H(0)

0

0 1 1

Figure 11. Configuration C3 for Q(1k,−1l) in genus g ≥ 1 and
k ≥ 3

Note that here the cylinder is thick but its twist is not ambiguous to
define since the newborn zeros on the right are distinct, so Mt = 1.
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The shortest saddle connections defining the cylinder are the two joining
the two newborn zeros on the right: they are not homologous to zero,
whereas the saddle connection joining the newborn zero to itself on the

left, which is ĥomologous to the others, is homologous to zero. With our
choice of convention we get Mc = 42 (see (9)).

Note that the boundary stratumH(0) presents a local symmetry: the two
possible rays to make the surgery are map one to another by the involution
of the torus, so Ms =

2
2 = 1.

Thus the combinatorial data are:
• M = 16,
• q1 = 0, q2 = 1
• dimC Q(1k−3,−1l+1) = 2g + k + l − 6 = d− 4

• VolH1/2(0) =
4π2

3 (see Lemma 4), and dimC H(0) = 2.
Applying formula (19) with m = 2 we get:

carea(C3) = 16 · 1

26
(d− 5)! VolQ1(1

k−3,−1l+1)(2 − 1)! VolH1/2(0)

(d1)! VolQ1(1k,−1l)

The number of configurations of this type is:

N(C3) =
k!

2!(k3)!
.

(4) Configuration 4 (Figure 12):

1 0{1k−1,−1l−2}

Q(1k−1,−1l−1)

0

0

Figure 12. Configuration C4 for Q(1k,−1l) in genus g ≥ 1 and l ≥ 2

The combinatorial data are:
• Mc = 42, Mt = 1, Ms = 1
• q1 = 0, q2 = 1
• dimC Q(1k−1,−1l−1) = 2g + k + l − 4 = d− 2
Theorem 1 gives:

carea(C4) = 42
1

25
(d− 3)! VolQ1(1

k−1,−1l−1)

(d− 1)! VolQ1(1k,−1l)

There are

N(C4) =
k!

(k − 1)!
· l!

2!(l − 2)!

configurations of this type.

After simplification of the formulas we obtain the results of Corollary 1. �
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Stratum Volume π2 · carea
Q(13,−13) 11/60 · π6 ≃ 2.134

Q(14,−14) 1/10 · π8 ≃ 2.096

Q(15,−1) 29/840 · π8 ≃ 2.642

Q(15,−15) 163/3042 · π10 ≃ 2.122

Q(16,−12) 337/18144 · π10 ≃ 2.413

Table 2. Table of known values of volumes [23], and approximate
values of Siegel–Veech constants

4.3. Example of application. As an application of the previous results, we com-
pute the first steps of the recursion and obtain the exact Siegel–Veech constants
for the first strata, using the values of the volumes computed in [23]. The results
match the approximate values obtained by experiments on Lyapunov exponents,
provided by Charles Fougeron. Table 2 gathers all these data.

We start with the stratum Q(13,−13). Corollary 1 gives:

carea(Q(13,−13)) = 3carea(C2) + 3carea(C3) + 9carea(C4)

=
3

10

VolQ1(1,−15)

VolQ1(13,−13)
+

π2

120

VolQ1(−14)

VolQ1(13,−13)
+

9

40

VolQ1(1
2,−12)

VolQ1(13,−13)

Using values

VolQ1(1
k,−1k+4) =

π2k+2

2k−1
[1],

VolQ1(1
2,−12) =

π4

3
(28),

we get:

carea(Q(13,−13)) =
47

120

π4

VolQ1(13,−13)

Using the value of the volume given in Table 2, we obtain

carea(Q(13,−13)) =
47

22 · π2
,

which matches the approximated value given in Table 2.
Similarly for the other strata we obtain exact values of Siegel–Veech constants

that match the approximated ones. Table 3 gives all these exact values, as well as
the exact values of the sums of Lyapunov exponents for the Hodge bundle over the
strata along the Teichmüller flow (using Theorem 2 of [14]). In this table we denote

L+ = λ+
1 + · · ·+ λ+

g

the sum of the Lyapunov exponents λ+
1 ≥ · · · ≥ λ+

g of the invariant subbundle

H+
1 of the Hodge bundle with respect to the involution induced by the natural

involution on the double cover surfaces, and

L− = λ−
1 + · · ·+ λ−

geff
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the Lyapunov exponents 1 = λ−
1 ≥ · · · ≥ λ−

geff
of the anti-invariant subbbundle H−

1

(see [14] for the definitions). For surfaces of genus 1, we get the exact value of λ+
1

which is very useful for the study of windtree models (see [13]), on the other cases,
we obtain bounds for individual Lyapunov exponents.

Stratum g geff π2 · carea L+ L−

Q(13,−13) 1 3 47/22 6/11 17/11

Q(14,−14) 1 4 44/21 10/21 38/21

Q(15,−1) 2 4 230/87 32/29 154/87

Q(15,−15) 1 5 2075/978 70/163 1025/489

Q(16,−12) 2 5 8131/3770 1041/1885 2926/1885

Table 3. Table of obtained exact values of Siegel–Veech constants
and sums of Lyapunov exponents

5. Formulas for hyperelliptic components

5.1. Volumes of hyperelliptic components. The strata of the moduli spaces of
Abelian differentials have at most three components: in genus g ≥ 4 there are three
connected component when the stratum possesses an hyperelliptic component and
a well-defined spin structure (i.e. the zeros are even), there are two components
when the stratum possesses either a hyperelliptic component or a well-defined spin
structure, but not both, and one component in all remaining cases [26]. In lower
genus the strata H(1, 1) and H(2) are hyperelliptic and connected, and the strata
H(2, 2) and H(4) have two connected components.

