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ADDITIVE GROUP ACTIONS ON AFFINE T-VARIETIES OF COMPLEXITY

ONE IN ARBITRARY CHARACTERISTIC

KEVIN LANGLOIS AND ALVARO LIENDO

Abstract. Let X be a normal affine T-variety of complexity at most one over a perfect field k, where
T = Gn

m stands for the split algebraic torus. Our main result is a classification of additive group actions
on X that are normalized by the T-action. This generalizes the classification given by the second author
in the particular case where k is algebraically closed and of characteristic zero.

With the assumption that the characteristic of k is positive, we introduce the notion of rationally
homogeneous locally finite iterative higher derivations which corresponds geometrically to additive
group actions on affine T-varieties normalized up to a Frobenius map. As a preliminary result, we
provide a complete description of these Ga-actions in the toric situation.
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Introduction

Let k be an arbitrary field. In this paper a variety X is an integral separated scheme of finite type
over the field k. We assume further that k is algebraically closed in the field of rational functions
k(X). A point in X is a not necessarily rational closed point. A variety is called normal if all its local
rings are integrally closed domains. All algebraic group actions are, in particular, regular morphisms.

Let T = Gn
m be the n-dimensional split algebraic torus, where Gm stands for the multiplicative

group of k. A T-variety is a normal variety endowed with an effective action of T. The complexity of
a T-variety X is the non-negative integer dimX − dimT. If the base field k is algebraically closed,
then the complexity of X can be read off geometrically as the codimension of the generic orbit. The
best known examples of T-varieties are those of complexity zero, called toric varieties.

Let Ga be the additive group of the field k. The main result of this paper is a classification of the
Ga-actions on an affine T-variety X that are normalized by T in the cases where X is of complexity
zero or one. This generalizes a paper by the second author [Lie10a], where the same result is obtained
in the particular case where k is algebraically closed and of characteristic zero. The case of normalized
Ga-actions on an affine Gm-surface over the field of complex numbers was first studied in [FZ05].
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LetM be the character lattice of T and let N be the lattice of one-parameter subgroups. We have a
natural duality MR×NR → R given by (m, v) 7→ 〈m, v〉 between the vector spaces MR =M ⊗ZR and
NR = N ⊗ZR. Recall that T-actions on an affine variety corresponds to M -gradings on its coordinate
ring.

Affine T-varieties can be described in combinatorial terms. In the case of toric varieties, there is
the well-known description of affine toric varieties via strongly convex rational polyhedral cones in
NR [Dem70, Oda88]. In 2006, Altmann and Hausen gave a combinatorial description of affine T-
varieties of arbitrary complexity over an algebraically closed field of characteristic zero [AH06]. This
intersects with previous works by several authors [KKMS73, Dem88, Tim97, FZ03, Tim08] (see also
[AHS08, AIPSV12] for the theory of non-necessarily affine T-varieties). Furthermore, in a recent paper,
the first author generalized the combinatorial description due to Altmann and Hausen to the case of
affine T-varieties of complexity one over an arbitrary field [Lan15].

The combinatorial description of affine T-varieties of complexity one that we will use in this paper
encodes an affine T-variety X with a triple (C, σ,D), where C is a regular curve, σ is a strongly
convex rational polyhedral cone in NR and D is a σ-polyhedral divisor on C, i.e., a divisor in C whose
coefficients instead of integers are polyhedra in NR that can be decomposed as a Minkowski sum Q+σ
with Q a compact polyhedron (see Section 1 for details).

It is well known that the additive group actions on an affine variety X = SpecA are in one to
one correspondence with certain sequences ∂ = {∂(i) : A → A}i∈Z≥0

of k-linear operators on A called
locally finite iterative higher derivations [Miy68, Cra04, CM05], or LFIHDs for short (see Definition 2.1
for details). Now, assume that X = SpecA is an affine T-variety and let ∂ be an LFIHD on A.

The LFIHD ∂ is called homogeneous of degree e ∈ M if every ∂(i) is homogeneous of degree ie.
Furthermore, in positive characteristic, we introduce the technical notion of rationally homogeneous
LFIHDs as follows: let p > 0 be the characteristic of k and let r ∈ Z≥0, then ∂ is called rationally

homogeneous of degree e/pr if ∂(ip
r) is homogeneous of degree ie and ∂(j) = 0 whenever pr does not

divide j.
In the case where k is algebraically closed, the notion of (rationally) homogeneous LFIHD translates

into geometric terms in the following way. An LFIHD on A is homogeneous if and only if the corre-
sponding Ga-action on X is normalized by the T-action. Moreover, let Fpr : Ga → Ga be the Frobenius
map sending t 7→ tp

r

. If ∂ is an LFIHD and φ : Ga → Aut(X) is the corresponding Ga-action, then ∂
is rationally homogeneous if and only if φ ◦ F−1

pr is normalized by the T-action for some r ∈ Z≥0 (see
Proposition 2.8). In this case we say that φ is normalized by the T-action up to a Frobenius map.

The kernel ker ∂ of an LFIHD ∂ is defined as the intersection of ker ∂(i) for all i ∈ Z>0; it is equal to
the ring k[X]Ga of Ga-invariant regular functions on X and Frac(ker ∂) corresponds to the field k(X)Ga

of Ga-invariant rational functions on X. Denote by k(X)T the field of T-invariant rational functions on
X. A (rationally) homogeneous LFIHD is called vertical if k(X)T ⊆ k(X)Ga and horizontal otherwise.
When k is algebraically closed, the horizontal condition means geometrically that the general Ga-orbits
are transverse to the rational fibration defined by the T-action.

Let X = SpecA be the affine toric variety given by the strongly convex rational cone σ ⊆ NR.
We denote by σ(1) the set of extremal rays of the cone σ. In Theorem 3.5 we classify normalized
Ga-actions on affine toric varieties. They are described by Demazure roots of the cone σ, i.e., vectors
e ∈ M such that there exists ρ ∈ σ(1) with 〈e, ρ〉 = −1 and 〈e, ρ′〉 ≥ 0, for all ρ′ ∈ σ(1) different
from ρ. We also classify Ga-actions on affine toric varieties that are normalized up to a Frobenius
map (see Corollary 3.7). Let us mention some developments from the theory of Demazure roots. The
reader may consult [Dem70, Cox95, Nil06, Baz13, Cox14, AHHL14] for the study of automorphisms
of complete T-varieties via Demazure’s roots and [Lie11, Kot11] for the roots of the affine Cremona
groups. See also [LP14] for a geometric description in the setting of affine spherical varieties.
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Let now X = SpecA be an affine T-variety of complexity one given by the triple (C, σ,D). The
classification of normalized Ga-actions on such an X is divided into two theorems corresponding to
vertical and horizontal LFIHDs. The classification of vertical LFIHDs on A is given in Theorem 4.4.
They are described by pairs (e, ϕ), where e is a Demazure root of σ and ϕ is a global section of the
invertible sheaf OC(D(e)). The Q-divisor D(e) is uniquely determined by D and e in a combinatorial
way. The classification of horizontal LFIHDs on A is only available when k is perfect, see Theorem 5.11.
Its combinatorial counterpart is different from the characteristic zero case (compare with [Lie10a,
Theorem 3.28]) and is related to the description of rationally homogeneous LFIHDs on affine toric
varieties.

The content of the paper is the following. In Section 1 we present the combinatorial description of
affine T-varieties of complexity one that will be used in this paper. In Section 2 we introduced the
background results on Ga-actions. In Section 3 we obtain our classification result for toric varieties.
Finally, the classification of normalized Ga-actions on affine T-varieties of complexity one is divided
in Sections 4 and 5 corresponding to the vertical and horizontal cases, respectively.

1. Generalities on affine T-varieties of complexity one

In this section, we recall a combinatorial description of affine T-varieties of complexity one over an
arbitrary field [Lan15, Section 3]. Let k be field and let X = SpecA be an affine variety over k. We
start by introducing some notation from convex geometry (see e.g. [Oda88] or [AH06, Section 1]).

1.1. Let T ≃ Gn
m be a split algebraic torus over k. Denote by M = Hom(T,Gm) the character lattice

of T and let N = Hom(Gm,T) be the lattice of one-parameter subgroups. We have a natural duality
MR ×NR → R given by (m, v) 7→ 〈m, v〉, where MR = M ⊗Z R and NR = N ⊗Z R are the associated
real vector spaces. We also let MQ =M ⊗ZQ and NQ = N ⊗ZQ be the corresponding rational vector
spaces.

A rational cone in NR is a cone generated by a finite subset of N . If σ ⊆ NR is a rational cone, then
we let σ∨ ⊆ MR be its dual cone, i.e., the cone of real linear forms on MR that are non-negative on
σ. Recall that the dual cone σ∨ of a rational cone is again rational. The relative interior of a rational
cone σ ⊆ NR, denoted by rel. int(σ), is the topological interior of σ in the span of σ inside NR.

For any face F ⊆ σ the set F ⋆ stands for the dual face of F in σ∨, i.e., F ⋆ = F⊥ ∩ σ∨. A rational
cone σ is strongly convex if 0 is a face of σ. This is equivalent to say that the dual σ∨ ⊆ MR is full
dimensional. For any rational cone ω ⊆MR we let ωM = ω ∩M .

Furthermore, given a subsemigroup S ⊆M we let

k[S] =
⊕

m∈S

kχm

be the semigroup algebra of S defined by the relations χm ·χm′

= χm+m′

for all m,m′ ∈ S and χ0 = 1.
For any integer d ≥ 0 and any polyhedron ∆ ⊆ NR we let ∆(d) be the set of faces of dimension d.

In particular, ∆(0) is the set of vertices of ∆.
Let σ ⊆ NR be a strongly convex rational cone. We define Polσ(NR) as the set of polyhedra in NR

that can be written as a Minkowski sum Q+ σ, where Q ⊆ NR is a rational polytope, i.e., a bounded
polyhedron having its vertices in the rational vector space NQ.

1.2. A T-variety is a normal variety endowed with an effective action of the algebraic torus T. Recall
that a T-action X = SpecA is equivalent to an M -grading of the algebra A. In algebraic terms, a
T-action on X is effective if and only if the semigroup of weights of A generates M . In this case the
weight cone σ∨ of A is the dual of a strongly convex rational cone σ ⊆ NR.
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1.3. Let X = SpecA be an affine T-variety. Letting K0 = k(X)T be the field of T-invariant rational
functions on X we can write

A =
⊕

m∈σ∨
M

Amχ
m

as an M -graded subalgebra of K0[M ]. Here, σ∨ ⊆MR is the weight cone of A, χm is a weight vector
in k(X), A0 = K0 ∩ A, and Am is an A0-module contained in K0. Furthermore, the weight vectors

satisfy χ0 = 1, and χm · χm′
= χm+m′

for all m,m′ ∈M .
The complexity of the T-variety X is the transcendence degree of the field extension K0/k. Since

the action is effective, it is also equal to rankM − dimX. In geometrical terms, when k = k̄ is
algebraically closed the complexity is the codimension of the generic T-orbit.

A toric variety is a T-variety of complexity zero. An affine toric variety X = SpecA is completely
determined by the weight cone σ∨ of A. Conversely, given a strongly convex rational cone σ ⊆ NR,
we can define an affine toric variety by letting Xσ := Speck[σ∨M ].

Another important class of affine T-varieties is provided by the surface case. If X is an affine Gm-
surface, then the coordinate ring A = k[X] is endowed with a Z-grading. Up to reversing the grading,
we can assume that the subspace A+ =

⊕
m∈Z>0

Amχ
m is nonzero. We distinguish three cases (see

[FK91]).

(i) The elliptic case: A− =
⊕

m∈Z<0
Amχ

m = 0 and A0 = k.

(ii) The parabolic case: A− = 0 and A0 6= k.
(iii) The hyperbolic case: A− 6= 0.

More generally, an affine T-variety X = SpecA of complexity one is called elliptic if A0 = k (see
[Lie10a, Section 1.1]).

To provide a description of affine T-varieties of complexity one, we need to consider the Weil divisors
theory on regular algebraic curves. In the next paragraph, we recall the definitions we need.

1.4. Let C be a regular curve over k. By a point belonging to C we mean a closed point. Letting
z ∈ C we let [κz : k] be the degree of the point z defined as the dimension of residue field κz of z
over k (see [Sti93, Proposition 1.1.15]). A point z ∈ C of degree one is called a rational point. For a
nonzero rational function f ∈ k(C)∗ the associated principal divisor is

div f =
∑

z∈C

ordz f · z ,

where ordz f is the order of f at the point z. The degree of a Weil Q-divisor D =
∑

z∈C az · z is the
rational number

degD =
∑

z∈C

[κz : k] · az .

If C is projective, then we have deg div f = 0 (see [Sti93, Theorem 1.4.11]). In addition, we let
⌊D⌋ =∑z∈C⌊az⌋·z be the integral Weil divisor obtained by taking the integral part of each coefficient
of D. Similary, the Q-divisor {D} = D− ⌊D⌋ stands for the fractional part of D. The space of global
sections of the Q-divisor D is defined by

H0(C,OC (D)) := H0(C,OC (⌊D⌋)) = {f ∈ k(C)∗ | div f +D ≥ 0} ∪ {0}.
When C is projective, H0(C,OC (D)) is usually called the Riemann-Roch space of D.

The following has been introduced in [AH06] for any complexity in the case where k is algebraically
closed of characteristic zero. In our context, we give a similar definition.
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Definition 1.5. Let C be a regular curve over k. Consider σ ⊆ NR a strongly convex rational cone. A
σ-polyhedral divisor over C is a formal sum D =

∑
z∈C ∆z · z, where each ∆z ∈ Polσ(NR) and ∆z = σ

for all but finitely number of z. For every coefficient ∆z of the σ-polyhedral divisor D we define hz as
the piecewise linear map hz :MR → R given by m 7→ minv∈∆z(0)〈m, v〉. We remark that hz restricted
to σ∨ ⊆MR corresponds to the support function of ∆z.

