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0. Introduction

In this article, we discuss invariant theory in exterior algebras on some matrix spaces, 
and give several Cayley–Hamilton type relations for invariants in these exterior algebras 
as consequences of the second fundamental theorem of invariant theory for vector invari-
ants. These Cayley–Hamilton type relations are all closely related to Amitsur–Levitzki 
type theorems.

0.1. GL(V )-invariants in Λ(V ⊗ V ∗)

We first consider GL(V )-invariants in the exterior algebra Λ(V ⊗ V ∗), where V

is an n-dimensional complex vector space, and V ∗ is its linear dual. The algebra 
Λ(V ⊗ V ∗)GL(V ) of these invariants is isomorphic to the exterior algebra on an 
n-dimensional vector space. Indeed Λ(V ⊗ V ∗)GL(V ) is generated by the following 
n elements, and these n generators have no relations besides anticommutativity (Theo-
rem 1.3):

tr(X1), tr(X3), . . . , tr(X2n−1).

Here we put X = (xij)1≤i,j≤n ∈ Matn,n(Λ(V ⊗ V ∗)), where xij is the standard basis of 
V ⊗V ∗. This result is similar to the fact that the algebra of the GL(V )-invariants in the 
polynomial algebra on V ⊗ V ∗ is isomorphic to the polynomial algebra in n variables.

We also give the following Cayley–Hamilton type theorem for these generators (The-
orem 2.1):

nX2n−1 − tr(X1)X2n−2 − tr(X3)X2n−4 − · · · − tr(X2n−3)X2 − tr(X2n−1)X0 = 0.

We can regard this as the anticommutative version of the Cayley–Hamilton theorem. 
From this, the following Amitsur–Levitzki theorem is immediate:

∑
σ∈S2n

sgn(σ)Xσ(1)Xσ(2) · · ·Xσ(2n) = 0. (0.1)

Here X1, . . . , X2n are complex square matrices of size n. In this sense, we can regard our 
Cayley–Hamilton type theorem as a refinement of the Amitsur–Levitzki theorem (0.1).

Remark. This Cayley–Hamilton type theorem in Matn,n(Λ(V ⊗V ∗)) was also given inde-
pendently by [2] (see also [3]) as a consequence of the ordinary Cayley–Hamilton theorem. 
Moreover, Procesi discussed the Amitsur–Levitzki theorem with this Cayley–Hamilton 
type theorem in [12].

In spite of an intersection with these papers, the author wrote the proofs of results 
for GL(V )-invariants in Λ(V ⊗ V ∗) in Sections 1 and 2 of this article, because these 
can be regarded as the prototype for the study of O(V )-invariants in Λ(Λ2(V )) and 
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GL(V )-invariants in Λ(Λ2(V ) ⊕S2(V ∗)) in Sections 4 and 5. These results are all similarly 
deduced from the first and the second fundamental theorems of invariant theory for vector 
invariants.

0.2. O(V )-invariants in Λ(Λ2(V ))

We also discuss the following Amitsur–Levitzki type theorem due to Kostant [8] and 
Rowen [15]:

∑
σ∈S2n−2

sgn(σ)Aσ(1)Aσ(2) · · ·Aσ(2n−2) = 0. (0.2)

Here A1, . . . , A2n−2 are complex alternating matrices of size n.
The proof of this theorem (0.2) is much more difficult than that of (0.1). Kostant 

first proved this theorem using theory of cohomology of Lie algebras, when n is even [8]. 
Later, Rowen gave an elementary but technical proof for arbitrary n [15].

In this article, we give a new proof of (0.2) through the relation to invariant theory 
in an exterior algebra. Namely this theorem (0.2) is related to O(V )-invariants in the 
exterior algebra Λ(Λ2(V )) on the second antisymmetric tensor Λ2(V ) of V , where V
is an n-dimensional complex vector space with nondegenerate symmetric bilinear form. 
The algebra Λ(Λ2(V ))O(V ) is generated by the following elements, and these elements 
have no relations besides anticommutativity (Theorem 4.5):

tr(A3), tr(A7), tr(A11), . . . , tr(A4m−5), n = 2m,

tr(A3), tr(A7), tr(A11), . . . , tr(A4m−1), n = 2m + 1.

Here we put A = (aij)1≤i,j≤n ∈ Matn,n(Λ(Λ2(V )), where aij is the standard basis 
of Λ2(V ). For these generators, we also give a Cayley–Hamilton type theorem (Theo-
rem 4.12)1:

(n− 2)A2n−3 −
∑

0≤k≤m−2

tr(A4k+3)A2n−3−4k−3 = 0, n = 2m,

nA2n−3 −
∑

0≤k≤m−1

tr(A4k+3)A2n−3−4k−3 = 0, n = 2m + 1.

The Amitsur–Levitzki type theorem (0.2) is immediate from this. Namely this Cayley–
Hamilton type theorem can be regarded as a refinement of (0.2).

1 Shortly after the post of the first version of this article to arXiv, S. Dolce posted the first version of [5]
to arXiv. Dolce studied G-invariants in Λ(Λ2(V )) and Λ(S2(V )), and gave Cayley–Hamilton type theorems 
in Matn(Λ(Λ2(V ))) and Matn(Λ(S2(V ))), where G is the symplectic group or the odd orthogonal group. 
His results contain the case n = 2m + 1 of our Theorem 4.12.
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0.3. GL(V )-invariants in Λ(Λ2(V ) ⊕ S2(V ∗))

Moreover we give the following Amitsur–Levitzki type theorem (Theorem 5.1):∑
σ∈Sn, τ∈Sn−1

sgn(σ) sgn(τ)Aσ(1)Bτ(1)Aσ(2)Bτ(2) · · ·Aσ(n−1)Bτ(n−1)Aσ(n) = 0. (0.3)

Here A1, . . . , An are complex alternating matrices of size n, and B1, . . . , Bn−1 are com-
plex symmetric matrices of size n.

This new Amitsur–Levitzki type theorem is related to invariant theory in the exterior 
algebra Λ(Λ2(V ) ⊕ S2(V ∗)) on the direct product of the second antisymmetric tensor 
Λ2(V ) of V and the second symmetric tensor S2(V ∗) of V ∗, where V is an n-dimensional 
complex vector space. For this exterior algebra, we give two results. First, we do not have 
nontrivial GL(V )-invariants (Theorem 5.3):

Λ(Λ2(V ) ⊕ S2(V ∗))GL(V ) = C1.

