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HOFFMANN’S CONJECTURE FOR TOTALLY SINGULAR

FORMS OF PRIME DEGREE

STEPHEN SCULLY

Abstract. One of the most significant discrete invariants of a quadratic form
φ over a field k is its (full) splitting pattern, a finite sequence of integers which
describes the possible isotropy behaviour of φ under scalar extension to arbitrary

overfields of k. A similarly important, but more accessible variant of this notion is
that of the Knebusch splitting pattern of φ, which captures the isotropy behaviour
of φ as one passes over a certain prescribed tower of k-overfields. In this paper, we
determine all possible values of this latter invariant in the case where φ is totally
singular. This includes an extension of Karpenko’s theorem (formerly Hoffmann’s
conjecture) on the possible values of the first Witt index to the totally singular
case. Contrary to the existing approaches to this problem (in the nonsingular
case), our results are achieved by means of a new structural result on the higher
anisotropic kernels of totally singular quadratic forms. Moreover, the methods
used here readily generalise to give analogous results for arbitrary Fermat-type
forms of degree p over fields of characteristic p > 0. Related problems concerning
the Knebusch splitting of symmetric bilinear forms over fields of characteristic 2
and the full splitting of totally singular quadratic forms are also considered.

1. Introduction

Let k be a field, let φ be a nonzero quadratic form on a (nonzero) k-vector space
V of finite dimension and let Xφ ⊆ P(V ) denote the projective k-scheme defined
by the vanishing of φ. Given a k-linear subspace W of V , we write φ|W for the
restriction of φ to W . In the case where φ|W is the zero form, W is said to be totally
isotropic (with respect to φ). The largest integer among the dimensions of all totally
isotropic subspaces of V is called the isotropy index of φ, and is denoted by i0(φ).
In the special case where φ is nonsingular (i.e., where Xφ is smooth), i0(φ) is more
commonly known as the Witt index of φ, and is bounded from above by the integer
part of dimφ/2 (where dimφ denotes the dimension of the k-vector space V ). By
contrast, in the opposite extreme where φ is totally singular (i.e., where Xφ has no
smooth points at all), i0(φ) may take any value between 0 and dimφ− 1.
Assume now that φ is anisotropic (i.e., that i0(φ) = 0). A simple, yet fundamen-

tally important invariant of φ is its (full) splitting pattern, which may be defined
as the increasing sequence of nonzero isotropy indices attained by φ under scalar
extension to every overfield of k1. Although this sequence appears to be somewhat

2010 Mathematics Subject Classification. 11E04, 14E99, 15A03.
Key words and phrases. Quadratic forms, quasilinear p-forms, splitting patterns.
1This terminology is not standard – see, e.g., [HL04], where refined splitting pattern invariants

are considered. Our definition does, however, agree (in content if not presentation) with those
found in the literature when φ is nonsingular or totally singular (the only relevant cases here).
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intractable in general, its first entry (assuming the sequence is nonempty) may be
computed explicitly as the isotropy index i0(φL) of φ extended to the function field
L = k(Xφ) of the (integral) quadric Xφ. This (almost tautological) observation is
the basic motivation underlying the following construction, originally due to Kneb-
usch (cf. [Kne76]): Let k0 = k, φ0 = φ, and inductively define kr = kr−1(Xφr−1),
φr = (φkr)an

2, with the understanding that this (finite) process stops when we reach
the first nonnegative integer h(φ) such that dimφh(φ) ≤ 1. The integer h(φ) and
the tower of fields k = k0 ⊂ k1 ⊂ . . . ⊂ kh(φ) are known as the height and Kneb-
usch splitting tower of φ, respectively. For 1 ≤ r ≤ h(φ), the anisotropic form
φr is called the r-th higher anisotropic kernel of φ. The r-th higher isotropy index
of φ, denoted ir(φ), is defined as the difference i0(φkr) − i0(φkr−1). The sequence
i(φ) =

(

i1(φ), . . . , ih(φ)(φ)
)

is called the Knebusch splitting pattern of φ3. Note that
we have ir(φ) = i1(φr−1) for every r ≥ 2 by the inductive nature of the construction.
If φ is nonsingular, then its full and Knebusch splitting patterns are easily seen

to determine one another (cf. [EKM08, Prop. 25.1]). This need not be the case
for (totally) singular forms (see Example 2.47 below), but Knebusch’s construction
nevertheless offers a meaningful and practical way to pre-classify quadratic forms
according to some notion of “algebraic complexity”. By virtue of its definition,
the Knebusch splitting pattern thus embodies a fundamental link between intrinsic
algebraic properties of quadratic forms and the geometry of the algebraic varieties
which are naturally associated to them. In recent years, the advent of effective
new tools with which to study algebraic cycles on projective homogeneous varieties
has, in this way, led to dramatic progress on many long-standing problems within
the algebraic theory of quadratic forms. The impact of these developments has
been felt most deeply in the characteristic 6= 2 theory, where (1) anisotropic forms
of dimension ≥ 2 are necessarily nonsingular, and (2) the geometric methods are
better developed, even if we restrict our considerations to nonsingular forms only –
see [EKM08] for a thorough exposition of much of the work which has been done in
this area in the last two decades. One of the central problems in the investigation
of splitting properties of quadratic forms over general fields is the following:

Question 1.1. Let φ be an anisotropic quadratic form of dimension ≥ 2 over a
field. What are the possible values of the sequence i(φ)?

Since ir(φ) = i1(φr−1) for all 2 ≤ r ≤ h(φ), the natural first approximation to this
problem is to determine the possible values of the invariant i1 among all forms of a
given dimension. To this end, we have the following general conjecture:

Conjecture 1.2 (Hoffmann4). Let φ be an anisotropic quadratic form of dimension
≥ 2 over a field. Then i1(φ)− 1 is the remainder modulo 2s of dimφ − 1 for some
s < log2(dimφ)5.

2For any form ψ over a field K, ψan denotes the anisotropic kernel of ψ, an anisotropic K-form
uniquely determined up to isomorphism by the (refined) Witt decomposition of ψ - see [HL04, §2].

3The term standard splitting pattern is also used in the literature. Footnote 1 again applies here.
4This conjecture was originally stated by Hoffmann under the additional hypothesis that

char(k) 6= 2, but we expect that the assertion is also valid in characteristic 2.
5After passing to a purely transcendental extension of k if necessary, all values of i1(φ) which

are not excluded by the conjecture can be realised by making an appropriate choice of φ. In all
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Over fields of characteristic 6= 2, the first major result in the direction of Conjec-
ture 1.2 was established by Hoffmann himself, who showed that if dimφ = 2n +m
for nonnegative integers n and 1 ≤ m ≤ 2n, then i1(φ) ≤ m ([Hof95, Cor. 1]). A few
years later, Izhboldin ([Izh04, Cor. 5.12]) proved that one cannot have i1(φ) = m−1
here unlessm = 2. Izhboldin’s paper combined an elaboration of the algebraic meth-
ods conceived in [Hof95] with emerging work of Vishik ([Vis98],[Vis99]), who devel-
oped a systematic approach to the study of the splitting pattern using the (integral)
motive of the given quadric (see [Vis04], where motivic methods were used to verify
Hoffmann’s conjecture in all dimensions ≤ 22 in this setting). Going further, Vishik
later formulated a very general conjecture concerning the complete motivic decom-
position a smooth anisotropic quadric (the Excellent Connections conjecture) which
subsumed the nonsingular case of Conjecture 1.2 in a conceptual way. Not long
after this, Karpenko ([Kar03]) used a similar approach to prove the characteristic
6= 2 case of the conjecture in its entirety, the key new ingredient being the appli-
cation of (reduced power) Steenrod operations on modulo-2 Chow groups. More
recently, Vishik ([Vis11, Thm. 1.3]) proved the Excellent Connections conjecture
in characteristic 6= 2, thus yielding another proof of Hoffmann’s conjecture in this
setting. This work also makes essential use of Steenrod squares in Chow theory.
In characteristic 2, the general picture is more complicated. In the nonsingular

case, Karpenko’s (as well as Vishik’s) approach to Conjecture 1.2 is still valid, and
progress is only hindered here by the fact that the total mod-2 Steenrod operation is
not yet available when 2 is not invertible. To this end, weak forms of the first three
Steenrod squares have been constructed by Haution, and these are sufficient to prove
nontrivial partial results towards Conjecture 1.2 (see [Hau13a, Thm. 6.2],[Hau13b,
Thm. 5.8]). Haution’s results are further supplemented by earlier work of Hoffmann
and Laghribi, who extended Hoffmann’s upper bound on i1(φ) to the characteristic-
2 setting, irrespective of whether φ is nonsingular or not ([HL06, Lem. 4.1]). For
singular forms, the situation is different, and almost nothing is known in the direction
of Conjecture 1.2 beyond Hoffmann and Laghribi’s bound. In fact, the one exception
lies in the extreme case where φ is totally singular. Here, it was shown in [Scu14,
Thm. 9.4] that if dimφ = 2n+m for nonnegative integers n and 1 ≤ m ≤ 2n, and if
i1(φ) 6= m (that is, if Hoffmann and Laghribi’s bound is not met), then i1(φ) ≤ m

2
.

In the present article, we will settle this case completely by proving:

Theorem 1.3. Conjecture 1.2 is true in the case where φ is totally singular.

Contrary to the existing approaches to the nonsingular case of Conjecture 1.2, our
proof of Theorem 1.3 does not involve the study of Chow correspondences on the
quadric Xφ. Indeed, although we also make essential use of the computation of the
canonical dimension6 of Xφ (see [KM03, Tot08]), it is exploited here in a rather more
direct and algebraic way. This point of view begins with the following observation:
Let φ be an anisotropic totally singular quadratic form of dimension ≥ 2 over a field
k of characteristic 2 and let ψ ⊂ φ be a subform of codimension i1(φ).

cases, φ may, in fact, be chosen to be either nonsingular or (in the case where char(k) = 2) totally
singular – see [Vis04, §7.4] and Proposition 6.4 below.

6Here, the canonical dimension of an algebraic variety X over a field k should be understood
as the minimal dimension of the image of a rational self-map X 99K X .
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Proposition 1.4 (see Proposition 4.3 below). Suppose, in the above situation, that
h(ψ) < h(φ)7. Then there exist a quasi-Pfister form π8, a subform σ ⊂ π, an element
λ ∈ k∗ and a form τ over k such that ψ ≃ π ⊗ τ and φ ≃ ψ ⊥ λσ.