For any m ∈MQ we define the evaluation of D as the Q-divisor

D(m) =
∑

z∈C

hz(m) · z .

We denote by Λ(D) the coarsest refinement of the quasifan of σ∨ such that the map m 7→ D(m) is
linear in each cone. We also define the degree of D as

degD =
∑

z∈C

[κz : k] ·∆z ∈ Polσ(NR) .

A σ-polyhedral divisor D =
∑

z∈C ∆z ·z is called proper if it satisfies one of the following conditions.

(i) the curve C is affine, or
(ii) the curve C is projective, the polyhedron degD is a proper subset of σ, and for every m ∈ σ∨M

such that degD(m) = 0, a nonzero integral multiple of D(m) is principal.

Actually, polyhedral divisors are combinatorial objects that allow us to construct multigraded al-
gebras, as explained in the following.

Notation 1.6. To a σ-polyhedral divisor D =
∑

z∈C ∆z · z over C we associate the rational T-
submodule

A[C,D] =
⊕

m∈σ∨
M

Am · χm ⊆ K0[M ], where Am = H0
(
C,OC(D(m))

)
and K0 = k(C) .

Given m,m′ ∈ σ∨M , the evaluations satisfy D(m)+D(m′) ≤ D(m+m′). Hence, for every f ∈ Am and
every g ∈ Am′ , the product fg lies on Am+m′ . This multiplication rule turns the vector space A[C,D]
into an M -graded subalgebra.

For a non-empty open subset C0 ⊆ C we let

D|C0
=
∑

z∈C0

∆z · z

be the restriction of D to C0.

The following yields a description of the coordinate ring of an affine T-variety of complexity one (for
a proof see [Lan15, Theorem 4.3]). This description intersects with some classical cases; see [Tim08],
[Tim97] for complexity one case, [AH06] for higher complexity, and [FZ03] for the Dolgachev-Pinkham-
Demazure presentation of affine complex C∗-surfaces. For the functorial properties of this description
see [Lan15, Proposition 4.5].

Theorem 1.7. (i) If D is a proper σ-polyhedral divisor on a regular curve C over k, then the
M -graded algebra A[C,D] =

⊕
m∈σ∨∩M Am, where

Am = H0(C,OC(D(m))),

is the coordinate ring of an affine T-variety of complexity one over k.
(ii) Conversely, to any affine T-variety X = SpecA of complexity one over k, one can associate a

pair (CX ,DX,γ) as follows.

(a) CX is the abstract regular curve over k defined by the conditions k[CX ] = k[X]T and k(CX) =
k(X)T.
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(b) DX,γ is a proper σX-polyhedral divisor over CX , which is uniquely determined by X and by
a sequence γ = (χm)m∈M of k(X) as in 1.3.

We have a natural identification A = A[CX ,DX,γ ] of M -graded algebras with the property that
every homogeneous element f ∈ A of degree m is equal to fmχ

m, for a unique global section fm
of the sheaf OCX

(DX,γ(m)).

Example 1.8. Let M = Z2 and let σ be the first quadrant in the vector space NR = R2. We also let
∆0 = (1/2, 0) + σ, ∆1 = L+ σ and ∆∞ = (1/2, 0) + σ, where L is the line segment joining the points
(0, 0) and (−1/2, 1/2).

00 0

∆0 ⊆ NR ∆1 ⊆MR ∆∞ ⊆MR

Letting k be an arbitrary field and C = P1
k
we let D be the σ-polyhedral divisor D = ∆0 · [0] +∆1 ·

[1] + ∆∞ · [∞] over C. The degree of D is degD = L′ + σ, where L′ is the line segment joining the
points (1, 0) and (1/2, 1/2).

0

degD ⊆ NR

Hence degD ( σ and D is proper. Let A = A[C,D] and X = SpecA. A direct computation shows
that the elements

u1 =
t− 1

t
· χ(2,0), u2 = χ(0,1), u3 = χ(1,1), u4 =

(t− 1)2

t
· χ(2,0), and u5 =

(t− 1)2

t
· χ(3,0)

generate the algebra A. Furthermore, a minimal set of relations satisfied by these generators is given
by u2u5 − u3u4 = 0, u3u5 − u21u2 − u1u2u4 = 0 and u25 − u21u4 − u1u

2
4 = 0. Hence

A ≃ k[x1, x2, x3, x4, x5]/(x2x5 − x3x4 , x3x5 − x21x2 − x1x2x4 , x
2
5 − x21x4 − x1x

2
4) .

The following result provides a calculation of the Altmann–Hausen presentation in terms of poly-
hedral divisors when we extend the scalars to an algebraic closure of k, see [Lan15, Proposition 3.9].

Lemma 1.9. Assume that k is a perfect field, and let k̄ be an algebraic closure of k. The absolut
Galois group of G

k̄/k acts on the closed points of the curve

C
k̄
= C ×Speck Spec k̄
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which can be identified with the set of the k̄-rational points of C(k̄). The orbit space C(k̄)/G
k̄/k can

be identified with C. We denote by S : C(k̄) → C the quotient map. If D =
∑

z∈C ∆z · z is a proper
σ-polyhedral divisor over C, then

A[C,D]⊗k k̄ = A
[
C(k̄),D

k̄

]
,

where D
k̄
is the proper σ-polyhedral divisor over C(k̄) defined by

D
k̄
=
∑

z∈C

∆z · S⋆(z) with S ⋆(z ) =
∑

z ′∈S−1(z)

z ′.

The proof of the following result is exactly the same as in [Lie10a, Lemma 1.6].

Lemma 1.10. Let A = A[C,D], where C is a regular curve over k with field of rational functions K0

and D =
∑

z∈C ∆z · z is a proper σ-polyhedral divisor. Consider the normalization A′ of the cyclic

extension A[sχe], where e ∈ M , sd ∈ A homogeneous of degree de, and d ∈ Z>0. If k is algebraically
closed in A′, then A′ = A[C ′,D′] where C ′ and D

′ are defined by the following.

(i) If A is elliptic, then A′ is also and C ′ is the regular projective curve associated with the algebraic
function field K0[s].

(ii) If A is non-elliptic, then A′ is also and C ′ = SpecA′
0, where A

′
0 is the normalization of A0 in

K0[s].
(iii) In both cases D

′ =
∑

z∈C ∆z · π∗(z), where π : C ′ → C is the natural projection.

2. Generalities on Ga-actions

Let X = SpecA be an affine T-variety over an arbitrary field k. In this section, we study the
relation between Ga-actions on X that are normalized by the torus action and homogeneous locally
finite iterative higher derivations.

Definition 2.1. Let ∂ = {∂(i)}i∈Z≥0
be a sequence of k-linear operators on A. We say that ∂ is a

locally finite iterative higher derivation (LFIHD for short) if it satisfies the following conditions:

(i) The operator ∂(0) is the identity map.
(ii) For any i ∈ Z≥0 and for all f1, f2 ∈ A we have the Leibniz rule

∂(i)(f1 · f2) =
i∑

j=0

∂(j)(f1) · ∂(i−j)(f2) .

(iii) The sequence ∂ is locally finite, i.e. for any f ∈ A there exists a positive integer r such that for
any i ≥ r, ∂(i)(f) = 0.

(iv) For all i, j ∈ Z≥0 and for any regular function f ∈ A we have
(
∂(i) ◦ ∂(j)

)
(f) =

(
i+ j

i

)
∂(i+j)(f) .

Furthermore, if ∂ verifies only (i), (ii), (iv), we say that ∂ is a iterative higher derivation. If ∂ verifies
only (i), (ii), we say ∂ is a Hasse-Schmidt derivation (see [Voj07]).

Consider an action
φ : Ga ×X → X

of the additive group Ga over k. Then the comorphism φ∗ gives a sequence ∂ = {∂(i)}i∈Z≥0
of k-linear

operators on A defined by the following way. For any f ∈ A we write

φ∗(f) =

∞∑

i=0

∂(i)(f) · xi ∈ A⊗k k[x], where k[x] = k[Ga]
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is the polynomial algebra in one variable. An easy computation shows that ∂ is an LFIHD [Miy68].
Conversely, given an LFIHD ∂ on A, its exponential map

ex∂ :=

∞∑

i=0

∂(i) xi

is the comorphism of a Ga-action on X = SpecA.

Remark 2.2. Consider an LFIHD ∂ on A. For a positive integer i we let
(
∂(1)

)◦ i
= ∂(1) ◦ . . . ◦ ∂(1)

be the composition of i copies of ∂(1). Denoting by p the characteristic of the field k, we have the
equality

∂(i) =

(
∂(1)

)◦ i0 ◦
(
∂(p)

)◦ i1 ◦ . . . ◦
(
∂(p

r)
)◦ ir

(i0)!(i1)! . . . (ir)!
,

where i =
∑r

j=0 ij · pj is the p-adic expansion1 of i. If further p = 0, then the Ga-action is therefore

uniquely determined by the locally nilpotent derivation ∂(1).

In characteristic zero, the algebra of invariants of a Ga-action on the varietyX = SpecA is the kernel
of the associated locally nilpotent derivation on A. The following definition describes the arbitrary
characteristic case.

Definition 2.3. For an LFIHD ∂ on the algebra A its kernel is the subset

ker ∂ :=
{
f ∈ A | ∂(i)(f) = 0, for all i ∈ Z>0

}
.

This is the subalgebra of invariants AGa ⊆ A for the Ga-action corresponding to ∂. The LFIHD ∂
is non-trivial if ker ∂ 6= A. A subspace V ⊆ A is called ∂-invariant if for any i ∈ Z≥0, we have the

inclusion ∂(i)(V ) ⊆ V . In particular, the subspace ker ∂ is ∂-invariant. For any f ∈ A we define the

multiplication f∂ as the sequence of k-linear operators f∂ = {f i∂(i)}i∈Z≥0
. It is easy to check that

f∂ is an LFIHD if and only if f ∈ ker ∂.

The next result provides some useful properties of Ga-actions, see [CM05, 2.1, 2.2] and [Cra04,
Example 3.5].

Proposition 2.4. For every non-trivial LFIHD ∂ on the algebra A the following hold.

(a) The subring ker ∂ ⊆ A is factorially closed, i.e., for all f1, f2 ∈ A we have f1f2 ∈ ker ∂ \ {0}
implies f1, f2 ∈ ker ∂.

(b) The subring ker ∂ is algebraically closed in A.
(c) The subring ker ∂ is a subring of codimension one in A.
(d) If char(k) = p > 0 and A = k[y] is the polynomial ring in one variable, then there are some

c1, . . . , cr ∈ k∗ and some integers 0 ≤ s1 < . . . < sr such that

ex∂(y) = y +
r∑

i=1

ci · xp
si .

(e) If A∗ is the set of units of A, then A∗ ⊆ ker ∂ so that A∗ = (ker ∂)∗.
(f) A principal ideal (f) = fA is ∂-invariant if and only if f ∈ ker ∂.

1 When p = 0 we make the convention that the p-adic expansion is i = i0.
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Proof. Assertions (a), (b) and (c) are obtained by using the degree function

A \ {0} → Z≥0, f 7→ degx e
x∂(f) .

In particular, we remark that (b) implies that the ring ker ∂ is normal whenever A is normal. Assertion
(d) is proven in [Cra04, Example 3.5]. Assertion (e) is an easy consequence of (a).

Using arguments from [FZ03, 2, 1.2 (b)] we give a short proof of (f). Assume that f is nonzero. By

Definition 2.1 (iii) we can consider d ∈ Z≥0 such that f ′ := ∂(d)(f) 6= 0 and belongs to ker ∂. If the
ideal (f) is ∂-invariant, then f ′ ∈ ker ∂ ∩ (f) so that f ′ = af for some a ∈ A. By Proposition 2.4 (a)
we obtain f ∈ ker ∂. Conversely, let a′ ∈ A. By Definition 2.1 (ii), for any i ∈ Z≥0 we have

∂(i)(a′f) = ∂(i)(a′)f and so the ideal (f) is ∂-invariant. �

In the next lemma, we study the extensions of LFIHDs on the algebra A to the localization ring
T−1A given by a multiplicative system T ⊆ A. We were inspired by well-known computations with
the Hasse-Teichmüller derivatives (cf. [JKS05, Section 2]). For this lemma, we let

E(i, j) =

{
(s1, . . . , sj) ∈ Z

j
>0 |

j∑

ℓ=1

sℓ = i

}
for all integers i, j ∈ Z>0, such that j ≤ i .

Lemma 2.5. Let T be a subset of A stable under multiplication such that 0 6∈ T and 1 ∈ T .

(i) If ∂ be an iterative higher derivation on the algebra A, then ∂ extends to a unique iterative higher

derivation ∂̄ = {∂̄(i)}i∈Z≥0
on the algebra T−1A given by

∂̄(i)
(
1

f

)
=

i∑

j=1

(−1)j

f j+1

∑

(s1,...,sj)∈E(i,j)

∂(s1)(f) . . . ∂(sj)(f)

for all f ∈ T and all i ∈ Z>0.
(ii) Furthermore, if ∂ is an LFIHD on A and if T ⊆ ker ∂, then the extension ∂̄ on T−1A is an

LFIHD.

Proof. The existence and the uniqueness of ∂̄ is given in [Mau10, 3.7, 5.8], [Voj07, Section 3]. Pro-

ceeding by induction the computation of ∂̄(i)( 1f ) is an easy consequence of Definition 2.1 (ii). The rest

of the proof is straightforward. �

As a consequence of the previous lemma, we obtain a result on equivariant cyclic coverings of an
affine variety with a Ga-action (see also [FZ05, Lemma 1.8]).

Corollary 2.6. Let K = FracA. Consider an LFIHD ∂ on A and let f ∈ ker ∂ be a nonzero element.
Let d ∈ Z>0 be an integer and let u be an algebraic element over K satisfying ud − f = 0. If B is the
integral closure of A[u] in its field of fractions, then ∂ extends to a unique LFIHD ∂′ on the algebra
B such that u ∈ ker ∂′.