We recall from [23] the formulas for the volumes of hyperelliptic components in
the Abelian case.

Proposition 5. The volumes of hyperelliptic components of strata of Abelian dif-
ferentials with area 1/2 are given by the following formulas:

Volnumb Hhyp
1/2 (k − 1) =

2k+2

(k + 2)!
· (k − 2)!!

(k − 1)!!
· πk+1(22)

Volnumb Hhyp
1/2

((
k

2
− 1

)2
)

=
2k+3

(k + 2)!
· (k − 2)!!

(k − 1)!!
· πk(23)

Remark 2. Note that the hyperelliptic involution is a natural symmetry for the
surfaces in Hhyp(k − 1), if we choose to count them modulo this symmetry, as in
[17], the volume of this component should be divided by 2. For the second type,
labelling the zeroes kills this symmetry.

The strata of the moduli spaces of quadratic differentials have one or two con-
nected components: for genus g ≥ 5 there are two components when the stratum
contains a hyperelliptic component [29]. For genus g ≤ 4 some strata are hyper-
elliptic and connected [28]: namely Q(12,−12) and Q(2,−12) in genus 1, Q(14),
Q(2, 12), and Q(2, 2) in genus 2.
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We recall from [23] the formulas for the volumes of hyperelliptic components in
the quadratic case.

Proposition 6. The volumes of hyperelliptic components of strata of quadratic
differentials are given by the following formulas:

• First type (k1 ≥ −1 odd, k2 ≥ −1 odd, (k1, k2) 6= (−1,−1)):
If k1 6= k2:

(24) Volnumb Qhyp
1 (k21 , k

2
2) =

2d

(d)!
πd k1!!

(k1 + 1)!!

k2!!

(k2 + 1)!!

Otherwise:

(25) Volnumb Qhyp
1 ((g − 1)4) =

3 · 22g+2

(2g + 2)!
π2g+2

(
(g − 1)!!

g!!

)2

• Second type (k1 ≥ −1 odd, k2 ≥ 0 even):

(26) Volnumb Qhyp
1 (k21 , 2k2 + 2) =

2d

(d)!
πd−1 k1!!

(k1 + 1)!!

k2!!

(k2 + 1)!!

• Third type (k1, k2 even):

(27) Volnumb Qhyp
1 (2k1 + 2, 2k2 + 2) =

2d+1

(d)!
πd−2 k1!!

(k1 + 1)!!

k2!!

(k2 + 1)!!

where d = k1 + k2 + 4 is the complex dimension of the strata.

Example 1. For the five strata that are connected and hyperelliptic we obtain:

VolQ1(1
2,−12) =

π4

3
= 30ζ(4) VolQ1(1

4) =
π6

15
= 63ζ(6)(28)

VolQ1(2,−12) =
4π2

3
= 8ζ(2) VolQ1(2, 1

2) =
2π4

15
= 12ζ(4)(29)

VolQ1(2, 2) =
4π2

3
= 8ζ(2)(30)

Remark 3. Note that if surfaces are counted modulo symmetries, as in [18], then
the volume of the third type of hyperlliptic component should be divided by 2.

5.2. Configurations containing cylinders in hyperelliptic components. The

complete list of all configurations of ĥomologous saddle connections is described by
C. Boissy in [5]. We extract from this list the configurations containing cylinders,
and recall them on Figure 13.

The following proposition precises the boundary of the hyperelliptic components
of strata.

Proposition 7. Let S be a flat surface in a hyperelliptic component of a stratum

of quadratic differentials Qhyp(α). Les γ be a collection of ĥomologous saddle con-
nections realizing a configuration C on the previous list (Figure 13). Then the two
possible boundary components S1, S2 ∈ Q(α′

1),Q(α′
2) of S are hyperelliptic.

For every surfaces S1 ∈ Qhyp(α′
1), S2 ∈ Qhyp(α′

2), there is at least one way to
assemble S1 and eventually S2 following configuration C to obtain a hyperelliptic
surface S.
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Proof. If S ∈ Qhyp(α), following Lemma 10.3 of [16], we may assume that the
hyperelliptic involution fixes each boundary component. So it implies that S1 and
S2 are also hyperelliptic.

If S1 ∈ Qhyp(α′
1) and S2 ∈ Qhyp(α′

2), we can make the surgeries on the boundary
surfaces in such a way that the new surfaces stay invariant under the hyperelliptic
involution (cf § 14 in [16]). Then we construct an application on S that acts on each
boundary component as the hyperelliptic involution for the corresponding stratum
and on the cylinder either by fixing its boundaries and rotating or by exchanging
its two boundaries depending on the configuration C, in such a way that the global
application is an involution of S. The action of the hyperelliptic involution on the
configurations is detailed in [5].

�

Note that the complex dimension of any hyperelliptic component is given by:

d := dimC Qhyp(k21 , 2k2 + 2) = dimC Qhyp(k21 , k
2
2)

= dimC Qhyp(2k1 + 2, 2k2 + 2) = k1 + k2 + 4.