In the situation of Proposition 1.4, Hoffmann’s conjecture is immediately verified.
Indeed, (since σ ⊂ π) the integer dimπ is a power of 2 strictly greater than i1(φ)−1 =
dimσ − 1, and (since ψ is divisible by π) we have dimφ − 1 = dimψ + i1(φ)− 1 ≡
i1(φ)− 1 (mod dimπ). It is not always possible, however, to decompose the form φ
in the manner intimated by the proposition. Indeed, Vishik (see [Tot09, Lem. 7.1])
has given examples of 16-dimensional anisotropic quadratic forms in characteristic
different from 2 which have first higher isotropy index equal to 2, but which do not
decompose in this way, and the same examples carry over into the totally singular
setting (see Lemma 4.4 below). Thus, the picture is, in general, more complicated
than that suggested by Proposition 1.4. Perhaps surprisingly, however, the main
result of this paper shows that the next best thing happens here:

Theorem 1.5. Let φ be an anisotropic totally singular quadratic form of dimension
≥ 2 over a field of characteristic 2 and let s be the smallest nonnegative integer such
that 2s ≥ i1(φ). Then φ1 is divisible by an s-fold quasi-Pfister form.

As remarked above, the key ingredient needed for the proof of this theorem is
Totaro’s computation of the canonical dimension of a totally singular quadric (see
[Tot08, Thm. 5.1]). In [Scu13], this computation was extended to the wider class of
Fermat-type hypersurfaces of degree p over fields of characteristic p > 0, and this ex-
tension enables us to also prove a direct analogue of Theorem 1.5 for totally singular
forms of any prime degree p > 2 (known here as quasilinear p-forms) - see Theorem
5.1 below. Subsequently, we also get an analogue of Theorem 1.3 in higher degrees.
This may be interpreted as a complete solution to the problem of determining the
possible values of the canonical dimension of a degree-p Fermat-type hypersurface in
characteristic p > 0 (it is worth noting here that no such result is known for Fermat-
type hypersurfaces of prime degree p > 2 over fields of characteristic different from
p). Returning to the case where p = 2, let us explain more precisely how Theorem
1.5 implies totally singular case of Hoffmann’s conjecture:

Proof of Theorem 1.3. Since φ is totally singular, we have dimφ1 = dimφ − i1(φ)
(see Remark 2.36 (2) below). Thus, if s is as in Theorem 1.5, then

dimφ− 1 = dimφ1 + i1(φ)− 1 ≡ i1(φ)− 1 (mod 2s).

Since i1(φ)− 1 < 2s, the result follows. �

Of course, our main result goes somewhat deeper than this. In fact, Theorem 1.5
(resp. Theorem 5.1 below) yields a complete answer to Question 1.1 in the totally
singular case (resp. its analogue for arbitrary quasilinear p-forms). In other words,
all restrictions on the possible values of the Knebusch splitting pattern of φ are
explained here by the presence of certain divisibilities among its higher anisotropic
kernels – more precise statements will be given in §6.1 below (see Theorem 6.1,

7A weaker condition will suffice – see the statement of Proposition 4.3.
8That is, π is the diagonal part of a bilinear Pfister form over k – see §2.3 below.
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Proposition 6.4). With this result in hand, it is then natural to ask for a precise
description of the general discrepancy which exists between the Knebusch and full
splitting patterns in the totally singular case. An immediate challenge here concerns
the determination of all non-trivial restrictions which the former invariant imposes
on the latter. In §8 below, we initiate this process by conjecturing that the gaps in
the full splitting pattern established in characteristic 6= 2 by Vishik as a consequence
of his Excellent Connections theorem (see [Vis11, Prop. 2.6] or Theorem 8.1 below)
are also present in the totally singular theory. A particular case of this conjecture
was already proved in [Scu14, Thm. 9.2], and we provide some further evidence for
its general veracity here9.
The rest of this paper is organised as follows: In sections 2 and 3, we recall the

basic theory of quasilinear p-forms and introduce the key notions and results which
will be needed in the main part of the text. As a warm-up for the proof of our main
result, we prove in §4 (a stronger version of) Proposition 1.4 above and consider
some situations in which it may be applied. The proof of Theorem 1.5 (and its
generalisation to higher degrees) is then given in §5, and, in §6, we apply this re-
sult to determine all possible Knebusch splitting patterns of quasilinear p-forms and
settle another conjecture of Hoffmann concerning quasilinear p-forms with “maxi-
mal splitting”. In §7, we discuss some consequences of these results for the Kneb-
usch splitting theory of symmetric bilinear forms in characteristic 2, as initiated by
Laghribi in [Lag07, Lag11]. Finally, in §8, we consider the aforementioned problem
of establishing totally singular analogues of the results obtained by Vishik in [Vis11].

Notation and Terminology. Unless stated otherwise, p will denote an arbitrary
prime integer and F will denote an arbitrary field of characteristic p. If L is a
field of characteristic p and a1, . . . , an are elements of L, then La1,...,an will denote
the field L( p

√
a1, . . . , p

√
an). Finally, if k is a field and T = (T1, . . . , Tm) is a tuple of

algebraically independent variables over k, then we will write k[T ] for the polynomial
ring k[T1, . . . , Tn] and k(T ) for its fraction field.

2. Quasilinear p-forms and quasilinear p-hypersurfaces

The basic material presented in this section was originally developed in a series of
papers by Hoffmann and Laghribi (see [HL04, Lag04a, Lag04b, Lag06] and especially
[Hof04]). Additional elementary results which will be needed in the sequel are also
included here. For any details which are omitted from our exposition of the basic
theory, we refer the reader to [Hof04].

2.1. Basic notions. Let φ : V → F be a nonzero form on a (nonzero) finite-
dimensional F -vector space V . We say that φ is a quasilinear p-form (on V ) if
φ is homogeneous of degree p and the equation φ(v + w) = φ(v) + φ(w) holds for
all (v, w) ∈ V × V . By a quasilinear p-form over F (or sometimes simply a form
over F or F -form), we will mean a quasilinear p-form on some (nonzero) finite-
dimensional F -vector space. By a quasilinear p-hypersurface over F we will mean
a projective hypersurface defined by the vanishing of a quasilinear p-form on some

9To the author’s knowledge, there is no conjectural description of the possible values of the full
splitting pattern, even in the nonsingular case (in any characteristic).
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F -vector space of dimension ≥ 2. In the special case where p = 2, we will speak of
quasilinear quadratic forms rather than quasilinear 2-forms.

Remark 2.1. Let T = (T1, . . . , Tn) be a tuple of n ≥ 2 algebraically independent
variables over F , and let f ∈ F [T ] \ {0}. Then the projective hypersurface Xf =
{f = 0} ⊂ P

n−1 is nowhere smooth if and only if f ∈ F [T p1 , . . . , T
p
n ]. In particular,

if p = 2, then a nonzero quadratic form of dimension ≥ 2 over F is totally singular
(in the sense of §1) if and only if it is quasilinear.

Let φ be a quasilinear p-form over F . The underlying F -vector space of φ will be
denoted by Vφ. Its dimension will be called the dimension of φ and will be denoted
by dimφ. If dimφ ≥ 2, then the quasilinear p-hypersurface {φ = 0} ⊂ P(Vφ) (which
is nowhere smooth by Remark 2.1) will be denoted by Xφ. The set {φ(v) | v ∈ Vφ}
of elements of F represented by φ will be denoted by D(φ). Given a field extension
L of F , we will write φL for the unique quasilinear p-form on the L-vector space
Vφ⊗F L such that φL(v⊗ 1) = φ(v) for all v ∈ Vφ. If R is a subring of L containing
F , then D(φR) will denote the subset {φ(w) | w ∈ Vφ⊗F R} of D(φL) (which lies in
R). Given a ∈ F ∗, we will write aφ for the form v 7→ aφ(v) on the vector space Vφ.
Let ψ be another quasilinear p-form over F . If there exists an injective (resp.

bijective) F -linear map f : Vψ → Vφ such that φ(f(v)) = ψ(v) for all v ∈ Vψ, then
we will say that ψ is a subform of (resp. is isomorphic to) φ and write ψ ⊂ φ
(resp. ψ ≃ φ). If ψ ≃ aφ for some a ∈ F ∗, then we will say that ψ and φ are
similar. The sum ψ ⊕ φ (resp. product ψ ⊗ φ) is defined as the unique quasilinear
p-form on Vψ ⊕ Vφ (resp. Vψ ⊗F Vφ) such that (ψ ⊕ φ)

(

(v, w)
)

= ψ(v) + φ(w) (resp.
(ψ ⊗ φ)(v ⊗ w) = ψ(v)φ(w)) for all (v, w) ∈ Vψ × Vφ. Given a positive integer n,
n · φ will denote the sum of n copies of φ (note that n · φ 6= nφ). If there exists a
form τ over F such that φ ≃ ψ ⊗ τ , then we will say that φ is divisible by ψ.
Given elements a1, . . . , an ∈ F , at least one of which is nonzero, we will write

〈a1, . . . , an〉 for the quasilinear p-form (λ1, . . . , λn) 7→ ∑n

i=1 aiλ
p
i on the F -vector

space F⊕n. By definition, every quasilinear p-form of dimension n over F is isomor-
phic to 〈a1, . . . , an〉 for some ai ∈ F .
A vector v ∈ Vφ is said to be isotropic if φ(v) = 0. We will say that φ is isotropic if

Vφ contains a nonzero isotropic vector, and anisotropic otherwise. By the additivity
of φ, the subset V 0

φ of all isotropic vectors in Vφ is, in fact, an F -linear subspace of
Vφ. Its dimension will be called the isotropy index of φ, and will be denoted by i0(φ)
(note that, in the special case where p = 2, this agrees with the definition given
in §1). The additivity of φ also implies that D(φ) is a (nonzero finite-dimensional)
F p-linear subspace of F (where F is equipped with its natural F p-vector space
structure). Conversely, if U is a nonzero finite-dimensional F p-linear subspace of F ,
and if a1, . . . , an is a basis of U , then σ = 〈a1, . . . , an〉 is a quasilinear p-form over
F satisfying D(σ) = U . In fact, it is easy to see that σ is, up to isomorphism, the
unique anisotropic quasilinear p-form with this property:

Lemma 2.2 (cf. [Hof04, Prop. 2.12]). Let U be a nonzero finite-dimensional F p-
linear subspace of F . Then, up to isomorphism, there exists a unique anisotropic
quasilinear p-form φ over F such that D(φ) = U .
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In particular, Pfister’s quadratic subform theorem ([EKM08, Thm. 17.12]) takes
the following simplified form in this setting:

Proposition 2.3 (cf. [Hof04, Prop. 2.6]). Let ψ and φ be anisotropic quasilinear
p-forms over F . Then ψ ⊂ φ if and only if D(ψ) ⊆ D(φ). In particular, ψ ≃ φ if
and only if D(ψ) = D(φ).

