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ANALYSIS ON SINGULAR SPACES: LIE MANIFOLDS AND

OPERATOR ALGEBRAS

VICTOR NISTOR

Abstract. We discuss and develop some connections between analysis on sin-

gular spaces and operator algebras, as presented in my sequence of four lectures
at the conference Noncommutative geometry and applications, Frascati, Italy,

June 16-21, 2014. Thus this is mostly a review paper, but the presentation is

new, and we have included some new results as well. In particular, we provide
a complete short introduction to analysis on noncompact manifolds (especially

Lie manifolds). The link between the analysis on singular spaces and operator

algebras is provided by Lie manifolds. The groupoids integrating Lie mani-
folds play an important background role in establishing this link because they

provide operator algebras whose structure is well understood. The initial moti-

vation for the work reviewed here was to develop the index theory on stratified
singular spaces, but several other applications have emerged as well, including

applications to Partial Differential Equations and Numerical Methods. These
will be mentioned only briefly, however, due to the lack of space. Instead, we

shall concentrate on the connections with the Index Theory.
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Introduction

We review some connections between analysis on singular spaces and operator
algebras. The paper follows rather closely my sequence of four lectures at the
conference Noncommutative geometry and applications, Frescoes, Italy, June 16-
21, 2014. From a technical point of view, the paper mostly sets up the analysis
tools needed for developing a certain approach to the index theory of singular
and non-compact spaces. There are also several new results tying the different
concepts together. Also, the third and fourth sections are to a large extend self-
contained. They include most of the proofs, and thus can be regarded as a very short
introduction to analysis on non-compact manifolds, especially on Lie manifolds.

The main story told by this paper is, briefly, as follows. Some of the classical
analysis and index theory results deal with the index of Fredholm operators. This is
rather well understood in the case of smooth, compact manifolds and in the case of
smooth, bounded domains. The non-smooth and non-compact cases, however, are
much less understood. Moreover, it has become clear that the index theorems in
these frameworks require non-local invariants and (hence) cyclic homology. The full
implementation of this program, however, requires further algebraic and analytic
developments. More specifically, one important auxiliary question that needs to be
answered is which operators on non-smooth or non-compact spaces are Fredholm.
A convenient answer to this question involves Lie manifolds and the Lie groupoids
that integrate them. The techniques that were developed for this purpose have
then proved to be useful also in other mathematical areas, such as spectral theory
and the Finite Element Method.

Fredholm operators play a central role in this paper for the following reasons.
First of all, the (Fredholm) index is defined only for Fredholm operators, thus, in
order to state an index theorem, one needs to have examples of Fredholm opera-
tors. In fact, the data that is needed to decide that a given operator is Fredholm
(principal symbol, boundary–or indicial–symbols) are also the data that is used
for actually computing the index of these operators. Why are we interested in
Fredholm operators and their index? First of all, many interesting quantities (such
as the signature of a compact manifold) identify with the index of certain oper-
ators. Second, Fredholm operators have been widely used in partial differential
equations (PDEs). For instance, non-linear maps whose linearization is Fredholm
play a central role in the study of non-linear PDEs. Also, Fredholm operators are
useful in determining the essential spectra of Hamiltonians. Finally, the Fredholm
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index is the first obstruction for an operator to be invertible. This is exploited
in our approach to the Neumann problem on polygonal domains (Theorem 5.14),
whose proof is to compute the index of an auxiliary operator, then to show that
this operator is injective, and then to augment its domain so that it becomes an
isomorphism [74].

A certain point on the analysis on singular and non-compact spaces is worth
insisting upon. A typical approach to analysis on singular spaces, used also in this
paper, is that the analysis on a singular space happens on the smooth part of the
space, with the singularities playing the important role of providing the behavior
“at infinity.” Thus, from this point of view, the analysis on non-compact spaces is
more general than the analysis on singular spaces. However, for the simplicity of the
presentation, we shall typically discuss only singular spaces, with the understanding
that the results also extend to non-compact manifolds.

Here are the contents of the paper. The first section is devoted to describing the
motivation for the results presented in this paper coming from index theory. The
approach to index theory used in this paper is based on exact sequences of operator
algebras. Thus, in the first section, we discuss the exact sequences appearing in the
Atiyah-Singer index theorem, in Connes’ index theorem for foliations, and in the
Atiyah-Patodi-Singer index theorem. The second section is devoted to explaining
the motivation for the results presented in this paper coming from degenerate (or
singular) elliptic partial differential equations. In that section, we just present some
typical examples of degenerate elliptic operators that suggest how ubiquitous they
are and point out some common structures that lead us to Lie manifolds, which
are discussed in the third section. In this third section we include the definition
of Lie manifolds, a discussion of manifolds with cylindrical ends (the simplest non-
trivial example that leads to the APS framework), a discussion of Lie algebroids
and of their relation to Lie manifolds, and a discussion of the natural metric and
connection on a Lie manifold. The fourth section is a basic introduction to analysis
on Lie manifolds. It begins with discussions of the needed functions spaces, of the
comparison algebras, and of Fredholm conditions. The last section is devoted to
applications, including the formulation of and index problem for Lie manifolds in
periodic cyclic cohomology, an application to essential spectra, an index theorem for
Callias-type operators, and the Hadamard well posedness for the Poisson problem
with Dirichlet boundary conditions on polyhedral domains.

The four lectures of my presentation at the above mentioned conference were
devoted to the following subjects: Index theory, Lie manifolds, Pseudodifferen-
tial operators on groupoids, and Applications and are based mostly on my joint
works with Bernd Ammann (Regensburg), Catarina Carvalho (Lisbon), Alexandru
Ionescu (Princeton), and Robert Lauter (Mainz), Anna Mazzucato (Penn State)
and Bertrand Monthubert (Toulouse). Nevertheless, I made an effort to put the
results in context by quoting and explaining other relevant results. I have also
included significant background results and definitions to make the paper easier to
read for non-specialists. I have also tried to summarize some of the more recent
developments. Unfortunately, the size of the paper has prevented me from includ-
ing more information. Also, it was unpractical to provide all the related references,
and I apologize to the authors whose work was not mentioned enough.

I would like to thank the Max Planck Institute for Mathematics in Bonn, where
part of this work was completed. Also, I would like to thank Bernd Ammann,
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Karsten Bohlen, Claire Debord, Vladimir Georgescu, Jean Renault, Elmar Schrohe,
and Georges Skandalis for useful discussions.

1. Motivation I: Index Theory

This paper is devoted in large part to explaining some applications of Lie mani-
folds and their associated operator algebras to analysis on singular and non-compact
spaces. The initial motivation of this author for studying analysis on singular and
non-compact spaces (and hence also for styging Lie manifolds) comes from index
theory. In this section, I will describe this initial motivation, while in the next sec-
tion I will provide further motivation coming from degenerate partial differential
equations. Thus, I will not attempt here to provide a comprehensive introduction
to Index Theory, but rather motivate the results and constructions introduced in
this paper using it. In particular, I will stress the important role that Fredholm con-
ditions play for index theorems. In fact, in our approach, both the index theorem
studied and the associated Fredholm conditions rely on the same exact sequence
discussed in general in the next section.

1.1. An abstract index theorem. An approach to index theory is based on
exact sequences of algebras of operators. We shall thus consider an abstract exact
sequence

(1) 0→ I → A→ Symb→ 0 ,

in which the algebras involved will be specified in each particular application. The
same exact sequence will be used to establish the corresponding Fredholm condi-
tions. Typically, A will be a suitable algebra of operators that describes the analysis
on a given (class of) singular space(s). In our presentation, the algebra A will be
constructed using Lie algebroids and Lie groupoids. The choice of the ideal I also
depends on the particular application at hand and is not necessarily determined by
A. In fact, the analysis on singular spaces distinguishes itself from the analysis on
compact, smooth manifolds in that there will be several reasonable choices for the
ideal I.

Often, in problems related to classical analysis (such as the ones that involve the
Fredholm index of operators), the ideal I will be contained in the ideal of compact
operators K (on some separable Hilbert space). In fact, in most applications in this
presentation, we will have I := A∩K. We insist, however, that this is not the only
legitimate choice, even if it is the most frequently used one. An important other
example is provided by taking I to be the kernel of the principal symbol map. As
we will see below, in the case of singular and non-compact spaces, the kernel of the
principal symbol map does not consist generally of compact operators. This is the
case in the analysis on covering spaces and on foliations, which also lead naturally
to von Neumann algebras [29, 60, 125].

If I := A ∩ K and P ∈ A has an invertible image in A/I (that is, it is invertible
modulo I), then it is Fredholm and we can ask what is its Fredholm index (whose
definition we recall below). In any case, we see that in order to formulate an index
problem, we need criteria for the relevant operators to be Fredholm. This is also
related to the structure of the exact sequence (1).

When the algebra A is defined using groupoids (as is the case in this presen-
tation), then the structure of the quotient algebra Symb := A/I is related to the
representation theory of the underlying groupoid. Unfortunately, we will not have
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time to treat this important subject in detail, but we will provide several references
in the appropriate places.

The exact sequence (1) provides us with a boundary (or index) map

(2) ∂ : K1(Symb) → K0(I) ,

whose calculation will be regarded as an index formula for the reasons explained
in the following subsections (see, for instance, Remark 1.4). In case A and I are
C∗-algebras, then we obtain also a map ∂′ : K0(Symb)→ K1(I), which together
with ∂ and the maps obtained from the functoriality of K-groups, give rises to a
six-term exact sequence of K-groups [111, 126]. Unfortunately, often the K-groups
are difficult to compute, so we need to consider subalgebras of C∗-algebras and
cyclic homology (see, for instance, Subsection 1.5).

We begin with a quick introduction to differential and pseudodifferential oper-
ators needed to fix the notation and introduce some basic concepts. It is written
to be accessible to graduate students. We then discuss three basic index theorems
and their associated analysis (or exact sequences). These three index theorems are:
the Atiyah-Singer (AS) index theorem, Connes’ index theorem for foliations, and
the Atiyah-Patodi-Singer (APS) index theorem. We will see that, at least from the
point of view adopted in this presentation, Connes’ and APS’ frameworks extend
the AS’ framework in complementary directions.

1.2. Differential and pseudodifferential operators. We now fix some notation
and recall a few basic concepts. On Rn we consider the derivations (or, which is the
same thing, vector fields) ∂j = ∂

∂xj
, j = 1, . . . , n and form the differential monomials

∂α = ∂α1
1 ∂α2

2 . . . ∂αn
n , α ∈ Zn+ . We denote by |α| = α1 + α2 + . . .+ αn ∈ Z+. A

differential operator P of order m on Rn is then an operator P : C∞c (Rn)→ L2(Rn)
of the form

(3) Pu =
∑
|α|≤m

aα∂
αu ,

with m minimal with this property. Typically m will denote the order of the
operator being studied. The functions aα are the coefficients of the operator P .

It is easy, but important, to extend the above constructions to systems of dif-
ferential operators, such as: vector Laplacians, elasticity, signature, Maxwell, and
many others. Then u = (u1, . . . , uk) ∈ C∞c (Rn)k = C∞c (Rn;Rk) is a smooth, com-
pactly supported section of the trivial vector bundle Rk = Rk × Rn → Rn on Rn
and hence aα ∈ C∞(Rn;Mk(R)) is a matrix valued function. It is an endomor-
phism of the trivial vector bundle Rk. Then P maps C∞c (Rn;Rk) to C∞c (Rn;Rk).
Let ∆ = −∂2

1 − . . .− ∂2
n ≥ 0 and s ∈ Z+. We denote as usual

Hs(Rn) := {u : Rn → C, ∂αu ∈ L2(Rn), |α| ≤ s } = D(∆s/2) .

As we will see below, both definitions above of Sobolev spaces extend to the case
of “Lie manifolds.” These definitions of Sobolev spaces also extend immediately
to vector valued functions and, if the coefficients aα of P are bounded (together
with enough derivatives, more precisely, if P ∈W s,∞(Rn)), then we obtain that
P maps Hs(Rn) to Hs−m(Rn). In this presentation, we shall assume also that
aα ∈ C∞(Rn;Mk(R)), and hence P will map C∞c (Rn;Rk) to C∞c (Rn;Rk).
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For P a differential operator of order ≤ m as in Equation (3) (that is, P =∑
|α|≤m aα∂

α : C∞c (Rn)k → C∞c (Rn)k), we introduce the function

(4) σm(P )(x, ξ) =
∑
|α|=m

aα(x)(ıξ)α ∈ C∞(Rn × Rn;Mk) ,

called the principal symbol of P . In particular, we have σm+1(P ) = 0. Here x ∈ Rn
and ξ ∈ Rn is the dual variable.