First recall that the constants for the entire components are known [14]:

Lemma 5.

(31) carea(Qhyp(α)) =
k1 + k2 + 4

4π2

(

2 +
1

(k1 + 2)(k2 + 2)

)

for α = (k21 , k
2
2), α = (k21 , 2k2 + 2) or α = (2k1 + 2, 2k2 + 2).

Proof. It is a direct consequence of Corollary 3 in [14]. Let L− denote the sum
of the Lyapunov exponents λ−

1 , . . . , λ
−
geff for the hyperelliptic component Qhyp(α).

Recall that by Theorem 1 of [14], we have:

carea(Qhyp(α)) =
3

π2
(L− − I −K)

where

I =
1

4

∑

dj odd

1

dj + 2
, K =

1

24

∑

j

dj(dj + 4)

dj + 2
.

Corollary 3 in [14] gives the values of L− for hyperelliptic components, that we
recall here:

L− =
k1 + k2 + 4

4

(

1 +
1

(k1 + 2)(k2 + 2)

)

for Qhyp(k21 , k
2
2)

L− =
k1 + k2 + 4

4

(

1 +
1

k1 + 2

)

for Qhyp(k21 , 2k2 + 2)

L− =
k1 + k2 + 4

4
for Qhyp(2k1 + 2, 2k2 + 2)

�

For hyperelliptic components we obtain the following variation of formula (19):

Proposition 8. Let C be an admissible configuration for a hyperelliptic component
of a stratum Q(α) (see Figure 13 and Figure 14). If Q(α) 6= Q(2,−12) and Q(α) 6=



32 E. GOUJARD

Q(2, 2), then the corresponding Siegel–Veech constant is given by:

(32) carea(C) = M
4q1 + q2
2m+q+3

∏

i(ai − 1)!2ai VolHhyp
1 (αi)

∏

j(bj − 1)! VolQhyp
1 (βj)

(dimC Q(α) − 1)! VolQhyp
1 (α)

where M = MsMc

Mt
and Mc, Mt are given by (9) and (12), and Ms is given by

Figure 13 and Figure 14.
For the connected strata Q(2,−12) and Q(2, 2) the configurations and the corre-

sponding Siegel–Veech constants are given on Figure 14.

Formula (32) is applied to each configuration on Figures 13 and 14: it is easy
to see that in each case the sum on all admissible configurations gives the known
constant (5) for the entire component.

Proof. To compute the constants for each configuration, we use the method de-
scribed in § 2.5, we follow step by step the computations of § 3 and make only a
few adjustments.

First assume that the boundary stratum of Qhyp(α) is not empty. Then this
boundary is described by Proposition 7 and consists of hyperelliptic components
of the boundary strata of Q(α), so Vol∗ Qε

1(comp, C) is expressed in terms of
∏

iVolQhyp(α′
i). We have to take care of the symmetries induced by the hyperel-

liptic involution, which only change the constant Ms giving the number of ways to
glue surfaces to cylinders to obtain a configuration.

Consider the configuration C1 for the component Qhyp(k21 , k
2
2). The hyperelliptic

involution stabilizes each boundary component Hhyp(ki − 1) and acts on it as the
hyperelliptic involution of the component. For each boundary surface there are 2ki
(non-oriented) horizontal rays emerging from the singularity, so only ki choices for
the surgery, since the hyperelliptic involution induces a symmetry of order 2. So
for this configuration Ms = k1k2. For the configuration C2(ki) the hyperelliptic in-
volution exchanges the two newborn singularities, so the two holes in the boundary
surface. To perform the two holes surgery on the boundary surface, once we have
chosen one of the ki horizontal rays emerging from a singularity, we have to take for
the other singularity the geodesic ray which corresponds to the the first under the
action of the hyperelliptic involution on the boundary surface. So Ms = ki (instead
of k2i for the configuration in the general case). For the other cases, the result is
similar to these two first cases, so we do not repeat the arguments.

If the boundary stratum is empty, that is, the configuration is made only by
cylinders, which happens only for the connected strata Q(2,−12) and Q(2, 2), we
apply formula (18) of § 3.3.4. �

6. Examples of application for strata of small dimension

In this section we illustrate Theorem 1 for strata of small dimension.

6.1. Volumes. Table 4 gathers data on Siegel–Veech constants and volumes for
strata of dimension 4 to 6: the lower dimension strata areQ(−14) which corresponds
to genus 0 and Q(2,−12) which is hyperelliptic.