Proof. By Lemma 2.5 we can extend the LFIHD ∂ on A to an iterative higher derivation on the field
K, and on the polynomial ring K[t] by letting ∂̄(i)(t) = 0 for any i ≥ 1. Consider the morphism of
K-algebras φ : K[t] → K[u], t 7→ u. Let P ∈ K[t] be the monic polynomial generating the ideal kerφ.

We can write td − f = FP , for some F ∈ K[t]. Remark that F is monic since P and td − f are
monic. Since A is integrally closed, we obtain F,P ∈ A[t]. Furthermore, for any i ∈ Z>0 we have

∂̄(i)(FP ) = ∂̄(i)(td− f) = 0. Note that A[t] is ∂̄-invariant and the restriction of ∂̄ to A[t] is an LFIHD.
Therefore, by Proposition 2.4 (a), we have P ∈ A[t] ∩ ker ∂̄ defining an iterative higher derivation ∂′

on K[u]. Clearly, the normalization B of the ring A[u] is again ∂′-invariant. The rest of the proof is
straightforward and we omitted it. �
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In the sequel, we let

A =
⊕

m∈σ∨
M

Amχ
m ⊆ K0[M ]

as in Section 1, where χm is also seen as the character of the split torus T corresponding to the lattice
vector m ∈M . Let us introduce the notion of homogeneous iterative higher derivations.

Definition 2.7. Let ∂ be an iterative higher derivation. The sequence ∂ is homogeneous if there
exists e ∈M such that

∂(i)(Amχ
m) ⊆ Am+ieχ

m+ie for all i ∈ Z≥0 and m ∈M .

If ∂ is non-trivial, then the vector e is called the degree of ∂ and is denoted by deg ∂. For the case
where k is of characteristic p > 0 we have the more general definition. Given r ∈ Z≥0 we say that ∂
is rationally homogeneous of degree e/pr (or of bidegree (e, pr) if we need to emphasize the vector e)
if it satisfies the following.

(i) ∂(ip
r)(Amχ

m) ⊆ Am+ieχ
m+ie, for all i ∈ Z≥0, and m ∈M .

(ii) ∂(j) = 0 whenever pr does not divide j.

In [Lie10a, Section 1.2] it is shown that a usual derivation on a multigraded algebra which sends
graded pieces into graded pieces is homogeneous. However this does not hold for higher derivations.
Note also that the kernel of a homogeneous LFIHD ∂ on A is an M -graded subalgebra of A. In the
sequel, we introduce some notation in order to have a geometrical interpretation of homogeneous and
rationally homogeneous LFIHDs in the case where k is an algebraically closed field2.

Notation 2.8. Assume that k is algebraically closed. Letting e ∈ M be a vector we denote by Ge

the group whose underlying set is T×Ga and multiplication law is defined by

(t1, α1) · (t2, α2) = (t1 · t2, χ−e(t2) · α1 + α2),

where ti ∈ T and αi ∈ Ga. Actually, every semidirect product of T ⋉ Ga given by a character
T → AutGa ≃ Gm is isomorphic to some Ge.

The following proposition is similar to [FZ05, Lemma 2.2]. For the convenience of the reader we
give a short proof.

Proposition 2.9. Assume that the field k is algebraically closed.

(i) If A is M -graded and ∂ is a homogeneous LFIHD on A of degree e, then the corresponding Ga-
action is normalized by the T-action. This means that the actions of the torus and the additive
group induce a Ge-action with comorphism given by

ψ∗(t, α) = t · eα∂(f),
where (t, α) ∈ Ge and f ∈ A.

(ii) Conversely, if Ge acts on X = SpecA, then the actions of the subgroups T and Ga give an
M -grading on A and a homogeneous LFIHD of degree e.

(iii) Assume further that char(k) = p > 0. Let Fpr : Ga → Ga, t 7→ tp
r

be the Frobenius map. Giving
a rationally homogeneous LFIHD ∂ on A of degree e/pr is equivalent to having a Ga-action on
X equal to φ ◦ (Fpr , idX), where φ is a Ga-action normalized by T.

2Note that the Notation 2.8 and Proposition 2.9 can be generalized in the setting of group schemes and of Hopf
algebras when k is arbitrary.
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Proof. (i) Given (t, α) ∈ Ge and f ∈ A, by homogeneity of ∂ we have

t · ∂(i)(f) = χie(t) ∂(i)(t · f), ∀i ∈ Z≥0. (1)

This gives

t · eα∂(f) =
∞∑

i=0

χie(t)αi ∂(i)(t · f) = eχ
e(t)α∂(t · f).

Hence for all (t1, α1), (t2, α2) ∈ Ge we obtain

ψ∗((t1, α1) · (t2, α2))(f) = eχ
e(t1)α1∂ ◦ eχe(t1t2)α2∂(t1t2 · f) = ψ∗(t1, α1)(ψ

∗(t2, α2)(f)).

We conclude that ψ∗ defines a Ge-action on the variety X = SpecA.
(ii) The action of the subgroup Ga ⊆ Ge yields an LFIHD ∂ on the algebra A. For α ∈ Ga and

f ∈ A we have ψ∗(1, α)(f) = eα∂(f). So for any t ∈ T we have

t · eα∂(f) = ψ∗((1, χe(t)α) · (t, 0))(f) = eχ
e(t)α∂(t · f).

Identifying the coefficients we obtain (1). Thus the LFIHD ∂ is homogeneous for the M -grading given
by the action of the subgroup T ⊆ Ge.

Assertion (iii) follows immediately from (i) and (ii). �

For an arbitrary field k we consider the following natural definition.

Definition 2.10. Assume that the torus T acts onX = SpecA. A Ga-action onX is normalized (resp.
normalized up to a Frobenius map) by the T-action if the corresponding LFIHD ∂ is homogeneous
(resp. rationally homogeneous).

To classify normalized Ga-action it is convenient to separate them into two types (see [FZ05, 3.11]
and [Lie10a, Lemma 1.11] for special cases).

Definition 2.11. A homogeneous LFIHD ∂ is of vertical type (or of fiber type) if ∂̄(i)(K0) = {0} for
any i ∈ Z>0. Otherwise ∂ is of horizontal type. We use similar terminology for normalized Ga-actions.
An affine T-variety endowed with a non-trivial vertical (resp. horizontal) Ga-action is called vertical
(resp. horizontal).

A homogeneous LFIHD of horizontal type is automatically non-trivial. In the vertical case, one can
extend a homogeneous LFIHD on A to an LFIHD on the semigroup algebra K0[σ

∨
M ].

Lemma 2.12. Let ∂ be a homogeneous LFIHD of vertical type on the M -graded algebra A. Then ∂
extends to a unique homogeneous locally finite iterative higher K0-derivation on the semigroup algebra
K0[σ

∨
M ].

Proof. By Lemma 2.5, the LFIHD ∂ extends to an iterative higher derivation ∂′ on K0[M ]. Since ∂ is
of vertical type, Definition 2.1 (ii) implies that each ∂′(i) is K0-linear. Consequently, if S ⊆ M is the
subsemigroup of weights of the M -graded algebra A, then B := K0[S] = A⊗k K0 is ∂′-invariant.

Let us show that ∂′|B is an LFIHD on B. Let fχm ∈ B be a homogeneous element with f ∈ K∗
0 .

Write fχm = f ′hχm for some f ′ ∈ K0 and for some h ∈ Am. There exists r ∈ Z>0 such that for any
i ≥ r,

∂′(i)(fχm) = f ′∂(i)(hχm) = 0.

Since every element of B is a sum of homogeneous elements we conclude that ∂′|B is a locally finite
iterative higher K0-derivation on B. Thus, ∂′|B extends to an LFIHD on the integral closure B̄ =
K0[σ

∨
M ]. �
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In the next lemma, we prove an elementary result concerning the LFIHDs of the polynomial algebra
in one variable. It will be useful in order to study horizontal Ga-actions in Section 5. We let ord0 be
the natural valuation

ord0 : k[t] \ {0} → Z≥0,
∑

i

ait
i 7→ min{i | ai 6= 0} .

Lemma 2.13. Assume that char(k) = p > 0. Let ∂ be an LFIHD on the polynomial algebra k[t] in
one variable such that

ex∂(t) = t+

r∑

i=1

λix
psi ,

where λi ∈ k∗ and 0 ≤ s1 < . . . < sr are integers. We also fix a non-negative integer i ∈ Z≥0.
If ℓ ∈ Z≥0 verifies ℓ ≥ ips1, then

∂(ip
s1 )(tℓ) = λi1

(
ℓ

i

)
tℓ−i

and therefore ord0 ∂
(ips1 )(tℓ) = ℓ− i whenever

(ℓ
i

)
6= 0.

Proof. First of all, we have

ex∂(tℓ) = ex∂(t)ℓ =

(
t+

r∑

i=1

λix
psi

)ℓ

=
∑

i0+...+ir=ℓ, i0,...,ir≥0

(
ℓ

i0 . . . ir

)
ti0

r∏

α=1

(λαx
psα )iα .

Considering the term of degree ips1 in x of the previous sum, we get the following conditions:

ips1 = i1p
s1 + . . .+ irp

sr and i0 + i1 + . . .+ ir = ℓ, (2)

where (i0, i1, . . . , ir) ∈ Zr+1
≥0 . Note that such a (r + 1)-tuple (i0, i1, . . . , ir) exists since ℓ ≥ ips1 and so

we can take
(i0, i1, . . . , ir) = (ℓ− i, i, 0, . . . , 0).

Let us show that this is the minimal choice for i0 ∈ Z≥0. Indeed, let (γ0, γ1, . . . , γr) ∈ Zr
≥0 be an

(r + 1)-uplet satisfying (2) with γ0 minimal. Then we have

ℓ− i = ℓ−
r∑

α=1

γαp
sα−s1 ≤ ℓ−

∑

α=1

γα = γ0.

Hence by minimality, γ0 = ℓ− i, so that i =
∑r

α=1 γα. Thus,(
r∑

γα

γα

)
ps1 =

r∑

α=1

γαp
sα .

We obtain (γ0, γ1, . . . , γr) = (ℓ− i, i, 0, . . . , 0). This implies in particular that ∂(ip
s1 )(tℓ) = λi1

(ℓ
i

)
tℓ−i as

required. �

3. Ga-actions on affine toric varieties

Let k be a field. In this section, we present a combinatorial description of normalized Ga-actions
up to a Frobenius map on affine toric varieties over k.

For a rational cone σ ⊆ NR we recall that σ(1) denotes its set of extremal rays. As usual we write
by the same letter a ray of σ and its primitive vector. The following is a classical definition, see for
instance [Dem70, Lie10a, AL12].

Definition 3.1. Let σ ⊆ NR be a strongly convex rational cone. A vector e ∈M is called a Demazure’s
root (or for simplicity called root) if the following hold.
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(i) There exists ρ ∈ σ(1) such that 〈e, ρ〉 = −1.
(ii) For any ρ′ ∈ σ(1) \ {ρ} we have 〈e, ρ′〉 ≥ 0.

The extremal ray ρ satisfying 〈e, ρ〉 = −1 is called the distinguished ray of the root e ∈M . We denote
by Rt σ the set of Demazure’s roots of the cone σ. By [Lie10a, Remark 2.5] every element of σ(1) is
the distinguished ray of a root of Rt σ.

Since the subset k[T]∗ generates the algebra k[T], Proposition 2.4 (e) implies that k[T] has no
non-trivial LFIHDs. So without loss of generality, in the sequel, we may only consider toric varieties
Xσ = Speck[σ∨M ] given by a nonzero strongly convex rational cone σ ⊆ NR.

Example 3.2. Let e ∈ Rtσ be a root. Consider the homogeneous derivation ∂
(1)
e on the semigroup

algebra k[σ∨M ] given by

∂(1)e (χm) = 〈m,ρ〉χm+e for all m ∈ σ∨M ,

where ρ is the distinguished ray of e. Then ∂
(1)
e is locally nilpotent and yields a Ga-action on Xσ in

the following natural way: the homogeneous LFIHD ∂e is given by the formula3

∂(i)e (χm) =

(〈m,ρ〉
i

)
· χm+ie for all i ∈ Z≥0 and m ∈ σ∨M .

The kernel of ∂e is k[ρ⋆M ], where ρ⋆ ⊆ σ∨ is the dual face of ρ.
Assume now that char(k) = p > 0. Starting from ∂e and an integer r ∈ Z≥0 we can also define a

rationally homogeneous LFIHD ∂e,r of degree e/pr ∈MQ. Its exponential map is

ex∂e,r =

∞∑

i=0

∂(i)e xip
r

.

We check easily that ker ∂e,r = k[ρ⋆M ]. In addition, for any m ∈ σ∨M we have

degx e
x∂e,r(χm) = pr〈m,ρ〉.

We start by describing the kernel and the possible degree vectors of a homogeneous LFIHD on
k[σ∨M ], where σ is a nonzero strongly convex rational cone.

Lemma 3.3. Consider a non-trivial homogeneous LFIHD ∂ on k[σ∨M ]. Then the following statements
hold.

(i) There exists ρ ∈ σ(1) such that ker ∂ = k[ρ⋆ ∩M].
(ii) The degree e ∈ M of the sequence ∂ is a Demazure’s root of σ and ρ is the distinguished ray of

e.

Proof. (i) By Proposition 2.4 (a) we have ker ∂ = k[W ∩ σ∨M ] for some linear subspace W ⊆ MR.
Assume thatW ∩σ∨ is not a face of σ∨. ThenW divides σ∨ into two parts. We can find m ∈ σ∨M such

that for any r ∈ Z≥0, m+ re 6∈W . Since χm 6∈ ker ∂, there is some r0 ∈ Z>0 satisfying ∂(r0)(χm) 6= 0.

Hence ∂(r0)(χm) is homogeneous of degree m+ r0e. By the previous argument

∂(r
′
1) ◦ ∂(r0)(χm) 6= 0 for some r′1 ∈ Z>0 .