In view of these observations, we can define (up to isomorphism) the anisotropic
kernel of φ as the unique quasilinear p-form φan over F such that D(φan) = D(φ). If
we view D(φ) as an F -vector space via the Frobenius F 7→ F p, then φ : Vφ → D(φ)
is a surjective F -linear map with kernel V 0

φ . We thus obtain:

Proposition 2.4 (cf. [Hof04, Lem 2.10]). Let φ be a quasilinear p-form over F .
Then φ is anisotropic if and only if φ ≃ φan. If φ is isotropic, then φ ≃ φan ⊕ i0(φ) ·
〈0〉. In particular, dimφan = dimφ− i0(φ).

In summary, we see that φ is determined up to isomorphism by the set D(φ)
and the integer i0(φ). Since we only consider nonzero forms here, we always have
dimφan ≥ 1. In the case where dimφan = 1, we will say that φ is split. Given
another form ψ over F , we will write ψ ∼ φ whenever ψan ≃ φan. If F is perfect
(that is, if F = F p), then every form over F is split and the theory is vacuous. As
such, we are essentially only interested in the case where F is imperfect.

Remark 2.5. Let φ be a quasilinear p-form over F . Choose a basis v1, . . . , vn of Vφ
and let ai = φ(vi) for all 1 ≤ i ≤ n, so that φ ≃ 〈a1, . . . , an〉. Suppose that v ∈ Vφ
is an isotropic vector, and write v =

∑n

i=1 λivi. If λj 6= 0 for 1 ≤ j ≤ n, then
the F p-vector space D(φ) is spanned by the elements a1, . . . , aj−1, aj+1, . . . , an. In
particular, we have φ ∼ 〈a1, . . . , aj−1, aj+1, . . . , an〉.
2.2. Function fields of quasilinear p-hypersurfaces and their products. Let
φ be a quasilinear p-form of dimension ≥ 2 over F . If φ is not split, then the
quasilinear p-hypersurface Xφ is an integral scheme (cf. [Hof04, Lem. 7.1]), as is its
affine cone {φ = 0} ⊂ A(Vφ). In this case, we will write F (φ) for the function field
of the former and F [φ] for that of the latter. If L is a field extension of F , then we
will simply write L(φ) instead of L(φL) whenever it is defined. In general, given a
finite collection φ1, . . . , φn of quasilinear p-forms dimension ≥ 2 over F , we will write
F (φ1× . . .× φn) for the function field of the scheme Xφ1 × . . .×Xφn, provided that
it is integral. This notation will be further simplified where possible; for example,
if φ1 = . . . = φn = φ, then we will simply write F (φ×n) instead of F (φ1 × . . .× φn).

Remarks 2.6. Let φ be a quasilinear p-form over F . Assume that φ is not split. We
make the following basic observations:

(1) Let a0, . . . , an ∈ F be such that φ ≃ 〈a0, . . . , an〉 and a0, a1 6= 0. Then we have
F -isomorphisms

F (φ) ≃ F (S)
(

p

√

a−1
1

(

a0 + a2S
p
2 + . . .+ anS

p
n

)

)

and

F [φ] ≃ Frac
(

F [T ]/(a0T
p
0 + . . .+ anT

p
n)
)

≃ F (U)
(

p

√

a−1
0

(

a1U
p
1 + . . .+ anU

p
n

)

)

,
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where S = (S2, . . . , Sn), T = (T0, . . . , Tn) and U = (U1, . . . , Un) are tuples of
algebraically independent variables over F .

(2) F [φ] is F -isomorphic to a degree-1 purely transcendental extension of F (φ).
(3) F (φ) is F -isomorphic to a degree-i0(φ) purely transcendental extension of F (φan)

– see Proposition 2.4.
(4) The form φF (φ) is evidently isotropic. Furthermore, if a1, . . . , an ∈ F are such

that φ ≃ 〈a1, . . . , an〉, then consideration of the generic point in Xφ

(

F (φ)
)

shows
that φF (φ) ∼ 〈a1, . . . , ai−1, ai+1, . . . , an〉 for every 1 ≤ i ≤ n – see Remark 2.5.

2.3. Quasi-Pfister p-forms. Let φ be a quasilinear p-form over F and let n be
a positive integer. We say that φ is an n-fold quasi-Pfister p-form if there exist
a1, . . . , an ∈ F such that φ ≃ 〈〈a1, . . . , an〉〉 := ⊗n

i=1〈1, ai, a2i , . . . , ap−1
i 〉. For con-

venience, we also say that φ is a 0-fold quasi-Pfister p-form if φ ≃ 〈1〉. Note, in
particular, that if φ is an n-fold quasi-Pfister p-form for some n ≥ 0, then we have
dimφ = pn. The basic observation concerning quasi-Pfister p-forms is found in the
following proposition (which follows easily from Lemma 2.2):

Proposition 2.7 (cf. [Hof04, Prop. 4.6]). Let φ be a quasilinear p-form over F .
Then φan is a quasi-Pfister p-form if and only if D(φ) is a subfield of F .

Since the set of elements represented by an arbitrary quasi-Pfister p-form is, by
definition, a subfield of the base field, we obtain:

Corollary 2.8 (cf. [Hof04, Prop. 4.6]). Let φ be a quasi-Pfister p-form over F .
Then φan is a quasi-Pfister p-form. In particular, if φ is isotropic, then dimφan =
1
pk
dimφ for some k ≥ 1.

Remark 2.9. More explicitly, let φ = 〈〈a1, . . . , an〉〉 for some n ≥ 1 and ai ∈ F . Then
D(φ) = F p(a1, . . . , an). Let m be such that [F p(a1, . . . , an) : F p] = pm. If m = 0
(i.e., D(φ) = F p), then φan ≃ 〈1〉. If m ≥ 1, then φan ≃ 〈〈b1, . . . , bm〉〉 for any m
elements b1, . . . , bm ∈ F such that F p(b1, . . . , bm) = F p(a1, . . . , an).

Quasi-Pfister p-forms have a central role to play in the general theory of quasilinear
p-forms. As shown by Hoffmann ([Hof04]), these forms are distinguished here by the
very same properties which distinguish the classical Pfister forms among nonsingular
quadratic forms. For this reason, it will be useful to define the divisibility index of
a given form φ, denoted d0(φ), as the largest nonnegative integer s such that φan is
divisible by an s-fold quasi-Pfister p-form. Clearly we have d0(φ) ≤ logp(dimφan),
with equality holding if and only if φan is similar to a quasi-Pfister p-form. An
alternative description of this invariant will be given in Corollary 2.19 below.

2.4. The norm form. Let φ be a quasilinear p-form over F . The norm field of φ,
denoted N(φ), is defined (cf. [Hof04, Def. 4.1]) as the smallest subfield of F which
contains all ratios of nonzero elements of D(φ). Note, in particular, that we have
N(aφ) = N(φ) = N(φan) for all a ∈ F ∗. In spite of its simple nature, this invariant
has an important role to play in the whole theory. A more explicit description of
the norm field may be given as follows:

Remark 2.10. If a1, . . . , an ∈ F are such that φ ≃ 〈a1, . . . , an〉 and a1 6= 0, then we
have N(φ) = F p(a2

a1
, . . . , an

a1
).
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In particular, we see that N(φ) is a nonzero finite-dimensional F p-linear subspace
of F . By Lemma 2.2, it follows that, up to isomorphism, there exists a unique
anisotropic quasilinear p-form φnor over F such that D(φnor) = N(φ). The form φnor

is called the norm form of φ (cf. [Hof04, Def. 4.9]). By Proposition 2.7, φnor is
a quasi-Pfister p-form. Its dimension (which is necessarily equal to a power of p)
is called the norm degree of φ, and is denoted by ndeg(φ) (cf. [Hof04, Def. 4.1]).
The following lemma characterises the norm form as the smallest anisotropic quasi-
Pfister p-form which contains φan as a subform up to multiplication by a scalar
(again, this is a simple consequence of Proposition 2.3):

Lemma 2.11 (cf. [Scu14, Lem. 2.10]). Let φ be a quasilinear p-form (resp. a
quasilinear p-form such that 1 ∈ D(φ)) and π an anisotropic quasi-Pfister p-form
over F . Then φan is similar to a subform of π (resp. φan ⊂ π) if and only if
φnor ⊂ π. In particular, φan is similar to a subform of φnor (resp. φan ⊂ φnor).

Example 2.12. Let φ be a quasilinear p-form over F . The following are equivalent:

(1) φan is similar (resp. isomorphic) to a quasi-Pfister p-form.
(2) φnor ≃ aφan for some a ∈ F ∗ (resp. φnor ≃ φan).
(3) N(φ) = aD(φ) for some a ∈ F ∗ (resp. N(φ) = D(φ)).

2.5. Similarity factors. Let φ be a quasilinear p-form over F . By a similarity
factor of φ, we mean an element a ∈ F ∗ such that aφ ≃ φ. The set of all similarity
factors of φ will be denoted by G(φ)∗, and we will write G(φ) for the set G(φ)∗∪{0}.
Note that G(aφ) = G(φ) = G(φan) for all a ∈ F ∗, the second equality being an
obvious consequence of Proposition 2.4. Thus, in view of Proposition 2.3, we have:

Lemma 2.13 (cf. [Hof04, Lem. 6.3]). Let φ be a quasilinear p-form over F and let
a ∈ F ∗. Then a ∈ G(φ)∗ if and only if aD(φ) ⊆ D(φ).

Example 2.14. Let φ be a quasi-Pfister p-form over F . Then, since D(φ) is a
subfield of F , we have G(φ) = D(φ).

More generally, Lemma 2.13 immediately implies the following:

Corollary 2.15 (cf. [Hof04, Prop. 6.4]). Let φ be a quasilinear p-form over F .
Then G(φ) is a subfield of N(φ) containing F p.