Secondly we have the following relation (Theorem 5.5):

(AB)n−1A = 0.

Here we put A = (aij)1≤i,j≤n and B = (bij)1≤i,j≤n ∈ Matn,n(Λ(Λ2(V ) ⊕ S2(V ∗))), 
where aij and bij are the standard bases of Λ2(V ) and S2(V ∗), respectively. We can 
regard this relation as a Cayley–Hamilton type theorem, and the Amitsur–Levitzki type 
theorem (0.3) follows from this.

0.4. Relation with cohomology theory of Lie algebras

In this article, we deal with the following algebras of invariants in exterior algebras:

Λ(V ⊗ V ∗)GL(V ), Λ(Λ2(V ))O(V ), Λ(Λ2(V ))SO(V ), Λ(Λ2(V ) ⊕ S2(V ∗))GL(V ).

Each of these algebras is isomorphic to an exterior algebra. We will see this fact by 
giving the generators of these algebras explicitly (as consequences of the first fundamental 
theorems of invariant theory for vector invariants). We note the relation of this fact with 
cohomology theory of Lie algebras. Namely, for Λ(V ⊗ V ∗)GL(V ) and Λ(Λ2(V ))SO(V ), 
this fact also follows from cohomology theory of Lie algebras. Indeed, for a reductive Lie 
algebra g, the algebra Λ(g∗)g is isomorphic to the cohomology ring H(g), and this is 
known to be isomorphic to an exterior algebra (see [10]).

1. Invariant theory for GL(V )-invariants in Λ(V ⊗⊗⊗ V ∗)

First in this section, we study invariant theory in the exterior algebra on the vector 
space of square matrices. Let V be an n-dimensional complex vector space, and V ∗ be 
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its linear dual. The general linear group GL(V ) naturally acts on V ⊗ V ∗ and moreover 
the exterior algebra Λ(V ⊗ V ∗) on V ⊗ V ∗. Let us study the algebra Λ(V ⊗ V ∗)GL(V ) of 
GL(V )-invariants in Λ(V ⊗ V ∗).

Consider the following element in Λ(V ⊗V ∗), where xij is the standard basis of V ⊗V ∗:

qk =
∑

1≤i1,...,ik≤n

xi1i2 ∧ xi2i3 ∧ · · · ∧ xiki1 .

From now on, we omit the symbol “∧,” so that

qk =
∑

1≤i1,...,ik≤n

xi1i2xi2i3 · · ·xiki1 .

Moreover we can express this as qk = tr(Xk) using the matrix

X = (xij)1≤i,j≤n ∈ Matn,n(Λ(V ⊗ V ∗)).

Proposition 1.1. We have qk = 0 for k = 2, 4, 6, . . . .

Proof. This is immediate from the following calculation:

q2r =
∑

1≤i1,...,i2r≤n

xi1i2xi2i3 · · ·xi2ri1 = −
∑

1≤i1,...,i2r≤n

xi2i3 · · ·xi2ri1xi1i2 = −q2r.

Here we moved xi1i2 at the left end to the right end in the second equality. �
Proposition 1.2. qk is GL(V )-invariant.

Proof. This is immediate from the relation qk = tr(Xk) and the following equality:

π(g)X = (π(g)xij)1≤i,j≤n = tgX tg−1.

Here we denote by π the natural action of GL(V ) on Λ(V ⊗ V ∗). �
As the first and second fundamental theorems of invariant theory, we have the follow-

ing theorem:

Theorem 1.3. The algebra Λ(V ⊗ V ∗)GL(V ) is generated by q1, q3, . . . , q2n−3, q2n−1. 
Moreover these generators are anticommuting with each other, and have no other re-
lations besides this anticommutativity. Namely the following forms a linear basis of 
Λ(V ⊗ V ∗)GL(V ):

{qk1 · · · qkd
| k1, . . . , kd: odd, 0 < k1 < · · · < kd < 2n, d = 0, 1, . . . , n}. (1.1)

Thus Λ(V ⊗ V ∗)GL(V ) is isomorphic to the exterior algebra on an n-dimensional vector 
space.
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Let us prove this. Actually we prove the following three propositions:

Proposition 1.4. The algebra Λ(V ⊗ V ∗)GL(V ) is generated by q1, q3, . . . .

Proposition 1.5. We have q2n+1 = q2n+3 = · · · = 0.

Proposition 1.6. The elements q1, q3, . . . , q2n−1 are anticommuting with each other, and 
have no other relations besides this anticommutativity.

Proof of Proposition 1.4. We consider the homogeneous decomposition

Λ(V ⊗ V ∗) =
n2⊕
k=0

Λk(V ⊗ V ∗).

This is a decomposition as GL(V )-spaces, so that it suffices to describe the GL(V )-
invariants in Λk(V ⊗ V ∗). The following map (V ⊗ V ∗)⊗k → Λk(V ⊗ V ∗) is a surjective 
homomorphism of GL(V )-spaces:

ei1 ⊗ e∗j1 ⊗ · · · ⊗ eik ⊗ e∗jk �→ xi1j1 · · ·xikjk .

Thus any GL(V )-invariant in Λk(V ⊗V ∗) comes from a GL(V )-invariants in (V ⊗V ∗)⊗k. 
By the first fundamental theorem of invariant theory for vector invariants [18,7], any 
GL(V )-invariant in (V ⊗ V ∗)⊗k can be expressed as a linear combination of elements in 
the form

∑
1≤i1,...,ik≤n

ei1 ⊗ e∗iσ(1)
⊗ · · · ⊗ eik ⊗ e∗iσ(k)

with σ ∈ Sk. The image of this element is equal to

∑
1≤i1,...,ik≤n

xi1iσ(1) · · ·xikiσ(k) ,

and this is equal to a product of q1, q3, q5, . . . up to a sign. Thus any GL(V )-invariant in 
Λk(V ) is expressed as a linear combination of products of q1, q3, q5, . . . . �

Proposition 1.5 will follow from a Cayley–Hamilton type theorem in the next section.
Finally let us prove Proposition 1.6. First, q1, q3, . . . , q2n−1 are anticommuting with 

each other, because these are all odd elements. Moreover, to prove the linear indepen-
dence of (1.1), it suffices to show that q1q3 · · · q2n−3q2n−1 is nonzero. To show this, we 
look at the following element in Λ(V ⊗ V ∗) (the product of all entries of the matrix X):

h = x11x12 · · ·x1n · x21x22 · · ·x2n · · · · · xn1xn2 · · ·xnn.
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Lemma 1.7. h is GL(V )-invariant.