By Definition 2.1 (iv) we have ∂(r0+r′1)(χm) 6= 0 and so we let r1 = r0+ r
′
1. Proceeding by induction

we can build a strictly increasing sequence of positive integers {rj}j∈Z≥0
verifying ∂(rj)(χm) 6= 0 for

any j ∈ Z≥0. This contradicts the fact that ∂ is an LFIHD. Thus W ∩ σ∨ is a face of σ∨. Since ker ∂
is a subring of codimension one, we have W ∩ σ∨M = ρ⋆ ∩M for some extremal ray ρ ∈ σ(1).

(ii) If e ∈ σ∨M , then the same argument as before gives a contradiction. The rest of the proof follows
as in [Lie10a, Lemma 2.4]. �

3We set the convention that
(

r1
r2

)

= 0, for all r1, r2 ∈ Z≥0 with r1 < r2.
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In the following lemma, we state some properties of a homogeneous LFIHD on k[σ∨M ].

Lemma 3.4. Let ∂ be a non-trivial homogeneous LFIHD on k[σ∨M ] of degree e and with distinguished

ray ρ. For every i ∈ Z≥0 we let ci : σ
∨
M → k be such that ∂(i)(χm) = ci(m)χm+ie. Then the sequence

{ci}i∈Z≥0
of functions on σ∨M satisfies the following conditions.

(i) The map c0 is the constant map m 7→ 1.
(ii) For all m,m′ ∈ σ∨M we have

ci(m+m′) =

i∑

j=0

ci−j(m) · cj(m′). (3)

(iii) For every m ∈ σ∨M there exists r ∈ Z≥0 such that ci(m) = 0 for all i ≥ r.
(iv) For every i, j ∈ Z≥0 we have

(
i+ j

i

)
ci+j(m) = ci(m+ je) · cj(m) for all m ∈ σ∨M .

(v) For every i ∈ Z≥0 we have ci(m+m′) = ci(m) for all m ∈ σ∨M and all m′ ∈ ρ⋆ ∩M .

Proof. Assertions (i), (ii), (iii) and (iv) follow from the definition of LFIHD. Let us show (v). Since

χm′ ∈ ker ∂, for any j ∈ Z>0 we have cj(m
′) = 0. Applying (3) we obtain ci(m+m′) = ci(m). �

The next result provides a classification of normalized Ga-actions on Xσ . See [Lie10a, Theorem 2.7]
for the case where char(k) = 0.

Theorem 3.5. Let σ ⊆ NR be a nonzero strongly convex rational cone. Every non-trivial Ga-action
on Xσ normalized by the T-action is given by a homogeneous LFIHD of the form λ∂e, where ∂e is as
in Example 3.2, e ∈ Rt σ and λ ∈ k∗.

Proof. Let ∂ be a non-trivial homogeneous LFIHD of degree e on k[σ∨M ]. By Lemma 3.3, e is a root
of σ and ker ∂ = k[ρ⋆ ∩M ], where ρ ∈ σ(1) is the distinguished ray of the root e.

Let us first show that there exists a lattice vector m ∈ σ∨M such that 〈m,ρ〉 = 1. Let m′ ∈ σ∨M
not contained in the face ρ⋆ so that 〈m′, ρ〉 > 1. By [Lie10a, Lemma 2.4], we have that m :=
m′ + (〈m′, ρ〉 − 1) · e ∈ σ∨M satisfies 〈m,ρ〉 = 1.

We let ci : σ
∨
M → k be the maps defined in Lemma 3.4. Let B = k[x] be the polynomial algebra of

one variable. Using the basis (1, x, x2, . . .) we define a sequence of linear operators ∂̄ = {∂̄(i)}i∈Z≥0
on

the k-linear space B as follows: fixing a vector m ∈ σ∨M verifying 〈m,ρ〉 = 1 we define

∂̄(i)(xr) = ci(rm)xr−i for all i, r ∈ Z≥0 .

We claim that ∂̄ is well defined. Indeed, let i, r ∈ Z≥0 be such that i > r, then

∂(i)(χrm) = ci(rm)χrm+ie ∈ k[σ∨M ] and 〈rm+ ie, ρ〉 = r − i < 0 so that ci(rm) = 0 .

Hence, ∂̄(i)(xr) = ci(rm)xr−i = 0 for all i > r.
By Lemma 3.4, the sequence of operators ∂̄ is an LFIHD on B. For instance, let us show that ∂̄

satisfies Definition 2.1 (iv). Letting i, j ∈ Z≥0 we have

∂̄(i) ◦ ∂̄(j)(xr) = ∂̄(i)(cj(rm)xr−j) = ci((r − j)m) · cj(rm)xr−i−j.

Since e ∈ Rt σ is a root having ρ as distinguished ray, it follows that

v := rm+ je− (r − j)m = j(m+ e) ∈ ρ⋆ ∩M.

By Lemma 3.4 (v), we have

ci((r − j)m) = ci((r − j)m+ v) = ci(rm+ je).
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Therefore by Lemma 3.4 (iv), we conclude that

∂̄(i) ◦ ∂̄(j)(xr) =
(
i+ j

i

)
ci+j(rm)xr−i−j =

(
i+ j

i

)
∂̄(i+j)(xr),

as required. Conditions (i), (ii), (iii) of Definition 2.1 follow from similar straightforward computa-
tions.

Since ∂̄ is homogeneous for the natural graduation of B, by Proposition 2.4 (d) there exists λ ∈ k

such that every ci verifies

ci(rm) =

(
r

i

)
λi

for any r ∈ Z≥0. We use the convention λ0 = 1 whenever λ = 0. Let w ∈ σ∨M be a lattice vector. The
elements

w + 〈w, ρ〉e, 〈w, ρ〉e + 〈w, ρ〉m
belong to ρ⋆ ∩M . By Lemma 3.4 (v) this implies

ci(w) = ci (w + 〈w, ρ〉e + 〈w, ρ〉m) = ci (〈w, ρ〉m) =

(〈w, ρ〉
i

)
λi. (4)

Since ∂ is non-trivial, we have λ ∈ k∗. By virtue of (4) the sequence ∂ is given by the LFIHD λ∂e
(see Example 3.2). �

Example 3.6. Let M = Z2 and let σ be the strongly convex rational cone generated in the vector
space NR = R2 by the vectors and ρ = (0, 1) and ρ′ = (2,−1). The dual cone σ∨ is the cone in MR

generated by the vectors (1, 0) and (1, 2). Let A = k[σ∨M ] and let X = SpecA be the corresponding
toric variety. The algebra A is generated by the elements

u1 = χ(1,0), u2 = χ(1,1) and u3 = χ(1,2) .

The generators satisfy the relation u1u3 = u22 and so A = k[x, y, z]/(xz − y2). The lattice vector
e = (0,−1) ∈M is a root of σ since 〈e, ρ〉 = −1 and 〈e, ρ′〉 = 1.

e = (0,−1)

u3

u2

u1

σ∨ ⊆MRσ ⊆ NR

0 0

The corresponding LFIHD ∂e of Example 3.2 is given by

∂(0)e (x) = x, ∂(i)e (x) = 0, for all i > 0 ;

∂(0)e (y) = y, ∂(1)e (y) = x, ∂(i)e (y) = 0, for all i > 1 ;

∂(0)e (z) = z, ∂(1)e (z) = 2y, ∂(2)e (z) = x, ∂(i)e (z) = 0, for all i > 2 .

Hence, the corresponding normalized Ga-action φ is defined by

φ : Ga ×X → X, where (λ, (x, y, z)) 7→ (x, y + λx, z + 2λy + λ2z) .
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As an immediate consequence of Theorem 3.5, we obtain a description of all normalized Ga-actions
up to a Frobenius map.

Corollary 3.7. Let σ ⊆ NR be a nonzero strongly convex rational cone. Then for every root e ∈ Rtσ
with distinguished ray ρ, every integer r ∈ Z≥0, and every scalar λ ∈ k∗, there is a non-trivial rationally
homogeneous LFIHD ∂ on the algebra k[σ∨M ] whose exponential is given by

ex∂(χm) =

∞∑

i=0

(〈m,ρ〉
i

)
λi χm+iexip

r

for all m ∈ σ∨M .

Conversely, every rationally homogeneous LFIHD on k[σ∨M ] arises in this way.

In the next corollary, we generalize to the case of positive characteristic some results in [Lie10a,
Section 2]. See also [Kur03, Corollary 3.5] for a more general statement in the characteristic zero case.
The proofs are similar to those in [Lie10a] so we omit them.

Corollary 3.8. Let σ ⊆ NR be a strongly convex rational, then the following hold.

(i) For any normalized up to a Frobenius map Ga-actions in Speck[σ∨M ] the algebra of invariants is
finitely generated.

(ii) There is a finite number of rationally homogeneous LFIHDs on k[σ∨M ] with pairwise distinct
kernels.

4. Ga-actions of vertical type

In this section, we classify normalized Ga-actions of vertical type on an affine T-variety X = SpecA
of complexity one over a field k. See [Lie10b] for higher complexity when the base field is algebraically
closed of characteristic zero.

To achieve our classification, we place ourselves in the context of Section 1 by letting A = A[C,D],
where C is a regular curve over k and D =

∑
z∈C ∆z · z is a proper σ-polyhedral divisor. Hence,

A[C,D] =
⊕

m∈σ∨
M

Am · χm ⊆ K0[M ], where Am = H0
(
C,OC(D(m))

)
and K0 = k(C) .

The following result gives some general properties of homogeneous LFIHDs on theM -graded algebra
A. Recall that the affine T-variety X = SpecA is called elliptic if A0 = k.

Lemma 4.1. Let ∂ be a homogeneous LFIHD on A of degree e. Then the following statements hold.

(i) If ∂ is vertical, then e 6∈ σ∨ and ker ∂ =
⊕

m∈τM
Amχ

m for some codimension one face τ of the

cone σ∨. In particular, the algebra ker ∂ is finitely generated.
(ii) If A is non-elliptic, then ∂ is vertical if and only if e 6∈ σ∨.

Proof. (i) By Lemma 2.12 we may extend ∂ to a homogeneous LFIHD ∂̄ on the semigroup K0-algebra
K0[σ

∨
M ]. By Lemma 3.3 we have e ∈ Rt σ and so e 6∈ σ∨. Moreover, we obtain ker ∂̄ = K0[τM ] for

some codimension one face τ of σ∨. Thus,

ker ∂ = A ∩ ker ∂̄ =
⊕

m∈τM

Amχ
m.

As a consequence of [AH06, Lemma 4.1], the algebra ker ∂
is finitely generated. (ii) Assume that A is non-elliptic and let ∂̄ be the extension of ∂ on the K0-

algebra K0[M ]. If e 6∈ σ∨, then for any i ∈ Z>0 we have ∂(i)(A0) = Aie = {0}. Since K0 = FracA0,
we conclude that ∂ is vertical. �
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As remarked in [Lie10a, Remark 3.2], in the elliptic case, the M -graded algebra admits in general
LFIHDs ∂ of horizontal type satisfying deg ∂ 6∈ σ∨.

In the following, we introduce some combinatorial data on A = A[C,D] in order to describe its
vertical normalized Ga-actions.

Notation 4.2. Let e ∈ Rt σ be a root of σ with distinguished ray ρ and recall that D(e) =∑
z∈C minv∈∆z(0)〈e, v〉 · z. We denote by Φe the A0-module H0(C,OC(D(e))). Furthermore, if ϕ ∈ Φe

is a nonzero section, then for any vector m ∈ σ∨ belonging to MQ we have

divϕ ≥ −D(e) ≥ D(m)−D(m+ e). (5)

Starting with the previous combinatorial data, we may construct a homogeneous LFIHD of vertical
type, as follows:

Lemma 4.3. Let e ∈ Rt σ be a root of σ with distinguished ray ρ and let ϕ ∈ Φe be a section. Denote
∂̄ = ϕ∂e, where ∂e is the LFIHD on the K0-algebra K0[σ

∨
M ] corresponding to the root e as in Example

3.2. Then for any i ∈ Z≥0 we have ∂̄(i)(A) ⊆ A. Consequently, the sequence

∂e,ϕ :=
{
∂̄(i)|A : A→ A

}
i∈Z≥0

defines a homogeneous LFIHD of vertical type on A.

Proof. Fix i ∈ Z>0 and let f ∈ Am be nonzero such that div f + ⌊D(m)⌋ ≥ 0. If ∂(i)(fχm) 6= 0 and
ϕ 6= 0, then by (5) we have

div
(
∂(i)(fχm)/χm+ie

)
+ ⌊D(m+ ie)⌋ = idivϕ+ div f + ⌊D(m+ ie)⌋

≥ i(D(m/i) −D(m/i+ e))− ⌊D(m)⌋+ ⌊D(m+ ie)⌋
≥ {D(m)} − {D(m+ ie)}.

Since the coefficients of the Q-divisor {D(m)} − {D(m+ ie)} belong to ]− 1, 1[ we have

div
(
∂(i)(fχm)/χm+ie

)
+ ⌊D(m+ ie)⌋ ≥ 0,

proving that A is ∂-invariant. The rest of the proof is straightforward and left to the reader. �

Our next theorem gives a classification of normalized vertical Ga-actions on an affine T-variety
X = SpecA[C,D] of complexity one.

Theorem 4.4. Let A = A[C,D]. If e ∈ Rt σ is a root of σ with distinguished ray ρ and ϕ ∈ Φe is
a section, then ∂e,ϕ is a homogeneous vertical LFIHD on A. Conversely, every homogeneous vertical
LFIHD on A is of the form ∂e,ϕ, where e ∈ Rt σ and ϕ ∈ Φe.

Proof. The direct implication corresponds to Lemma 4.3. To prove the converse statement, let ∂ be a
non-trivial homogeneous vertical LFIHD on A. By Lemma 2.12, ∂ extends to a locally finite iterative
higher K0-derivation ∂̄ on the semigroup algebra K0[σ

∨
M ]. By Theorem 3.5, ∂̄ is given by ϕ∂e as in

Example 3.2, for some ϕ ∈ K∗
0 and some root e ∈ Rt σ.