The fact that ξ is a dual variable to x ∈ Rn is seen when performing transfor-
mations of coordinates. The principal symbol is thus seen to be a function on
T ∗Rn ' Rn × Rn. It turns out that the principal symbol σm(P ) of P has a much
simpler transformation formula than the (full) symbol of P defined by

(5) σ(P )(x, ξ) =
∑
|α|≤m

aα(x)(ıξ)α ∈ C∞(Rn × Rn;Mk) .

The full symbol p(x, ξ) := σ(P )(x, ξ) of P because, if we define

(6) p(x,D)u(x) := (2π)−n
∫
Rn

eıx·ξp(x, ξ)û(ξ)dξ ,

then the operator P of Equation (3) becomes P = p(x,D).
There exist more general classes of functions (or symbols) p for which P := p(x,D)

can still be defined by the above formula (6). The resulting operator will be a pseu-
dodifferential operator with symbol p. Let us recall the definition of the two most
basic classes of symbols for which the formula (6) defining p(x,D) still makes sense.
For simplicity, we shall consider in the beginning only scalar symbols, although ma-
trix valued symbols can be handled in a completely similar way. For instance, we
define Sm1,0(Rk × RN ), m ∈ R, to be the space of functions a : Rk+N → C that sat-
isfy, for any i, j ∈ Z+, the estimate

|∂ix∂
j
ξa(x, ξ)| ≤ Ci,j(1 + |ξ|)m−j ,

for a constant Ci,j > 0 independent of x and ξ.
We now introduce classical symbols. A function a : Rk × RN → C is called even-

tually homogeneous of order s if there exists M > 0 such that a(x, tξ) = tsa(x, ξ)
for |ξ| ≥M and t ≥ 1. A very useful subclass of symbols is Smcl (R2n), defined
as the space of symbols a ∈ Sm1,0(R2n) that can be written as asymptotic series

a ∼
∑∞
j=0 am−j , meaning

a−
N∑
j=0

am−j ∈ Sm−N−1
1,0 (R2n) ,

with ak ∈ Sk1,0(R2n) eventually homogeneous of order k. If Smcl (R2n), the pseudo-
differential operator a(x,D) is called a classical pseudodifferential operator and its
principal symbol is given by

(7) σm(a(x,D)) := am ,

and is regarded as a smooth, order m homogeneous function on

T ∗Rn r “zero section” = R2n r (Rn × {0}) .
For index theory, it is generally enough to consider classical pseudodifferential oper-
ators. In particular, we see that if p(x, ξ) :=

∑
|α|≤m pα(ıξ)α and P =

∑
|α|≤m pα∂

α,

then P = p(x,D) is a classical pseudodifferential operator of order m.
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The definition of a (pseudo)differential operator P (of order ≤ m) and of its
principal symbol σm(P ), then extend to manifolds and vector bundles by using
local coordinate charts. To fix notation, if E →M is a smooth vector bundle
over a manifold M , we shall denote by Γ(M ;E) the space of its smooth sections
{s : M → E, s(x) ∈ Ex} and by Γc(M ;E) ⊂ Γ(M ;E) the subspace of compactly
supported smooth sections. Sometimes, when no confusion can arise, we denote
Γ(E) = Γ(M ;E) and, similarly, Γc(E) = Γc(M ;E). Getting back to our extension
of pseudodifferential operators to manifolds, we thus replace as follows

Rn ↔ M = a smooth manifold

C∞c (Rn)k ↔ sections of a vector bundle,

which gives for an operator P acting between (usually smooth, compactly sup-
ported) sections of E and F :

P : Γc(M ;E) → Γc(M ;F )

σm(P ) ∈ Γ(T ∗M r {0}; Hom(E,F )) .

Of course, σm(P ) is homogeneous of order m. Thus, if m = 0 and if we denote
S∗M := (T ∗M r {0})/R∗+ the (unit) cosphere bundle, then σ0(P ) identifies with a
smooth function on S∗M . (The name “cosphere bundle” is due to the fact that, if
we choose a metric on M , then the cosphere bundle identifies with the set of vectors
of length one in T ∗M .)

In order to extend the definition of Sobolev spaces to manifolds, we need also
a metric g on our manifold M (or a Lipschitz equivalence class of such metrics)
[10, 54]. Then for a complete manifold M , the Sobolev space is given by the
domains of the powers of the (positive) Laplacian. In general, this will depend on
the choice of the metric g.

The main property of the principal symbol is the multiplicative property

(8) σm+m′(PP
′) = σm(P )σm′(P

′) ,

a property that is enjoyed by its extension to pseudodifferential operators (which
are allowed to have negative and non-integer orders as well).

Definition 1.1. A (classical, pseudo)differential operator P is called elliptic if its
principal symbol is invertible away from the zero section of T ∗M .

See [57, 118] for a more complete discussion of various classes of symbols and of
pseudodifferential operators. See also [6, 14, 51, 70, 85, 100].

1.3. The Fredholm index. Let now M be a compact, smooth manifold, so the
Sobolev spaces Hs(M) are uniquely defined. Let also P be a (classical, pseudo)
differential operator of order ≤ m acting between smooth sections of the hermitian
vector bundles E and F . We denote by Hs(M ;E) and Hs(M ;F ) the corresponding
Sobolev spaces of sections of these bundles.

Recall that a continuous, linear operator T : X → Y acting between topological
vector spaces is Fredholm, if and only if, the vector spaces ker(P ) := {u ∈ X,Tu = 0}
and coker(P ) := Y/TX are finite dimensional. One of our model results is then the
following classical theorem:

Theorem 1.2. Let P be an order m pseudodifferential operator acting between
sections of the bundles E and F on the smooth, compact manifold M and s ∈ R.
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Then

P : Hs(M ;E)→ Hs−m(M ;F ) is Fredholm ⇔ P is elliptic.

Fredholm operators appear all the time in applications (because elliptic operators
are so fundamental). For instance, the theorem mentioned above is one of the crucial
ingredients in the “Hodge theory” for smooth compact manifolds, which is quite
useful in Gauge theory.

By the Open Mapping theorem, the invertibility of a continuous, linear opera-
tor P : X1 → X2 acting between two Banach spaces is equivalent to the condition
dim ker(P ) = dim coker(P ) = 0. It is important then to calculate the Fredholm in-
dex ind(P ) of P , defined by

(9) ind(P ) := dim ker(P )− dim coker(P ) .

The reason for looking at the Fredholm index rather than simply at the numbers
dim ker(P ) and dim coker(P ) is that ind(P ) has better stability properties than
these numbers. For instance, the Fredholm index is homotopy invariant and de-
pends only on the principal symbol of P .

1.4. The Atiyah-Singer index formula. The index of elliptic operators on smooth,
compact manifolds is computed by the Atiyah-Singer index formula [9]:

Theorem 1.3 (Atiyah-Singer). Let M be a compact, smooth manifold and let P be
elliptic, classical (pseudo)differential operator acting on sections of smooth vector
bundles on M . Then

ind(P ) = 〈 ch[σm(P )]T (M) , [T ∗M ] 〉 .

There are many accounts of this theorem, and we refer the reader to some of
them [51, 99, 121] for more details. See [26] for an approach using non-commutative
geometry. Let us nevertheless mention some of the main ingredients appearing in
the statement of this theorem, because they are being generalized (or need to be
generalized) to the non-smooth case. This generalization is in part achieved by non-
commutative geometry and by analysis on singular spaces. Returning to Theorem
1.3, the meaning of the undefined terms in Theorem 1.3 is as follows:

(i) The principal symbol σm(P ) of P defines a K-theory class in K0(T ∗M) (with
compact supports) by the ellipticity of P [9] and ch[σm(P )] ∈ Heven

c (T ∗M) is
the Chern character of this class.

(ii) T (M) ∈ Heven(M) ' Heven(T ∗M) is the Todd class of M , so the product
ch[σm(P )]T (M) is in Heven

c (T ∗M).
(iii) [T ∗M ] ∈ Heven

c (T ∗M)′ is the fundamental class of T ∗M and is chosen such
that no sign appears in the index formula.

The AS index formula was much studied and has found a number of applications.
It is based on earlier work of Grothendieck and Hierzebruch and answers to a
question of Gelfand. One of the main motivations for the work presented here
is the desire to extend the index formula for compact manifolds (the AS index
formula) to the noncompact and singular cases. To this end, it will be convenient
to use the exact sequence formalism described in Subsection 1.1. Namely, the exact
sequence (1) corresponding to the AS index formula is

(10) 0→ Ψ−1(M)→ Ψ0(M)→ C∞(S∗M)→ 0 ,
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where S∗M is the cosphere bundle of M , as before, (that is, the set of vectors of
length one of the cotangent space T ∗M of M). (So I = Ψ−1(M), A = Ψ0(M), and
Symb := A/I ' C∞(S∗M).)

It is interesting to point out that both the AS index formula and the Fredholm
condition of Theorem 1.2 are based on the exact sequence (10). Of course, to
actually determine the index, one has to do additional work, but the information
needed is contained in the exact sequence. This remains true for most of the other
index theorems.

Remark 1.4. Let us see now how the exact sequence (10) and Theorem 1.3 are
related. Recall the boundary map ∂ : K1(Symb)→ K0(I) in K-theory associated
to the exact sequence (1), see Equation (2), and let us assume that the ideal I of
that exact sequence consists of compact operators (i.e. I ⊂ K). We first consider
the natural map

(11) Tr∗ : K0(I) → Z ,

where the trace refers to the trace (or dimension) of a projection. Of course,
Tr∗ : K0(K)→ Z is the usual isomorphism. Then Tr∗ ◦ ∂ computes the usual (Fred-
holm) index, that is, we have the equality of the morphisms

(12) ind = Tr∗ ◦ ∂ : K1(Symb)
∂−→ K0(I)

Tr∗
−−→ C .

Indeed, if P ∈ A is invertible in Symb, then, on the one hand, P defines a class
[P ] ∈ K1(Symb), and, on the other hand, P is Fredholm and its Fredholm index is
given by ind(P ) = Tr∗ ◦ ∂[P ].

We thus see that computing the index of a Fredholm (pseudo)differential operator
on M is equivalent to computing the composite map Tr∗ ◦ ∂ : K1(Symb)→ C.
This observation is the starting point of the approach to index theorems described
in this paper.

Remark 1.5. Let us discuss now shortly the role of the Chern character in the
AS index formula. First, let us recall that the Chern character establishes an
isomorphism ch : K∗(M1)⊗ C→ H∗(M1)⊗ C for any compact, smooth manifold
M1. Moreover, in the case of the commutative algebra C∞(M1), we have that
K∗(C∞(M1)) ' K∗(M1) and hence any group morphism K∗(C∞(M1))→ C factors
through the Chern character ch : K∗(M1)→ H∗(M1). Returning to the AS index
formula, we have that Symb = C∞(S∗M) and hence the index map ind = Tr∗ ◦ ∂ :
K1(Symb) ' K1(S∗M)→ C can be expressed solely in terms of the Chern charac-
ter. It is therefore possible to express the AS Index Formula purely in classical terms
(vector bundles and cohomology) because the quotient A/I := Symb ' C∞(S∗M)
is commutative.

Remark 1.6. Technically, one may have to replace the algebra A with Mn(A) and
take P ∈Mn(A), but this is not an issue since the K-groups are invariant for the
replacement by A with its matrix algebras. However, the approach to the index
of elliptic (pseudo)differential operators using exact sequences can be used to deal
with operators P acting between sections of isomorphic bundles. For non-compact
manifolds (and hence also for singular spaces), this is enough. For the AS index
formula, however, one may have to replace first M with M × S1.
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1.5. Cyclic homology and Connes’ index formula for foliations. The map
Tr∗ of the basic equation ind(P ) = Tr∗ ◦ ∂[P ], Equation (12), valid when I ⊂ K, is
a particular instance of the pairing between cyclic cohomology and K-theory [26].
See also [25, 61, 77, 78, 122]. This pairing is even more important when I 6⊂ K.
Let then denote by HP∗(B) the periodic cyclic cohomology groups of an algebra B
(for topological algebras, suitable topological versions of these groups have to be
considered).