This is easily seen from the following general fact:

Lemma 1.8. Let W be an N -dimensional complex vector space, and consider the natural 
action π of GL(W ) on Λ(W ). Then we have

π(g)e1 · · · eN = det(g)Ne1 · · · eN

for g ∈ GL(W ). Here e1, . . . , eN are a basis of W .

Proof of Lemma 1.7. We have det ρ(g) = 1, where ρ is the natural action of GL(V ) on 
V ⊗ V ∗. The assertion is immediate from this and Lemma 1.8. �

Now Proposition 1.6 is proved as follows:

Proof of Proposition 1.6. Since h is GL(V )-invariant, this is generated by q1, q3, . . . ,
q2n−1. Moreover, h is equal to q1q3 · · · q2n−1 up to constant, because the degree of h is 
n2 and 1 + 3 + · · · + (2n − 1) = n2. Thus q1q3 · · · q2n−1 cannot be equal to 0. �
2. Cayley–Hamilton type theorem for Λ(V ⊗⊗⊗ V ∗)

We have a Cayley–Hamilton type theorem for q2k+1 = tr(X2k+1) and the ma-
trix X:

Theorem 2.1. We have the following relation in Matn,n(Λ(V ⊗V ∗)) (here X0 means the 
unit matrix):

nX2n−1 − tr(X1)X2n−2 − tr(X3)X2n−4 − · · · − tr(X2n−3)X2 − tr(X2n−1)X0 = 0.

To prove this, we introduce a notation for alternating sums. Fix a C-algebra R, and 
consider matrices Ω1, . . . , Ωr ∈ Matn,n(R) and two column vectors α = t(α1, . . . , αn), 
β = t(β1, . . . , βn) ∈ Matn,1(R). For these, we put

D(Ω1, . . . ,Ωr) =
∑
σ∈Sr

∑
1≤i1,...,ir≤n

sgn(σ)(Ω1)i1iσ(1) · · · (Ωr)iriσ(r) , (2.1)

D(Ω1, . . . ,Ωr |α |β) =
∑

σ∈Sr+1

∑
1≤i1,...,ir+1≤n

sgn(σ)(Ω1)i1iσ(1) · · · (Ωr)iriσ(r)αir+1βiσ(r+1) .

(2.2)

We denote the r repetition of the matrix Ω simply by [Ω]r. For example, we have

D([Ω]r,Φ |α |β) = D(Ω, . . . ,Ω︸ ︷︷ ︸,Φ |α |β).

r
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Under this notation, we put

Q = D([X2]n−1, X | v |w)

=
∑

σ∈Sn+1

∑
1≤i1,...,in+1≤n

sgn(σ)(X2)i1iσ(1) · · · (X2)in−1iσ(n−1)Xiniσ(n)vin+1wiσ(n+1) .

Here v1, . . . , vn, w1, . . . , wn are arbitrary complex numbers, and we put v = t(v1, . . . , vn)
and w = t(w1, . . . , wn). On one hand, this Q is equal to 0. Indeed we have

∑
σ∈Sn+1

sgn(σ)(X2)i1iσ(1) · · · (X2)in−1iσ(n−1)Xiniσ(n)vin+1wiσ(n+1) = 0

for any 1 ≤ i1, . . . , in+1 ≤ n, because i1, · · · , in+1 cannot be distinct. On the other hand, 
we can express Q as follows:

Proposition 2.2. We have

Q = (−)n{n! twX2n−1v − (n− 1)!
∑

0≤k≤n−1

tr(X2k+1) twX2n−2−2kv}.

Theorem 2.1 is immediate from this.
To prove this proposition, we use the following recurrence relations (these can be 

regarded as kinds of the Laplace expansion):

Lemma 2.3. We have

D([X2]r, Xs) = D([X2]r) tr(Xs) − rD([X2]r−1, Xs+2),

D([X2]r |Xsv |w) = D([X2]r) twXsv − rD([X2]r−1 |Xs+2v |w),

D([X2]r, X |Xsv |w) = D([X2]r, X) twXsv −D([X2]r |Xs+1v |w)

− rD([X2]r−1, X |Xs+2v |w).

Proof. Let us prove the last relation. For σ ∈ Sr+2, we put

Dσ =
∑

1≤i1,...,ir+2≤n

(X2)i1iσ(1) · · · (X2)iriσ(r)Xir+1iσ(r+1)(X
sv)ir+2wiσ(r+2) ,

so that the left hand side of the assertion is equal to 
∑

σ∈Sr+2
sgn(σ)Dσ. When σ(r+2) =

r + 2, we have

Dσ =
∑

1≤i1,...,ir+1≤n

(X2)i1iσ(1) · · · (X2)iriσ(r)Xir+1iσ(r+1)
twXsv.

Thus we have
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∑
σ∈Sr+2, σ(r+2)=r+2

sgn(σ)Dσ

=
∑

σ∈Sr+2, σ(r+2)=r+2

sgn(σ)
∑

1≤i1,...,ir+1≤n

(X2)i1iσ(1) · · · (X2)iriσ(r)Xir+1iσ(r+1)
twXsv

= D([X2]r, X) twXsv.

Similarly we have∑
σ∈Sr+2, σ(r+2)=r+1

sgn(σ)Dσ

=
∑

σ∈Sr+2, σ(r+2)=r+1

sgn(σ)
∑

1≤i1,...,ir+1≤n

(X2)i1iσ(1) · · · (X2)iriσ(r)(X
s+1v)ir+1wiσ(r+2)

= −D([X2]r |Xs+1v |w).

Moreover, for 1 ≤ k ≤ r, we have∑
σ∈Sr+2, σ(r+2)=k

sgn(σ)Dσ

=
∑

σ∈Sr+2, σ(r+2)=k

sgn(σ)
∑

1≤i1,...,ir+1≤n

(X2)i1iσ(1) · · · (̂X2)ikiσ(k)
· · · (X2)iriσ(r)

Xir+1iσ(r+1)(X
s+2v)ikwiσ(r+2)

= −D([X2]r−1, X |Xs+2v |w).