To conclude the proof, let us show that ϕ ∈ Φe. Let ρ be the distinguished ray of e. For every point
z ∈ C we let vz be a vertex of ∆z where the minimum minv∈∆z(0)〈e, v〉 is achieved so that

D(e) =
∑

z∈C

〈e, vz〉 · z .

For every z ∈ C we let ωz = {m ∈ σ∨ |h∆z(m) = 〈m, vz〉}. The set ωz ⊆MR is a full dimensional cone
in MR (see [AH06, Section 1]).
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Let also mz ∈ σ∨M \ ρ⋆M be a lattice vector such that mz and mz + e belong to ωz, degD(mz) ≥ g
and 〈mz, ρ〉 6∈ pZ, where p is characteristic of the field k and g the genus of the curve C. It is always
possible to choose such mz since ωz is full dimensional, the polyhedral divisor D is proper, and the
lattice vector ρ is primitive. According to the Riemann-Roch Theorem we have Amz 6= {0}.

Furthermore, the inclusion ∂(1)(Amzχ
mz) ⊆ Amz+eχ

mz+e implies ϕAmz ⊆ Amz+e. Consequently,
for any z ∈ C we have

divϕ ≥ D(mz)−D(mz + e) .

The coefficient of the divisor D(mz)−D(mz + e) at the point z ∈ C is −〈vz, e〉. Thus, divϕ ≥ −D(e)
and we have ϕ ∈ Φe, as required. �

In analogy with the toric case, the family of vertical normalized Ga-actions on X = SpecA having
pairwise distinct kernels is a finite set. The next result provides a combinatorial criterion for A to
admit a homogeneous non-trivial LFIHD of vertical type.

Corollary 4.5. Let A = A[C,D] and let ρ ⊆ σ be an extremal ray. Then, the M -graded algebra A
admits a non-trivial vertical homogeneous LFIHD such that the distinguished ray of e = deg ∂ ∈ Rtσ
is ρ if and only if one of the following conditions holds.

(i) C is affine, or
(ii) C is projective and ρ ∩ degD = ∅.

Proof. If C is an affine curve, then every divisor on C has a global nonzero section and so for any
e ∈ Rt σ we have dimΦe > 0. In this case, the corollary follows from Theorem 4.4.

Assume that C is projective and fix a root e ∈ Rt σ with distinguished ray ρ. Let us notice that for
any m ∈ ρ⋆M we have e+m ∈ Rt σ. Furthermore

D(e+m) ≥ D(m) +D(e) and so degD(m+ e) ≥ degD(m) + degD(e) .

Hence, if ρ∩degD = ∅, then we have dimΦe+m > 0 for some m ∈ ρ⋆M , by the Riemann-Roch Theorem
and by the properness of D.

Conversely, assume that ρ ∩ degD 6= ∅. Since we have 〈e, ρ〉 = −1, there exists a vertex v of degD
such that 〈e, v〉 < 0 and therefore degD(e) < 0. Under these latter conditions we have dimΦe = 0.
Again, we conclude by Theorem 4.4 in the case where C is projective. �

Example 4.6. Let the notation be as in Example 1.8. Let ρ be the ray of σ spanned by (1, 0) and let
ρ′ be the ray of σ spanned by (0, 1). We have degD ∩ ρ 6= ∅ and degD ∩ ρ′ = ∅. Hence, Corollary 4.5
shows that only ρ′ can be the distinguished ray of the degree e of an LFIHD ∂ of vertical type.

5. Ga-actions of horizontal type

The purpose of this section is to classify all horizontal Ga-actions on affine T-varieties of complexity
one over a perfect field in terms of polyhedral divisors. The reader may consult [Lie10a, Section 3.2]
for the case where k is algebraically closed and of characteristic zero. Let as before A = A[C,D],
where C is a regular curve over k and D =

∑
z∈C ∆z · z is a proper σ-polyhedral divisor. Hence,

A[C,D] =
⊕

m∈σ∨
M

Am · χm ⊆ K0[M ], where Am = H0
(
C,OC(D(m))

)
and K0 = k(C) .

In this section, several results will require the assumption that k is perfect so the classification will
only hold in this case. Nevertheless, the statements that we can prove without asking for k to be
perfect are stated in general.

According to the Rosenlicht Theorem [Ros63], in the case where k is algebraically closed, the
following lemma implies in particular that an affine horizontal T-variety of complexity one has an
open orbit for its corresponding T ⋉Ga-action.
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Lemma 5.1. Let X = SpecA, where A = A[C,D] and let ∂ be a homogeneous LFIHD on A. Then
∂ is horizontal if and only if k(X)Ga ∩ k(X)T = k.

Proof. Let L = k(X)Ga ∩ k(X)T. Assume that ∂ is horizontal and that k(X)T/L is an algebraic field
extension. Consider F ∈ k(X)T a nonzero invariant rational function. Remarking that k(X)Ga is the
field of fractions of the ring ker ∂, we can find a ∈ ker ∂ such that aF is integral over ker ∂. Since A
is normal, aF ∈ A, and by Proposition 2.4(b) we have aF ∈ ker ∂. Hence F ∈ k(X)Ga , contradicting
the fact that ∂ is of horizontal type. Since k(X)T/k is of transcendence degree one, we have that L/k
is algebraic. By our convention k is algebraically closed in k(X) which yields L = k. The converse
implication follows directly from the definition of horizontal and vertical LFIHDs. �

Our next lemma shows that the existence of a homogeneous LFIHD on the algebra A = A[C,D]
imposes some restrictions on the curve C. We refer the reader to [FZ05, 3.5], [Lie10a, 3.16] for the
case where the base field is algebraically closed of characteristic zero.

Lemma 5.2. Assume that A = A[C,D] admits a homogeneous LFIHD ∂ of horizontal type. Consider
ω (resp. L ) the cone (resp. sublattice) generated by the weights of ker ∂ and let ωL = ω ∩ L. Then
the following statements hold.

(i) The kernel of ∂ is a semigroup algebra, i.e.,

ker ∂ =
⊕

m∈ωL

k · ϕmχ
m, where ϕm ∈ k(C)∗ .

(ii) We have C ≃ P1
k
, in the case where A is elliptic.

(iii) If k is perfect, then C ≃ A1
k
in the case where A is non-elliptic.

Proof. (i) Let a, a′ ∈ ker ∂ \ {0} be homogeneous elements of the same degree. By Lemma 5.1, we
have a/a′ ∈ k(X)Ga ∩ k(X)T = k. Thus ker ∂ is a semigroup algebra. By Proposition 2.4 (b) we have
that ker ∂ is integrally closed, hence normal. This yields (i).

(ii) Let K = FracA and consider E = KGa . By [CM05, Lemma 2.2] there exists a variable x over
the field E such that E(x) = K. By (i), the extension E/k is purely transcendental and so is K/k.
Since k(C) ⊆ K, the regular projective curve C is unirational. According to the Luröth Theorem, it
follows that C ≃ P1

k
.

(iii) Assume that A is non-elliptic. Let k̄ be an algebraic closure of k, so that the field extension
k̄/k is separable. Let B be the algebra A ⊗k k̄. Then B is a normal finitely generated M -graded
domain (see Lemma 1.9). Note th at the graded piece B0 is A0 ⊗k k̄. Consequently, ∂ extends to
a homogeneous LFIHD of horizontal type on the k̄-algebra B. Now, we can apply the geometrical
argument in [Lie10a, Lemma 3.16] to conclude that we have B0 ≃ k̄[t], for some variable t over k̄. By
separability of k̄/k, this yields A0 ≃ k[t] (see e.g. [Rus70, Asa05]). �

The preceding lemma implies that the kernel of a horizontal homogeneous LFIHD on A is finitely
generated. This result can be obtained independently from [Kur03, Theorem 1.3] in the characteristic
zero case. Note also that the kernel of a non-trivial LFIHD on a normal unirational surface V over a
perfect field k such that k[V ]∗ = k∗ is a polynomial algebra (see [Nak78, Theorem 2]).

5.3. In view of the above results, in the following we let C = A1
k
or C = P1

k
. Assume that A has a

homogeneous LFIHD ∂ of horizontal type and let

ker ∂ =
⊕

m∈ωL

k · ϕmχ
m

be the kernel of ∂. We also assume that k(C) = k(t) for some local parameter t and, when C is affine,
we let k[C] = k[t] be its coordinate ring.
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Lemma 5.4. Keeping the notation as above, the following statements hold.

(i) If C = A1
k
, then for any m ∈ ωL we have divϕm +D(m) = 0.

(ii) Assume that C = P1
k
. Then there exists a point z∞ ∈ C such that for any m ∈ ωL the effective

Q-divisor divϕm +D(m) has at most z∞ in its support.
(iii) The cone ω is a maximal cone of the quasifan Λ (D) (see Definition 1.5) in the non-elliptic case,

and of Λ(D|P1
k
\{z∞}) for the elliptic case.

(iv) The rank of the lattice L is equal to n = rankM . The lattice M is spanned by e := deg ∂ and L.
Furthermore, if d is the smallest positive integer such that de ∈ L, then we can write every vector
m ∈M in an unique way as m = l + re for some l ∈ L and some r ∈ Z such that 0 ≤ r < d.

(v) If k is perfect, then the point z∞ in (ii) is rational, i.e., the residue field of z∞ is k.

Proof. (i) Given a lattice vector m ∈ σ∨M we let

Am = fm · k[t] ,
where fm ∈ k(t). Assume that m ∈ ωL. Then we have ϕm = Ffm, for some nonzero F ∈ k[t]. By
proposition 2.4(a) the polynomial F is constant. Hence,

divϕm + ⌊D(m)⌋ = 0.

Consequently, for any r ∈ Z≥0 we obtain

r⌊D(m)⌋ = −r divϕm = − divϕrm = ⌊D(rm)⌋.
This shows that D(m) is integral when m ∈ ωL.

(ii) Assume that there exists m ∈ ωL such that

divϕm +D(m) ≥ [z∞] + [z0] ,

where z0, z∞ are distinct points of C. Denote by ∞ the point at the infinity in C = P1
k
for the local

parameter t. Let p0(t), p∞(t) ∈ k(t) be two rational functions verifying the following: if the point z0
(resp. z∞) belongs to A1

k
= Speck[t], then p0(t) (resp. p∞(t)) is the monic polynomial generator of

the ideal of z0 (resp. z∞) in k[t]. Otherwise, z0 = ∞ (resp. z∞ = ∞) and we let p0(t) = 1/t (resp.
p∞(t) = 1/t).

Let f := p0(t)/p∞(t). The rational functions fϕm and f−1ϕm belong to Am. By Proposition 2.4 (a)
we have

fϕmχ
m · f−1ϕmχ

m = ϕ2mχ
2m ∈ ker ∂, and so fϕmχ

m, f−1ϕmχ
m ∈ ker ∂ ,

yielding a contradiction with Lemma 5.2 (i). Hence, divϕm+D(m) is supported in at most one point.
(iii) By (i) and (ii), the map m 7→ D(m) in the non-elliptic case, and the map m 7→ D|P1

k
\{z∞}(m)

in the elliptic case, are linear in the cone ω. This implies that there exists a maximal cone ω0 belonging
to Λ(D) in the non-elliptic case, and belonging to Λ(D|P1

k
\{z∞}) in the elliptic case, such that ω ⊆ ω0.

Let us show the reverse inclusion ω0 ⊆ ω. Let m ∈ ω0. Changing m by an integral multiple, we
may assume m ∈ L and D(m) integral. By Lemma 5.2 (i) and Proposition 2.4 (c), the cone ω is full
dimensional in MR. Hence, there exists m′ ∈ ωL such that m+m′ ∈ ωL. Consider a nonzero section
fm ∈ Am such that

div fm +D(m) = 0

in the non-elliptic case, and such that

(div fm +D(m)) |P1
k
\{z∞} = 0

in the elliptic case. It follows that

fmχ
m · ϕm′χm′

= λϕm+m′χm+m′

for some λ ∈ k∗. Therefore, fmχ
m ∈ ker ∂ and again by Proposition 2.4 (a) we have m ∈ ω.
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(iv) According to the fact that σ∨M spans M and that ∂ is a homogeneous LFIHD on A, for any
m ∈ M we have m + se ∈ L for some s ∈ Z. Changing r := −s by the remainder of the euclidian
division of r by d, if necessary, we obtain m = l + re, where l ∈ L and 0 ≤ r < d. The minimality of
d implies that this latter decomposition is unique.

(v) Assume that k is perfect and fix k̄ an algebraic closure of k. Consider the algebra B = A⊗k k̄.
If we let D =

∑
z∈C ∆z · z, then by Lemma 1.9 the polyhedral divisor

D
k̄
=
∑

z∈C

∆z · S⋆(z)

over P1
k̄
satisfies

B =
⊕

m∈σ∨
M

Bmχ
m, where Bm = H0(P1

k̄
,OP1

k̄

(D
k̄
(m))) .

We can also extend ∂ to a homogeneous LFIHD ∂
k̄
of horizontal type on B. For any m ∈ ωL we have

ϕmχ
m ∈ ker ∂

k̄
and there exists a rational non-negative number λm such that

divϕm +D(m) = λm · z∞.
Applying S⋆ to the previous equality we obtain

div
k̄
ϕm +D

k̄
(m) = λm · S⋆(z∞).

Assume that z∞ is not a rational point and that λm > 0 for some lattice vector m ∈ ωL. Changing m
by a multiple we may suppose that λm is greater than 1. Since the field extension k̄/k is separable,
the polynomial pz∞(t) in the proof of (ii) has at least two distinct roots, say z1, z2 ∈ k̄. Note that the
points z1, z2 belong to the support of S⋆(z∞). Considering the non-constant rational function

f = (t− z1)/(t− z2),

we fall again into a contradiction with Lemma 5.2 (i) since

fϕmχ
m · f−1ϕmχ

m = ϕ2mχ
2m ∈ ker ∂

k̄
, and so fϕmχ

m, f−1ϕmχ
m ∈ ker ∂

k̄
.