Let us look again at the general exact sequence of Equation (1) and let φ be a
cyclic cocycle on I, that is, φ ∈ HP0(I). A more general (higher) index theorem is
then to compute

φ∗ ◦ ∂ : K1(Symb)→ C .

It is known that φ∗ ◦ ∂ = (∂φ)∗, and hence the map φ∗ ◦ ∂ is also given by a cyclic
cocycle [94].

The map φ∗ and, in general, the approach to index theory using cyclic homol-
ogy is especially useful for foliations for the reasons that we are explaining now.
We regard a foliation (M,F) of a smooth, compact manifold M as a sub-bundle
F ⊂ TM that is integrable (that is, its space of smooth sections, denoted Γ(F), is
closed under the Lie bracket). Connes’ construction of pseudodifferential operators
along the leaves of a foliation [29] then yields the exact sequence of algebras

(13) 0→ Ψ−1
F (M)→ Ψ0

F (M)
σ0−→ C∞(S∗F)→ 0 ,

where σ0 is again the principal symbol, defined essentially in the same manner as
for the case of smooth manifolds. In fact, for F = TM , with M a smooth, compact
manifold, this exact sequence reduces to the earlier exact sequence (10). It also
yields a boundary (or index) map

∂ : K1(C∞(S∗F)) = K1(S∗F) → K0(Ψ−1
F (M)) ' K0(C∞c (F)) ,

where C∞c (F) is the convolution algebra of the groupoid associated to F and where
topological K-groups were used. A main difficulty here is that there are few cal-
culations of K0(Ψ−1

F (M)). These calculations are related to the Baum-Connes
conjecture, which is however known not to be true for general foliations, see [56]
and the references therein. See also [106, 107]. Another feature of the foliation
case is that, unlike our other examples to follow, Ψ−1

F (M)) has no canonical proper
ideals, so there are no other index maps.

Unlike its K-theory, the cyclic homology of Ψ−1
F (M)) is much better under-

stood, in particular, it contains as a direct summand the twisted cohomology of
the classifying space of the groupoid (graph) of the foliaton [19]. We thus have
a large set of linearly independent cyclic cocycles and hence many linear maps
φ∗ : K0(C∞c (F))→ C , each of which defines an index map

φ∗ ◦ ∂ : K0(C∞(S∗F))→ C .

We will not pursue further the determination of φ∗ ◦ ∂, but we note Connes’ results
in [29, 26], the results of Benameur-Heitsch for Haeffliger homology [16], and of
myself for foliated bundles [93].

We stress that in the case of foliations, it is the ideal I that causes difficulties,
whereas the quotient Symb := A/I is commutative and, hence, relatively easy to
deal with. The opposite will be true in the following example. See also [28].
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1.6. The Atiyah-Patodi-Singer index formula. A related but different type
of example is provided by the Atiyah-Patodi-Singer (APS) index formulas [8]. Let
M be a compact manifold with smooth boundary ∂M . By definition, this means
that M is locally diffeomorphic to an open subset of [0, 1)× Rn−1. The transition
functions for a manifold with boundary will be assumed be smooth. To M we
attach the semi-infinite cylinder

∂M × (−∞, 0 ] ,

yielding a manifold with cylindrical ends. The metric is taken to be a product
metric g = g∂M + dt2 far on the end. Kondratiev’s transform r = et then maps the
cylindrical end to a tubular neighborhood of the boundary, such that the cylindrical
end metric becomes g = g∂M+(r−1dr)2 near the boundary (r−1dr = e−td(et) = dt).

Thus on M we consider two metrics: first, the initial smooth everywhere (including
up to the boundary) metric and, second, the singular metric g that corresponds to
the compactification of the cylindrical end manifold.

We have thus obtained one of the simplest examples of a non-compact manifold,
that of a manifold with cylindrical ends. We will consider on this non-compact
manifold only differential operators with coefficients that extend to smooth func-
tions even at infinity. Because of this, it will be more convenient to work on M
than on M ∪ ∂M × (−∞, 0]. This is achieved by the Kondratiev transform r = et.
The Kondratiev transform is such that ∂t becomes r∂r. On M , we then take the
coefficients to be smooth functions up to the boundary. Therefore, in local coor-
dinates (r, x′) ∈ [0, ε)× ∂M on the distinguished tubular neighborhood of ∂M , we
obtain the following form for our differential operators (here n = dim(M)):

(14) P =
∑
|α|≤m

aα(r, x′)(r∂r)
α1∂α2

x′2
. . . ∂αn

x′n
=

∑
|α|≤m

aα(r∂r)
α1∂α

′
.

Operators of this form are called totally characteristic differential operators.
Away from the boundary, the definition of the principal symbol for a totally

characteristic differential operator is unchanged. However, in the same local coor-
dinates near the boundary as in Equation (14), the principal symbol for the totally
characteristic differential operator of Equation (14) is

(15) σm(P ) :=
∑
|α|=m

aαξ
α .

Thus the principal symbols is not
∑
|α|=m aαr

α1ξα as one might first think! Other

than the fact that this definition of the principal symbol gives the “right” results,
it can be motivated by considering the original coordinates (t, x′) ∈ (−∞, 0]× ∂M
on the cylindrical end.

The principal symbol is something that was encountered in the classical case of
the AS-index formula as well as in the case of foliations, so it is not something
significantly new in the case of manifolds with cylindrical ends–even if in that case
the definition is slightly different. However, in the case of cylindrical ends, there
is another significant new ingredient, which will turn out to be both crucial and
typical in the analysis on singular spaces. This significant new ingredient is the
indicial family of a totally characteristic differential operator. Let then P be as
in Equation (14) and consider the same local coordinates near the boundary as in

that equation. The definition of the indicial family P̂ of P is then as follows (we
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underline the most significant new ingredients of the definition):

(16) P̂ (τ) :=
∑
|α|≤m

aα( 0 , x′)(ıτ)
α1 ∂α

′
.

Note that P̂ (τ) is a family of differential operators on ∂M that depends on the
coefficients of P only through their restrictions to the boundary. Moreover, we see

that the indicial family P̂ (τ) of P is the Fourier transform of the operator

(17) I(P ) :=
∑
|α|≤m

aα( 0 , x′)∂t
α1 ∂α

′
,

which is a translation invariant operator on ∂M × R. The operator I(P ) is called
the indicial operator of P [71, 92].

We are interested in Fredholm conditions for totally characteristic differential
operators, so let us introduce the last ingredient for the Fredholm conditions. Let
us endow M := M r ∂M with a cylindrical end metric. Since any cylindrical end
metric is complete, the Laplacian ∆ is self-adjoint, and hence we can define the
Sobolev space Hs(M) := D(∆s/2), that is, the domain of ∆s/2, which turns out
to be independent of the choice of the cylindrical end metric. We then have a
characterization of Fredholm totally characteristic differential operators similar to
the compact case (the differences to the compact case are underlined).

Theorem 1.7. Assume M has cylindrical ends and P is a totally characteristic
differential operator of order m acting between the sections of the bundles E and
F . Then, for any fixed s ∈ R, we have that

P : Hs(M ;E)→ Hs−m(M ;F ) is Fredholm

⇔ P is elliptic and P̂ (τ) is invertible ∀τ ∈ R .

This result has a long history and related theorems are due to many people, too
many to mention them all here. Nevertheless, one has to mention the pioneering
work of Lockhart-Owen on differential operators [76] and the work of Melrose-
Mendoza for totally characteristic pseudodifferential operators [84]. A closely re-
lated theorem for differential operators and domains with conical points has ap-
peared in a landmark paper by Kondratiev in 1967 [62]. Other important results
in this direction were obtained by Mazya [63] and Schrohe–Schultze [113, 114]. See
the books of Schulze [115] and Lesch [71] for introductions and more information
on the topics and results of this subsection.

One can easily show that I(P ) is invertible if, and only if, P̂ (τ) is invertible for
all τ ∈ R. Thus the Fredholmness criterion of Theorem 1.7 can also be given the
following formulation that is closer to our more general result of Theorem 4.14.

Theorem 1.8. Let M and P be as in Theorem 1.7 and s ∈ R. Then

P : Hs(M ;E)→ Hs−m(M ;F ) is Fredholm

⇔ P is elliptic and I(P ) is invertible.

Let us consider now a totally characteristic, twisted Dirac operator P . In case
P is Fredholm, its Fredholm index is given by the Atiyah-Patodi-Singer (APS)
formula [8], which expresses ind(P ) as the sum of two terms:
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(i) the integral over M of an explicit form, which is a local term that depends only
on the principal symbol of the operator P , as in the case of the AS formula,
and

(ii) a boundary contribution that depends only on the indicial family P̂ (τ), namely
the η-invariant, which is this time a non-local invariant. It can be expressed
in terms of I(P ).

We thus see that even to be able to formulate the APS-index formula, we need
to know which totally characteristic operators will be Fredholm. Moreover, the
ingredients needed to compute the index of such an operator P (its principal symbol
and I(P )) are exactly the ingredients needed to decide that the given operator P
is Fredholm. See [17, 112, 66, 82] for further results.

Let r be a defining function of the boundary ∂M of M , as before. The exact
sequence of the APS index formula is then the following. First of all, A := Ψ0

b(M)

is the algebra of totally characteristic pseudodifferential operators on M . One of
its main properties is that the differential operators in A are exactly the totally
characteristic differential operators. See [71, 115] for a definition of Ψ∞b (M). A
definition using groupoids (of a slightly different algebra) will be given in Subsection
4.5 in a more general setting. Next, the ideal is

I := rΨ−1
b (M) = Ψ0

b(M) ∩ K .

Then the symbol algebra Symb := A/I is the fibered product

(18) Symb = C∞(S∗M)⊕∂ Ψ0(∂M × R)R ,

more precisely, Symb consists of pairs (f,Q) such that the principal symbol of the
R invariant pseudodifferential operator Q matches the restriction of f ∈ C∞(S∗M)
to the boundary. Recalling the definition of I in Equation (17) (and extending it
to totally characteristic pseudodifferential operators), we obtain the exact sequence

(19) 0→ rΨ−1
b (M)→ Ψ0

b(M)
σ0⊕I
−−→ C∞(S∗M)⊕∂ Ψ0(∂M × R)R → 0 ,

(The exact sequence 0→ Ψ−1
b (M)→ Ψ0

b(M)
σ0−→ C∞(S∗M)→ 0 is, by contrast,

less interesting.)
The exact sequence (19) in particular gives that P is Fredholm if, and only if,

the pair (σ0(P ), I(P )) ∈ Symb := C∞(S∗M)⊕∂ Ψ0(∂M × R)R is invertible if, and
only if, P is elliptic and I(P ) is invertible. Thus the exact sequence (19) implies
Theorem 1.8.

As before, composing ∂ : K1(Symb)→ K0(I), I = rΨ−1(M)), with the bound-
ary map gives us the Fredholm index

ind = Tr∗ ◦ ∂ : K1(Symb) → C .

Since Tr∗ ◦ ∂ = (∂Tr)∗ [25] (in general by [94]), we see that the APS index formula
is also equivalent to the calculation of the class of the cyclic cocycle ∂Tr ∈ HP1(Symb).
This was the approach undertaken in [82, 90].

Remark 1.9. It is important to stress here first the role of cyclic homology, which is
to define natural morphisms K1(Symb)→ C, morphisms that are otherwise difficult
to come by. Also, it is important to stress that it is the noncommutativity of the
algebra of symbols Symb that explains the fact that the APS index formula is
non-local.
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We stress that in the case of the APS framework, it is the symbol algebra
Symb := A/I that causes difficulties, in large part because it is non-commutative
(so the classical Chern character is not defined), whereas the ideal I ⊂ K is easy
to deal with. This is an opposite situation to the one encountered for foliations. It
is for this reason that the foliation framework and the APS framework extend the
AS framework in different directions.

The approach to index theory explained in this last subsection extends to more
complicated singular spaces, and this has provided the author of this presentation
the motivation to study analysis on singular spaces.