In particular, G(φ) is a nonzero finite-dimensional F p-linear subspace of F . By
Lemma 2.2, it follows that, up to isomorphism, there exists a unique anisotropic
quasilinear p-form φsim over F such that D(φsim) = G(φ). The form φsim is called
the similarity form of φ (cf. [Hof04, Def. 6.5]). By Proposition 2.7, φsim is a
quasi-Pfister p-form. Taken together, Examples 2.12 and 2.14 yield:

Example 2.16. Let φ be a quasilinear p-form over F . The following are equivalent:

(1) φan is similar (resp. isomorphic) to a quasi-Pfister p-form.
(2) φsim ≃ φnor ≃ aφan for some a ∈ F ∗ (resp. φsim ≃ φnor ≃ φan).
(3) G(φ) = N(φ) = aD(φ) for some a ∈ F ∗ (resp. G(φ) = N(φ) = D(φ)).

The basic observation concerning similarity factors is the following:

Proposition 2.17. Let φ and ψ be quasilinear p-forms over F . Then G(ψ) ⊆ G(φ)
if and only if φan is divisible by ψsim.
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Proof. We may assume that 1 ∈ D(φ). Suppose that G(ψ) ⊆ G(φ). By Corollary
2.15, G(ψ) and G(φ) are subfields of F . By Lemma 2.13, D(φ) is naturally a
(finite-dimensional) vector space over G(φ), and hence over G(ψ). If a1, . . . , am is
a basis of D(φ) over G(ψ), then (since D(ψsim) = G(ψ)), Lemma 2.2 implies that
φan ≃ ψsim⊗〈a1, . . . , am〉. Conversely, if φan is divisible by ψsim, then it is clear that
G(ψ) ⊆ G(φ), since G(ψ) = D(ψsim) = G(ψsim) by Example 2.16. �

We thus obtain the following characterisation of the similarity form:

Corollary 2.18 (cf. [Hof04, Prop. 6.4]). Let φ be a quasilinear p-form and π an
anisotropic quasi-Pfister p-form over F . Then φan is divisible by π if and only if
φsim is divisible by π. In particular, φan is divisible by φsim.

This enables us to reinterpret the divisibility index d0(φ) (see §2.3) as follows:
Corollary 2.19. Let φ be a quasilinear p-form over F . Then d0(φ) = logp(dimφsim) =
[G(φ) : F p].

We also get the following:

Corollary 2.20. Let φ and ψ be quasilinear p-forms over F . Then φan is divisible
by ψnor if and only if N(ψ) ⊆ G(φ). If, additionally, 1 ∈ D(ψ), then the latter
condition may be replaced by D(ψ) ⊆ G(φ).

Proof. For the second statement, we simply recall that N(φ) is the smallest subfield
of F containing all ratios of nonzero elements of D(φ) and that G(φ) is a subfield
of F (Corollary 2.15). For the first, we can replace ψ by its norm form to arrive
at the case where N(ψ) = G(ψ) and ψnor ≃ ψsim (see Example 2.16). The result is
therefore a particular case of Proposition 2.17. �

2.6. A criterion for a quasilinear p-form to be quasi-Pfister. Let φ be a
quasilinear p-form over F such that 1 ∈ D(φ), let L be a field extension of F and
let α ∈ D(φL) \ {0}. Consider the set Sα = {a ∈ F | αa ∈ D(φL)}. Since D(φL) is
an Lp-linear subspace of L, we have the following observation:

(2.1)
∑

λpi ai ∈ Sα for all λi ∈ F and all ai ∈ Sα.

Lemma 2.21. In the above situation, let P ∈ F p[T ] be a polynomial of degree < p
in a single variable T such that P (b) ∈ Sα for all b ∈ D(φ). Then bn ∈ Sα for all
b ∈ D(φ) and all n ≤ deg(P ).

Proof. We proceed by induction on d = deg(P ). Since α ∈ D(φL), the case where
d = 0 is trivial. Suppose now that d > 0, and let λ ∈ F be such that P (T + λp) =
P (T ) +Q(T ) for some Q ∈ F p[T ] of degree d− 1. Since F p ⊆ D(φ) by hypothesis,
our assumption and (2.1) imply that Q(b) = P (b+λp)−P (b) ∈ Sα for all b ∈ D(φ).
By the induction hypothesis, it follows that bn ∈ Sα for all b ∈ D(φ) and all n < d.

Finally, since P (b) =
∑d

i=0 λ
p
i b
i for some λi ∈ F with λd 6= 0, (2.1) implies that, for

any b ∈ D(φ), we also have bd ∈ Sα. This proves the lemma. �

Suppose now that there exists a polynomial P ∈ F p[T ] as in the statement of
Lemma 2.21 with deg(P ) ≥ 2 (in particular, we necessarily have p > 2). A first
application of the lemma shows that we have D(φ) ⊆ Sα. Since D(φL) is spanned
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by D(φ) as an Lp-vector space, this implies that αD(φL) ⊆ D(φL), and hence (for
dimension reasons) that αD(φL) = D(φL). Another application of Lemma 2.21 then
shows that bn ∈ D(φL) for all b ∈ D(φ) and all n ≤ deg(P ). In particular, since
deg(P ) ≥ 2, we have 2bc = (b + c)2 − b2 − c2 ∈ D(φL) for all b, c ∈ D(φ). Since
p > 2, and since D(φL) is spanned by D(φ) as an Lp-vector space, this implies that
D(φL) is closed under multiplication, i.e., that D(φL) = N(φL) (see Remark 2.10).
By Example 2.12, this means that (φL)an ≃ (φL)nor. We have thus proved:

Lemma 2.22. Assume that p > 2. Let φ be a quasilinear p-form over F such
that 1 ∈ D(φ) and let L be a field extension of F . Suppose that there exists a
polynomial P ∈ F p[T ] in a single variable T , and an element α ∈ D(φL) \ {0}
such that 2 ≤ deg(P ) < p and αP (b) ∈ D(φL) for all b ∈ D(φ). Then (φL)an is a
quasi-Pfister p-form.

2.7. The Cassels-Pfister representation theorem. Let φ be a quadratic form
over a field k and let f ∈ k[T ] be a polynomial in a single variable T which is
represented by the form φk(T ). One of the foundational results of the classical alge-
braic theory of quadratic forms is the Cassels-Pfister representation theorem, which
asserts that, in this case, φ already represents f over the polynomial ring k[T ] (see
[EKM08, Thm. 17.3]). In the present setting, the original argument of Cassels may
be readily adapted to prove the analogous statement for quasilinear p-forms. How-
ever, as pointed out by Hoffmann ([Hof04]), the additivity property of these forms
enables one to prove a stronger multi-variable statement taking the following form:

Theorem 2.23 (cf. [Hof04, Cor. 3.4]). Let φ be a quasilinear p-form over F ,
let T = (T1, . . . , Tm) be a tuple of algebraically independent variables over F and
let f ∈ F [T ]. Then f ∈ D(φF (T )) if and only if f ∈ D(φF [T ]), if and only if
f ∈ D(φ)[T p1 , . . . , T

p
m].

Now, in the situation of Theorem 2.23, the F (T )p-vector space D(φF (T )) is (evi-
dently) spanned by elements of D(φ). Thus, in view of Lemma 2.13, we immediately
obtain the following result concerning rational similarity factors:

Corollary 2.24 (cf.[Hof04, Prop. 6.7]). Let φ be a quasilinear p-form over F , let
T = (T1, . . . , Tm) be a tuple of algebraically independent variables over F and let
f ∈ F [T ]. Then f ∈ G(φF (T )) if and only if f ∈ G(φ)[T p1 , . . . , T

p
m].

2.8. Isotropy of quasilinear p-forms under scalar extension. We now collect
some basic facts regarding the isotropy of quasilinear p-forms under scalar extension.
Let K and L be extensions of a field k. Recall that a k-place K 99K L is a

pair (R, f) consisting of a valuation subring k ⊆ R ⊆ K and a local k-algebra
homomorphism f : R → L. For example, given an inclusion i : K →֒ L, the pair
(K, i) defines a k-place K 99K L. If there exist k-places K 99K L and L 99K K, then
we say that K and L are equivalent over k, and write K ∼k L. For instance, this
easily seen to be the case whenever L (resp. K) is a purely transcendental extension
of K (resp. L) (see [EKM08, §103] for further details). We have here the following
basic lemma, which is a consequence of the completeness ofXφ (see [Gro61, (7.3.8)]):
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Lemma 2.25 (cf. [Scu14, Lem. 3.4]). Let φ be a quasilinear p-form over F and let
K and L be field extensions of F such that there exists an F -place K 99K L. Then
i0(φL) ≥ i0(φK). In particular, if K ∼F L, then i0(φK) = i0(φL).

Note, in particular, that passage to rational extensions of the base field does not
affect the isotropy index of a quasilinear p-form. By MacLane’s theorem ([Lan02,
Prop. VIII.4]), the same is, in fact, true of arbitrary separable extensions10:

Lemma 2.26 (cf. [Hof04, Prop. 5.3]). Let φ be an anisotropic quasilinear p-form
over F and let L be a field extension of F . If L is separable over F , then φL is
anisotropic and ndeg(φL) = ndeg(φ).

Thus, in order to study the isotropy behaviour of quasilinear p-forms under scalar
extension, we are effectively reduced to considering the case of purely inseparable
algebraic extensions. In degree p, we have the following basic observations, all of
which can be easily verified using the results which have been discussed thus far
(recall here that, given a1, . . . , an ∈ F , Fa1,...,an denotes the field F ( p

√
a1, . . . , p

√
an)):

Lemma 2.27 (see [Hof04, §5],[Scu14, Lem. 3.8]). Let φ be a quasilinear p-form
over F and let a ∈ F \ F p. Then:

(1) D(φFa) = D(〈〈a〉〉 ⊗ φ) =
∑p−1

i=0 a
iD(φ).

(2) i0(φFa) =
1
p
i0(〈〈a〉〉 ⊗ φ).

(3) ndeg(φFa) =

{

1
p
ndeg(φ) if a ∈ N(φ),

ndeg(φ) if a /∈ N(φ).
.

(4) If φ is anisotropic and a /∈ N(φ), then φFa is anisotropic.
(5) dim(φFa)an ≥ 1

p
dimφan.

(6) Equality holds in (5) if and only if φan is divisible by 〈〈a〉〉, if and only if
a ∈ G(φ).

Remark 2.28. The second equivalence in (6) holds by Corollary 2.20.

As an application of the first part of the lemma, we have:

Corollary 2.29. Let φ be a quasilinear p-form over F and let a ∈ F \ F p. Then
G(φFa) = G(〈〈a〉〉 ⊗ φ). In particular, d0(〈〈a〉〉) = d0(φFa) + 1.