Here the hat means that we omit the kth factor. Combining these, we have the assertion 
of the last relation.

We can prove the other two relations similarly looking at the value of σ(r + 1). �
Using Lemma 2.3, we have the following relations:

Lemma 2.4. We have

D([X2]r, Xs) = (−)rr! tr(X2r+s),

D([X2]r |Xsv |w) = (−)rr! twX2r+sv,

D([X2]r, X |Xsv |w) = (−)r+1{(r + 1)! twX2r+s+1v − r!
∑

0≤k≤r

tr(X2k+1) twX2r−2k+sv}.

Proof. These three relations can be proved by using three relations in Lemma 2.3, re-
spectively. �

We have Proposition 2.2 as a special case of the last relation in Lemma 2.4. Thus we 
have proved Theorem 2.1.
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We have the following relation as a corollary of Theorem 2.1:

Corollary 2.5. We have X2n = 0.

Proof. Multiplying Theorem 2.1 by X from left or right, we have

nX2n − tr(X1)X2n−1 − tr(X3)X2n−3 − · · · − tr(X2n−3)X3 − tr(X2n−1)X1 = 0,

nX2n + tr(X1)X2n−1 + tr(X3)X2n−3 + · · · + tr(X2n−3)X3 + tr(X2n−1)X1 = 0.

Look at the left hand sides of these two relation. The first terms are equal, but the signs 
of the other terms are opposite, because tr(X2k−1) are of odd degree. Thus, adding these 
two equalities and dividing by 2n, we obtain X2n = 0. �

Proposition 1.5 in the previous section is now immediate from this corollary.

Remarks.

(1) The relation Q = 0 was deduced from the fact that this is an alternating sum of n +1
couplings of vectors and covectors. Namely, we can regard this as a corollary of the 
second fundamental theorem of invariant theory for vector invariants [18]. Thus, all 
our results in Sections 1 and 2 come from the first and second fundamental theorems 
for vector invariants.

(2) The ordinary Cayley–Hamilton theorem for A ∈ Matn,n(C) can be similarly proved 
by looking at D([A]n | v | w) (see [4]).

(3) A diagrammatic notation due to Penrose ([11]; see also [4]) is useful for the calcula-
tions in this section. However we need to specify the order multiplications, because 
we work in noncommutative framework. In this paper, we do not use this notation 
because of this trouble caused by the noncommutativity.

(4) Theorem 2.1 has the lowest degree among monic relations of X whose coefficients 
are GL(V )-invariants. This fact follows from Theorem 1.3.

(5) We can regard X as the most generic matrix among matrices whose entries are 
anticommuting with each other. Thus Theorem 2.1 and Corollary 2.5 hold for any 
matrix with anticommuting entries.

(6) As written in Introduction, Theorem 2.1 was given in [2] independently of this article 
(see also [3] and [12]).

3. Relation to the Amitsur–Levitzki theorem

The Cayley–Hamilton theorem in the previous section is closely related to the follow-
ing Amitsur–Levitzki theorem:

Theorem 3.1 (Amitsur–Levitzki [1]). For 2n complex square matrices X1, . . . , X2n of 
size n, we have
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∑
σ∈S2n

sgn(σ)Xσ(1)Xσ(2) · · ·Xσ(2n) = 0.

The original proof given by Amitsur and Levitzki was complicated, but Rosset [14]
gave a simple and elementary proof. The key of this simple proof is the following matrix:

X = X1e1 + · · · + X2ne2n.

Here e1, . . . , e2n are anticommuting formal variables. We regard X as an element of 
Matn,n(Λ(Cn)), where Λ(C2n) is the exterior algebra generated by e1, . . . , e2n. To prove 
Theorem 3.1, it suffices to show X2n = 0, because

X2n =
∑

σ∈S2n

sgn(σ)Xσ(1)Xσ(2) · · ·Xσ(2n)e1e2 · · · e2n.

This relation X2n = 0 itself is obtained by applying the ordinary Cayley–Hamilton 
theorem to the matrix X2. Indeed, the entries of X2 are commutative with each other, 
so that the Cayley–Hamilton theorem holds for X2, and the characteristic polynomial of 
X2 is equal to λn because tr(X2) = tr(X4) = · · · = 0. This is the proof of Theorem 3.1
given by Rosset [14].

Actually, we have proved the key relation X2n = 0 in Corollary 2.5 as a corollary of 
Theorem 2.1. Indeed, the entries of X are anticommuting with each other. This tells us 
that we can regard our Cayley–Hamilton type theorem as a refinement of the Amitsur–
Levitzki theorem.

Remark. Various proofs of the Amitsur–Levitzki theorem had been known also before 
the proof by Rosset. Kostant proved this using Lie algebra cohomology [8] (this method 
also gave another Amitsur–Levitzki type theorem (Theorem 4.1)). Swan proved this us-
ing graph theory [17]. Razmyslov proved this as a consequence of the Cayley–Hamilton 
theorem [13] (actually, he proved that all trace identities are a consequence of the Cayley–
Hamilton theorem).

4. Amitsur–Levitzki type theorem due to Kostant and Rowen

In Sections 4 and 5, we will discuss two more examples of Amitsur–Levitzki type 
theorems related to invariant theory in exterior algebras.

First, in this section, we investigate the following famous Amitsur–Levitzki type theo-
rem. We will see that this is related to O(V )-invariants in the exterior algebra Λ(Λ2(V )).

Theorem 4.1 (Kostant [8], Rowen [15]). For 2n − 2 complex alternating matrices 
A1, . . . , A2n−2 of size n, we have∑

σ∈S2n−2

sgn(σ)Aσ(1)Aσ(2) · · ·Aσ(2n−2) = 0.
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This theorem is much more difficult to prove than Theorem 3.1 (the method used in 
the proof of Theorem 3.1 due to Rosset is not valid). Kostant first proved Theorem 4.1
using theory of cohomology of Lie algebras, when n is even ([8]; see also [9]). Later, 
Rowen gave more elementary but technical proof for arbitrary n ([15]; see also [16]). In 
this section, we will connect this Theorem 4.1 with invariant theory for O(V )-invariants 
in the exterior algebra Λ(Λ2(V )), and deduce this from a Cayley–Hamilton type theorem 
similar to Theorem 2.1.