2. Motivation II: Degeneration and singularity

The totally characteristic differential operators studied in the previous subsection
appear not only in index problems, but actually arise in many practical applications.
We shall now examine how the totally characteristic differential operators and other
related operators appear in practice. In a nut-shell, they can be used to model
degeneration and singularities. In this section, we introduce several examples. We
begin with the ones related to the APS index theorem (the totally characteristic
ones, called “rank one” by analogy with locally symmetric spaces) and then we
continue with other examples.

2.1. APS-type examples: rank one. Let us denote by ρ the distance to the
origin in Rd. Here is a list of examples of totally characteristic operators.

Example 2.1. In our three examples below, the first one is a true totally character-
istic operator, whereas the other two require us to remove the factor ρ−2 first.

(1) The first example is ∂t − L in one dimension and is given by the elliptic
generator L of the Black-Scholes equation [116], which is a parabolic partial
differential equation with generator

(20) Lu :=
σ2

2
x2∂2

xu+ rx∂xu− ru .

It is the backward Kolmogorov equation associated to a stochastic ordinary
differential equation.

(2) The second example is that of the Laplacian in polar coordinates (ρ, θ) in
two dimensions

(21) ∆u = ρ−2
(
ρ2∂2

ρu+ ρ∂ρu+ ∂2
θu
)
.

This writing of the Laplace equation is especially useful when studying
boundary value problems on polygonal domains.

(3) A related example is that of a Schrödinger operator in three dimensions,
obtained by writing the three dimensional Laplace operator in spherical
coordinates (ρ, x′), ρ > 0, x′ ∈ S2:

(22) −(∆ +
Z

ρ
)u = −ρ−2

(
ρ2∂2

ρu+ 2ρ∂ρu+ ∆S2u+ Zρu
)
.

The advantage of this writing is that, in this way, the Coulomb potential
becomes a negligible singularity near the origin.

A similar expansion is valid for elliptic operators in generalized spherical co-
ordinates in arbitrary dimensions and was used by Kondratiev in [62] to study
domains with conical points. Kondratiev’s paper is widely used since it provides
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the needed analysis facts to deal with polygonal domains, the main testing ground
for numerical methods.

2.2. Manifolds with corners. For more complicated examples we will need man-
ifolds with corners. Recall that M is a manifold with corners if, and only if, M
is locally diffeomorphic to an open subset of [0, 1)n. The transition functions of
M are supposed to be smooth, as in the case of manifolds with smooth boundary.
A manifold with boundary is a particular case of a manifold with corners, but we
agree in this paper that a smooth manifold does not have boundary (or corners),
since we regard the corners (or boundary) as some sort of singularity.

A point p ∈M is called of depth k if it has a neighborhood Vp diffeomorphic to
[0, 1)k × (−1, 1)n−k by a diffeomorphism φp : Vp → [0, 1)k × (−1, 1)n−k mapping p
to the origin: φp(p) = 0. A connected component F of the set of points of depth

k will be called an open face (of codimension k) of M . The set of points of depth
0 of M is called the interior of M and is also considered to be an open face of M .
The closure in M of an open face F of M will be called a closed face of M . The
closed faces of M may not be manifolds with corners in their own. The union of
the proper faces of M is denoted by ∂M and is called the boundary of M . The
complement M := M r ∂M of the boundary is the interior of M .

The following set of vector fields will be useful when defining Lie manifolds:

(23) Vb := {X ∈ Γ(M ;TM), X tangent to all boundary faces of M } .

Let us notice that in the case of manifolds with boundary, the totally characteristic
differential operators on M , see Equation (14), are generated by C∞(M) and the
vector fields X ∈ Vb.

2.3. Higher rank examples. We now continue with more complicated examples,
which we call “higher rank” examples, again by analogy with locally symmetric
spaces. In general, the natural domains for these higher rank examples will be
manifolds with corners.

Example 2.2. There are no “higher rank” example in dimension one, so we begin
with an example in dimension two.

(1) The simplest non-trivial example is the Laplacian

(24) ∆H = y2(∂2
x + ∂2

y)

on the hyperbolic plane H = R× [0,∞), whose metric is y−2(dx2 + dy2).
(2) The Laplacian on the hyperbolic plane is closely related to the SABR Par-

tial Differential Equation (PDE) due to Lesniewsky and collaborators [53].
The SABR PDE is also a parabolic PDE ∂t − L associated to a stochastic
differential equation, with

(25) 2L := y2
(
x2∂2

x + 2ρνx∂x∂y + ν2∂2
y

)
,

with ρ and ν parameters. Stochastic differential equations provide many
interesting and non-trivial examples of degenerate parabolic PDEs that can
be treated using Lie manifolds.

(3) A related example is that of the Laplacian in cylindrical coordinates (ρ, θ, z)
in three dimensions:

(26) ∆u = ρ−2
(
(ρ∂ρ)

2u+ ∂2
θu+ (ρ∂z)

2
)
.
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Ignoring the factor ρ−2, which amounts to a conformal change of metric,
we see that our differential operator is generated by the vector fields

ρ∂ρ, ∂θ, and ρ∂z ,

and that the linear span of these vector fields is a Lie algebra. The resulting
partial differential operators are usually called edge differential operators.
This example can be used to treat the behavior near edges of polyhedral
domains of elliptic PDEs. This behavior is more difficult to treat than the
behavior near vertices. For boundary value problems in three dimensions
wedge, the natural domain is [0, α]× [0,∞)× R, a manifold with corners
of codimension two.

We thus again see that Lie algebras of vector fields are one of the main ingredients
in the definition of the differential operators that we are interested in. More related
examples will be provided below as examples of Lie manifolds.

Degenerate elliptic equations have many applications in Numerical Analysis, see
[11, 33, 36, 75, 74], for example.

3. Lie manifolds: definition and geometry

Motivated by the previous two sections, we now introduce Lie manifolds largely
following [5]. In fact, we slightly extend the definition in [5] by allowing the manifold
with corners to be noncompact. We also slightly simplify it based on a comment
of Skandalis. We thus define our Lie manifolds using Lie algebroids and then we
recover the usual definition in terms of Lie algebras of vector fields. I have tried to
make this section as self-contained as possible, thus including most of the proofs.

3.1. Lie algebroids and Lie manifolds. We have found it convenient to intro-
duce Lie manifolds and “open manifolds with a Lie structure at infinity” in terms
of Lie algebroids, which we recall now. Recall that we use the following nota-
tion, if E → X is a smooth vector bundle, we denote by Γ(X;E) (respectively, by
Γc(X;E)) the space of smooth (respectively, smooth, compactly supported) sec-
tions of E. Sometimes, when no confusion can arise, we simply write Γ(E), or,
respectively, Γc(E). We now introduce Lie algebroids.

Definition 3.1. A Lie algebroid A→M is a real vector bundle over a manifold
with corners M together with a Lie algebra structure on Γ(M ;A) (with bracket
[ , ]) and a vector bundle map % : A→ TM , called anchor, such that the induced
map %∗ : Γ(M ;A)→ Γ(M ;TM) satisfies the following two conditions:

(i) %∗([X,Y ]) = [%∗(X), %∗(Y )] and
(ii) [X, fY ] = f [X,Y ] + (%∗(X)f)Y , for all X,Y ∈ Γ(M ;A) and f ∈ C∞(M).

For further reference, let us introduce here the isotropy of a Lie algebroid.

Definition 3.2. Let % : A→ TM be a Lie algebroid on M with anchor %. Then
the kernel ker(%x : Ax → TxM) of the anchor is the isotropy of A at x ∈M .

The isotropy at any point can be shown to be a Lie algebra. See [7] for general-
izations. Recall that we denote by ∂M the boundary M , that is, the union of its
proper faces, and by M := M r ∂M its interior.



GROUPOIDS 17

Definition 3.3. A smooth manifold M is called an open manifold with a Lie
structure at infinity if it is the interior of a manifold with corners M and on M
there is given a Lie algebroid A with anchor % : A→ TM satisfying the following
properties:

(i) % : Ax → TxM is an isomorphism for all x ∈M := M r ∂M and
(ii) V := %∗(Γ(M ;A)) ⊂ Vb.

If M is compact, then the pair (M,A) will be called a Lie manifold.

Condition (ii) means that the Lie algebra of vector fields V := %∗(Γ(A)) consists
of vector fields tangent to all faces of M (we write %∗(Γ(A)) instead of Γ(M ;A) when
no confusion can arise, also, we shall usually write %∗(Γ(A)) instead of %∗(Γ(A)).).
Lie manifolds were introduced in [5]. One of the main reason for introducing open
manifolds with a Lie structure at infinity is in order to be able to localize Lie
manifolds. Thus, if (M,A) is a Lie manifold and V ⊂M is an open subset, then
(V,A|V ) will not be a Lie manifold, in general, but will be an open manifold with
a Lie structure at infinity. We also have the following trivial example.

Example 3.4. The “example zero” of a Lie manifold is that of a smooth, compact
manifoldM = M (no boundary or corners) by takingA = TM , thus V = Γ(M ;TM).
Then (M,V) is a (trivial) example of a Lie manifold. This example of a Lie man-
ifold provides the framework for the AS Index Theorem. Similarly, every smooth
manifold M is an open manifold with a Lie structure at infinity by taking M = M
and A = TM .

Example 3.5. LetM be a manifold with corners such that its interiorM := M r ∂M
identifies with the quotient of a Lie group G by a discrete subgroup Γ and the action
of G on G/Γ by left multiplication extends to an action of G on M . Let g be the
Lie algebra of G. Then A := M × g with anchor given by the infinitesimal action
of G. Note that the action of the Lie algebra g preserves the structure of faces
of M and hence %∗(Γ(A)) ⊂ Vb. We call the corresponding manifold with a Lie
structure at infinity a group enlargement. The simplest example is that of that of
G = M = R∗+ acting on [0,∞]. Many interesting Lie manifolds arising in practice
are, locally, group enlargements, see for instance [50, 49] for some examples coming
from quantum mechanics.

Let (M,A) be an open manifold with a Lie structure at infinity. In applications,
it is easier to work with the vector fields V := %∗(Γ(A)) associated to a Lie mani-
fold than with the Lie manifold itself. We shall then use the following alternative
definition of Lie manifolds.

Proposition 3.6. Let us consider a pair (M,V) consisting of a compact manifold
with corners M and a subset V ⊂ Γ(M ;TM) of vector fields on M that satisfy:

(i) V is closed under the Lie bracket [ , ];
(ii) Γc(M ;TM) ⊂ V ⊂ Vb;

(iii) C∞(M)V = V and V is a finitely-generated C∞(M)–module;
(iv) V is projective (as a C∞(M)–module).

Then there exists a Lie manifold (M,A) with anchor % such that %∗(Γ(M ;A)) = V.
Conversely, if (M,A) is a Lie manifold, then V := %∗(Γ(M ;A)) satisfies condi-

tions (i)–(iv) above.
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Proof. Let (M,V) be as in the statement. Since V is a finitely generated, projective
C∞(M)–module, the Serre–Swan Theorem implies then that there exists a finite
dimensional vector bundle AV →M , uniquely defined up to isomorphism, such
that

(27) V ' Γ(M ;AV) ,

as C∞(M)–modules. Let Ix := {φ ∈ C∞(M), φ(x) = 0} be the maximal ideal cor-
responding to x ∈M . The fibers (AV)x, x ∈M , of the vector bundle AV →M
are given by (AV)x = V/IxV. Since Γ(M ;AV) ' V ⊂ Γ(M ;TM), we automatically
obtain for each x ∈M a map

(AV)x := V/IxV → Γ(M ;TM)/IxΓ(M ;TM) = TxM .

These maps piece together to yield a bundle map (anchor) % : AV → TM that makes
AV →M a Lie algebroid. The anchor map % is an isomorphism over the interior M
of M since Γc(M ;TM) ⊂ V, which is part of Assumption (ii). Since V ⊂ Vb, again
by Assumption (ii), we obtain that (M,AV) is indeed a Lie manifold.