The exact values of Siegel–Veech constants are given for the non-varying strata
and the hyperelliptic components of strata. In [11] Chen andMöller define a stratum
to be non varying when the sum of the Lyapunov exponents for any Teichmüller
curve in the stratum is equal to the sum of Lyapunov exponents for the entire
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Configurations with cylinders Ms π2 · carea(C)
Qhyp(k21 , k

2
2), k1, k2 odd, k1 ≥ k2 ≥ 1

C1
k1 k1

0

0
∅ ∅

0
0k2 k2

k1k2
k1 + k2 + 4

4(k1 + 2)(k2 + 2)

C2(ki) ki

ki

0

0
{k2j }

ki
(k1 + k2 + 4)(ki + 1)

2(k1 + k2 + 2)
Qhyp(k21 , 2k2 + 2), k1 odd and k2 even, k1 ≥ 1, k2 ≥ 2

C1
k1 k1

0

0
∅ ∅

0

0
k2

k2

k1k2
(k1 + k2 + 4)

4(k1 + 2)(k2 + 2)

C2
k2 k2

0

0
{k21}

k2
(k1 + k2 + 4)(k2 + 1)

2(k1 + k2 + 2)

C3 k1

k1

0

0

{2k2 + 2}
k1

(k1 + k2 + 4)(k1 + 1)

2(k1 + k2 + 2)
Qhyp(2k1 + 2, 2k2 + 2), k1, k2 even, k1 ≥ 2, k2 ≥ 2

C1
k1

k1 0

0
∅ ∅

0

0
k2

k2

k1k2
k1 + k2 + 4

4(k1 + 2)(k2 + 2)

C2(ki)
ki ki

0

0

{2kj + 2}
ki

(k1 + k2 + 4)(ki + 1)

2(k1 + k2 + 2)

Figure 13. Configurations containing cylinders for hyperelliptic
components of strata of quadratic differentials. For all these con-
figurations, N(C) = 1.

stratum. For strata possessing this property they give the value of the sum of
exponents, so the value of the Siegel–Veech constant is obtained by applying the
result of Eskin–Kontsevich–Zorich [14].
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Configurations with cylinders Ms π2 · carea(C)
Configurations for Qhyp(k21 ,−12), with k1 ≥ 1: Cdeg

1 and C2(k1)

Cdeg
1

k1 k1
0

0
∅

0
0

k1
k1 + 3

4(k1 + 2)

Configurations for Qhyp(−12, 2k2 + 2) with k2 ≥ 2: Cdeg1
1 and C2

Cdeg1
1

0

0
∅

0

0
k2

k2

k1
k2 + 3

4(k2 + 2)

Configurations for Qhyp(k21 , 2) with k1 ≥ 1: Cdeg2
1 and C3

Cdeg2
1

ki ki
0

0
∅

0

0
0

0

k1
5(k1 + 4)

8(k1 + 2)
Configuration for Q(2,−12)

C
0

0

0

0
0

0

1
15

8
Configurations for Qhyp(2k1 + 2, 2) with k1 ≥ 2: Cdeg

1 and C2(k1)

Cdeg
1

ki

ki 0

0
∅

0

0
0

0

k1
5(k1 + 4)

8(k1 + 2)
Configuration for Q(2, 2)

C
0

0 0

0

0

0
0

0

1
9

4

Figure 14. Configurations containing cylinders for hyperelliptic
components of strata of quadratic differentials in some particular
cases. For all these configurations, N(C) = 1.

The approximated values of Siegel–Veech constants are computed using experi-
mental values for the sum of the exponents provided by Anton Zorich.

The exact values of the volumes are extracted from [23], the approximated ones
come from [12].

We illustrate the main result of this paper on these small dimensional strata. In
the case of non-varying strata, we find the known values for the entire strata, in
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Stratum Volume π2 · carea Stratum Volume π2 · carea

Dimension 4 Dimension 6

genus 1 genus 1

Q(12,−12) π4/3 7/3 Q(13,−13) 11π6/60 ≃ 2.137

Q(3,−13) 5π4/9 9/5 Q(3, 1,−14) π6/3 59/30

genus 2 Q(22,−14) 136π6/45 ≃ 1.985

Q(22) 4π2/3 9/4 Q(5,−15) 7π6/10 27/14

Q(5,−1) 28π4/135 15/7 genus 2

Q(14) π6/15 19/6

Dimension 5 Q(3, 12,−1) π6/9 79/30

genus 1 Q(22, 1,−1) 4π4/5 29/12

Q(2, 1,−13) π4 49/24 Q(5, 1,−12) 7π/30 97/42

Q(4,−14) 2π4 11/6 Q(4, 2,−12) 28π4/15 53/24

genus 2 Qhyp(32,−12) π6/30 33/10

Q(2, 12) 2π4/15 65/24 Qnon(32,−12) 22π6/135 21/10

Q(4, 1,−1) 8π4/15 5/2 Q(7,−13) 27π6/50 37/18

Q(3, 2,−1) 10π4/27 87/40 genus 3

Qhyp(6,−12) 8π4/45 45/16 Q(7, 1) 18π6/175 49/18

Qnon(6,−12) 32π4/27 33/16 Qhyp(6, 2) 16π4/135 51/16

genus 3 Qnon(6, 2) 96π4/135 39/16

Q(8) 10π4/27 12/5 Q(5, 3) 14π6/243 171/70

Q(42) 4π4/5 8/3

Qreg(9,−1) ≃ 0.297π6 51/22

Qirr(9,−1) ≃ 0.064π6 63/22

Table 4. Table of volumes of strata [23] and Siegel–Veech con-
stants [11]

the other cases, we obtain new exact values of Siegel–Veech constants. Note that
this procedure can be reversed to obtain volumes from Siegel–Veech constants.

6.2. Dimension 4. The only two strata of dimension 4 of genus at least 1 that are
not hyperelliptic areQ(3,−13) and Q(5,−1), and they are non-varying. For both of
these strata we detail all configurations with cylinders and give the corresponding
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Siegel–Veech constants. We use the values of volumes given above to check the
coherence of the formulas for these examples.