Proof. More specifically, the first statement is an immediate consequence of Lemma
2.27 (1) and Lemma 2.13. The second then follows from Corollary 2.19. �

Suppose now that π = 〈〈a1, . . . , an〉〉 is an anisotropic quasi-Pfister p-form over F .
By Remark 2.9, we have [F p(a1, . . . , an) : F

p] = pn, which means that ai /∈ Fa1,...,ai−1

for every 1 ≤ i ≤ n. Repeated applications of Lemma 2.27 (2) and 2.29 therefore
yield the following proposition:

Proposition 2.30. Let φ be a quasilinear p-form over F , let π be as above and let
ψ = π ⊗ φ. Then i0(ψ) = pni0(φFa1,...,an

) and d0(ψ) = d0(φFa1,...,an
) + n.

10Recall that an extension of fields k ⊆ L is called separable if, for any algebraic closure k of k,
the ring L⊗k k has no nontrivial nilpotent elements.
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Now, in view of Remark 2.6 (1), one may combine the above results in order
to study the isotropy behaviour of quasilinear p-forms under scalar extension to
function fields of quasilinear p-hypersurfaces. More specifically, let ψ be a quasilinear
p-form over F which is not split, and let a0, . . . , an ∈ F be such that ψ ≃ 〈a0, . . . , an〉,
with a0, a1 6= 0. Then, by Remark 2.6 (1), we have an F -isomorphism of fields

F (ψ) ≃ F (T )
(

p

√

a−1
1

(

a0 + a2T
p
2 + . . .+ anT

p
n

)

)

,

where T = (T2, . . . , Tn) is an (n − 1)-tuple of algebraically independent variables
over F . Thus, putting Lemmas 2.26 and 2.27 and together, we obtain:

Lemma 2.31 (see [Hof04, §§7.3,7.4]). Let φ be an anisotropic quasilinear p-form
over F , and let ψ be as above. Then:

(1) dim(φF (ψ))an ≥ 1
p
dimφ.

(2) Equality holds in (1) if and only if a−1
1 (a0 + a2T

p
2 + . . .+ anT

p
n) ∈ G(φF (T )).

(3) ndeg(φF (ψ)) ≥ 1
p
ndeg(φ).

(4) Equality holds in (3) if and only if a−1
1 (a0 + a2T

p
2 + . . .+ anT

p
n) ∈ N(φF (T )).

(5) The equivalent conditions of (4) are satisfied if φF (ψ) is isotropic.

As a basic application, we have:

Corollary 2.32 (see [Hof04, §§7.3,7.4]). Let φ and ψ be quasilinear p-forms over F
such that φ is anisotropic and ψ is not split. Then:

(1) dim(φF (ψ))an ≥ 1
p
dimφ, with equality holding if and only if N(ψ) ⊆ G(φ).

(2) If φF (ψ) is isotropic, then N(ψ) ⊆ N(φ). In particular, ndeg(ψ) ≤ ndeg(φ).

Proof. We may assume that ψ is as in Lemma 2.31. In this case, we have N(ψ) =
F p(a0

a1
, . . . , an

a1
) (see Remark 2.9), and so (1) follows from the first two parts of the

former lemma and Corollary 2.24. Similarly, since N(φL) = D((φnor)L) for any field
extension L of F , (2) follows from Lemma 2.31 (4,5) and Theorem 2.23. �

Finally, it will be useful to record in this section another basic application of the
Cassels-Pfister theorem. To state it, let T = (T1, . . . , Tm) be a tuple of algebraically
independent variables over F , let g ∈ F [T ] be an irreducible polynomial and let F [g]
denoted the field Frac

(

F [T ]/(g)
)

(i.e. the function field of the integral hypersurface
{g = 0} ⊂ A

m
F ). Given f ∈ F [T ], we write multg(f) for the multiplicity of g in f ,

i.e., the largest nonnegative integer s such that f = gsh for some h ∈ F [T ]11.

Proposition 2.33. In the above situation, let φ be a quasilinear p-form over F
and let f ∈ F [T ]. Suppose that f ∈ D(φF (T )) and that φF [g] is anisotropic. Then
multg(f) ≡ 0 (mod p).

Proof. Let s = multg(f). After replacing f by f/gkp ∈ D(φF (T )) for a suitable
integer k ≥ 0, we may assume that s < p. Our goal is then to prove that s = 0.
To see this, note first that there exists v ∈ Vφ ⊗F F [T ] such that φF (T )(v) = f by
Theorem 2.23. If s 6= 0, then the image v of v in Vφ ⊗F F [g] is an isotropic vector
for φF [g]. By hypothesis, it follows that v = 0, which means that v = gw for some

11With the added convention that multg(0) = +∞.
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w ∈ Vφ ⊗F F [T ]. But this implies that f = gpφF (T )(w), which contradicts the fact
that s < p. We conclude that s = 0, and so the proposition is proved. �

2.9. The divisibility index and scalar extension. Let φ be a quasilinear p-form
over F . We make some brief remarks concerning the behaviour of the divisibility
index d0(φ) (see §2.3) under scalar extension.
Lemma 2.34. Let φ be a quasilinear p-form over F and let L be a field extension
of F . If (φsim)L is anisotropic, then d0(φL) ≥ d0(φ).

Proof. As an Lp-vector space, D
(

(φsim)L
)

is spanned by D(φsim) = G(φ). Since

we evidently have G(φ) ⊆ G(φL) = D
(

(φL)sim
)

, and since (φsim)L is anisotropic by
hypothesis, Proposition 2.3 implies that (φsim)L ⊂ (φL)sim. The desired assertion
now follows from Corollary 2.19. �

In particular, this applies in the case where L is a separable extension of F (see
Lemma 2.26). In the case where L is purely transcendental over F , we can say more:

Lemma 2.35. Let φ be a quasilinear p-form over F and let L be a purely transcen-
dental extension of F . Then (φL)sim ≃ (φsim)L and d0(φL) = d0(φ).

Proof. Continuing with the proof of Lemma 2.34, it is sufficient to show that in this
case G(φL) is generated by G(φ) over Lp. If L is finitely generated over F , then this
follows from Corollary 2.24. On the other hand, the general case reduces easily to
the finitely generated case in view of Lemma 2.13, so the lemma is proved. �

2.10. The Knebusch splitting pattern. Let φ be a quasilinear p-form over F .
Following the construction outlined in §1 (see also [Hof04, §7.5]), set F0 = F , φ0 =
φan, and recursively define

• Fr = Fr−1(φr−1) (provided φr−1 is not split), and
• φr = (φFr)an (provided Fr is defined).

Note here that if φr is defined, then we have dimφr < dimφr−1 by Remark 2.6 (4).
As such, the whole process is finite, terminating at the first nonnegative integer h(φ)
for which dimφh(φ) ≤ 1. The integer h(φ) will be called the height of φ, and the
tower of fields F0 ⊂ F1 ⊂ . . . ⊂ Fh(φ) will be called the Knebusch splitting tower of
φ. For each 0 ≤ r ≤ h(φ), we set jr(φ) = i0(φFr). If φ is not split and r ≥ 1, then the
difference jr(φ)−jr−1(φ) will be called the r-th higher isotropy index of φ, and will be
denoted by ir(φ). In this case, the form φr will be called the r-th higher anisotropic
kernel of φ. Finally, the sequence i(φ) =

(

i1(φ), . . . , ih(φ)(φ)
)

(understood to be

empty if φ is split) will be called the Knebusch splitting pattern of φ12.

Remarks 2.36. Let φ be a quasilinear p-form over F .

(1) By the recursive nature of the above construction, we have ir(φ) = i1(φr−1) for
every 1 ≤ r ≤ h(φ).

(2) By Proposition 2.4, we have ir(φ) = dimφr−1 − dimφr for all 1 ≤ r ≤ h(φ).
(3) Let L be a field extension of F . As already remarked in §1, it is not true in

general that i0(φL) = jr(φ) for some 0 ≤ r ≤ h(φ) - see Example 2.47 below.

12See Footnote 3. We omit the term i0(φ) from the sequence because we are ultimately interested
in the case where φ is anisotropic (i.e., where i0(φ) = 0).
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Note that by Remark 2.6 (3), we have the following:

Lemma 2.37. Let φ be a quasilinear p-form form of dimension ≥ 2 and let (Fr)
denote its Knebusch splitting tower. Then Fr ∼F F (φ

×r) for every 0 ≤ r ≤ h(φ).

In light of Lemma 2.37, we therefore have:

Corollary 2.38. Let φ be a quasilinear p-form over F . Then, for every 0 ≤ r ≤
h(φ), we have jr(φ) = i0(φF (φ×r)).

Given the results of §2.8, we are now in a position to prove the following charac-
terisation of anisotropic quasi-Pfister p-forms:

Proposition 2.39 (cf. [HL04, Thm. 8.11]). Let φ be an anisotropic quasilinear p-
form of dimension ≥ 2 over F . Then dimφ1 ≥ 1

p
dimφ, and the following conditions

are equivalent:

(1) dimφ1 =
1
p
dimφ.

(2) i(φ) = (ph(φ) − ph(φ)−1, ph(φ)−1 − ph(φ)−2, . . . , p2 − p, p− 1).
(3) φ is similar to a quasi-Pfister p-form.

Proof. The inequality dimφ1 ≥ 1
p
dimφ holds by Corollary 2.32. The same result

shows that equality holds here if and only if N(φ) ⊆ G(φ). By Corollary 2.20, the
latter condition holds if and only if φ is divisible by φnor. In view of Lemma 2.11,
this proves the equivalence of (1) and (3), as well as the implication (2) ⇒ (3). On
the other hand, if φ is similar to a quasi-Pfister p-form of dimension pn, then φ1 is
similar to a quasi-Pfister p-form of dimension pn−1 by Corollary 2.8 and (1). Since
i1(φ) = dimφ−dimφ1 (see Remark 2.36 (2)), an easy induction on h(φ) then shows
that (3) implies (2). �

Finally, a repeated application of Lemma 2.31 (3-5) (with ψ = φ) yields the
following computation of the height h(φ):

Corollary 2.40 (cf. [Hof04, Thm. 7.25 (ii)]). Let φ be a quasilinear p-form over
F . Then h(φ) = logp

(

ndeg(φ)
)

.

Together with Corollary 2.32 (2), this implies the following useful result:

Corollary 2.41 (cf. [Scu14, Prop. 4.12]). Let φ and ψ be quasilinear p-forms over F
such that φ is anisotropic and ψ is not split. If φF (ψ) is isotropic, then h(ψ) ≤ h(φ).