�

In the sequel, we let the notation be as in 5.3. Without loss of generality, whenever k is perfect, in
the elliptic case we can assume that z∞ is the rational point ∞ for the local parameter t.

Lemma 5.5. Let k be a perfect field. The following statements hold.

(i) If C = P1
k
, then the normalization of the subalgebra A[t] ⊆ k(t)[M ] is A′ = A[A1

k
,D|A1

k

], where

A1
k
= Speck[t].

(ii) If the degree of ∂ belongs to ω and the evaluation of the polyhedral divisor D|A1
k

is linear, then

∂ extends to a homogeneous LFIHD ∂′ on A′ of horizontal type. Furthermore, we have ker ∂ =
ker ∂′.

(iii) Let d be the smallest positive integer such that for any m ∈ ωM the divisor D(d ·m) is integral.
Then we have d ·M ⊆ L.

Proof. (i) This follows from [Lan15, Theorem 2.5].
(ii) Letting

A′ =
⊕

m∈σ∨
M

A′
mχ

m, where A′
m = H0(A1

k,OA1
k

(D|A1
k

(m))) ,

for any m ∈ σ∨M we can write A′
m = ϕm · k[t] with ϕm is a nonzero rational function satisfying

divϕm + ⌊D|A1
k

(m)⌋ = 0 .

If m ∈ ωL, we can assume that ϕm is as in Lemma 5.4 (ii).
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By Lemma 2.5, we may extend ∂ to a homogeneous iterative higher derivation ∂′ on the semigroup
algebra k(t)[M ]. Denote by ∂′(i) the i-th term of ∂′. Consider f ∈ A′

m for a lattice vector m ∈ σ∨M
and fix an integer i ∈ Z>0. We will show that ∂′(i)(fχm) ∈ A′.

By the properness of D and Lemma 5.4 (ii) with z∞ = ∞, we can find a lattice vector m′ ∈ ωL

verifying the following. The vectors m,m′ belong to a same maximal cone of Λ(D) and the coefficient
in ∞ of the divisor divϕm′ +D(m′) is integral, positive, and greater than that of − div f − ⌊D(m)⌋.
Therefore

div fϕm′ + ⌊D(m′ +m)⌋ = div f + ⌊D(m)⌋ + divϕm′ +D(m′) ≥ 0.

In particular, ϕm′f belongs to Am+m′ . Hence it follows that

ϕm′χm′

∂′(i)(fχm) = ∂(i)(ϕm′fχm′+m) ∈ Am′+m+ieχ
m′+m+ie.

By our assumption we have e ∈ ω = σ∨ so that m + ie ∈ σ∨M . Since D|A1
k

is linear and D(m′) is

integral, we obtain the following identities of Q-divisors over A1
k
:

− divϕm′+m+ie = ⌊D|A1
k

(m′ +m+ ie)⌋ = ⌊D|A1
k

(m′)⌋+ ⌊D|A1
k

(m+ ie)⌋ .
Hence,

ϕm′+m+ie = λϕm′ · ϕm+ie for some λ ∈ k∗.

Consequently, this implies

ϕm′χm′

∂′(i)(fχm) ∈ Am′+m+ieχ
m′+m+ie ⊆ ϕm′ · ϕm+ie · k[t]χm′+m+ie .

This yields

∂′(i)(fχm) ∈ ϕm+ie · k[t]χm+ie = A′
m+ieχ

m+ie ⊆ A′,

as required. We conclude that the subalgebra A′ is ∂′-invariant.
Next, we show that ∂′ is a homogeneous LFIHD on A′. Let m′ be as above. We have tϕm′χm′ ∈ A.

Thus, there exists s ∈ Z>0 such that

ϕm′χm′

∂′(i)(t) = ∂(i)(tϕm′χm′

) = 0 for any i ≥ s.

Hence ∂′ acts locally finitely on t and so the same holds for A[t]. Let f ∈ A′
m and choose s′ ∈ Z>0

such that the sheaf OP1
k

(⌊D(m+ s′m′)⌋) is globally generated. Thus,

ϕs′m′fχm+s′m′ ∈ A′
m+s′m′ = k[t]⊗k Am+s′m′ ⊆ A[t] .

Since ϕs′m′χs′m′

is in the kernel of ∂ we conclude that ∂′ acts locally finitely on fχm. This proves
that ∂′ is an LFIHD. The fact that ∂′ is of horizontal type is straightforward and the proof is left to
the reader.

It remains to show that ker ∂ = ker ∂′. By Lemma 5.2 (i) the kernel ker ∂′ is the semigroup algebra
given by ωL′ , where L′ is a sublattice of maximal rank. Since ker ∂ ⊆ ker ∂′ we have L ⊆ L′ and L′/L
is a finite abelian group. Let

ker ∂ =
⊕

m∈ωL

k · ϕmχ
m and ker ∂′ =

⊕

m∈ωL′

k · ϕ′
mχ

m .

Letting m ∈ L′ we let r ∈ Z>0 be such that rm ∈ L. Then, by Lemma 5.4 (i) and (ii) we can write
λϕrm = ϕ′

rm = (ϕ′
m)r, where λ ∈ k∗. So ϕ′

mχ
m is integral over ker ∂. By normality of A and since

ker ∂ is algebraically closed in A one has ϕ′
mχ

m ∈ ker ∂. Hence L′ = L and so ker ∂ = ker ∂′.
(iii) Up to multiplying the LFIHD ∂ by a homogeneous kernel element, we may assume that

deg ∂ = e ∈ ω. In particular, the algebra

Aω =
⊕

m∈ωM

Amχ
m is ∂-invariant.
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By virtue of assertions (i) and (ii) in the lemma, we may suppose that C = A1
k
. Let m ∈ ωM . We

have Adm+m′ = Adm ·Am′ = ϕdmAm′ for all m′ ∈ ωM . Hence, the principal ideal (ϕdmχ
dm) in the ring

Aω is ∂|Aω -invariant. By Proposition 2.4 (f), we have ϕdmχ
dm ∈ ker ∂ and so dm ∈ ωL. This yields

d · ωM ⊆ ωL and (iii) follows. �

The following result provides a geometrical characterization of horizontal non-hyperbolic affine Gm-
surfaces. See [FZ05, Theorem 3.3 and 3.16] for the case where the base field is C.

Corollary 5.6. Assume k is perfect. Let N = Z and σ = R≥0, so that D is uniquely determined by
the Q-divisor D(1). If the graded algebra A admits a homogeneous LFIHD of horizontal type, then the
following statements hold.

(i) If C = A1
k
, then the fractional part {D(1)} has at most one point in its support.

(ii) If C = P1
k
, then {D(1)} has at most two points in its support.

In each case, the support of {D(1)} consists of rational points. In particular, every horizontal non-
hyperbolic affine Gm-surface over k is toric.

Proof. (i) We first prove the result in the case where k is algebraically closed. Let d be the smallest
positive integer such that D(d) is an integral divisor. Letting f ∈ k(t) a generator of Ad, i.e. Ad =
f · A0, we let B be the integral closure of A[ d

√
fχ] in its field of fractions. Up to a principal divisor,

we may assume D(1) < 0 and so f ∈ k[t] is a polynomial. By Lemma 5.5 (ii), we have fχd ∈ ker ∂.
By Corollary 2.6, we obtain the existence of an LFIHD ∂′ on B extending ∂ and satisfying d

√
fχ ∈

ker ∂′. Write B = A[C ′,D′] for some polyhedral divisor D
′ on a regular affine curve C ′ = SpecB0.

Actually, B0 is the normalization of k[t, d
√
f ] and also a polynomial algebra of one variable over k (see

Lemma 5.2 (iii)). The fact that B∗
0 = k∗ and that B0 is an unique factorization domain implies that

f = (t− z)r for some z ∈ k and some r ∈ Z>0. Since div f + d ·D(1) = 0 one concludes that {D(1)}
is supported in at most on the point z.

Assume now that k is not algebraically closed and that {D(1)} is supported in at least two points.
Extending the scalar to the algebraic closure k̄ gives a contradiction by Lemma 1.9.

(ii) Multiplying ∂ by a homogeneous element in its kernel, we may assume that the degree of ∂ is
non-negative. By Lemma 5.5 (ii), the LFIHD ∂ extends to a homogeneous LFIHD ∂′ of horizontal type
on the normalization A′ of the algebra A[t]. Note that the graded algebra A′ is given by the polyhedral
divisor D|A1

k

. Applying (i) for the non-elliptic graded algebra A′, the fractional part {D|A1
k

(1)} has at

most one point in its support. So {D(1)} is supported in at most two points. This yields (ii).
Let us show the latter claim. By a similar argument, we deduce that in any case the support of

{D(1)} consists of rational points (see Lemma 1.9). Assume that A is non-elliptic. Since {D(1)} is
supported in at most one rational point, without loss of generality, we can let

D(1) = −e
d
· 0, where 0 ≤ e < d, and gcd(e, d) = 1 .

A straightforward computation shows that

A =
⊕

b≥0, ad−be≥0

k taχb,

see e.g. [FZ05, Lemma 3.8] and [Lie10a, Example 3.20]. The algebra A admits an effective Z2-grading
endowingX = SpecA with a structure of a toric surface. Assume that A is elliptic. Using the fact that
every integral divisor over P1 of degree 0 is principal, we can reduce to the case where D is supported
in the points 0 and ∞. We conclude by a similar argument as in [Lie10a, Example 3.21]. �

As a consequence of Corollary 5.6, we obtain the following result.
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Corollary 5.7. With the notation in 5.3, we let Aω =
⊕

m∈ωM
Amχ

m and let τ = ω∨ ⊆ NR. Then

Aω ≃ A[C,Dω ] as M -graded algebras, where Dω is τ -proper polyhedral divisor over the curve C
satisfying the following conditions.

(i) If A is non-elliptic, then Dω = (v + τ) · 0 for some v ∈ NQ.
(ii) If A is elliptic, then Dω = (v + τ) · 0 + ∆′

∞ · ∞ for some v ∈ NQ and some ∆′
∞ ∈ Polτ (NR)

satisfying v +∆′
∞ ( τ .

Proof. (i) We will follow the argument in [Lie10a, Lemma 3.23]. Note that the degree e of ∂ belongs
to ω. For ℓ ∈ ωL denote by ∂ℓ the homogeneous LFIHD ϕℓ · ∂. The subalgebra

B(ℓ+e) =
⊕

r≥0

Ar(ℓ+e)χ
r(ℓ+e)

is ∂ℓ-invariant. Since the homogeneous LFIHD ∂ℓ|B(ℓ+e)
is of horizontal type, we can apply Corollary 5.6

to conclude that {D(ℓ+ e)} is supported in at most one point. By Lemma 5.4 (i), for all ℓ, ℓ′ ∈ ωL we
have

− divϕℓ′ +D(ℓ+ e) = D(ℓ+ ℓ′ + e) = D(ℓ′ + e)− divϕℓ , and so {D(ℓ+ e)} = {D(ℓ′ + e)} .
Thus, the union of the supports of the divisors {D(ℓ + e)} has at most one element, where ℓ runs

over ωL. By the linearity of D in ω and Lemma 5.4 (iv), up to a principal polyhedral divisor, the
polyhedral divisor Dω of Aω is supported in at most one point. This point needs to be rational so (i)
follows.

(ii) By multiplying ∂ with a kernel element, we may assume e ∈ ω. Let A′
ω be the normalization of

Aω[t]. By Lemma 5.5, elements of degree m ∈ ωM in A′
ω correspond to the product of a global section

of D|A1
k

(m) and the character χm. In addition, ∂ extends to a homogeneous LFIHD of horizontal type

on A′
ω. By (i), the union of the supports of the divisors {D|A1

k

(m)}, where m runs trough ωM , has at

most one rational point. This concludes the proof. �

For our next theorem, which is a key ingredient in our classification result, we introduce the following
notation. Let D be a proper σ-polyhedral divisor over A1

k
or P1

k
such that the coefficient ∆0 at zero

is v + σ for some v ∈ NQ. Let M̂ = M × Z and let N̂ = N × Z. We also let σ̂ be the cone in N̂R

generated by (v, 1) and (σ, 0) if C = A1
k
and by (v, 1),(σ, 0) and (∆∞,−1) if C = P1

k
.

Theorem 5.8. Let D be a σ-proper polyhedral divisor over a regular curve C. Assume that D satisfies
one of the following conditions.

(i) If C is affine, then C = A1
k
= Speck[t] and D = (v + σ) · 0 for some v ∈ NQ.

(ii) If C is projective, then C = P1
k
and D = (v + σ) · 0 + ∆∞ · ∞ for some v ∈ NQ and for some

∆∞ ∈ Polσ(NR).

Let d be the smallest positive integer such that dv ∈ N . For any m ∈ M we let h(m) = 〈m, v〉.
Then there exists a homogeneous LFIHD ∂ of horizontal type on A = A[C,D] with deg ∂ = e if and
only if the following statements hold.

(a) If chark = p > 0, then there exists a sequence of integers 0 ≤ s1 < s2 < . . . < sr such that for
i = 1, . . . , r we have

(
psie,−1/d− h(psie)

)
∈ Rt σ̂.

(b) If chark = 0, then
(
e,−1/d − h(e)

)
∈ Rt σ̂.

Under these latter conditions, the LFIHD ∂ is of following form. Let ζ = d
√
t. Let us consider the

LFIHD ∂ζ on the algebra k[ζ] with exponential map

ex∂ζ (ζ) = ζ +

r∑

i=1

λix
psi , (6)
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where λ1, . . . , λr ∈ k∗ (resp. with ∂
(1)
ζ = λ d

dζ , where λ ∈ k∗) whenever chark > 0 (resp. chark = 0).

Then the i-th term of ∂ is given by the equality

∂(i)(tlχm) = ζ−dh(m+ie)∂
(i)
ζ (ζdh(m)tl)χm+ie for all tlχm ∈ A . (7)

Proof. Assume that D satisfies (i) and fix an LFIHD ∂ on the algebra A of horizontal type and of
degree e. Let B be the normalization of the subalgebra

A
[
ζ−dh(e)χe

]
⊆ k(ζ)[M ].