6.2.1. Q(3,−13). The configurations are detailed on Figure 15. For each of these
configurations we give the combinatorial constant M , the corresponding Siegel–
Veech constant given by Theorem 1, and the number of configurations for each
type.

Configurations M
Vol

π2
· carea N(C)

0 1
0

0

{−13}
Q(−14) 42 · 1

1

2

3
1

0
0

1

1 0

0

H(0)
42 · 1
1

1

9
3

Figure 15. Configurations containing cylinders for Q(3,−13) and
associated Siegel–Veech constants

Summing on all configurations we obtain:

carea(Q(3,−13)) =
π2

VolQ1(3,−13)
.

Using the value of the volume VolQ1(3,−13) =
5π4

9
(§ 6.1) we get the known

value of the Siegel–Veech constant for the stratum.

6.2.2. Q(5,−1). The only one configuration is given in Figure 16.

Using the value of the volume VolQ1(5,−1) =
28π4

135
given in § 6.1, we obtain

the known value of the Siegel–Veech constant for the entire stratum.

6.3. Dimension 5. There are seven strata of dimension 5 and genus at least 1. We
detail here the configurations for all these strata, except for the stratum Q(2, 12)
which is hyperelliptic and connected. They are all non-varying.

6.3.1. Q(2, 1,−13). All configurations with cylinders for this stratum are given on
Figure 17.

Summing on all configurations we obtain:

carea(Q(2, 1,−13)) =
49π2

24VolQ1(2, 1,−13)
,

which is coherent with the values given in § 6.1.
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Configuration M
Vol

π2
· carea N(C)

0
0

00

1

1

H(0)

42 · 1
1

4

9
1

Figure 16. Configuration containing cylinders for Q(5,−1) and
associated Siegel–Veech constant

Configurations M
Vol

π2
· carea N(C)

1

2

0

0

{−13}
Q(−14, 0)

32
4

3
1

01
0

0{−13}

Q(−14)

0

0

64
5

24
1

01 0

0{2,−1}

Q(2,−12) 16
1

18
3

020

2

0

0

H(0, 0) 16
1

9
3

Figure 17. Configurations containing cylinders for Q(2, 1,−13)
and associated Siegel–Veech constants

6.3.2. Q(4,−14). All configurations with cylinders for this stratum are given on
Figure 18.
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Configurations M
Vol

π2
· carea N(C)

1 1
0

0

{−14}

Q(−14, 0) 32
4

3
1

0 2
0

0

{−14}

Q(−14, 0) 32
4

3
1

04 0

0{−12}

Q(2,−12) 32
1

9
6

000

0

0

0
1

1

H(0) 64
1

9
3

Figure 18. Configurations containing cylinders for Q(4,−14) and
associated Siegel–Veech constants

Summing on all configurations we obtain:

carea(Q(4,−14)) =
11π2

3VolQ1(4,−14)
,

which is coherent with § 6.1.

6.3.3. Q(4, 1,−1). All configurations with cylinders for this stratum are given in
Figure 19.

Summing on all configurations we obtain:

carea(Q(4, 1,−1)) =
4π2

3VolQ1(4, 1,−1)
,

which is coherent with § 6.1.

6.3.4. Q(3, 2,−1). All configurations with cylinders for this stratum are given in
Figure 20.
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Configurations M
Vol

π2
· carea N(C)

1

4

0

0

{−1}

Q(2,−12) 64
8

9
1

0

2

2

0
0

0

H(0, 0) 16
4

9
1

Figure 19. Configurations containing cylinders for Q(4, 1,−1)
and associated Siegel–Veech constants

Configurations M
Vol

π2
· carea N(C)

1

0

0

0

{2,−1}

Q(2,−12, 0) 16
2

9
1

00

0

0
0

1

1
0

H(0) 32
5

36
1

0

1

1
2

0
0

0

H(0, 0) 16
4

9
1

Figure 20. Configurations containing cylinders for Q(3, 2,−1)
and associated Siegel–Veech constants

Summing on all configurations we obtain:

carea(Q(3, 2,−1)) =
29π2

36VolQ1(3, 2,−1)
,
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which is coherent with § 6.1.

6.3.5. Qnon(6,−12). This stratum has two connected components, one hyperellip-
tic, the other not. Since we have already studied the hyperelliptic component case
in § 5, we consider only the remaining component. Admissible configurations for
this components are obtained by taking off the hyperelliptic configurations from
the list of all configurations for the stratum. We obtain the list presented in Figure
21.

Configurations M
Vol

π2
· carea N

0 4
0

0

{−12}

Q(2,−12) 64
8

9
1

1 3
0

0

{−12}

Q(2,−12) 64
8

9
1

00
0

1

1
0

H(0) 64
5

18
1

00
0

1

1
2

H(0, 0) 16
1

9
1

0

0

0

01
1

0
0

H(0) 64
5

18
1

Figure 21. Configurations containing cylinders for Qnon(6,−12)
and associated Siegel–Veech constants
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Summing on all configurations we obtain:

carea(Qnon(6,−12)) =
22π2

9VolQnon
1 (6,−12)

,

as expected.