Conversely, let (M,A) be a Lie manifold with anchor % : A→ TM . We need
to check that V := %∗(Γ(M ;A)) satisfies conditions (i)–(iv) of the statement. In-
deed, V := %∗(Γ(M ;A)) is a Lie algebra because Γ(M ;A) is a Lie algebra and
%∗ : Γ(M ;A)→ Γ(M ;TM) is an injective Lie algebra morphism. So Condition (i)
is satisfied. To check the second conditions, we notice that Definition 3.3(i) (isomor-
phism over the interior) gives that Γc(M ;TM) ⊂ V. Since we have by assumption
V ⊂ Vb, we see that Condition (ii) is also satisfied. Finally, Conditions (iii) and (iv)
are satisfied since the space of smooth sections of a finite dimensional vector bundle
is a projective module over the algebra of smooth functions on the base, again by
the Serre-Swan theorem. �

Let (M,V) as in the statement of the above proposition, Proposition 3.6. We call
V its structural Lie algebra of vector fields and we call the Lie algebroid AV →M
introduced in Equation (27) the the Lie algebroid associated to (M,V). The alter-
native characterization of Lie manifolds in Proposition 3.6 is the one that will be
used in our examples.

Remark 3.7. It is worthwhile pointing out that the condition that V be a finitely
generated, projective C∞(M)–module in Proposition 3.6 together with the fact that
the anchor % is an isomorphism over the interior of M are equivalent to the following
condition, where n = dim(M):

For every point p ∈M , there exist a neighborhood Vp of p in M
and n-vector fields X1, X2, . . . , Xn ∈ V such that, for any vector
field Y ∈ V, there exist smooth functions φ1, φ2, . . . , φn ∈ C∞(M)
such that

(28) Y = φ1X1 + φ2X2 + . . .+ φnXn , φi|Vp uniquely determined.

The vector fields X1, X2, . . . , Xn are then called a local basis of V around p. (This
is the analog in our case of the well known fact from commutative algebra that a
module is projective if, and only if, it is locally free.)

The simplest example of a non-compact Lie manifold is that of a manifold with
cylindrical ends. The following example generalizes this example to the higher
rank case. It is a basic example to which we will come back later. To introduce



GROUPOIDS 19

this example, however, we need also to introduce the defining functions of a hy-
perface. A hyperface is a proper face H ⊂M of maximal dimension (dimension
dim(H) = dim(M)− 1). Recall that a defining function of a hyperface H of M is
a function x such that H = {x = 0} and dx 6= 0 on H. The hyperface H ⊂M is
called embedded if it has a defining function. The existence of a defining function
is a global property, because locally one can always find defining functions, a fact
that will be needed in the example below.

Example 3.8. Let M a compact manifold with corners and V = Vb. Let us check
that (M,Vb) is a Lie manifold. We shall use Proposition 3.6. Condition (i) is easily
verified since the Lie bracket of two vector fields tangent to a submanifold is again
tangent to that submanifold. Condition (ii) in the Proposition 3.6 is even easier
since by definition vector fields that are zero near the boundary ∂M are contained
in Vb. Clearly, V is a C∞(M) module. The only non-trivial fact to check is that V is
finitely generated and projective as an C∞(M) module. This is in fact the only fact
that we still need to check. To verify it, let us fix a corner point p of codimension k
(that is, p belongs to an open face F of codimension k). Then, in a neighborhood
of p, we can find k defining functions r1, r2, . . . , rk of the hyperfaces containing p
such that a local basis of V around p (see Remark 3.7) is given by

(29) r1∂r1 , r2∂r2 , . . . , rk∂rk , ∂yk+1
, . . . , ∂yn

where yk+1, . . . , yn are local coordinates on the open face F of dimension k con-
taining p, so that (r1, r2, . . . , rk, yk+1, . . . , yn) provide a local coordinate system in
a neighborhood of p in M .

If M has a smooth boundary, then Vb generates the totally characteristic differ-
ential operators, which were introduced in Equation (14), and hence this example
corresponds to a manifold with cylindrical ends. In fact, we will see that the nat-
ural Riemannian metric of a manifold with (asymptotically) cylindrical ends. This
example was studied also by Debord and Lescure [40, 37], Melrose and Piazza [83],
Monthubert [87], and Schulze [115].

3.2. The Androulidakis-Skandalis framework. Androulidakis and Skandalis
have studied recently structures similar to ours but in which Condition (iv) in
Proposition 3.6 is dropped and have obtained extensions of several of our results.
It would be quite worthwhile to see which of the known results for Lie manifolds
do not require Condition (iv).

By [5], every vector field X ∈ V that has compact support in M gives rise to
a one parameter group of diffeomorphisms exp(tX) : M →M , t ∈ R. We denote
by exp(V) the subgroup of diffeomorphisms generated by all exp(X) with X ∈ V
and compact support in M . The results in [7] show that exp (V) acts by Lie
automorphisms of V (the condition (iv) of Proposition 3.6 that V be a projective
module is not necessary).

3.3. The metric on Lie manifolds. As seen in the example of manifolds with
cylindrical ends, Lie manifolds have an intrinsic geometry. We now discuss some
results in this direction following [5] and we extend them to open manifolds with a
Lie structure at infinity (this extension is straightforward but needed). Thus, from
now on, (M,A) will be an open manifold with a Lie structure at infinity. (Thus we
will not assume (M,A) to be a Lie manifold, unless explicitly stated.)
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Definition 3.9. Let (M,A) be an open manifold with a Lie structure at infinity.
A metric on TM is called compatible (with the structure at infinity) if it extends
to a metric on A→M .

We shall need the following lemma.

Lemma 3.10. Let (M,A) be an open manifold with a Lie structure at infinity with
compatible metric g. Assume M to be paracompact. Then there exists a smooth
metric h on TM such that h ≤ g.

Proof. Away from the boundary, we may take h = g. It is enough then to define h
in a neighborhood of the boundary ∂M . Let us choose an arbitrary metric h0 on M
(or, more precisely, on TM). For each p ∈M , let Up ⊂ Vp be open neighborhoods

of p in M such that Vp has compact closure and contains the closure of Up. Since
Vp has compact closure and % is continuous, we obtain that there exists Mp > 0
such that h0(ξ) ≤Mpg(ξ) for every ξ ∈ A|Vp

. Let us choose a locally finite covering

(Up)p∈I of the boundary ∂M with sets of the form Up, with p ∈ I the set of chosen

points. Let V0 be the complement of ∪p∈IUp and let (φp)p∈I∪{0} be a smooth,

locally finite partition of unity on M subordinated to the covering (Vp)p∈I∪{0}.
Then, if we define

h =
∑
p∈I

φpM
−1
p h0 + φ0g ,

the metric h will satisfy h ≤ g everywhere, as desired. �

Let us fix from now on a metric g on A. Since TM ⊂ A, the metric g restricts a
compatible Riemannian metric on TM and hence also to a compatible metric on M .
We shall denote all these metrics with the same symbol g, since there is no danger
of confusion. The inner product of two vectors (or vector fields) X,Y ∈ Γ(M ;TM)
in this metric will be denoted (X,Y ) ∈ C∞(M) and the associated volume form
d volg. Of course, if X,Y ∈ V := %∗(Γ(M ;A)), then (X,Y ) ∈ C∞(M). We now
want to investigate some properties of this compatible metric g. For simplicity,
we write Γ(TM) = Γ(M ;TM) and %∗(Γ(A)) = Γ(M ;A). Let us consider the Levi-
Civita connection

(30) ∇LC : Γ(TM) → Γ(TM ⊗ T ∗M) .

Recall that an A–connection on a vector bundle E →M (see [5] and the references
therein) is given by a differential operator ∇ ∈ Diff(V;E,E ⊗A∗) such that

(31) ∇fX(gξ) = f
(
f1∇X(ξ) +X(g)ξ

)
for all f, f1 ∈ C∞(M) and ξ ∈ Γ(M ;E). The following proposition from [5] gives
that the Levi-Civita connection extends to an “A-connection.”

Proposition 3.11. The Levi-Civita connection extends to a linear differential op-
erator ∇ : %∗(Γ(A))→ Γ(A⊗A∗), satisfying

(i) ∇X(fY ) = X(f)Y + f∇X(Y ),
(ii) X(Y,Z) = (∇XY, Z) + (Y,∇XZ), and

(iii) ∇XY −∇YX = [X,Y ],

for all X,Y, Z ∈ V = %∗(Γ(A)).
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Proof. We recall the proof for the benefit of the reader. We fix a compatible metric
g on M := M r ∂M . Since the metric g actually comes from an metric on A by
restriction to TM ⊂ A, we see that

(32) φ(Z) := ([X,Y ], Z)−([Y,Z], X)+([Z,X], Y )+X(Y, Z)+Y (Z,X)−Z(X,Y ) ,

defines a smooth function on M for any Z ∈ V and that this smooth function
depends linearly on Z. Hence there exists a smooth section V ∈ V such that
φ(Z) = (V,Z) for all Z ∈ V. We then define ∇XY := V . By the definition of
∇ and by the classical definition of the Levi-Civita connection, ∇ extends the Levi-
Civita connection. Since the Levi-Civita connection satisfies the properties that we
need to prove (on M), by the density of M in M , we obtain that ∇ satisfies the
same properties. �

We continue with some remarks

Remark 3.12. An important consequence of the above proposition is that all the
covariant derivatives ∇kR of the curvature R extend to suitable tensors involving
A and A∗ on M . If (M,A) is a Lie manifold, it follows that the curvature and all
its covariant derivatives are bounded. It turns out also that the radius of injectivity
of M is positive [4, 38], and hence M has bounded geometry.

We next discuss the divergence of a vector field, which is needed to define ad-
joints.

Remark 3.13. Another important consequence of the extension of the Levi-Civita
connection (called the Levi-Civita connection on M) is the definition of the diver-
gence of a vector field. Indeed, let us fix a point p ∈M and a local orthonormal
basis X1, . . . , Xn of A on some neighborhood of p in M (n = dim(M)). We then
write ∇Xi

X =
∑n
j=1 cij(X)Xj and define

(33) div(X) := −
n∑
j=1

cjj(X) ,

which is a smooth function on the given neighborhood of p that does not depend
on the choice of the local orthonormal basis (Xi) used to define it. Consequently,
this formula defines a global function div(X) ∈ C∞(M).

We now introduce differential operators on open manifolds with a Lie structure
at infinity, which is the main reason why we are interested in Lie manifolds.

Definition 3.14. We define the algebra Diff(V) as the algebra of differential oper-
ators on M generated by the operators of multiplication with functions in C∞c (M)
and by the directional derivatives with respect to vector fields X ∈ V with compact
support in M .

Clearly, in our first example, Example 3.8, the resulting algebra of differential
operators, namely Diff(Vb), is the algebra of totally characteristic differential oper-
ators. See [7] for more general examples.

The differential operators in Diff(V) can be regarded as acting either on functions
on M or on functions on M := M r ∂M . When it comes to classes of measurable
functions–say Sobolev spaces–this makes no difference. However, the fact that
Diff(V) maps C∞(M) to C∞(M) is a non-trivial property that does not follow from
the mapping properties of Diff(V) on M . We have the following simple remark on
the structure of Diff(V).
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Remark 3.15. Every P ∈ Diff(V) of order at most m can be written as a sum of
differential monomials of the form Xα1

1 Xα2
2 . . . Xαk

k , where Xi ∈ V, k ≤ m, and α
is a multi-index. If Y1, Y2, . . . , Yn are vector fields in V forming a local basis around
p ∈M (so dim(M) = n), then every P ∈ Diff(V) of order at most m can be written
in a neighborhood of p in M as

P =
∑
|α|≤m

aαY
α1
1 Y α2

2 . . . Y αn
n .

This follows from the Poincaré-Birkhoff-Witt theorem of [98].

We shall denote the inner product on L2(M ; volg) by ( , )L2 . Let P ∈ Diff(V).
The formal adjoint P ] of P is then defined by

(34) (Pf1, f2)L2 = (f1, P
]f2)L2 , f1, f2 ∈ C∞c (M0).

Let X ∈ V := %∗(Γ(A)). Since div(X) ∈ C∞(M) of Equation (33) extends the
classical definition on M , we have that∫

M

X(f) d volg =

∫
M

f div(X) d volg .

In particular, the formal adjoint of X is

(35) X] = −X + div(X) ∈ Diff(V) .

and hence Diff(V) is closed under formal adjoints.
We can extend the definition of Diff(V) to include operators Diff(V;E,F ) acting

between vector bundles E,F →M . This can be done either by embedding the
vector bundles E and F into trivial bundles or by looking at a local basis. We shall
write Diff(V;A) = Diff(V;A,A). The formal adjoint of P ∈ Diff(V;E,F ) is then
an operator P ] ∈ Diff(V;F ∗, E∗). Typically E and F will have hermitian metrics
and then we identify E∗ with E and F ∗ with F . In particular, if E is a Hermitian
bundle, then Diff(V;E) is an algebra closed under formal adjoints.