Consider the affine line C ′ = Speck[ζ] and the polyhedral divisor D
′ = (dv + σ) · 0 over C ′. Since

d = min{r ∈ Z>0 | re ∈ L} (see Lemma 5.4 (iv)), the algebra A[C ′,D′] is precisely B (see [Lan15,

Theorem 2.5]). According to Lemma 4.1 (ii) we have e ∈ σ∨ and so A
[
ζ−dh(e)χe

]
is a cyclic extension

of the ring A. Since ϕdeχ
de ∈ ker ∂ by Corollary 2.6, ∂ extends to a unique LFIHD ∂′ on B. Using

further that dv ∈ N we obtain a natural isomorphism of M -graded algebras

ϕ : B → E, ζ lχm 7→ ζdh(m)+lχm,

where E = k[σ∨M ][ζ]. Consider ϕ∗∂
′ the homogeneous LFIHD of horizontal type on E given by

ϕ∗∂
′(i) = ϕ ◦ ∂′(i) ◦ ϕ−1,

where i ∈ Z≥0. Now, Lemma 5.5 (iii) implies that kerϕ∗∂
′ = k[σ∨M ] so that ϕ∗∂

′ = χe · ∂ζ for some
non-trivial LFIHD ∂ζ . An easy computation shows that the LFIHD ∂ = ϕ−1

∗ (ϕ∗∂
′) is as in (7).

Assume that chark = p > 0 and let us show that (a) holds. By Proposition 2.4 (d), the exponential
map of ∂ζ is given as in (6) for some integers 0 ≤ s1 < . . . < sr. If p does not divide d, then consider

l ∈ Z≥0 \ pZ such that dl ≥ ps1 . Note that tl ∈ A. By Lemma 2.13 and (7) we obtain the equality

∂(p
s1 )(tl) = λ1dlt

−1/d−h(ps1e)+lχps1e .

Since ∂(p
s1 )(tl) ∈ A \ {0}, it follows that −1/d− h(ps1e) ∈ Z.

Otherwise, assume that p divide d. By the minimality of d there exists m ∈ σ∨M such that dh(m) is

not divisible by p. Taking l ∈ Z≥0 such that dl ≥ max{ps1 ,−dh(m)} we have tlχm ∈ A \ {0} and so
Lemma 2.13 implies

∂(p
s1 )(tlχm) = λ1dh(m)t−1/d−h(ps1e)+lχm+ps1e ∈ A \ {0} .

Hence in any case e1 := (ps1e,−1/d − h(ps1e)) ∈ M̂ , where M̂ =M × Z.
Let us remark that

A[C,D] =
⊕

(m,l)∈σ̂∨

M̂

kχ(m,l) = k[σ̂∨
M̂
],

where χ(m,l) = tlχm and σ̂ is the cone generated by (v, 1) and (σ, 0). Since e ∈ σ∨, an easy computation
shows that e1 = (ps1e,−1/d−h(ps1e)) ∈ Rt σ̂ for the distinguished ray ρ = (dv, d). So by Corollary 3.7

the M̂ -graded algebra A admits rationally homogeneous LFIHDs of degree e1/p
s1 coming from the

root e1. One of such rationally homogeneous LFIHDs is given by the equality

ex∂1(tlχm) =

∞∑

i=0

(
d(l + h(m))

i

)
λi1t

l−i(1/d+h(ps1e))χm+ips1exip
s1
,

where λ1 ∈ k∗ is as (6). Furthermore, by Corollary 2.6 we extend ∂1 to a homogeneous LFIHD ∂′1
on the M -graded algebra B. Assume that r ≥ 2. One can see ex∂

′

and ex∂
′
1 as automorphisms of the

algebra B[x] by letting ex∂
′

(x) = ex∂
′
1(x) = x. Hence, using this convention we have

ex∂
′ ◦ (ex∂′

1)−1 = exϕ
−1
∗ (χe∂ζ,1),
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where ∂ζ,1 is the LFIHD on k[ζ] defined by

ex∂ζ,1(ζ) = ζ +
r∑

i=2

λix
psi .

Consequently, the map ex∂
′ ◦ (ex∂′

1)−1 yields a homogeneous LFIHD ∂′′1 on A. Actually, replacing ∂ζ,1
by ∂ζ , the LIFHD ∂′′1 satisfies (7). Again, it follows that e2 := (ps2e,−1/d− h(ps2e)) ∈ M̂ is a root of
σ̂. One concludes by induction that (a) holds.

If chark = 0, then the locally nilpotent derivation ∂
(1)
ζ on the algebra k[ζ] is equal to λ ∂

∂ζ for some

λ ∈ k∗. Using (7) we have

∂(1)(t) = λdt−1/d−h(e)+1χe ∈ A \ {0}
and so assertion (b) holds. This concludes the proof in the case where condition (i) holds.

Assume now that (ii) holds. Let A′ be the normalization ofA[t] in the field FracA. By Lemma 5.5 (iii)
, we have d ·M = h−1(Z) ⊆ L, where L is the sublattice of M generated by the set of weights of ker ∂.
Hence, changing ∂ by ϕm · ∂ for m ∈ σ∨d·M , without loss of generality, we may assume e ∈ σ∨M .

More precisely, replacing e by e +m for some m ∈ σ∨d·M does not change assertions (a), (b) in the
Theorem. With this new assumption, again by Lemma 5.5, we extend ∂ to a homogeneous LFIHD ∂̄
on A′ of horizontal type. By the previous argument (the case where C = A1

k
) applied to (A′, ∂̄) and

since ∂̄ stabilizes k[σ̂∨ ∩ M̂ ] we obtain (a) and (b).
It remains to show that if a lattice vector e verifies assertions (a), (b), then one can build a homo-

geneous LFIHD on A = A[C,D] of horizontal type and of degree e as in (7). Assume that chark > 0
and let ei = (e,−1/d − h(psie)). By (a) we have ei ∈ Rt σ̂ and we can consider the rationally ho-
mogeneous LFIHDs ∂e1,s1 , . . . , ∂er ,sr on the semigroup algebra k[σ̂∨

M̂
] (see Example 3.2). Using the

isomorphism ϕ and considering every ex∂ei,si as automorphism of the ring A[x], a computation shows
that the composition

ex∂e1,s1 ◦ ex∂e2,s2 ◦ . . . ◦ ex∂er,sr
defines an LFIHD as in (7). In the case where chark = 0, a similar argument can be applied (see also
[Lie10a, Examples 3.20 and 3.21]). We leave the details to the reader. �

For the proof of our next lemma, which is the last ingredient for our main theorem, we need the
following remark.

Remark 5.9. Assume that k is perfect and let r ∈ Z>0. Then the Frobenius map F : k → k mapping
λ 7→ λp

r
is a field automorphism. Let t be a new variable and let x = tp

r
. We will compute the

ramification of the field extension k(t)/k(x). Let P (x) =
∑
aix

i ∈ k[x] be an irreducible polynomial.
Then

P (x) = P (tp
r

) = (F ∗(P )(t))p
r

, where F ∗(P )(t) =
∑

F−1(ai)t
i .

Hence F ∗(P )(t) is irreducible in k[t]. Let C and C ′ be unique projective curves over k whose
function fields are k(t) and k(x), respectively (both isomorphic to P1

k
). The inclusion k(x) ⊆ k(t)

induces a purely inseparable morphism π : C → C ′. Our previous computation shows that for every
z ∈ C the pullback of z as Weil divisor is given by π∗(z) = pr · z′, where z′ ∈ C ′ lies in the schematic
fiber of z.

Let D =
∑

z∈C ∆z · z be proper σ-polyhedral divisor over a regular curve C. Recall that hz stands
for the support function of the σ-polyhedron ∆z for all z ∈ C, see Definition 1.5.

Lemma 5.10. Assume that k is perfect. Let D be a proper σ-polyhedral divisor over C = A1
k
or

C = P1
k
, respectively. Assume that there exists a maximal cone ω on the quasifan Λ(D) or Λ(D|A1

k

),

respectively, such that for any z ∈ C different from 0 and ∞ we have hz|ω = 0. Let ∂ be an LFIHD
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of degree e on the algebra A[C,Dω] given by formula (7). Let p = chark if chark > 0 and p = 1 if
chark = 0. Then ∂ extends to an LFIHD on A = A[C,D] if and only if for any m ∈ σ∨M such that
m+ ps1e ∈ σ∨M the following hold.

(i) If hz(m+ ps1e) 6= 0, then ⌊pkhz(m+ ps1e)⌋ − ⌊pkhz(m)⌋ ≥ 1, ∀z ∈ C, z 6= 0,∞.
(ii) If h0(m+ ps1e) 6= h(m+ ps1e), then ⌊dh0(m+ ps1e)⌋ − ⌊dh0(m)⌋ ≥ 1 + dh(ps1e).
(iii) If C = P1

k
, then ⌊dh∞(m+ ps1e)⌋ − ⌊dh∞(m)⌋ ≥ −1− dh(ps1e).

Here h is the linear extension of h0|ω to MR, d ∈ Z>0 is the smallest positive integer such that dh is
integral and k is the unique non-negative integer such that d = d′pk with gcd(d′, p) = 1.

Proof. Considering m ∈ σ∨M we can write h(m) = 〈m, v〉 for some v ∈ NQ. Since every hz is upper
convex, hz(m) ≤ 0 ∀z ∈ C \ {0,∞}, and obviously h0(m) ≤ h(m). Letting

AM =
⊕

m∈M

k[t] · ϕmχ
m,

where ϕm = t−⌊h(m)⌋ and localizing by a homogeneous element of ker ∂, by Lemma 2.5, ∂ extends to
a homogeneous LFHID on AM . We also denote this extension by ∂. Hence, ∂ extends to an LFIHD
on A if and only if the extension ∂ on AM stabilizes A. In addition, we may assume that k = k̄ is
algebraically closed since the extension ∂

k̄
of ∂ on AM ⊗k k̄ stabilizes A⊗k k̄ if and only if ∂ stabilizes

A.
For the characteristic zero case, the proof is available in [Lie10a, Lemma 3.26]. In the sequel, we

assume chark = p > 0. The proof is divided into three steps, (similar to [Lie10a, Lemma 3.26]) where
we assume h = 0, h(m) integral for all m and finishing with the general case.

Case h = 0. In this case we have d = 1, L =M and by Theorem 5.8, ∂ = χe∂t for some LFIHD ∂t on
k[t]. By Proposition 2.4 (d), the LFIHD ∂t is determined by a sequence of integers 0 ≤ s1 < . . . < sr.
Furthermore, since hz ≤ 0 for any z ∈ A1

k
, then h∞ ≥ 0 in the elliptic case. Fixing m ∈ σ∨M such that

m+ ps1e ∈ σ∨M the conditions of our lemma become:

(i′) If hz(m+ ps1e) 6= 0, then ⌊hz(m+ ps1e)⌋ − ⌊hz(m)⌋ ≥ 1 ∀z ∈ A1
k
.

(iii′) If C = P1
k
, then ⌊h∞(m+ ps1e)⌋ − ⌊h∞(m)⌋ ≥ −1.

Under the above assumption we have

Am = H0(C,OC (D(m))) ⊆ k[t]

and ∂ stabilizes A if and only if

f(t) ∈ Am ⇒ ∂
(i)
t (f(t)) ∈ Am+ie,∀m ∈ σ∨M , ∀i ∈ Z≥0 ,

or equivalently,

div f + ⌊D(m)⌋ ≥ 0 ⇒ div ∂
(i)
t (f) + ⌊D(m+ ie)⌋ ≥ 0, ∀m ∈ σ∨M , ∀i ∈ Z≥0 .

This is also equivalent to

ordz f + ⌊hz(m)⌋ ≥ 0 ⇒ ordz ∂
(i)
t (f) + ⌊hz(m+ ie)⌋ ≥ 0, ∀m ∈ σ∨M , ∀i ∈ Z≥0, ∀z ∈ C . (8)

We will first show the lemma in the case where C = A1
k
. Let us show first that (i′) implies (8)

and so ∂ stabilizes A. If hz(m + ps1e) 6= 0 with m ∈ σ∨M such that m + ps1e ∈ σ∨M . Then we have
hz(m) 6= 0 so that f ∈ (t− z)k[t].

Let i ∈ Z≥0. If ∂
(i)
t (f) = 0, then ∂

(i)
t (f) ∈ Am+ie. Otherwise, ∂

(i)
t (f) 6= 0 and so m + ie ∈ σ∨.

Letting i = lps1 for some l ∈ Z≥0, we have ordz ∂
(i)
t (f) ≥ ordz(f)− l. Hence it follows that

ordz ∂
(i)(f) + ⌊hz(m+ ie)⌋ ≥ ordz(f) + ⌊hz(m)⌋ + (⌊hz(m+ lps1e)⌋ − ⌊hz(m)⌋ − l).
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By convexity of σ∨ for 1 ≤ j ≤ l we have m + jps1e ∈ σ∨. If hz(m + ie) = 0, then ordz ∂
(i)(f) +

⌊hz(m + ie)⌋ ≥ 0 and (8) holds. Otherwise, hz(m + ie) 6= 0 and again hz
(
m + (l − j)ps1e

)
6= 0 for

1 ≤ j ≤ l. Combining the previous inequality with (i′), and the fact that ordz f + ⌊hz(m)⌋ ≥ 0 we
obtain

ordz ∂
(i)(f) + ⌊hz(m+ ie)⌋ ≥ ordz(f) + ⌊hz(m)⌋+

l∑

j=1

(⌊hz(m+ (l − j)ps1e+ ps1e)⌋ − ⌊hz(m+ (l − j)ps1e)⌋ − 1) ≥ 0 .

This yields (8) in the case where C = A1
k
.

Now, we show the converse. Assume that C = A1
k
and that ∂ stabilizes A. Recall that ∂ stabilizes

A if and only if (8) holds. If ω is the unique maximal cone in Λ(D), then hz is identically zero for all
z ∈ C and so (i′) is trivially satisfied. Therefore the lemma follows in this case.