6.3.6. Q(8). This stratum is non-varying, and its configurations (Figure 22) present
extra-symmetries.

Configuration M
Vol

π2
· carea N(C)

0

0

0

0
00

1

1H(0) 64
4

9

1

2

0

011

1

1H(0, 0) 8
2

9
1

0

0
01

2

1H(0, 0) 16
4

9
1

Figure 22. Configurations containing cylinders for Q(8) and as-
sociated Siegel–Veech constants

Summing on all configurations we obtain:

carea(Q(8)) =
8

9
· π2

Vol
,

as expected.
Note that the first configuration possesses a decorated ribbon graph symmetry

that intertwines the two cylinders and stabilizes the boundary surface and the new
born zero. That explains the factor 1/2 for N(C) (cf § 3.6).

6.4. Dimension 6. Here we treat only the varying strata, to obtain new values of
Siegel–Veech constants. For the other strata, one can check that the computations
are coherent using the values given in § 6.1. The only varying strata in dimension 6
are Q(13,−13) and Q(22,−14). Since the first one is principal and studied in § 4.3,
we detail configurations only for the second one.
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6.4.1. Q(22,−14). The configurations for this stratum are presented on Figure 23.

Configurations M
Vol

π4
· carea N(C)

2

2

0

0

{−14}

Q(−14, 02) 64
16

5
1

02
0

0{−14}

Q(−14, 0)

0

0

64
1

3
2

02
0

0{2,−1}

Q(2,−12, 0) 32
2

15
12

2 0200

0

0

0

H(0, 0) 64
4

45
6

Figure 23. Configurations containing cylinders for Q(22,−14)
and associated Siegel–Veech constants

Summing on all configurations we obtain

carea(Q(22,−14)) = 6
π4

VolQ1(22,−14)
=

135

68 · π2
,

which corresponds with the approximate value coming from the Lyapunov expo-
nents.

Appendix A. Geometry of configurations containing cylinders

This appendix develops the quadratic version of some geometric results on con-
figurations, proven in the Abelian case in [6].
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A.1. Variants of Siegel–Veech constants. The result (4) of Theorem 1 can be

interpreted as follows: the ratio
carea(C)
ccyl(C)

represents the mean area of a cylinder in

configuration C. It does not depend on the configuration, but only on the dimension
of the stratum. Summing on all configurations in a stratum we get a result of
Vorobets (Theorem 1.6 in [34]).

We introduce variants of Siegel–Veech constants whose ratios admit a geometric
interpretation. Some of them were introduced by Vorobets.

We define NA1≥p(S, C, L) (resp. NA≥p(S, C, L)) that counts configurations C on
S only if the area of a fixed cylinder (resp. all cylinders) fills at least a proportion
p of the area of the entire surface. As before we denote

c∗(C) = lim
L→∞

N∗(S, C, L) · (Area of S)

πL2

the associated Siegel–Veech constants.
We give the analogue of Theorems 4 and 5 of [6]. Proofs are very similar to the

Abelian case so we keep them short.
We introduce the incomplete Beta function

B(x;n, q) =

∫ x

0

un−1(1− u)q−1du

and the Beta function B(n, q) = B(1;n, q). It is a standard fact that

B(x;n, q) = B(n, q)

n+q−1
∑

k=n

(
n+ q − 1

k

)

xk(1− x)n+q−1−k.

Theorem 2. Let C be an admissible configuration for a connected stratum Q(α) of
quadratic differentials. Let q denote the total number of cylinders. Assume that the
boundary stratum Q(α′) is non empty, and q ≥ 1. Then the ratios of Siegel–Veech
constants associated to C are the following:

cA>p(C)
c(C) =

B(1 − p;nS, q)

B(nS , q)
(33)

cA1>p(C)
c(C) = (1 − p)dimC Q(α)−2(34)

The first ratio can be interpreted as the probability for the cylinders to fill a
large part of the area of the surface, and the second ratio the probability for a
distinguished cylinder to fill a large part of the area of the surface. Note that the
first ratio depends on the number of cylinders q in the configuration, as the second
ratio depends only of the dimension of the stratum.

Proof. We begin with the proof of (33). We follow step by step the computations of
§ 3.3.2. The value of Cusp(ε) does not change. The only adjustment to make is that
the area of the surface rTT which we glue to rSS

′ has to satisfy r2T > p(r2T + r2S),

which is equivalent to rT >
√

p
1−prS . So (13) becomes

νA>p
T (Ω(ε, rS)) =

Mcπε
2

Mt2q(q − 1)!

∫
√

1−r2
S

√
p

1−p
rS

r2q−1
T (r2S + r2T )drT .
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and using the constraint r2T + r22 ≤ 1 we obtain the following bound on rS : rS ≤√
1− p, so (14) becomes

µA>p(C(Qε
1(C))) =

M Vol(Q1(α
′))πε2

2q+1(q + 1)!

∫ √
1−p

0

r2nS−1
S

∫
√

1−r2
S

√
p

1−p
rS

r2q−1
T (r2S + r2T )drT drS

︸ ︷︷ ︸

Ip

Using an appropriate change of variables as the Abelian case, we recognize

Ip =
B(1− p;nS , q)

4(nS + q + 1)

where B(1− p;nS , q) is the incomplete Beta function. Comparing the result to (2)
we get (33).