We are ready now to prove that all geometric operators on M that are asso-
ciated to a compatible metric g are generated by V := %∗(Γ(A)) [5]. (Recall that
a compatible metric on M is a metric coming from a metric on the Lie algebroid
A of our Lie manifold (M,A) by restriction to TM .) In particular, we have the
following result [5].

Proposition 3.16. We have that the de Rham differential d on M extends to
a differential operator d ∈ Diff(V; ΛqA∗,Λq+1A∗). Similarly, the extension ∇ of
the Levi-Civita connection to an A-valued connection defines a differential operator
∇ ∈ Diff(V;A,A⊗A∗).

Proof. The proof of this theorem is to see that the classical formulas for these
geometric operators extend to M , provided that TM is replaced by A. For instance,
for the de Rham differential, let ω ∈ Γ(M ; ΛkA∗) and X0, . . . , Xk ∈ V, and use the
formula

(dω)(X0, . . . , Xk) =

q∑
j=0

(−1)jXj(ω(X0, . . . , X̂j , . . . , Xk)) +

∑
0≤i<j≤q

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk) ∈ C∞(M) .
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By choosing X0, . . . , Xk among a local basis of V := Γ(M ;A) and using the fact
that V is closed under the Lie bracket, we obtain that d ∈ Diff(V; ΛqA∗,Λq+1A∗),
as claimed.

For the Levi-Civita connection, it suffices to show that ∇X ∈ Diff(V;A) for all
X ∈ V (we could even restrict X to a local basis, but this is not really necessary).
We will show that, in a local basis of A, the differential operator ∇X is given by an
operator involving only derivatives in V. To this end, we shall use the formula (32)
defining ∇X , but choose Y = fY0 for f ∈ C∞(M) and Y0 and Z in a local basis
in some neighborhood V of an arbitrary point p ∈M . Then we see from formula
(32), using also the linearity of φ in Z, that (∇X(Y ), Z) = fz0 +X(f)z1, with z0

and z1 smooth functions on the given neighborhood V . Since the only derivative
in this formula is X and X ∈ V, this proves the desired statement for ∇. �

Let us consider a vector bundle E →M . If E has a metric, then an A–connection
∇ ∈ Diff(V;E,E ⊗A∗) is said to preserve the metric if

(36) (∇X(ξ), ζ)E + (ξ,∇X(ζ))E = X(ξ, ζ)E

for all X ∈ V and ξ, ζ ∈ Γ(M ;E). In particular, it follows from Proposition 3.11
that the extension of the Levi-Civita connection to an A–connection on A preserves
the metric used to define it. We then have the following theorem

Theorem 3.17. We continue to consider the fixed metric on A and its associ-
ated compatible metric g on M . Let E →M be a hermitian bundle with a metric
preserving A-connection. Then ∆E := ∇∗∇ ∈ Diff(V;E). Similarly,

∆g := d∗d ∈ Diff(V).

Proof. This follows from the fact that Diff(V) is closed under formal adjoints (as
well as its vector bundle analogues) and from Proposition 3.16. �

Thus, in order to study geometric operators on a Lie manifold, it is enough to
study the properties of differential operators generated by V. It should be noted,
however, that a Riemannian manifold may have different compactifications to a Lie
manifold. An example is Rn, which can either be compactified to ([−1, 1]n,Vb) (a
product of manifolds with cylindrical ends) or it can be radially compactified to
yield an asymptotically euclidean manifold. (See Example 5.3.)

Theorem 3.17 also gives the following.

Remark 3.18. The proof of Theorem 3.17 uses among other things the fact that
the adjoint of an operator P ∈ Diff(V;E,F ) is also generated by V. This gives
that the Hodge operator d+ d∗ ∈ Diff(V; Λ∗A∗). More generally, let W →M be a
Clifford bundle with admissible connection Γ(M ;W )→ Γ(M ;W ⊗A∗). Then the
associated Dirac operators are also generated by V, see [5, 68]. All these statements
seem to be more difficult to prove directly in local coordinates.

3.4. Anisotropic structures. It is very important in applications to extend the
previous frameworks to include anisotropic structures [11]. We introduce them now
for the purpose of later use.

Definition 3.19. An anisotropic structure on an open manifold (M,A) with a Lie
structure at infinity is an open manifold manifold with a Lie structure at infin-
ity (M,B) (same underlying compactification) together with a vector bundle map
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A→ B that is the identity over M and makes Γ(M ;A) an ideal (in Lie algebra
sense) of Γ(M ;B).

We shall denoteW := Γ(B), so V := %∗(Γ(A)) satisfies [X,Y ] ⊂ V for all X ∈ W
and Y ∈ V. Recall the groups exp(V) and exp(W) introduced in Subsection 3.2 (and
recall that they are generated by compactly supported vector fields). Then exp(W)
acts on A, on V := %∗(Γ(A)), and on Diff(V). Moreover,

exp(V) ⊂ exp(W)

is a normal subgroup.

4. Analysis on Lie manifolds

Our main interest is in the analytic properties of the differential operators in
Diff(V). In this section, we introduce our function spaces following [4] and discuss
Fredholm conditions. Throughout this section, (M,A) will denote an open manifold
with a Lie structure at infinity and Lie algebroid A, anchor %, and V := %∗(Γ(A))
the structural Lie algebra of vector fields on M .

4.1. Function spaces. Let (M,A) be our given open manifold with a Lie structure
at infinity and let g be a compatible metric on the interior M of M (that is, coming
from a metric on A denoted with the same letter, see Definition 3.9). Let ∇ be the
Levi-Civita connection acting on the tensor powers of the bundles A and A∗. We
then define, for m ∈ Z+, the Sobolev spaces as in [4]

(37) Hm(M) = {u : M → C, ∇ku ∈ L2(M ;A∗⊗k), 0 ≤ k ≤ m } ,

See also [55, 54].

Remark 4.1. In general, the Sobolev spaces Hm(M) will depend on the choice of
the metric g, but if M is compact (that is, if (M,A) is a Lie manifold), then they
are independent of the choice of the metric, as we shall see below. It is interesting
to notice that if denote by d volg the volume form (1-density) associated to g. If
h is another such compatible metric, then d volh /d volg and d volg /d volh extend

to smooth, bounded functions on M . Hence the space L2(M) := L2(M ; volg) is
independent of the choice of the compatible metric g.

The spaces Hm(M) behave well with respect to anisotropic structures.

Proposition 4.2. Let (M,A) be an open manifold with a Lie structure at infinity
and with an anisotropic structure (M,B), such that W := Γ(B) ⊃ Γ(A). Then
expW acts by bounded operators on Hm(M).

Proof. This follows from the fact that exp(W) is generated by vector fields with
compact support in M . �

We now consider some alternative definitions of these Sobolev spaces in particular
cases. We first consider the case of complete manifolds.

Remark 4.3. Let us assume that (M,A) and the compatible metric g are such that
M is complete and let ∆g be (positive) Laplacian associated to the metric g. Then

Hs(M) coincides with the domain of (1 + ∆g)
s/2.

In the bounded geometry case we can consider partitions of unity [117, 5].
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Remark 4.4. Let us assume that (M,A) and the compatible metric g are such that
M is of bounded geometry. Then the definition of the Sobolev spaces on M can be
given using a choice of partition of unity with bounded derivatives [4] to patch the
locally defined classical Sobolev spaces.

Finally, if M is an open subset of a Lie manifold, we have yet the following
definition.

Remark 4.5. If M is an open subset of a Lie manifold such that M has the induced
metric and structural Lie algebra of vector fields, then [5]

(38) Hm(M) := {u : M → C, X1X2 . . . Xku ∈ L2(M), k ≤ m, Xj ∈ V} ,
so the Sobolev spaces Hm(M) will be independent of the chosen compatible metric
on the Lie manifold.

We define the anisotropic Sobolev spaces in a similar way.

Definition 4.6. Let (M,A) be a Lie manifold with an anisotropic structure (M,B),
and W := Γ(B) ⊃ Γ(A). Then we define

(39) Hm
W(M) := {u : M → C, X1X2 . . . Xku ∈ L2(M), k ≤ m, Xj ∈ W } ,

The spaces Hm
W(M) are again independent of the chosen compatible metric on

the Lie manifold.
We let H−s(M) := (Hs(M))∗ and then we extend the definition of Sobolev space

to s non-integer by interpolation. Each of these definitions has its own advantages
and disadvantages. For instance, the definition (38) has the advantage that it
immediately gives that, for any P ∈ Diff(V) of order ord(P ) ≤ m, the map

P : Hs(M)→ Hs−m(M)

is bounded for all s ∈ R. In fact, we have the following lemma. Let us denote by
(E)r the set of vectors of length < r, where E is a real or complex vector bundle
endowed with a metric.

Lemma 4.7. Let us assume that A is endowed with a metric such that the resulting
metric g on TM ⊂ A is of bounded geometry. Let P ∈ Diff(V) of order ord(P ) ≤ m.
Then the map P : Hs(M)→ Hs−m(M) is bounded for all s ∈ R.

Proof. Let K ⊂M be a compact subset such that the coefficients of P are zero
outside K. Let us choose a compact neighborhood L of K in M and let r0 be the
distance from K to the complement of L in a metric h on M such that h ≤ g, which
exists by Lemma 3.10. Then r0 > 0, because K is compact. Moreover, the distance
from K to the complement of L in the metric g is ≥ r0 since h ≤ g. Let us fix
r0 > r > 0 less than the injectivity radius of M . For every p ∈M , we then consider
the exponential map exp : TpM →M , which is a diffeomorphism from (the open
ball of radius r) (TpM)r onto its image. Thus P gives rise to a differential operator
Pp on each of the open balls (TpM)r. Using the results of [117], it suffices to show
that the coefficients of P in any of these balls of radius r are uniformly bounded.
Indeed, this is a consequence of the following lemma, where the support of the
resulting map is contained in L. �

Lemma 4.8. Let us use the notation of the proof of the previous lemma and denote
for any p ∈M by Pp the differential operator on (TpM)r induced by the exponential
map. Then the map M 3 p→ Pp extends to a compactly supported smooth function

defined on M such that Pp is a differential operator on (Ap)r.
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4.2. Pseudodifferential operators on Lie manifolds. Let us begin by recalling
the definition of a submanifold with corners from [5].

Definition 4.9. Let M be a manifold with corners and L ⊂M be a submanifold.
We shall say that L is a submanifold with corners of M if L is a manifold with
corners (in its own) that intersects transversely all faces of M and each open face
F of L is the open components of a set of the form F ∩L, where F is an open face
of M of the same codimension as F .

The closed faces of a manifold with corners M are thus not submanifolds with
corners of M even if they happen to be manifolds with corners. Also, the diagonal
of the n-dimensional cube [−1, 1]n is not a submanifold with corners. However,
{0}× [−1, 1]n−1 is a submanifold with corners of [−1, 1]n. In fact, all submanifolds
with corners L ⊂M have a tubular neighborhood [6, 4]. This tubular neighborhood
allows us then to define the space Im(M,L) of classical conormal distributions as
in [57] or as in [98] for manifolds with corners. Similarly, Imc (M,L) is the space of
classical conormal distributions with compact support.

Let us fix a compatible metric on M , the interior of our open manifold with a Lie
structure at infinity (M,A). Also, let us fix r > 0 less than the injectivity radius of
M . As in the proof of Lemma 4.7, the exponential map then defines a diffeomor-
phism from the set (TM)r of vectors of length < r to an open neighborhood of the
diagonal in M ×M . This allows us to define a natural bijection

(40) Φ : Im((TM)r,M)→ Im((M ×M)r,M) ,

where (M ×M)r is the image of (TM)r through the exponential map. Similarly,
we obtain by restriction an inclusion

(41) Imc ((A)r,M)→ Im((TM)r,M) .

Recall the group of diffeomorphisms exp(V) defined in Subsection 3.2. Then we
define as in [6]

(42) Ψm
V (M) := Φ(Imc ((A)r,M)) + Φ(I−∞c ((A)r,M)) exp(V) .

Then we have the following result [6].