2.11. The quasi-Pfister height and higher divisibility indices. Let φ be a
quasilinear p-form over F . As in [Scu14, §4.2], we define the quasi-Pfister height of
φ, denoted hqp(φ), to be the smallest nonnegative integer l such that φl is similar
to a quasi-Pfister p-form (this is well defined, since φh(φ), being of dimension 1, is
similar to a 0-fold quasi-Pfister p-form). We have:

Lemma 2.42. Let φ be a quasilinear p-form over F and let d = h(φ)−hqp(φ). Then
i(φ) = (i1(φ), . . . , ihqp(φ)(φ), p

d − pd−1, pd−1 − pd−2, . . . , p2 − p, p− 1) and ihqp(φ)(φ) =
dim(φ)− jhqp(φ)−1(φ)− pd < pd+1 − pd.

Proof. The first statement is an immediate consequence of Proposition 2.39. The
point here is that φhqp(φ) is similar to a quasi-Pfister p-form of dimension pd. By
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Remark 2.36 (2), we therefore have ihqp(φ)(φ) = dimφhqp(φ)−1−dimφhqp(φ) = dim(φ)−
jhqp(φ)−1(φ) − pd. Finally, since φhqp(φ)−1 is (by the definition of hqp(φ)) not similar
to a quasi-Pfister p-form, it must have dimension < pd+1, again by Proposition 2.39.
This proves the inequality in the second statement, and hence the lemma. �

The Knebusch splitting pattern of a quasilinear p-form φ is therefore determined
by h(φ), hqp(φ) and the truncated sequence

(

i1(φ), . . . , ihqp(φ)(φ)
)

. With a view to
studying the latter invariant, we now introduce new invariants of φ which will be
of central interest in the sequel. More specifically, for each 1 ≤ r ≤ h(φ), we define
the r-th higher divisibility index of φ, denoted dr(φ), as the integer d0(φr) (see §2.3).
In other words, dr(φ) is the largest integer s such that φr is divisible by an s-fold
quasi-Pfister p-form (over the corresponding field of the Knebusch splitting tower of
φ). The sequence of integers

(

d0(φ), . . . , dh(φ)(φ)
)

will be denoted by d(φ). As per
Lemma 2.42 (and the proof of Proposition 2.39), we have:

Lemma 2.43. Let φ be a quasilinear p-form over F and let d = h(φ) − hqp(φ).
Then d(φ) = (d0(φ), . . . , dhqp(φ)−1(φ), d, d− 1, . . . , 1, 0).

We also, however, have the following information concerning the “nontrivial part”
of the sequence d(φ):

Lemma 2.44. Let φ be a quasilinear p-form over F . Then d0(φ) ≤ . . . ≤ dhqp(φ).

Proof. We may assume that φ is anisotropic and not split. We need to show that if
φ is not similar to a quasi-Pfister p-form, then d1(φ) ≥ d0(φ). By Lemma 2.34 it will
be sufficient to check that φsim remains anisotropic over F (φ). Suppose otherwise.
Then, by Corollary 2.32 (1), we have N(φ) ⊆ G(φ). By Corollary 2.15 it follows
that N(φ) = G(φ), or, equivalently, that φnor ≃ φsim (see Lemma 2.2). But, in view
of Lemma 2.11 and Corollary 2.18, this implies that φ is similar to a quasi-Pfister
p-form, thus contradicting our assumption. The lemma follows. �

In particular, since ir(φ) = dimφr − dimφr−1 for all 1 ≤ r ≤ h(φ) (see Remark
2.36 (2)), we obtain the following result concerning the integers ir(φ):

Corollary 2.45. Let φ be a quasilinear p-form over F . Then ir(φ) ≡ 0 (mod dr−1(φ))
for all 1 ≤ r ≤ hqp(φ).

2.12. Two basic examples. We now conclude this section with two basic compu-
tations which will be needed in the sequel, beginning with:

Lemma 2.46. Let φ be an anisotropic quasilinear p-form over F and let ψ =
φF (T ) ⊥ 〈T 〉, where T is an algebraically independent variable over F . Then i(ψ) =
(

1, i1(φ), i2(φ), . . . , ih(φ)(φ)
)

and d(ψ) =
(

0, d0(φ), d1(φ), . . . , dh(φ)(φ)
)

.

Proof. The form ψ is clearly anisotropic. Now, the field F (T )(ψ) is F -isomorphic
to a purely transcendental extension of F (see the presentation of Remark 2.6 (1),
for example). In particular, φF (T )(ψ) is anisotropic (Lemma 2.26), and so i1(ψ) = 1
and ψ1 ≃ φF (T )(ψ) (see Remark 2.5). Since F (T )(ψ) is purely transcendental over
F , the first statement now follows immediately from Lemma 2.26. In a similar way,
Lemma 2.35 implies that dr(ψ) = dr−1(φ) for all 1 ≤ r ≤ h(ψ). Thus, to prove the
second statement, it only remains to check that d0(ψ) = 0. But, since i1(ψ) = 1,
this is an immediate consequence of Corollary 2.45. �
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Given this result, we can give an example of a quasilinear p-form whose (full)
splitting pattern is not determined its Knebusch splitting pattern:

Example 2.47 (cf. [HL04, Ex. 8.15]). Let T = (T1, . . . , Tn+1) be a tuple of alge-
braically independent variables over a field F0 of characteristic p, and let F = F0(T ).
Consider the form φ = 〈〈T1, . . . , Tn〉〉 ⊥ 〈Tn+1〉 over F . By Lemma 2.46 and Propo-
sition 2.39, we have i(φ) = (1, pn − pn−1, pn−1 − pn−2, . . . , p2 − p, p − 1), so that
jr(φ) = pn − pn−r+1 + 1 for all 1 ≤ r ≤ n + 1. On the other hand, the full splitting
pattern of φ also contains all the integers pn − pn−r+1 (1 ≤ r ≤ n + 1). Indeed, if
(Ls) denotes the Knebusch splitting tower of 〈〈a1, . . . , an〉〉L, then we clearly have
i0(φLr−1) = pn − pn−r+1 for all 1 ≤ r ≤ n + 1 (again, we are using Lemma 2.26 and
Proposition 2.39 here).

Our second computation is the following:

Lemma 2.48. Let φ be a quasilinear p-form over F and let ψ = 〈〈T1, . . . , Tn〉〉 ⊗
φF (T ), where T = (T1, . . . , Tn) is a tuple of algebraically independent variables over
F . Then i(ψ) = (pni1(φ), . . . , p

nih(φ)(φ), p
n−pn−1, pn−1−pn−2, . . . , p2−p, p−1) and

d(ψ) = (d0(φ) + n, d1(φ) + n, . . . , dh(φ)−1(φ) + n, n, n− 1, . . . , 1, 0).

Proof. It is enough to treat the case where n = 1. To simplify the notation, let
us write T for the variable T1 and L for the rational function field F (T ). Now, by
construction, we have ndeg(ψ) = p

(

ndeg(φ)
)

(see Remark 2.10). In view of Corollary
2.40, it follows that h(ψ) = h(φ) + 1. Let (Lr) and (Fr) denote the Knebusch
splitting towers of ψ and φ respectively. We claim that, for every 0 ≤ r ≤ h(φ),
(Lr)T is F -isomorphic to a purely transcendental extension of Fr. The case where
r = 0 is evident. In general, we have (Lr)T = (LT )r, where ((LT )r) denotes the
Knebusch splitting tower of ψLT

. But, since 〈〈T 〉〉LT
∼ 〈1〉, and since LT is purely

transcendental over F (the r = 0 case), we have (ψLT
)an ≃ φLT

. By Remark 2.5,
it follows that (Lr)T is L-isomorphic to a purely transcendental extension of the
free composite Fr · LT . Again, since LT is purely transcendental over F , the claim
follows. Given this, Proposition 2.30 and Lemma 2.26 together imply that

jr(ψ) = i0(ψLr) = pi0(φ(Lr)T ) = pi0(φFr) = pjr(φ)

for all 0 ≤ r ≤ h(φ), which proves the first statement of the lemma. Similarly, our
claim, Proposition 2.30 and Lemma 2.35 together imply that

dr(ψ) = d0(ψLr) = d0(φ(Lr)T ) + 1 = d0(φFr) + 1 = dr(φ) + 1

for all 0 ≤ r ≤ h(φ), and so the second statement also holds. �

3. An incompressibility theorem and related results

In this section, we collect some of the farther-reaching results on the isotropy
behaviour of quasilinear p-forms over function fields of quasilinear p-hypersurfaces
which have been obtained in recent years. These results will have an essential role
to play in the sequel. We do not provide full details here, but the interested reader
is referred to the original articles ([HL04, Tot08, Scu14]) for further information.
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3.1. The incompressibility theorem. Let φ be an anisotropic quasilinear p-form
of dimension ≥ 2 over F with associated quasilinear p-hypersurface Xφ. As in
[Scu13, §5], we define the Izhboldin dimension of Xφ, denoted dimIzh(Xφ), to be the
integer dimXφ − i1(φ) + 1. The following result was proved in loc. cit.:

Theorem 3.1 ([Scu13, Thm. 5.12]). Let X be an anisotropic quasilinear p-hypersurface
over F and let Y be an algebraic variety over F such that Y (Fsep) = ∅. If dimY <
dimIzh(X), then there cannot exist a rational map X 99K Y .

Remark 3.2. In the case where p = 2, Theorem 3.1 is due to Totaro ([Tot08, Thm.
5.1]). In fact, if Xφ = {φ = 0} is an anisotropic projective quadric over a field k of
any characteristic, and if Y is any complete k-variety possessing no closed points of
odd degree, then it is known that the existence of a rational mapX 99K Y necessarily
implies the inequality dimY ≥ dimIzh(Xφ), where dimIzh(Xφ) = dimXφ− i1(φ) + 1.
This result was first proved by Karpenko and Merkurjev in the case where Xφ is
smooth ([KM03, Thm 4.1], [EKM08, Thm. 76.5]), and was later extended by Totaro
(loc. cit.) to the singular case.

In the remainder of this section, we will recall some of the main applications of
Theorem 3.1 (and its proof). Here, we mention the following:

Corollary 3.3 (cf. [Scu14, Cor. 5.4]). Let φ and ψ be anisotropic quasilinear
p-forms of dimension ≥ 2 over F , and let σ ⊂ φ be a subform of dimension ≤
dimψ − i1(ψ). Then σF (ψ) ⊂ (φF (ψ))an. In particular, σF (ψ) is anisotropic.