Now we compute cA1>p(C): we have the same constraints as before, plus the
additional constraint that the first cylinder fills at least a part p of the area of the
surface. This affects the calculus of Cusp. Note that a cylinder in S ∈ Q1(α) fills

at least a part p of the surface if it fills at least part a = p · r2S+r2T
r2
T

in the space of

the cylinders T1. So we have to replace Cusp(ε) by

CuspA1>a(ε) = 2(q + 1)νA1>p
T (C(T ε

1 ))

= 2(q + 1)
Mc

Mt
π

∫ ε
2

0

wq+1dw

∫

R
q
+

χ

{

w

2ε2
≤ h′ ≤ 1

2w

}

χ{h1 ≥ ah′}dh1 . . . dh
′
q.

Using the change of variables h′
1 = h1 − ah we get:

CuspA1>a(ε) = Cusp(ε) · (1− a)q−1

Note that if we choose another cylinder, the computations are exactly the same,
even if it is a thick cylinder. Finally (14) becomes

µA1>p(C(Qε
1(C))) =

M Vol(Q1(α
′))πε2

2q+1(q + 1)!

·
∫ √

1−p

0

r2nS−1
S

∫
√

1−r2
S

√
p

1−p
rS

r2q−1
T (r2S + r2T )

(

1− p · r
2
S + r2T
r2T

)

drT drS

︸ ︷︷ ︸

I′
p

and we get

I ′p =
(1− p)nS+q−1

4(nS + q + 1)
·B(n, q).

Comparing the result to (2) we get (34). �

A.2. Maximal number of cylinders. Configurations of quadratic differentials
in genus 0 are detailed in [1]. They contain at most one cylinder. The following
proposition gives the maximal number of cylinders in a configuration in higher
genus.

Proposition 9. Consider a stratum Q(α) in genus g ≥ 1, with α = (4l1, . . . , 4lm, 4k1+
2, . . . , 4kn + 2, b1, . . . , bp,−1k), and li ≥ 0, ki ≥ 0, bi odd. First assume that
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2n+

p
∑

i=1

bi − k+4 ≥ 0, then the maximal number of ĥomologous cylinders satisfies:

qmax(α) = ⌊n
2
⌋+m+ εα,

where εα ∈ {0, 1, 2}.
Without this assumption, the maximal number of ĥomologous cylinders is given

by:

qmax(α) = max{card I + cardJ

2
; I ⊂ {1, . . . ,m}, J ⊂ {1, . . . n}, cardJ even,

4
∑

i∈I

li + 4
∑

j∈J

kj + 2n+

p
∑

k=1

bk + 4− k ≥ 0}+ εα

To prove this proposition we will need the following lemma:

Lemma 6. Odd zeros are created by surfaces of non trivial holonomy ⊖ or by loops
in the graphs of configurations. At most four newborn odd zeros can be created in
a configuration.

Proof. Since the zeros on which we perform surgeries on surfaces of non trivial
holonomy ⊖ are of any order (even or odd), it is easy to see that we can obtain any
parity order for newborns zeros created by surfaces ⊖.

This is not the case of surfaces ⊕. In fact, a newborn zero represented in the
graph by a boundary of a ribbon graph which frames a chain of surfaces ⊕ (as
in the picture below) surrounded by surfaces ⊕ or cylinders has always an even
order. This is due to the fact that we perform surgeries such as creating a hole
on surfaces of trivial holonomy, so on singularities of cone angle 2kπ. If we glue
all these surfaces identifying all boundary singularities, then the new cone angle is
also multiple of 2π, so the newborn zero is of even order. Boundary types involved
in these chains are ◦2.2, +2.1, +2.2, +3.2a, +3.2b, +3.3, +4.2a, +4.3a, +4.4.

Figure 24. Chain of surfaces ⊕

Then we just have to look at the remaining cases, namely, graphs containing
surfaces of boundary type ◦3.2 ◦4.2, +3.1, +4.1a, +4.1b, +4.2b, +4.2c, +4.3b.
Then one can see case by case that if the ribbon graph is locally as on the picture
above, one or two odd zeros are created (one can replace the surface ⊕ by a cylinder
◦).

Figure 25. Loop in the graph of configuration

As an example, Figure 8 represents how poles are created by loops in the graph
of the configuration. �
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Proof of Proposition 9. This result is a corollary of the classification of configura-

tions of ĥomologous cylinders by Masur and Zorich (Figure 1). Each configuration
is represented by a graph with one, two or three chains of surfaces ⊕ (with triv-
ial linear holonomy) and cylinders ◦ (see also § 2.3 for more details about these
graphs). Then there are some remarks:

• A surface ⊕ of type +2.1 (cf Figure 2) in a chain is surrounded by at
most two cylinders. In that case if there is no interior singularity it creates
a newborn zero of order 4g = k1 + k2 + 2, where g is the genus of the
boundary strata H

(
k1+k2−2

2

)
(k1 and k2 are odd).

0 0

∅

k1

k2

H
(
k1+k2−2

2

)

Figure 26. Creating a zero of order 4g

• A surface ⊕ of type +2.2 in a chain is surrounded by at most two cylinders
and in that case if there is no interior singularity it creates two newborn
zeros of order k1 and k2 (even) with k1 + k2 = 4g where g is the genus of
the boundary strata H

(
k1−2

2 , k2−2
2

)
.