Theorem 4.10. We have Ψm
V (M)Ψm′

V (M) = Ψm+m′

V (M). The subspace Ψm
V (M) is

closed under adjoints and the principal symbol σm : Ψm
V (M)→ Smcl (A

∗)/Sm−1
cl (A∗)

is surjective with kernel Ψm−1
V (M). These algebras do not depend on the choice of

the parameter r > 0 used to define them. Moreover, P ∈ Ψm
V (M) defines a bounded

operator Hs(M)→ Hs−m(M). If an anisotropic structure is given, then the group
exp(W) acts by degree preserving automorphisms on Ψm

V (M).

The proof of the above theorem is too long to include here. Let us just say that

it is obtained by realizing Ψm+m′

V (M) as the image of a groupoid pseudodifferential
operator algebra [6, 87, 89, 98] for any Lie groupoid integrating the Lie algebroid
A defining the Lie manifold (M,A) [38, 39, 97].

The algebra Ψ∗V(M) has the property that its subset of differential operators
coincides with Diff(V). It also has the good symbolic properties that answer to a
question of Melrose [6, 85].
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4.3. Comparison algebras. We continue to denote by (M,A) an open manifold
with a Lie structure at infinity. For simplicity, we shall assume that M is connected.
We now recall from [88] the comparison C∗-algebra A(U,V) associated to the given
Lie manifold (M,A), where V := %∗(Γ(A)) and U ⊂M is an open subset. Its
definition extends to open manifolds with a Lie structure at infinity by Lemma 4.7
that justifies the following definition.

Definition 4.11. Let us assume that A has a metric g such that the induced metric
on M is of bounded geometry and let U ⊂M be an open subset. Then A(U ;V)
is the norm closed subalgebra of the algebra B(L2(M ; volg)) of bounded operators
on L2(M ; volg) generated by all the operators of the form φ1P (1 + ∆)−kφ2, where
φi ∈ C∞c (U) and P ∈ Diff(V) is a differential operator of order ≤ 2k.

In case an anisotropic structure is given, the group exp(W) acts by automor-
phisms on the comparison algebra A(M ;V). We shall need the following lemma
that follows right away from the results in [5] and [68].

Lemma 4.12. Let us use the notation of Definition 4.11 and let T := φ1P (1 + ∆)−kφ2.
Then T is contained in the norm closure of Ψ0

V(M) and is a pseudodifferential op-
erator of order ≤ 0 with principal symbol

σ0(T ) = φ1σ2k(P )(1 + |ξ|∗)−kφ2 .

Moreover, the principal symbol depends continuously on T , and hence extends to a
continuous, surjective morphism σ0 : A(U ;V)→ C0(S∗A|U ).

As in [88], we obtain the following result.

Theorem 4.13. Let (M,A) be a connected open manifold with a Lie structure at
infinity. Then A(M ;V) contains the algebra K(L2(M)) of all compact operators on
L2(M) and is contained in the norm closure of Ψ0

V(M).

Proof. We recall the proof for the benefit of the reader. The inclusion of A(M ;V)
in the norm closure of Ψ0

V(M) follows from Lemma 4.12.

Let φ1, φ2 ∈ C∞c (M), let ψ ∈ exp(V), and let T ∈ Φ(I−∞c (A;M)), then the com-
position operator L := φ1Tψφ2 is a compact operator and belongs to A(M ;V),
by the definition. This shows that A(M ;V) contains the compact operators. Let
ξ1, ξ2 ∈ L2(M) be nonzero. Then we can find φ1, φ2, ψ, and T as above such that
L := φ1Tψφ2 satisfies (Tξ1, ξ2) 6= 0. Hence A(M ;V) has no non-trivial invariant
subspace. Hence A(M ;V) contains all compact operators because any proper sub-
algebra of the algebra of compact operators has an invariant subspace. �

4.4. Fredholm conditions. Theorem 4.13 allows us, in principle, to study the
Fredholm property of operators in A(M ;V). Let us denote by K = K(L2(M) the
ideal of compact operators in A(M ;V). Recall then Atkinson’s classical result
[45] that states that T ∈ A(M ;V) is Fredholm if, and only if, its image T +K in
A(M ;V)/K is invertible.

Usually it is difficult to check directly that T +K is invertible in A(M ;V)/K,
and, instead, one checks the invertibility of operators of the form π(T ), where π
ranges through a suitable family of irreducible representations of A(M ;V)/K. Ex-
actly what are the needed properties of the family of representations of A(M ;V)/K
was studied in [96]. Let us recall the main conclusions of that paper. Let us con-
sider a family of representations F and π ∈ F . It is not enough for the family F
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to be faithful. The necessary condition is that the family F be full [96], in the
sense that every irreducible representation of A(M ;V)/K is contained in one of the
representations π ∈ F .

This approach was used in [35, 41, 48, 49, 50, 67, 68, 86, 113], and in many
other papers. However, in order for this approach to be effective, we need to have
a structure theorem for the quotient A(M ;V)/K. This seems to be difficult in
general, at least without using groupoids. Thus we shall replace the comparison
algebra A(M ;V) with the norm closure of the algebra Ψ0

V(M). The algebra Ψ0
V(M)

is defined in the next section. We shall also make some the following assumptions
on the Lie manifold (M,A)

(a) We denote by (Zα)α∈I the family of orbits Zα = exp(V)p of V on ∂M . Then,
we assume that for each open face F0 ⊂ F = F0 of M , there exists a submersion
pF : F0 → BF of smooth manifolds (without boundary or corners) whose fibers
are the orbits of G on F0.

(Note that each open face of M is invariant for expV, and hence, if an orbit
Zα intersects F0, then it is completely contained in F0. In particular, the set of
orbits I identifies with the disjoint union of the sets BF for F ranging through
the set of faces of M : I = ∪BF .)

(b) We assume that, for each open face F0 ⊂ F = F0 of M , there exists a Lie
algebroid AF → BF with zero anchor map such that p∗F (AF ), the pull-back of
AF by the submersion pF , satisfies

(43) A|F0
' ker(pF )∗ ⊕ p∗F (AF ) .

That is, the restriction of A to the invariant subset F0 is isomorphic to the
direct sum of the pull-back of AF with the set of vertical vector fields with
respect to the submersion pF . (Note however that the sections of ker(pF )∗ act
by derivation on the sections of p∗F (AF ). Also, it follows that for any p ∈ F0,
the isotropy Lie algebra ker(%p) is canonically isomorphic to the Lie algebra
(AF )pF (p), see Definition 3.2.)

(c) Let us denote byGα the simply-connected Lie group that integrates the isotropy
Lie algebra ker(%p) ' (AF )pF (p) for any p ∈ Zα. Also, let us denote by G the
disjoint union ∪α∈IZα × Zα ×Gα with the induced groupoid structure. Then
we assume that the groupoid exponential map makes G an amenable, Hausdorff
Lie groupoid [97]. In particular, G is a manifold (possibly with corners).

Under the above assumptions, the results in [13] and [67] give the following
theorem.

Theorem 4.14. We can associate to each P ∈ Diff(V;E,F ) a family of Gα-invariant
operators Pα on Zα ×Gα such that:

P is Fredholm ⇔ P is elliptic and all Pα are invertible.

This Theorem is closely related to the representations of Lie gropoids, see [20,
24, 23, 46, 47, 123, 58, 59, 108]. More general Fredholm conditions can be obtained
along the same lines [13, 42, 67], but the result mentioned here, although having a
rather long list of assumptions, is easy to prove and to use.

We continue with a few remarks. If M is compact and smooth (so without
corners), then I = ∅, and we recover Theorem 1.2. As we will explain below, we
also recover Theorem 1.8. Each operator Pα is “of the same kind” as P (Laplace,
Dirac, ... ) and can be recovered by “freezing the coefficients” at the orbit Zα.
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The theorem allows us to reduce some questions on M to questions on Pα and
Gα. Because of the Gα-invariance of our operators, we can use results on harmonic
analysis on Gα to obtain an inductive procedure to study geometric operators on
M . References to earlier results will be given in the next section when discussing
examples. We note that our assumptions on (M,A) imply that the groupoid G
considered in our assumptions must coincide with the one introduced by Claire
Debord [38, 39].

4.5. Pseudodifferential operators on groupoids. Let us recall, for the benefit
of the reader, the definition of pseudodifferential operators on a Lie groupoid G,
because they were implicit in the proofs of some of the previous results. Namely,
to a Lie groupoid G with units M there is associated an algebra Ψ∞(G), whose
operators of order m form a linear space denoted by Ψm(G), m ∈ R, see [89, 98].
Let d : G →M be the domain map and Gx = d−1(x). Then Ψm(G), m ∈ R, consists
of smooth families (Px)x∈M of classical, order m pseudodifferential operators (Px ∈
Ψm(Gx)) that are right invariant with respect to multiplication by elements of G
and are “uniformly supported.” To define what uniformly supported means, let us
observe that the right invariance of the operators Px implies that their distribution
kernels KPx

descend to a distribution kP ∈ Im(G,M) [86, 98]. The family P = (Px)
is called uniformly supported if, by definition, kP has compact support in G.

Groupoids simplify the study of pseudodifferential operators on singular and
non-compact spaces. For instance, one obtains a straightforward definition of the
“generalized indicial operators” as restrictions to invariant subsets [67]. More pre-
cisely, let N ⊂M be an invariant subset for G, that is, d−1(N) = r−1(N) and let
GN := d−1(N). Let us now assume that P ∈ Ψm(G) is given by the family (Px)x∈M ,
then the N–indicial family IN (P ) := (Px)x∈N is defined simply as the restriction
of P to N and is in Ψm(GN ). See [43] for an extension of these results in relation
to the adiabatic groupoid. See also [1, 18, 81] for results on the Boutet-de-Montvel
calculus in the framework of groupoids.

There are many works dealing with pseudodifferential operators on groupoids,
on singular spaces, or with the related C∗-algebras, see for example [2, 15, 32, 52,
73, 91, 101, 79, 119, 120, 124].

5. Examples and applications

We now discuss some applications. They are included just to give an idea of the
many possible applications of Lie manifolds, so we will be short, but we refer to the
existing literature for more details. We begin with some examples.

5.1. Examples of Lie manifolds and Fredholm conditions. We now include
examples of Lie manifolds and show how to use Theorem 4.14. The following
examples cover many of the examples appearing in practice.

Example 5.1. We now review our first, basic example, Example 3.8, in view of the
new results. Recall that V = Vb := the space of vector fields on M that are tangent
to ∂M . Near the boundary, a local basis is given by Equation (29) of Example 3.8,
and hence Diff(Vb) is the algebra of totally characteristic differential operators. If
M has a smooth boundary and we denote by r the distance to the boundary (in
some metric smooth everywhere), then a typical compatible metric on M is given
near the boundary by (r−1dr)2 + h, where h is a metric smooth up to the boundary.
Hence the geometry is that of a manifold with cylindrical ends.
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We have that the orbits Zα are the open faces of M , except M itself. The
group Gα ' Rk, where k is the codimension of the corresponding face (so it is
a commutative Lie group). In the case of a smooth boundary, the Zα’s are the
connected components of the boundary, Gα = R, and Pα is the restriction of I(P )
to a translation invariant operator on Zα × R. See also [87, 89, 83, 84, 71, 114] for
just a sample of the many papers on this particular class of manifolds.

In the following examples, M will be a compact manifold with smooth boundary
∂M . The following example is that of an asymptotically hyperbolic space and has
the feature that it leads to non-commutative groups Gα.

Example 5.2. Let M be a compact manifold with smooth boundary ∂M and defin-
ing function r. We proceed as in Example (3.8). The structural Lie algebra of
vector fields is V = rΓ(TM) = the space of vector fields on M that vanish on the
boundary. Using the same notation as in the Example (3.8), near a point of the
boundary ∂M = {r = 0}, a local basis is given by

(44) r∂r, r∂y2 , . . . , r∂yn ,

so V is a finitely generated, projective C∞(M)–module. Since V is also closed under
the Lie bracket and Γc(M ;TM) ⊂ V ⊂ Vb, we have that (M,V) defines indeed a
Lie manifold.

The orbits Zα ⊂ ∂M are reduced to points, so α ∈ I := ∂M , andGα = Tα∂M oR
is the semi-direct product with R acting by dilations on the vector space Tα∂M .
The pseudodifferential calculus Ψ∗V(M)for this example was defined by Lauter [64],
Lauter-Moroianu [65], Mazzeo [80], and Schulze [115]. The metric is asymptotically
hyperbolic.