Proof. We trivially have D(σF (ψ)) ⊆ D(φF (ψ)). In light of Proposition 2.3, it there-
fore suffices to check that σF (ψ) is anisotropic, or, equivalently, that there does not
exist a rational map Xψ 99K Xσ. But, since Xσ(Fsep) = ∅ (see Lemma 2.26), this is
an immediate consequence of Theorem 3.1. �

In particular, we have the following fundamental observation:

Corollary 3.4. Let φ be an anisotropic quasilinear p-form of dimension ≥ 2 over
F and let ψ ⊂ φ be a subform of codimension i1(φ). Then φ1 ≃ ψF (φ).

Proof. By Corollary 3.3, we have ψF (φ) ⊂ φ1. Since both forms have the same
dimension by hypothesis, the result follows. �

3.2. Neighbours and near neighbours, I. Let ψ and φ be anisotropic quasilinear
p-forms of dimension ≥ 2 over F . We will say that ψ is a neighbour (resp. near
neighbour) of φ if ψ is similar to a subform of codimension < i1(φ) (resp. codimension
i1(φ)) of φ. Our motivation here is the following extension of Corollary 3.4:

Lemma 3.5. Let φ and ψ be anisotropic quasilinear p-forms over F such that φ is
anisotropic of dimension ≥ 2 and ψ is similar to a subform of φ. Then (ψF (φ))an is
similar to φ1 if and only if ψ is a neighbour or near neighbour of φ.

Proof. We may assume that ψ ⊂ φ. Again, we trivially have D(ψF (φ)) ⊆ D(φF (φ)) =
D(φ1). By Lemma 2.3, it therefore suffices to check that dim(ψF (φ))an = dimφ−i1(φ)
if and only if ψ has codimension ≤ i1(φ) in φ. The left-to-right implication here is
trivial. Conversely, if ψ has codimension ≤ i1(φ) in φ, then we have dim(ψF (φ))an ≥
dimφ − i1(φ) by Theorem 3.1. Since the reverse inequality holds here by obvious
dimension reasons, the lemma is proved. �
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Note here that while neighbours of φ become anisotropic over F (φ), its near
neighbours do not (Corollary 3.3). This enables us to compute:

Proposition 3.6 (cf. [Scu13, Prop. 6.1]). Let φ and ψ be anisotropic quasilinear
p-forms of dimension ≥ 2 over F such that ψ is a codimension-d neighbour of φ.
Then i1(ψ) = i1(φ)− d.

3.3. The Ruledness theorem. Another key application of Theorem 3.1 is the
following extension of Proposition 3.6, which shows in a precise way that anisotropic
quasilinear p-hypersurfaces having first higher isotropy index larger than 1 are ruled.

Theorem 3.7 (cf. [Scu13, Thm. 7.6]). Let φ and ψ be anisotropic quasilinear p-
forms of dimension ≥ 2 over F such that ψ is a codimension-d neighbour of φ. Then
Xφ is birationally isomorphic to Xψ ×F P

d.

Proof. By Proposition 3.6, we have i1(ψ) = i1(φ)− d. It is therefore enough to treat
the case where d = i1(ψ)− 1, and this is covered by [Scu13, Thm. 7.6]. �

Remark 3.8. Again, in the case where p = 2, this result is due to Totaro ([Tot08,
Thm. 6.4]). Unlike Theorem 3.1, however, the analogous assertion remains open for
generically smooth quadrics (in any characteristic - see [Tot08, Tot09]).

It is worth mentioning the following explicitly:

Corollary 3.9. Let φ and ψ be an anisotropic quasilinear p-forms of dimension ≥ 2
over F such that i1(φ) > 1 and ψ is similar to a codimension-1 subform of φ. Then
we have an F -isomorphism of fields F (φ) ≃ F [ψ].

Proof. By Theorem 3.7, F (φ) is F -isomorphic to a degree-one purely transcendental
extension of F (ψ). In view of Remark 2.6 (3), the result follows. �

3.4. Neighbours and near neighbours, II. Given Theorem 3.7, one can extend
Proposition 3.6 as follows:

Proposition 3.10 (cf. [Scu14, Prop. 6.2]). Let φ and ψ be anisotropic quasilinear
p-forms of dimension ≥ 2 over F such that ψ is a codimension-d neighbour of φ.
Then i(ψ) =

(

i1(φ)− d, i2(φ), . . . , ih(φ)(φ)
)

and d(ψ) =
(

d0(ψ), d1(φ), . . . , dh(φ)(φ)
)

.

Proof. By Theorem 3.7, F (φ) is F -isomorphic to a purely transcendental extension
of F (ψ). Thus, if (Fr) and

(

F (φ)r
)

denote the Knebusch splitting towers of ψ and
ψF (φ), respectively, then F (φ)r is Fr-isomorphic to a purely transcendental extension
of Fr+1 for every 0 ≤ r ≤ h(ψF (φ)). In particular, we have ir(ψF (φ)) = ir+1(ψ) and
dr(ψF (φ)) = dr+1(ψ) for any such r by Lemmas 2.26 and 2.35 , respectively. On the
other hand, Lemma 3.5 shows that (ψF (φ))an is similar to φ1. Since ir(φ) = ir−1(φ1)
and dr(φ) = dr−1(φ1) for all 1 ≤ r ≤ h(φ), the proposition follows immediately. �

Let φ be a quasilinear p-form over F . We say that φ is a quasi-Pfister p-neighbour
(of π) if there exists a quasi-Pfister p-form π over F such that φ is similar to a subform
of π and dimφ > 1

p
dimπ. If φ is anisotropic, then it follows from Proposition 2.39

that φ is quasi-Pfister p-neighbour if and only if it is a neighbour of some quasi-
Pfister p-form in the sense of §3.2. Forms of this type are of special importance in
the general theory of quasilinear p-forms. Putting Lemma 2.11, Proposition 2.39,
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Corollary 2.40, Lemma 3.5 and Proposition 3.10 together, we obtain the following
classification of anisotropic quasi-Pfister p-neighbours:

Corollary 3.11 (cf. [Scu14, Thm. 6.4]). Let φ be an anisotropic quasilinear p-form
of dimension ≥ 2 over F and let n be the smallest nonnegative integer such that
pn+1 ≥ dimφ. Then the following are equivalent:

(1) φ is a quasi-Pfister p-neighbour.
(2) φ is a neighbour of φnor.
(3) φF (φnor) is isotropic.
(4) ndeg(φ) = pn+1.
(5) h(φ) = n + 1.
(6) i1(φ) = dimφ− pn and i2(φ) = pn − pn−1.
(7) i(φ) = (dimφ− pn, pn − pn−1, pn−1 − pn−2, . . . , p2 − p, p− 1).
(8) φ1 is similar to a quasi-Pfister p-form (i.e., hqp(φ) ≤ 1).

Remark 3.12. In the case where p = 2, this result was proved earlier by Hoffmann
and Laghribi (cf. [HL04, Thm. 8.1]) using different methods.

For arbitrary subforms, the situation is naturally more complicated, but we can
nevertheless appeal to the following general result which was proved in [Scu14] (and
whose proof again makes essential use of Theorems 3.1 and 3.7):

Proposition 3.13 (cf. [Scu14, Prop. 8.6]). Let φ and ψ be anisotropic quasilinear
p-forms of dimension ≥ 2 over F such that φF (ψ) is isotropic. Then, either

(1) (ψr)Fr(φ) is anisotropic for all 0 ≤ r < h(ψ) and i(ψF (φ)) = i(ψ), or

(2) i(ψF (φ)) =
(

i1(ψ), . . . , is−1(ψ), is(ψ) + is+1(ψ), is+2(ψ), . . . , ih(ψ)(ψ)
)

, where
s < h(ψ) is the smallest nonnegative integer such that (ψs)Fs(φ) is isotropic.

Note here that in the special situation where ψ is a neighbour of φ, we are nec-
essarily in case (2) with s being equal to 0. Since (ψF (φ))an ≃ φ1 in this instance
(Lemma 3.5), we thus recover the computation of Proposition 3.10. By contrast, if
ψ is a near neighbour of φ, then we can be in either of cases (1) and (2) (see Remark
3.15 below). Nevertheless, we still have ψF (φ) ≃ φ1 (Corollary 3.4), and so we get:

Corollary 3.14 (cf. [Scu14, Cor. 6.10]). Let φ be an anisotropic quasilinear p-form
of dimension ≥ 2 over F and let ψ be a near neighbour of φ. Then, either

(1) (ψr)Fr(φ) is anisotropic for all 0 ≤ r < h(ψ) and i(ψ) = i(φ1), or

(2) i(ψ) =
(

i2(φ), i3(φ), . . . , is(φ), is(ψ), is+1(φ)−is(ψ), is+2(φ) . . . , ih(φ)(φ)
)

, where
s < h(ψ) is the smallest positive integer such that (ψs)Fs(φ) is isotropic.

Remark 3.15. As per the comments above, neither of cases (1) and (2) can be ruled
out here. Indeed, case (1) describes the situation where h(ψ) = h(φ) − 1, while
case (2) describes that where h(ψ) = h(φ). As the reader will easily verify using
Corollary 2.40, both these situations can arise in practice.

3.5. A comparison result. We now conclude this section by recalling the follow-
ing comparison result for isotropy indices of quasilinear quadratic forms which was
obtained in [Scu14] with the help of Theorem 3.1:
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Proposition 3.16 (cf. [Scu14, Thm. 7.13, Rem. 9.1]). Assume that p = 2. Let φ
be an anisotropic quasilinear quadratic form of dimension ≥ 2 over F and let L be
a field extension of F such that φL is not split. Then:

i0(φL(φ))− i1(φ) ≥ min

{

i0(φL),

[

dimφ− i1(φ) + 1

2

]}

.

Remark 3.17. A similar statement also holds for p > 2 (see [Scu14, Thm. 7.13]),
but this will not be needed below.

Finally, it will be convenient to record here the following application of this result
which was also obtained in [Scu14]:

Theorem 3.18 ([Scu14, Thm. 9.2]). Let φ be an anisotropic quasilinear quadratic
form of dimension ≥ 2 over F and write dimφ = 2n +m for uniquely determined
integers n ≥ 0 and 1 ≤ m ≤ 2n. Then, for any field extension L of F , we either
have i0(φL) ≥ m or i0(φL) ≤ m− i1(φ).

Remark 3.19. Taking L = F (φ) here, we see that if i1(φ) < m, then i1(φ) ≤ m
2
. This

result will now be subsumed in our Theorem 1.3.