0 0

∅

k1 k2

H
(
k1−2

2 , k2−2
2

)

Figure 27. Creating two zeros

• By Lemma 6, at most four zeros of odd order can be realized as newborn
zeros (created by loops in the graph of the configuration or by surfaces ⊖),
the others are necessarily interior singularities (of surfaces ⊖).

• Realizing zeros as newborn zeros instead of interior singularities increases
the number of cylinders.

First we assume that 2n +
∑p

i=1 bi − k + 4 ≥ 0. One procedure to construct
the configuration containing the most cylinders is the following: we consider all
zeros of order 4l and realize them as newborn zeros with a surface of type +2.1 as
described above. Then we consider the other even zeros and realize them by pairs
as newborn zeros with surfaces of type +2.2 as described above. At this stage we
obtain a chain of m + ⌊n

2 ⌋ surfaces with a cylinder between each surface ⊕. We
consider the remaining zeros (at most one even zero and all the odd zeros). If there
are at least five odd zeros, we have to choose graph a), b) or c) following notations
of Figure 2 to complete your configuration. If not, we can choose graph c), d) or
e). In all cases we will get at most 2 additional cylinders, by looking carefully at
all possible configurations depending on the number of odd/even zeros and poles.

In the general case, we have to choose carefully the even zeros that we realize as
newborn zeros. Indeed all remaining zeros should be produced by another surface
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of non-negative genus in a boundary strata. This condition implies that we can
choose to realize zeros of orders 4li or pairs of zeros 4kj1 +2, 4kj2 +2 with i ∈ I and
j1, j2 ∈ J while 4

∑

i∈I li + 4
∑

j∈J kj + 2n+
∑p

k=1 bk + 4 − k ≥ 0. This explains
the general formula for the maximal number of cylinders. �

We are interested in the asymptotic geometry of configurations, in particu-
lar when the genus or the number of zeros tends to infinity, so we will consider
q̃max(α) = qmax(α)− εα instead of qmax(α), to simplify the computations.

As a corollary of Proposition 9 we obtain that the strata maximizing the number
of cylinders at genus fixed are the ones with the most even zeros:

Corollary 2. Fix the genus g ≥ 1 and the number of poles k. Denote Π(4g−4+k)
the set of partitions α of 4g − 4 + k, and l = ⌊k

4 ⌋. Then:

max
α∈Π(4g−4+k)

q̃max(α ∪ {−1k}) = g + l − 1

and the maximum is realized for α ∈ Πk′ ⊔Π4,2(4g− 4+ 4l), where k = 4l+ k′ and
Π4,2(4g − 4 + 4l) denotes the set of partitions of 4g − 4 + 4l using only 4 and 2.

Recall that the mean area of a cylinder is given by
1

dimC Q(α)− 1
(cf Theorem

1), so
qmax(α)

dimC(Q(α)) − 1
represents the maximum mean total area of the cylinders in

stratum Q(α). As another corollary of Proposition 9, we obtain Proposition 2.

A.3. Configurations with simple surfaces. This section provides an answer in
the quadratic case to the following question of Alex Eskin and Alex Wright: for
a given stratum or a connected component of a stratum is it possible to find an
admissible configuration whose boundary surfaces are only tori ?

Lemma 6 gives the main obstruction to solve this problem in the quadratic case:
odd zeros are created by surfaces of non trivial holonomy ⊖ or by loops in graphs
of configurations, and there are at most two surfaces of non trivial holonomy or two
loops in a configuration. That means that a stratum with enough odd zeros will
never have a configuration with only tori as boundary surfaces.

The second obstruction is that, as in the case of Abelian differentials, there is
no way to have a decomposition into simple surfaces in hyperelliptic components
of strata, since they are made from at most two surfaces and cylinders (cf [5] and
§ 5).

Considering these two obstructions (odd zeros and hyperelliptic components),
we can formulate the following result, which is very similar to the case of Abelian
differentials [6].

Proposition 10. Let Qcomp(α1, . . . , αs) be a connected component of a stratum of
quadratic differentials, which is not hyperelliptic. If all the αi are even then there
exists a configuration in this component containing only tori and cylinders.

Proof. Denote n the number of zeros of order 4k+2 and m the number of zeros of
order 4k. As in the case of Abelian differentials, we just look at what type of zeros
can be created by chains of tori and cylinders. We obtain the same type of zeros
as in the case of Abelian differentials.

For the first type represented in the picture above, the cone angle around the
singularity is also 2(2k + 1)π so we obtain a zero of order 4k.
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0
1

1 1

1

1

1 2 2

Figure 28. Zero of the first type

Zeros of the second type represented above have order 4k+2 since the cone angle
is (4k + 4)π.

0
1

1 1

1

1

1 2 2

Figure 29. Zero of the second type

Finally zeros of the third type are of order 4k + 4.

2 2 1

1 1

1

1

1 2 2

Figure 30. Zero of the third type

With these chains we can easily construct a bigger chain that realizes all zeros.
It remains to embed this chain in a graph of configuration. We can see that if there
is at least two zeros of order greater than 4, or if there is at least one zero of order
greater than 8, then we can embed this chain in the graph e) with local ribbon
graph of type +4.2a.

Since Q(4) is empty, it remains only strata Q(2, 2, . . . , 2), which is realizable
with a graph of type e) and a local ribbon graph of type ◦4.2, by example.

�
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