The following example covers, in particular, Rn with the usual Euclidean metric
and with the radial compactification.

Example 5.3. As in the previous example, M is a compact manifold with smooth
boundary ∂M = {r = 0}. We shall take now V = rVb = the space of vector fields on
M that vanish on the boundary ∂M and whose normal covariant derivative to the
boundary also vanishes. Using the same notation as in the previous two examples,
at the boundary ∂M , a local basis is given by

(45) r2∂r, r∂y2 , . . . , r∂yn .

Again the orbits Zα are reduced to points, so α ∈ I := ∂M , but this time
Gα = TαM = Tα∂M × R is commutative. The pseudodifferential calculus goes
back to Parenti [100]. See also [85, 113]. If ∂M = Sn−1, the resulting geome-
try is that of an asymptotically Euclidean manifold. In particular, Rn with the
radial compactification fits into the framework of this example.

Example 5.4. As in the previous two examples, M is a compact manifold with
smooth boundary ∂M = {r = 0}. To construct our Lie algebra of vector fields
V = Ve, we assume that we are given a smooth fibration π : ∂M → B, and we let
Ve to be the space of vector fields onM that are tangent to the fibers of π : ∂M → B.
By choosing a product coordinate system on a small open subset of the boundary,
a local basis is then given by

(46) r∂r, r∂y2 , . . . , r∂yk , ∂yk+1
, . . . , ∂yn .
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Here k is such that the fibers of π : ∂M → B have dimension n− k. Thus, when
k = 1 (so the fibration is over a point, that is, π : ∂M → pt), we recover our
first example, Example 5.1. On the other hand, when k = n (so the fibration
is π : ∂M → ∂M), we recover our second example, Example 5.2. For n = 3 and
k = 2, we recover the edge differential operators of Example 2.2 (3) (see Equation
(26)). We note that V := Ve ⊂ Vb =:W yields a typical example of an anisotropic
stucture.

In general, in this example, the set of orbits is I = {α} = B, Zα = π−1(α), and
Gα = TαB oR is a solvable Lie group with R acting by dilations. The geometry
is related to that of locally symmetric spaces. Differential operators of this kind
appear in the study of behavior at the edge of boundary value problems. This
example generalizes the second example (Example 5.2) and the same references are
valid for this example as well.

We conclude with some less standard examples.

Example 5.5. Let us assume that we are in the same framework as in the previous
example, Example, 5.4, but we replace the fibration of ∂M with a foliation. Then
the resulting Lie manifold may fail to satisfy Theorem 4.14. See however [109]. It
is interesting to notice that in this case, the resulting class of Riemann manifolds
lead naturally to the study of foliation algebras.

Our last example in this subsection is on a manifold with corners.

Example 5.6. Let A→M be a Lie algebroid (we do not assume Γ(M ;A) ⊂ Vb)
and let φ : M → [0,∞) be a smooth function such that {φ = 0} = ∂M . We define
V := φΓ(M ;A). Then (M,V) defines a Lie manifold.

5.2. Index theory. Let now (M,A) be a Lie manifold and let f be the product
of the defining functions of all its faces. We consider then the exact sequence

(47) 0→ fΨ−1(G)→ Ψ0(G)→ Symb→ 0 ,

which gives rise as before to the map ∂ : K1(Symb) → K0(I). The Fredholm
index problem is in this case to compute

Tr∗ ◦ ∂ : K1(Symb)→ Z .

Since φ∗ ◦ ∂ = ψ∗, where ψ = ∂φ ∈ HP1(Symb), by Connes’ results, the Fredholm
index problem is equivalent to computing the class of ψ in periodic cyclic homology.
This is a difficult problem that is still largely unsolved. Undoubtly, excision in
cyclic theory will play an important role [34]. See also [25, 26, 93, 94, 72, 27, 104,
105, 102, 103, 110, 122]. Instead of this general problem, we shall look now at a
particular, but relevant case [21, 22].

Definition 5.7. We say that a be a Lie manifold (M,W) is asymptotically com-
mutative if all vectors in W vanish on ∂M and all isotropy Lie algebras ker(qx) are
commutative.

Let x1, x2, . . . , xk be the defining functions of all the hyperfaces of M and
f = xa11 xa22 . . . xakk for some positive integers aj . Then, for any Lie manifold (M,V)

W := fV defines an asymptotically commutative Lie manifold (M,W).
If (M,W) is asymptotically commutative, then the algebra Symb is commuta-

tive. Its completion will be of the form C(Ω), as in the work of Cordes [31, 30].
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Since the algebra Symb is commutative, it is possible then to compute the index of
Fredholm operators using classical invariants [22]. As an application, one obtains
also the index of Dirac operators coupled with potentials of the form f−1V0, where
V0 is invertible at infinity on any Lie manifold (not just asymptotically commuta-
tive) [22].

5.3. Essential spectrum. We now present some applications to essential spectra.
We use the notation introduced in subsection 4.3. The applications to essential
spectra of operators are based on the fact that for a self-adjoint operator D affiliated
to A(M,V) (i.e. (D + ı)−1 ∈ A(M,V) [35, 48]), we have that

(48) λ ∈ σess(D) ⇔ D − λ is not Fredholm.

Then we can use Theorem 4.14 to study when D − λ is (or is not) Fredholm.
We shall use these ideas for M a manifold with corners and (M,Vb) the Lie

manifold of Example (5.1). Let ∆M be the associated positive Laplacian, then [69]

Theorem 5.8. Let M be the interior of (M,Vb) with the induced compatible metric.
Then

σ(∆M ) = [0,∞)

A complete characterization of the spectrum (multiplicity of the spectral mea-
sure, discreteness of the point spectrum, absence of continuous singular spectrum)
is wide open, in spite of its importance.

Similarly, let \D be the Dirac operator associated to a Cliff(A)-bundle over M .
Then [95]

Theorem 5.9. The Dirac operator \D on M = M r ∂M is invertible if, and only
if, the Dirac operator \DF associated to any open face F of M (including M), has
no harmonic spinors (that is, it has zero kernel).

The proof uses Theorem 4.14 and the fact that the resulting operators Pα are
also Dirac operators.

Many similar results were obtained in Quantum Mechanics by Georgescu and
his collaborators [35, 48, 50]. In fact, certain problems related to the N–body
problem can be formulated in terms of a suitable compactifications of X := R3n to
a manifold with corners M on which X still acts and such that the Lie algebra of
vector fields V is obtained from the action of X [49]. See also [44].

5.4. Hadamard well posedness on polyhedral domains. This type of appli-
cation [12] is of a different nature and does not use pseudodifferential operators
or other operator algebras. It uses only Lie manifold and their geometry. Let
then Ω ⊂ Rn be an open, bounded subset of with boundary ∂Ω. We shall consider
the “simplest” boundary value problem on Ω, the Poisson problem with Dirichlet
boundary conditions:

(49)

{
−∆u = f

u|∂Ω = 0.

We refer to [12] for further references and details not included here. Recall then the
following classical result, which we shall refer to as the basic well-posedness theorem
(for ∆ on smooth domains)
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Theorem 5.10. Let us assume that ∂Ω is smooth. Then the Laplacian ∆ defines
an isomorphism

∆ : Hs+1(Ω) ∩ {u|∂Ω = 0} → Hs−1(Ω), s ≥ 0 .

A useful consequence (easy to contradict for non-smooth domains) is:

Corollary 5.11. If f and ∂Ω are smooth, then the solution u of the Poisson
problem with Dirichlet boundary conditions is also smooth.

It has been known for a very long time that the basic well posedness theorem
does not extend to the case when ∂Ω is non-smooth. This can be immediately seen
from the following example.

Example 5.12. Let us assume that Ω is the unit square, that is Ω = (0, 1)2. If
u is smooth, then ∂2

xu(0, 0) = 0 = ∂2
yu(0, 0), and hence f(0, 0) = ∆u(0, 0) = 0. By

choosing f(0, 0) 6= 0, we will thus obtain a solution u that is not smooth.

In view of the many practical applications of the basic well-posedness theorem,
we want to extend it in some form to non-smooth domains. Assume now Ω ⊂ Rn is
a polyhedral domain. Exactly what a polyhedral domain means in three dimensions
is subject to debate. In this presentation, we shall use the definition in [12] in
terms of stratified spaces (we refer to that paper for the exact definition). Note
that a version of that paper was first circulated in 2004 as an IMA preprint. The
key technical point in that paper is to replace the classical Sobolev spaces Hm(Ω),
introduced in Equation (37) with weighted versions as in Kondratiev’s paper [62].
Let us then denote by ρ the distance function to the singular part of the boundary
and define

Kma (Ω) := {u, ρ|α|−a∂αu ∈ L2(Ω), |α| ≤ m} .
(Notice the appearance of the factor ρ!) Thus, in two dimensions, ρ(x) is the
distance from x ∈ Ω to the vertices of Ω, whereas in three dimensions, ρ(x) is the
distance from x ∈ Ω to the set of edges of Ω.

Theorem 5.13. Let Ω ⊂ Rn be a bounded polyhedral domain and m ∈ Z+. Then
there exists η > 0 such that

∆ : Km+1
a+1 (Ω) ∩ {u|∂Ω = 0} → Km−1

a−1 (Ω) ,

is an isomorphism for all |a| < η.

In two dimensions, this result is due to Kondratiev [62].
The proof of Theorem 5.13 is based on a study of the properties of a Lie manifold

with boundary Σ(Ω) canonically associated to Ω by a blow-up procedure. The
weighted Sobolev spaces Kma (Ω) can be shown to coincide with the usual Sobolev
spaces associated to Σ(Ω). See [4] for the definition of Lie manifolds with boundary.
General blow-up procedures for Lie manifolds were studied in [3]. It can be shown
that the class of Lie manifolds satisfying Theorem 4.14 is closed under blow-ups with
respect to tame Lie submanifolds. Since most practical applications deal with Lie
manifolds that are obtained by such a blow-up procedure from a smooth manifold,
that establishes Theorem 4.14 in most cases of interest.

The blow-up procedure is an inductive procedure that consists in successively re-
placing cones of the form CL := [0, ε)× L/({0} × L) with their associated cylinders
[0, ε)× L.
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No well posedness result similar to Theorem 5.13 holds for the Neumann problem
(normal derivative at the boundary is zero):

(50)

{
−∆u = f

∂νu = 0 ,

where ν is a continuous unit normal vector field at the boundary. In fact, in three
dimensions, the above problem is never Fredholm.

Here is however a variant of Theorem 5.13 that has been proved proved useful
in practice. Let us consider a polygonal domain Ω and a function χP ∈ C∞(R2)
that is equal to 1 around the vertex P , depends only on the distance to P , and
has small support. Let Ws be the linear span of the functions χP , where P ranges
through the set of vertices of Ω. Let {1}⊥ be the space of functions with integral
zero. Then we have the following result [74].

Theorem 5.14. Let Ω ⊂ R2 be a connected, bounded polygonal domain and m ∈ Z+.
Then there exists η > 0 such that

∆ :
(
Km+1
a+1 (Ω) ∩ {∂νu|∂Ω = 0} + Ws

)
∩ {1}⊥ → Km−1

a−1 (Ω) ∩ {1}⊥ ,

is an isomorphism for all 0 < a < η.

The proof of this theorem is based on an index theorem on polygonal domains,
more precisely, a relative index theorem as follows.

Proof. (Sketch) Let us denote by ∆a the operator for the fixed value of the weight a.
Then one knows by [62] (or an analysis similar to the one needed for the APS index
formula), that ∆a is Fredholm if, and only if, a 6= kπ/α, where k ∈ Z and α ranges
through the values of the angles of our domain Ω. (For the Dirichlet problem one
has a similar condition for a, except that k 6= 0.) One sees that ∆0 is not Fredholm,
but one can compute the relative index ind(∆a)− ind(∆−a) = −2n, a > 0 small,
where n is the number of vertices of Ω (anyone familiar with the APS theory will
have no problem proving this crucial fact). By definition ∆∗a = ∆−a, and hence this
gives ind(∆a) = −n. A standard energy estimate shows that ker(∆a) = 1 for a > 0,
with the kernel given by the constants. This is enough to complete the proof. �

Theorems 5.13 and 5.14 have found applications to optimal rates of convergence
for the Finite Element Method in two and three dimensions [11], where optimal
rates of convergence in three dimensions were obtained for the first time.
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