4.1. Invariant theory for O(V )-invariants in Λ(Λ2(V ))

We study invariants under the natural action of the orthogonal group O(V ) in the 
exterior algebra Λ(Λ2(V )) on the second antisymmetric tensor Λ2(V ) of V . Here V
is an n-dimensional complex vector space with a symmetric bilinear form. We fix an 
orthonormal basis e1, . . . , en of V and put aij = ei ∧ ej in Λ2(V ). Then, for the matrix 
A = (aij)1≤i,j≤n ∈ Matn,n(Λ(Λ2(V ))), we have the following propositions:

Proposition 4.2. tr(Ak) is O(V )-invariant.

Proof. This is immediate from the equality

π(g)A = (π(g)aij)1≤i,j≤n = tgA tg−1 = tgAg. (4.1)

Here we denote by π the natural action of O(V ) on Λ(Λ2(V )). �
Proposition 4.3. The matrix Al is symmetric when l ≡ 0, 3 mod 4, and is alternating 
when l ≡ 1, 2 mod 4.

Proof. For example, A3 is symmetric, because

(A3)ij =
∑

1≤r,s≤n

airarsasj =
∑

1≤r,s≤n

(−ari)(−asr)(−ajs)

= −
∑

1≤r,s≤n

ariasrajs =
∑

1≤r,s≤n

ajsasrari = (A3)ji.

The other cases are similarly shown. �
Proposition 4.4. For l ≥ 1, we have tr(Al) = 0 unless l ≡ 3 mod 4.

Proof. We see that tr(A2) = tr(A4) = · · · = 0 in a way similar to the proof of Theo-
rem 1.1. The assertion is immediate from this and Proposition 4.3. �

Let us put q4m+3 = tr(A4m+3). Then we have the following theorem:
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Theorem 4.5. The algebra Λ(Λ2(V ))O(V ) is generated by the following elements, and 
these are anticommuting with each other and have no other relations:

q3, q7, q11, . . . , q4m−5, n = 2m,

q3, q7, q11, . . . , q4m−1, n = 2m + 1.

We will prove this as the composition of the following three propositions:

Proposition 4.6. Λ(Λ2(V ))O(V ) is generated by q3, q7, q11, . . . .

Proposition 4.7. For k ≥ 2n − 2, we have tr(Ak) = 0.

Proposition 4.8. The following elements are anticommuting with each other and have no 
other relations:

q3, q7, q11, . . . , q4m−5, n = 2m,

q3, q7, q11, . . . , q4m−1, n = 2m + 1.

Proof of Proposition 4.6. The homogeneous decomposition

Λ(Λ2(V )) =
n(n−1)/2⊕

k=0

Λk(Λ2(V ))

is a decomposition as O(V )-spaces, so that it suffices to describe the O(V )-invariants 
in Λk(Λ2(V )). The following map V ⊗2k → Λk(Λ2(V )) is a surjective homomorphism of 
O(V )-spaces:

ei1 ⊗ ej1 ⊗ · · · ⊗ eik ⊗ ejk �→ ai1j1 · · · aikjk .

Thus any O(V )-invariant in Λk(Λ2(V )) comes from an O(V )-invariants in V ⊗2k. By 
the first fundamental theorem of invariant theory for vector invariants [18,7], any 
O(V )-invariant in V ⊗2k can be expressed as a linear combination of elements in the 
form ∑

(i1,...,i2k)∈I

eiσ(1) ⊗ eiσ(2) ⊗ · · · ⊗ eiσ(2k−1) ⊗ eiσ(2k)

with σ ∈ S2k. Here we put

I = {(i1, . . . , i2k) ∈ {1, . . . , n}2k | i1 = i2, i3 = i4, . . . , i2k−1 = i2k}

= {(j1, j1, j2, j2, . . . , jk, jk) | j1, . . . , jk ∈ {1, . . . , n}}.

The image of this element is equal to
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∑
(i1,...,i2k)∈I

aiσ(1)iσ(2) · · · aiσ(2k−1)iσ(2k) ,

and this is equal to a product of q3, q7, q11, . . . up to a sign. Thus any O(V )-invariant in 
Λk(Λ2(V )) is expressed as a linear combination of products of q3, q7, q11, . . . . �

Proposition 4.7 is seen from a Cayley–Hamilton type theorem in the next subsection.
To prove Proposition 4.8, we consider the following product of n(n − 1)/2 elements:

h = a12a13 · · · a1n

a23 · · · a2n

...

an−1,n.

Lemma 4.9. We have π(g)h = det(g)h for g ∈ O(V ). Here π is the natural action of 
GL(V ) on Λ(Λ2(V )). Thus h is O(V )-invariant when n is odd. However, when n is 
even, this is not O(V )-invariant, but SO(V )-invariant.

Proof. We have det ρ(g) = (det g)n−1 for the natural action ρ of GL(V ) on Λ2(V ). Thus, 
by Lemma 1.8, we have

π(g)h = det(ρ(g))n(n−1)/2h = det(g)n(n−1)2/2h

for g ∈ GL(V ). The assertion is immediate from this. �
Let us assume that n = 2m +1. Then h is O(V )-invariant, so that this is generated by 

q3, q7, q11, . . . , q4m−1. Namely h is equal to the product q3q7q11 · · · q4m−1 up to constant, 
because

3 + 7 + 11 + · · · + (4m− 1) = n(n− 1)
2 .

Thus we have q3q7q11 · · · q4m−1 �= 0. This means that q3, q7, q11, . . . , q4m−1 have no rela-
tions besides the anticommutativity.

Next we assume that n = 2m. We consider the following Pfaffian type element:

p =
∑

σ∈S2m

sgn(σ)(A2)σ(1)σ(2) · · · (A2)σ(2m−3)σ(2m−2)Aσ(2m−1)σ(2m).

The coefficient of a1na2na3nan−1,n in p is equal to (−)m−12mm!(2m − 1), so that p �= 0.