In the sequel, we assume that Λ(D) has at least two maximal cones. Let ω0 ∈ Λ(D) be a maximal
cone different from ω. Then there exists a lattice vector m ∈ rel. intω0 such that hz(m) ∈ Z and

∂(lp
s1 )(ϕm) 6= 0 for some l ∈ Z≥0. Note that here ker ∂ =

⊕
m∈ωM

k ·ϕmχ
m. Taking m big enough we

may suppose that −hz(m) ≥ lps1 and by Lemma 2.13 we may suppose that

ordz ∂
(lps1 )
t (ϕm) = −hz(m)− l.

By (8) we have

⌊hz(m+ lps1e)⌋ − hz(m)− l ≥ 0. (9)

Letting h̄z be the linear extension of hz|ω0 we have

⌊hz(m+ lps1e)⌋ = ⌊hz(m) + lh̄z(p
s1e)⌋ = hz(m) + ⌊lh̄z(ps1e)⌋ . (10)

Now, (9) and (10) yield

lh̄z(p
s1e) ≥ ⌊lh̄z(ps1e)⌋ ≥ l

and so h̄z(p
s1e) ≥ 1. Finally, letting m ∈ σ∨M , we obtain

⌊hz(m+ ps1e)⌋ ≥ ⌊hz(m)⌋ + ⌊h̄z(ps1e)⌋ ≥ ⌊hz(m)⌋ + 1 .

This yields (i′) and so concludes the proof of the lemma in the case where C = A1
k
.

Assume now that C = P1
k
. Then for z ∈ C \ {∞} and for any m ∈ σ∨M such that Am 6= 0, we can

find ϕm,z ∈ Am satisfying ordz(ϕm,z)+ ⌊hz(m)⌋ = 0. Replacing ϕm by ϕm,z in the previous argument
and using Lemma 2.13 for z = ∞ in an analog way as in the above proof, we obtain the equivalence
between (8) and (i′), (iii′).

Case h integral. Again in this case we have d = 1. Let v ∈ N be such that 〈m, v〉 = h(m) for
all m ∈ ωM . Let us consider the polyhedral divisor defined by D

′ = D + (−v + σ) · 0 if C is affine,
and by D

′ = D+ (−v + σ) · 0 + (v + σ) · ∞ if C is projective. Now A is equivariantly isomorphic to
A[C,D′] and A[C,D′] is as in the case where h = 0. Conjugating ∂ by the equivariant isomorphism
A ≃ A[C,D′] (see [Lan15, Proposition 4.5]), the algebra A is ∂-invariant if and only if assertions
(i′), (iii′) hold for the polyhedral divisor D′. An easy computation shows that this is equivalent to D

satisfying (i), (ii), (iii).
General case. Now, we assume that h is not integral, i.e., that d > 1. Let us consider the nor-

malization B of the cyclic extension A[ζ−dh(w)χw] ⊆ k(ζ)[M ], where ζd = t and w ∈ rel. int(ω) ∩M
satisfies gcd(dh(w), d) = 1. We remark that B is naturally M -graded. Furthermore,

K ′
0 =

{a
b
| a, b ∈ Bm, m ∈M, and b 6= 0

}
= k(ζ) .



Ga-ACTIONS ON AFFINE T-VARIETIES OF COMPLEXITY ONE 29

Hence, B = A[C ′,D′], where C ′ ≃ P1
k
if A is elliptic and C ′ ≃ A1

k
otherwise. We let k and d′ be

the unique pair of positive integers such that d = d′pk with gcd(d′, p) = 1. Let π : C ′ → C be the
morphism induced by the field inclusion K0 = k(t) ⊆ k(ζ) = K ′

0. Then by Lemma 1.10, Remark 5.9
and [Sti93, Section 3.12, Exercise 3.8], we obtain

D
′ =

{
d ·∆0 · [0] +

∑
z′∈C′\{0} p

k ·∆z · z′, if C = A1
k

d ·∆0 · [0] +
∑

z′∈C′\{0,∞} p
k ·∆z · z′ + d ·∆∞ · [∞], if C = P1

k

This yields h′0 = dh0, h
′
∞ = dh∞ and h′z′ = pkhz, where π(z

′) = z and h′z′ is the support function of
the coefficient ∆′

z′ of D
′ at z′. Moreover, h′0|ω is integral and so the algebra B satisfies the conditions

of the previous case (h integral). We let h′ :MR → R be the linear extension of h′0|ω.
Let

BM =
⊕

m∈M

ϕ′
m · k[ζ] · χm, where ϕ′

m = ζ−dh(m) .

Since AM ⊆ BM is a cyclic extension, by Corollary 2.6 the LFIHD ∂ on AM extends to an LFIHD
∂′ on BM . Furthermore, ∂ stabilizes A if and only if ∂′ stabilizes B (see the argument in [Lie10a,
Lemma 3.26]).

By the previous case, B is stabilized by ∂′ if and only if for every m ∈ σ∨M such that m+ps1e ∈ σ∨M ,
the following conditions are satisfied.

(i′′) If h′z′(m+ ps1e) 6= 0, then ⌊h′z′(m+ ps1e)⌋ − ⌊h′z′(m)⌋ ≥ 1, ∀z′ ∈ C ′, z′ 6= 0,∞.
(ii′′) If h′0(m+ ps1e) 6= h′(m+ ps1e), then ⌊h′0(m+ ps1e)⌋ − ⌊h′0(m)⌋ ≥ 1 + dh′(ps1e).
(iii′′) If C = P1

k
, then ⌊h′∞(m+ ps1e)⌋ − ⌊h′∞(m)⌋ ≥ −1− h′(ps1e).

Now, the lemma follows replacing h′ by dh, h′0 by dh0, h
′
∞ by dh∞ and h′z by pkhz for all z′ ∈ C ′,

z 6= 0,∞. �

The following is our main result in this section. It gives a classification of horizontal LFIHDs on
affine T-varieties of complexity one over a perfect field. It is a direct consequence of the results in this
section.

Theorem 5.11. Assume that the base field k is perfect. Let p = chark if chark > 0 and p = 1 if
chark = 0. Let D be a proper σ-polyhedral divisor over a regular curve C and let A = A[C,D]. Let
ω ⊆MR be a rational cone and let e ∈M be a lattice vector.

Then there exists a homogeneous LFIHD on A of horizontal type with deg ∂ = e and with ω as
weight cone of ker ∂ if and only if the following conditions hold.

(i) C = A1
k
or C = P1

k
.

(ii) If C = A1
k
, then ω is a maximal cone in the quasifan Λ(D), and there exists a rational point

z0 ∈ C such that hz|ω is integral ∀z ∈ C, z 6= z0.

(ii′) If C = P1
k
, then there exists a rational point z∞ such that (ii) holds for C0 := P1

k
\ {z∞}.

Without loss of generality, we may suppose that z0 = 0, z∞ = ∞, and hz|ω = 0 ∀z ∈ C, z 6= 0,∞.
Let also h be the linear extension of h0|ω to MR given by h(m) = 〈m, v〉 for some v ∈ NQ, let d > 0
be the smallest integer such that dh is integral and let k be the unique non-negative integer such that

d = d′pk, with gcd(d′, p) = 1. Let τ = ω∨ and denote by τ̂ the cone in N̂R generated by (v, 1) and
(τ, 0) if C = A1

k
and by (v, 1), (τ, 0) and (∆∞,−1) if C = P1

k
.

(iii) There exists s1 ∈ Z≥0 such that
(
ps1e,−1/d − h(ps1e)

)
∈ Rt τ̂ .

For any m ∈ σ∨M such that m+ ps1e ∈ σ∨M the following hold.

(iv) If hz(m+ ps1e) 6= 0, then ⌊pkhz(m+ ps1e)⌋ − ⌊pkhz(m)⌋ ≥ 1, ∀z ∈ C, z 6= 0,∞.
(v) If h0(m+ ps1e) 6= h(m+ ps1e), then ⌊dh0(m+ ps1e)⌋ − ⌊dh0(m)⌋ ≥ 1 + dh(ps1e).
(vi) If C = P1

k
, then ⌊dh∞(m+ ps1e)⌋ − ⌊dh∞(m)⌋ ≥ −1− dh(ps1e).
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More precisely, all possible homogeneous LFIHD ∂ on A of horizontal type with e, ω satisfying (i)−(iv)
are given by the formula (7) in Theorem 5.8. If chark > 0, then ∂ is described by a sequence of integers
0 ≤ s1 < s2 < . . . < sr, where every

(
psie,−1/d − h(psie)

)
belongs to Rt τ̂ . Moreover,

ker ∂ =
⊕

m∈ωL

kϕmχ
m,

where L = h−1(Z) and ϕm ∈ Am satisfies the relation

divϕm +D(m) = 0 if C = A1
k; or (divϕm)|C0 +D(m)|C0 = 0 if C = P1

k.

Example 5.12. Let the notation be as in Example 1.8. By Theorem 5.11, there exists a homogeneous
LFIHD on A with degree deg ∂ = e = (1, 2) and with weight cone ω of ker ∂ equal to the cone generated
by (0, 1) and (1, 1) in MR. Indeed, (i) holds since C = P1

k
and (ii)′ holds with z0 = 0 and z∞ = ∞.

With this choice, hz|ω = 0 for all z ∈ C, z 6= 0,∞. The vector v ∈ NR such that h(m) = 〈m, v〉
corresponds to v = (1/2, 0). The cone τ is generated in NR by (1, 0) and (−1, 1) and the cone τ̂ in N̂R is
generated by (1, 0, 2), (−1, 1, 0) and (1, 0,−2). Taking s1 = 0, we have that (e,−1) = (1, 2,−1) ∈ Rt τ̂
so that (iii) holds. Furthermore, a straightforward verification shows that (iv), (v) and (vi) hold.

Example 5.13. We assume in this example that the ground field k is algebraically closed of charac-
teristic 2. Let us consider the Bertin surface

W2,5 = {x2y = x+ z5} ⊆ A3
k

of type (2, 5). This is a smooth affine surface endowed with the Gm-action

λ · (x, y, z) = (λ5x, λ−5y, λz),

where λ ∈ Gm and (x, y, z) ∈W2,5. Consider the polyhedral divisor

D =

{
1

5

}
· [0] +

[
0,

1

5

]
· [1]

over the affine line A1 = A1
k
. Here we have N =M = Z. The elements

x = t−1χ5, y = (t+ 1)tχ−5, z = χ1

generate the Z-graded algebra A = A[A1,D] and satisfy the equation of W2,5. Hence we may identify
the Gm-surface X = Spec A with W2,5. The quotient map by the Gm-action is

π : (x, y, z) 7→ t = xy + 1.

The fiber π−1(1) consists in two distinct toric curves which intersect only at the origin:

π−1(1) = {(0, y, 0) | y ∈ k} ∪ {(z5, 0, z) | z ∈ k}.
In the setting of Theorem 5.11, we may take z0 = 0 so that τ = R≥0 and

τ̂ = R≥0(1, 0) + R≥0(1, 5).

If e = 1 and s := s1 = 2, then (2se,−1
5 − 2se

5 ) = (4,−1) is a Demazure root of τ̂ with distinguished
ray (1, 5). Condition (iv) of Theorem 5.11 is not fulfilled. The corresponding homogeneous iterative
higher derivation ∂ verifies the formula

eα∂(tlχm) =

∞∑

i=0

(
5l +m

i

)
tl−iχm+4iα4i

for any (m, l) ∈ Z2. This implies directly that

eα∂(x) = x and eα∂(z) = z + α4x,

and so the subalgebra k[x, z] ⊆ A is ∂-stable. However, we have ∂(4)(y) = tχ−1 6∈ A.
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Now let us take e = 1 and s = 6. Then (2se,−1
5 − 2se

5 ) = (64,−13) is a Demazure root of τ̂ . The
conditions of Theorem 5.11 are satisfied and the associated LFIHD ∂′ has exponential map

eα∂
′

(tlχm) =

∞∑

i=0

(
5l +m

i

)
tl−13iχm+64iα64i.

Therefore

eα∂
′

(x) = x, eα∂
′

(z) = z + α64x13,

and

eα∂
′

(y) = x−1(1 + eα∂
′

(t)) = y + α64x11z4 + α256x50z + α320x63.

The kernel of ∂′ is the subalgebra k[x] ⊆ A.

Remark 5.14. A generalization of [Lie10a, Section 4.1] allows to define and compute the homogeneous
Makar-Limanov invariant of an affine T-variety of complexity one of arbitrary characteristic. Due to
lack of space, we omit this straightforward generalization.
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[AL12] I. Arzhantsev, A. Liendo. Polyhedral divisors and SL2-actions on affine T-varieties. Michigan Math. J. 61

(2012), no. 4, 731–762.
[AHHL14] I. Arzhantsev, J. Hausen, E. Herppich, A. Liendo. The automorphism group of a variety with torus action

of complexity one. Mosc. Math. J. 14 (2014), no. 3, 429–471.
[Asa05] T. Asanuma. Purely inseparable k-forms of affine algebraic curves. Affine algebraic geometry, 31–46, Contemp.

Math., 369, Amer. Math. Soc., Providence, RI, 2005.
[Baz13] I. Bazhov. On orbits of the automorphism group on a complete toric variety. Beitr. Algebra Geom. 54 (2013),

no. 2, 471–481.
[Cra04] A. Crachiola. On the AK invariant of certain domains. Ph.D. Thesis. Wayne State University. (2004).
[CM05] A. Crachiola, L. Makar-Limanov. On the rigidity of small domains. J. Algebra 284 (2005), no. 1, 1–12.
[Cox95] D. Cox. Homogeneous coordinate ring of a toric variety. J. Algebraic Geom. 4 (1995), no. 1, 17–50.
[Cox14] D. Cox. Erratum to “Homogeneous coordinate ring of a toric variety”. J. Algebraic Geom. 23 (2014), no. 2,

393–398.
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