Lemma 4.10. We have π(g)p = det(g)p for g ∈ O(V ).
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Proof. For a C-algebra R and X1, . . . , Xm ∈ Mat2m,2m(R), we put

pf(X1, . . . , Xm) =
∑

σ∈S2m

sgn(σ)(X1)σ(1)σ(2)(X2)σ(3)σ(4) · · · (Xm)σ(2m−1)σ(2m).

Then we have

pf(tgX1g, . . . ,
tgXmg) = det(g) pf(X1, . . . , Xm)

for g ∈ GL2m(C). The assertion is immediate from this general fact and (4.1). �
We consider the natural bilinear form 〈· | ·〉 on Λ2(V ) determined by the bilinear 

form on V (aij forms an orthonormal basis), and consider the operator Der(p) ∈
End(Λ(Λ2(V ))).

Here “Der” is defined as follows. Let W be a complex vector space with a nonde-
generate symmetric bilinear form 〈· | ·〉, and consider an action π of a group G on W
preserving 〈· | ·〉 (namely we fix a homomorphism G → O(W )). For a ∈ W , we define the 
derivation Der(a) ∈ End(Λ(W )) by

Der(a) : b1 · · · bk �→
k∑

i=1
(−)i−1〈a | bi〉b1 · · · b̂i · · · bk,

where b1, . . . , bk are elements of W . Moreover we extend this as an algebra homomor-
phism Der: Λ(W ) → End(Λ(W )). Then we have Der(π(g)(x))π(g)(y) = π(g)(Der(x)y)
for g ∈ G and x, y ∈ Λ(W ), where π is the natural action of G on Λ(W ).

Lemma 4.11. Der(p)h is a nonzero O(V )-invariant of degree n(n − 1)/2 − (n − 1).

Thus, Der(p)h is generated by q3, q7, q11, . . . , q4m−5. Moreover, since

3 + 7 + 11 + · · · + (4m− 5) = n(n− 1)
2 − (n− 1),

we see that Der(p)h is equal to q3q7q11 · · · q4m−5 up to constant, so that q3q7q11 · · ·
q4m−5 �= 0. This means that q3, q7, q11, . . . , q4m−5 have no relations besides the anticom-
mutativity.

4.2. Cayley–Hamilton type theorem for Λ(Λ2(V ))

We have the following Cayley–Hamilton type theorem2:

2 As written in Introduction, the case n = 2m +1 of this theorem is also given by Dolce [5] independently 
of this article.
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Theorem 4.12. We have the following relation in Matn,n(Λ(Λ2(V ))):

(n− 2)A2n−3 −
∑

0≤k≤m−2

tr(A4k+3)A2n−3−4k−3 = 0, n = 2m,

nA2n−3 −
∑

0≤k≤m−1

tr(A4k+3)A2n−3−4k−3 = 0, n = 2m + 1.

As a consequence of this theorem, we have the following relation. The proof is almost 
the same as that of Corollary 2.5.

Corollary 4.13. We have A2n−2 = 0.

Proposition 4.7 is immediate from this corollary.
Theorem 4.1 also follows from this corollary in a way similar to the discussion in 

Section 3. Thus, we can regard Theorem 4.12 as a refinement of this Amitsur–Levitzki 
type theorem.

The proof of Theorem 4.12 is similar to that of Theorem 2.1. The calculation is 
harder, but this also follows from the second fundamental theorem for vector invariants. 
In addition to (2.1) and (2.2), we put

D(Ω1, . . . ,Ωr |Φ |α, β)

=
∑

σ∈Sr+2

∑
1≤i1,...,ir+2≤n

sgn(σ)Ωi1iσ(1) · · ·Ωiriσ(r)Ψir+1ir+2αiσ(r+1)βiσ(r+2) ,

D(Ω1, . . . ,Ωr |Φ |Ψ)

=
∑

σ∈Sr+3

∑
1≤i1,...,ir+2≤n

sgn(σ)Ωi1iσ(1) · · ·Ωiriσ(r)Φir+1ir+2Ψiσ(r+1)iσ(r+2) ,

D(Ω1, . . . ,Ωr |Φ, α |Ψ, β)

=
∑

σ∈Sr+3

∑
1≤i1,...,ir+3≤n

sgn(σ)Ωi1iσ(1) · · ·Ωiriσ(r)Φir+1ir+2αir+3Ψiσ(r+1)iσ(r+2)βiσ(r+3)

for Ω1, . . . , Ωr, Φ, Ψ ∈ Matn,n(R) and α, β ∈ Matn,1(R). It is easily seen that

D(Ω1, . . . ,Ωr |Φ |α, β) = 0,

when Φ is a symmetric matrix. Moreover we have

D(Ω1, . . . ,Ωr |Φ |Ψ) = 0, D(Ω1, . . . ,Ωr |Φ, α |Ψ, β) = 0,

when Φ or Ψ is a symmetric matrix.
The following element is the key of the proof:

Q = D([A2]n−3, A |A, v |A,w).
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Here v1, . . . , vn, w1, . . . , wn are arbitrary complex numbers, and we put v = t(v1, . . . , vn)
and w = t(w1, . . . , wn).

We have Q = 0 in a way similar to the discussion in Section 2, so that Theorem 4.12
is immediate from the following relation:

Proposition 4.14. When n = 2m, we have

D([A2]n−3, A |A, v |A,w)

= −2n(n− 3)!{(n− 2) twA2n−3v −
∑

0≤k≤m−2

tr(A4k+3) twA2n−3−4k−3v}.

When n = 2m + 1, we have

D([A2]n−3, A |A, v |A,w)

= −2(n− 1)(n− 3)!{n twA2n−3v −
∑

0≤k≤m−1

tr(A4k+3) twA2n−3−4k−3v}.

Let us prove this. First we note the following recurrence relations (Laplace type ex-
pansions). The proof is almost the same as that of Lemma 2.3:

Lemma 4.15. We have

D([A2]r, As) = D([A2]r) tr(Xs) − rD([A2]r−1, As+2), (4.2)

D([A2]r |A |As) = −2D([A2]r, As+1) + rD([A2]r−1 |A |As+2), (4.3)

D([A2]r, A |A |A) = −2D([A2]r, A,A2)

−D([A2]r |A |A2) + rD([A2]r−1, A |A |A3). (4.4)

Using this and Propositions 4.3 and 4.4, we have the following relations:

Lemma 4.16. We have

D([A2]r) = 0, D([A2]r, A) = (−)rr! tr(A2r+1),

D([A2]r |A |A) = 0, D([A2]r, A |A |A) = (−)r2(r + 2)r! tr(A2r+3).

Proof. We obtain the first and second relations using (4.2) repeatedly.
Let us prove the third relation. By (4.3), we have

D([A2]r |A |A) = −2D([A2]r, A2) + rD([A2]r−1 |A |A3).

Note that D([A2]r, A2) = D([A2]r+1) = 0. Moreover we have D([A2]r−1 | A | A3) = 0, 
because A3 is symmetric. Thus we have the third relation.
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To prove the fourth relation, we look at the right hand side of (4.4). We can compute 
the first term, because D([A2]r, A, A2) = D([A2]r+1, A) = (−)r+1(r+1)! tr(A2r+3). Next, 
the last term is equal to 0, because A3 is symmetric. We can also compute the second 
term. Indeed, by (4.3), we have

D([A2]r |A |A2) = −2D([A2]r, A3) + rD([A2]r−1 |A |A4).

Here we can compute D([A2]r, A3) using (4.2) repeatedly. Moreover D([A2]r−1 | A | A4)
is equal to 0, because A4 is symmetric. Combining these, we have the fourth relation. �

Moreover we have the following recurrence relations (Laplace type expansions):

Lemma 4.17. We have

D([A2]r |Asv | w) = D([A2]r) twAsv − rD([A2]r−1 |As+2v |w),

D([A2]r, A |Asv |w) = D([A2]r, A) twAsv

−D([A2]r |As+1v |w) − rD([A2]r−1, A |As+2v |w),

D([A2]r |A |w,Asv) = 2D([A2]r |As+1v |w) + rD([A2]r−1 |A |w,As+2v),

D([A2]r, A |A |w,Asv) = 2D([A2]r, A |As+1v |w) −D([A2]r |A |w,As+1v)

+ rD([A2]r−1, A |A |w,As+2v),

D([A2]r |A,Asv |A,w) = (−)sD([A2]r |A |A) twAsv + (−)s2D([A2]r |A |w,As+1v)

− rD([A2]r−1 |A,As+2v |A,w),

D([A2]r, A |A,Asv |A,w) = (−)sD([A2]r, A |A |A) twAsv

+ (−)s2D([A2]r, A |A |w,As+1v)

+ D([A2]r |A,As+1v |A,w)

− rD([A2]r−1, A |A,As+2v |A,w)

Using this we have the following relations by induction on r:

Lemma 4.18. When r = 2l, we have

D([A2]r |Asv | w) = r! twA2r+sv,

D([A2]r, A |Asv |w) = −(r + 1)! twA2r+s+1v

+ r!
∑

0≤k≤l−1

tr(A4k+3) twA2r+s+1−4k−3v,

D([A2]r |A |w,Asv) = 2r! twA2r+s+1v,

D([A2]r, A |A |w,Asv) = −2(r + 2)r! twA2r+s+2v,
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D([A2]r |A,Asv |A,w) = (−)s2(r + 2)r! twA2r+s+2v,

D([A2]r, A |A,Asv |A,w) = (−)s+12(r + 2)r!{(r + 3) twA2r+s+3v

−
∑

0≤k≤l

tr(A4k+3) twA2r+s+3−4k−3v}.

When r = 2l + 1, we have

D([A2]r |Asv | w) = −r! twA2r+sv,

D([A2]r, A |Asv |w) = (r + 1)! twA2r+s+1v − r!
∑

0≤k≤l

tr(A4k+3) twA2r+s+1−4k−3v,

D([A2]r |A |w,Asv) = 0,

D([A2]r, A |A |w,Asv) = −2r!
∑

0≤k≤l

tr(A4k+3) twA2r+s+2−4k−3v,

D([A2]r |A,Asv |A,w) = (−)s+12(r + 1)! twA2r+s+2v,

D([A2]r, A |A,Asv |A,w) = (−)s2(r + 3)r!{(r + 1) twA2r+s+3v

−
∑

0≤k≤l

tr(A4k+3) twA2r+s+3−4k−3v}.

Proposition 4.14 is immediate from the last relation in this lemma. Thus we have 
proved Theorem 4.12.

Remarks.

(1) Theorem 4.12 has the lowest degree among monic relations of A whose coefficients 
are O(V )-invariants. This fact follows from Theorem 4.5.

(2) We can also prove Corollary 4.13 directly not using Theorem 4.12. This direct proof 
is easier than the proof through Theorem 4.12. Indeed, we only have to show the 
following:

D([A2]n−2 |A, v |A,w) =
{

2n(n− 2)! twA2n−2v, n: even,
−2(n− 1)! twA2n−2v, n: odd.

To show this, we only need (4.2) and (4.3) in Lemma 4.15 and the first, third and 
fifth relations in Lemma 4.17 among the recurrence relations used in the proof of 
Theorem 4.12.

5. Amitsur–Levitzki type theorem for alternating and symmetric matrices

Finally, in this section, we give a new Amitsur–Levitzki type theorem:
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Theorem 5.1. For n complex alternating matrices A1, . . . , An and n − 1 complex sym-
metric matrices B1, . . . , Bn−1 of size n, we have

∑
σ∈Sn, τ∈Sn−1

sgn(σ) sgn(τ)Aσ(1)Bτ(1)Aσ(2)Bτ(2) · · ·Aσ(n−1)Bτ(n−1)Aσ(n) = 0.

This can be regarded as a refined version of the following relation:

Theorem 5.2 (Giambruno [6]). For n complex alternating matrices A1, . . . , An and n
complex symmetric matrices B1, . . . , Bn of size n, we have

∑
σ,τ∈Sn

sgn(σ) sgn(τ)Aσ(1)Bτ(1)Aσ(2)Bτ(2) · · ·Aσ(n−1)Bτ(n−1)Aσ(n)Bτ(n) = 0.

The proof of Theorem 5.2 is easy (the method due to Rosset stated in Section 3 is 
valid). However the proof of Theorem 5.1 is much more difficult. This theorem is also 
related to invariant theory for an exterior algebra and proved through this relationship.

5.1. Invariant theory for GL(V )-invariants in Λ(Λ2(V ) ⊕ S2(V ∗))

Theorem 5.1 is related to GL(V )-invariants in the exterior algebra Λ(Λ2(V ) ⊕S2(V ∗))
on the direct product of the second antisymmetric tensor Λ2(V ) of V and the second 
symmetric tensor S2(V ∗) of V ∗.

We do not have nontrivial GL(V )-invariants in this exterior algebra:

Theorem 5.3. We have Λ(Λ2(V ) ⊕ S2(V ∗))GL(V ) = C1.

To prove this, we consider the standard bases aij and bij of Λ2(V ) and S2(V ∗), 
respectively. Namely we put

aij = ei ⊗ ej − ej ⊗ ei, bij = ei ⊗ ej + ej ⊗ ei,

where ei is a basis of V , and e∗i is its dual basis. Moreover we consider the matrices

A = (aij)1≤i,j≤n, B = (bij)1≤i,j≤n

in Matn,n(Λ(Λ2(V ) ⊕ S2(V ∗))). For these matrices, we have the following relation:

Proposition 5.4. We have tr(AB)k = 0 for any k > 0.

Proof. First, we note t(AB) = −tB tA = BA. Since the entries of AB are commutative 
with each other, we have

t((AB)k) = (t(AB))k = (BA)k.
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Thus we have

tr(AB)k = tr t((AB)k) = tr(BA)k

=
∑

1≤i1,...,i2k≤n

bi1i2ai2i3bi3i4ai4i5 · · · bi2k−1i2kai2ki1

= −
∑

1≤i1,...,i2k≤n

ai2i3bi3i4ai4i5 · · · bi2k−1i2kai2ki1bi1i2 = − tr(AB)k.

The assertion is immediate from this. �
Proof of Theorem 5.3. We consider the homogeneous decomposition

Λ(Λ2(V ) ⊕ S2(V ∗)) =
n(n−1)/2⊕

r=0

n(n+1)/2⊕
s=0

Λr(Λ2(V )) ⊗ Λs(S2(V ∗)).

This is a decomposition as GL(V )-spaces, so that we only have to describe the 
GL(V )-invariants in Λr(Λ2(V )) ⊗ Λs(S2(V ∗)). The following map is a surjective ho-
momorphism of GL(V )-spaces:

V ⊗2r ⊗ V ∗⊗2s → Λr(Λ2(V )) ⊗ Λs(S2(V ∗)),

ei1 ⊗ ej1 ⊗ · · · ⊗ eir ⊗ ejr ⊗ e∗k1
⊗ e∗l1 ⊗ · · · ⊗ e∗ks

⊗ e∗ls �→ ai1j1 · · · airjrbk1l1 · · · bksls .

Thus any GL(V )-invariant in Λr(Λ2(V )) ⊗ Λs(S2(V ∗)) comes from a GL(V )-invariants 
in V ⊗2r⊗V ∗⊗2s, and we see GL(V )-invariants in V ⊗2r⊗V ∗⊗2s by the first fundamental 
theorem of invariant theory for vector invariants [18,7]. Indeed, when r �= s, we have 
(V ⊗2r ⊗ V ∗⊗2s)GL(V ) = {0}. When r = s, any GL(V )-invariant in V ⊗2r ⊗ V ∗⊗2s can be 
expressed as a linear combination of elements in the form

∑
1≤i1,...,i2r≤n

ei1 ⊗ ei2 ⊗ · · · ⊗ ei2r−1 ⊗ ei2r ⊗ e∗iσ(1)
⊗ e∗iσ(2)

⊗ · · · ⊗ e∗iσ(2r−1)
⊗ e∗iσ(2r)

with σ ∈ S2r. The image of this element is equal to

∑
1≤i1,...,i2r≤n

ai1i2 · · · ai2r−1i2rbiσ(1)iσ(2) · · · biσ(2r−1)iσ(2r) ,

but this is equal to 0 as seen from Proposition 5.4. �
5.2. Cayley–Hamilton type theorem for Λ(Λ2(V ) ⊕ S2(V ∗))

For the matrices A and B, we have the following relation:
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Theorem 5.5. We have the following relation in Matn,n(Λ(Λ2(V ) ⊕ S2(V ∗))):

(AB)n−1A = 0.

Remark. We have (AB)n−1 �= 0, because the coefficient of a12b22a23b33 · · · an−1,nbnn in 
the (1, n)th entry of (AB)n−1 is equal to 1. Similarly we have (BA)n−1 �= 0. Theorem 5.5
is best possible in this sense.

Theorem 5.1 follows from this Theorem 5.5 in a way similar to the proof of Theo-
rem 3.1. It is natural to regard this Theorem 5.5 as a Cayley–Hamilton type theorem.

To prove Theorem 5.5, we put

Q = D([AB]n−1 |A |w, v)

=
∑

σ∈Sn+1

∑
1≤i1,...,in+1≤n

sgn(σ)(AB)i1iσ(1) · · · (AB)in−1iσ(n−1)Ainin+1wiσ(n)viσ(n+1) .

Here v1, . . . , vn, w1, . . . , wn are arbitrary complex numbers, and we put v = t(v1, . . . , vn)
and w = t(w1, . . . , wn). Since we have Q = 0 as before, Theorem 5.5 follows from the 
following relation:

Proposition 5.6. We have

Q = (−)n−12(n− 1)! twA(BA)n−1v.

Let us prove Proposition 5.6. We have the following recurrence relations (Laplace type 
expansions):

Lemma 5.7. We have

D([AB]r, (AB)s) = D([AB]r) tr(AB)s − rD([AB]r−1, (AB)s+1),

D([AB]r |A(BA)sv |w) = D([AB]r) twA(BA)sv − rD([AB]r−1 |A(BA)s+1v |w),

D([AB]r |A |w, (BA)sv) = 2D([AB]r |A(BA)sv |w) − rD([AB]r−1 |A |w, (BA)s+1v).

Using this and Proposition 5.4, we have the following relations by induction on r:

Lemma 5.8. We have

D([AB]r) = δr0,

D([AB]r |A(BA)sv |w) = (−)rr! twA(BA)r+sv,

D([AB]r |A |w, (BA)sv) = (−)r2r! twA(BA)r+sv.

Proposition 5.6 can be regarded as a special case of the last relation in this lemma.
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