4. A motivational example

As a warm-up for the proof of our main result, we will now prove Proposition
1.4. Throughout this section, we assume that p = 2. By a quasi-Pfister form,
we will mean a quasi-Pfister 2-form. Our assumption on the prime p is imposed for
simplicity, but also because we will make use of the following fact already mentioned
in the introduction, the analogue of which is unknown when p > 3 (see [Scu14, §4.1]):
Lemma 4.1 (cf. [Hof04, Cor. 7.22]). Let φ be an anisotropic quasilinear quadratic
form of dimension ≥ 2 over F and let L be a field extension of F such that φL is
isotropic. Then i0(φL) ≥ i1(φ).

Now, let φ be an anisotropic quasilinear quadratic form of dimension ≥ 2 over
F and let ψ ⊂ φ be a subform of codimension i1(φ). By Corollary 3.4, ψF (φ) is
isomorphic to the first higher anisotropic kernel of φ. In the next section, we will
prove Theorem 1.5, which asserts that the latter form is divisible by a quasi-Pfister
form of dimension ≥ i1(φ). Here, we will consider some special situations in which
this divisibility property is already visible over the base field F . To this end, we will
be interested in the following technical condition on the pair (φ, ψ):

(⋆) There exist elements a ∈ D(φ) \ {0} and b ∈ D(ψ) \ {0} such that a 6=
c(bd+ ef) for any c, d, e, f ∈ D(ψ).

Example 4.2. If, in the above situation, we have ndeg(ψ) < ndeg(φ) (equivalently,
if h(ψ) < h(φ) – see Corollary 2.40), then (⋆) holds for the pair (φ, ψ). Indeed, in this
case, D(φ) is (evidently) not contained in cN(ψ) for any c ∈ F . Since bd+ef ∈ N(ψ)
for every b, d, e, f ∈ D(ψ), the validity of (⋆) is immediately verified.

In light of Example 4.2, Proposition 1.4 is subsumed in the following result:
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Proposition 4.3. Let φ be an anisotropic quasilinear quadratic form of dimension
≥ 2 over F and let ψ ⊂ φ be subform of codimension i1(φ) such that the pair (φ, ψ)
satisfies (⋆). Then there exist a quasi-Pfister form π, a subform σ ⊂ π, an element
λ ∈ D(φ) and a form τ over F such that ψ ≃ π ⊗ τ and φ ≃ ψ ⊥ λσ.

Proof. Let b ∈ D(ψ) \ {0} be as in (⋆). Then (⋆) also holds for the pair (bφ, bψ).
Indeed, if this were not the case, then, for every a ∈ D(φ), we could find c, d, e, f ∈
D(ψ) such that ba = bc(b3d+bebf), or, equivalently, such that a = b2c(bd+ef). But,
since D(ψ) is an F 2-linear subspace of F , we have b2c ∈ D(ψ), and so this would
contradict the fact that (⋆) holds for the original pair (φ, ψ). Since the exchange
(φ, ψ) → (bφ, bψ) does not affect the statement of the proposition, we can therefore
assume that b = 1. In other words. we can assume that 1 ∈ D(ψ) and that:

(⋆′) There exists an element a ∈ D(φ) \ {0} such that a 6= c(d + ef) for any
c, d, e, f ∈ D(ψ).

Let us fix a ∈ D(φ) \ {0} as in (⋆′). We will now prove that the statement of the
proposition holds with λ = a. First, we note that (⋆′) implies:

(1) a /∈ D(ψ).
(2) ψFau is anisotropic for every u ∈ D(ψ) \ {0}.

Indeed, if a were in D(ψ), then we could contradict (⋆′) by taking c = 1, d = a and
e = f = 0. Similarly, if ψFau were isotropic in (2), then (since ψ is anisotropic) we
could find nonzero elements x, y ∈ D(ψ) such that au = xy (see Lemma 2.27 (2));
taking c = x−1, d = 0, e = y and f = u, this would again contradict (⋆′).
Now, (1) implies that we have ψ ⊥ 〈a〉 ⊂ φ. If i1(φ) = 1, then the latter inclusion

is an isomorphism, and the statement of the proposition holds with π = σ = 〈1〉
and τ = ψ. Assume now that i1(φ) > 1. Since 1, a ∈ D(φ), φFa is isotropic by
Lemma 2.27 (2). By Lemma 4.1, it then follows that i0(φFa) ≥ i1(φ). On the
other hand, (2) (with u = 1 ∈ D(ψ)) shows that ψFa is anisotropic, and, since
dimψ = dimφ − i1(φ), we conclude that (φFa)an ≃ ψFa . In other words, we have
D(φFa) = D(ψFa) = D(ψ) + aD(ψ) (where the latter equality holds by Lemma 2.27
(1)). By Lemma 2.2, it follows that we can write φ ≃ ψ ⊥ 〈a〉 ⊥ aσ′ for some form
σ′ ⊂ ψ. Let σ = 〈1〉 ⊥ σ, so that φ ≃ ψ ⊥ aσ. As 1 ∈ D(ψ), we have σ ⊂ ψ. Since
σ is anisotropic and represents 1, Lemma 2.11 shows that σ ⊂ σnor. Thus, in order
to complete the proof, it will be enough to prove that ψ is divisible by π = σnor. By
Corollary 2.20, this amounts to showing that D(σ) ⊂ G(ψ). Let x ∈ D(σ) \ {0}. In
order to show that x ∈ G(ψ), we must check that xy ∈ D(ψ) for all y ∈ D(ψ) (see
Lemma 2.13). If y = 0, then there is nothing to prove. Suppose now that y 6= 0.
Then, by Lemma 2.27 (2), φFay is isotropic. On the other hand, ψFay is anisotropic
by (2). Using Lemma 4.1 in the same way as before, we see that (φFay)an ≃ ψFay ,
or, equivalently, that D(φFay) = D(ψFay) = D(ψ) + ayD(ψ). But, letting u =

√
ay,

we have xy = (a−1u)2x ∈ D(φFay). In particular, we can find u, v ∈ D(ψ) such that
xy = u+ ayv. To complete the proof, it now only remains to show that v = 0. But,
if v 6= 0, then we have a = v−1(x+ uy−1), and we obtain a contradiction to (⋆′) by
taking c = v−1, d = x, e = u and f = y−1. The result follows. �

In general, it is not always possible to find a subform ψ ⊂ φ of codimension i1(φ)
such that the pair (φ, ψ) satisfies condition (⋆). Indeed, note that if i1(φ) = 2 in the
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situation of Proposition 4.3, then φ is divisible by the binary (i.e., 2-dimensional)
form σ. The following example, which is directly analogous to an example of
Vishik from the characteristic 6= 2 theory of quadratic forms, shows that there exist
anisotropic quasilinear quadratic forms which have first higher isotropy index equal
to 2, but which are not divisible by a binary form: Let a, b, c, d, e be algebraically
independent variables over a field F0 of characteristic 2, let F = F0(a, b, c, d, e) and
consider the anisotropic F -form φ = 〈〈ab, ac, ad〉〉 ⊥ bcd〈1, ab, ac, ad〉 ⊥ e〈a, b, c, d〉.
Lemma 4.4 (Vishik, cf. [Tot09, Lem. 7.1]). In the above situation, we have i1(φ) =
2, but φ is not divisible by a binary form.

Proof. We will make use of some basic facts from the theory of symmetric bilinear
forms over fields of characteristic 2. For the relevant notation and terminology,
the reader is referred to the appendix below. Now, let b denote the bilinear form
〈〈ab, ac, ad〉〉b ⊥ bcd〈1, ab, ac, ad〉b ⊥ e〈a, b, c, d〉b over F , so that φ = φb (i.e., φ is the
diagonal part of b). As the reader will immediately verify, we have

b ∼ c := 〈〈a, b, c, d〉〉b ⊥ 〈〈e〉〉b ⊗ 〈a, b, c, d〉b.
Let π = 〈〈a, b, c, d〉〉b, and let π′ denote the pure subform of π. Since ndeg(φπ) = 16 <
32 = ndeg(φ), Corollary 2.32 (2) implies that πF (φ) is anisotropic. At the same time,
it follows from Remark 2.6 (4) and the definition of φ that e ∈ D(π′

F (φ)). Thus, by

[EKM08, Lem. 6.1], there exists a 3-fold bilinear Pfister form η over F (φ) such that
πF (φ) ≃ 〈〈e〉〉b⊗η. In particular, cF (φ) is divisible by 〈〈e〉〉b, and so i0(cF (φ)) is even (see
[EKM08, Prop. 6.22]). Since dim c−dimb = 8 ≡ 0 (mod 4), it follows that i0(bF (φ))
is also even. In particular, we have i1(b) ≥ 2, and, in order to prove that equality
holds here, we just need to find a field extension L of F such that φL is isotropic, but
i0(φL) ≤ 2 (see Lemma 4.1). We claim that L = Fcde is such an extension. First,
note that since cde = (bcd)(b−1e) is a product of two nonzero elements of D(φ),
φL is isotropic by Lemma 2.27 (2). On the other hand, it is easy to see that the
codimension-2 subform ψ = 〈〈ab, ac, ad〉〉 ⊥ bcd〈1, ab, ac, ad〉 ⊥ e〈c, d〉 ⊂ φ remains
anisotropic over L. Indeed, since

ψL ≃ 〈〈ab, ac, ad〉〉 ⊥ bcd〈1, ab, ac, ad〉 ⊥ 〈d, c〉 ⊂ 〈〈a, b, c, d〉〉L,
it suffices to check that 〈〈a, b, c, d〉〉 remains anisotropic over L. But, since cde /∈
F 2(a, b, c, d) = N(〈〈a, b, c, d〉〉), this follows from Lemma 2.27 (4). Since the anisotropy
of φL readily implies that i0(ψL) ≤ 2, we have shown that i1(φ) = 2.
It now remains to check that φ is not divisible by a binary form. For the sake of

contradiction, suppose instead that φ is divisible by 〈〈u〉〉 for some u ∈ F \ F 2. We
claim that u ∈ F 2(ab, ac, ad). Again, let us assume that this is not the case. Then the
quasi-Pfister form τ = 〈〈ab, ac, ad〉〉 remains anisotropic over Fu by Lemma 2.27 (4).
Let σ = τ ⊥ 〈bcd〉 ⊂ φ and η = τ ⊥ 〈ae〉 ⊂ φ. Since i0(φFu) =

1
2
dimφ = 8 (Lemma

2.27 (6)), and since dimσ = dimη = 9, both σFu and ηFu are necessarily isotropic.
Since τFu is anisotropic, this means that we have bcd, ae ∈ D(τFu) = F 2(ab, ac, ad, u).
But this implies that F 2(a, b, c, d, e) ⊆ F 2(ab, ac, ad, u), thus contradicting the fact
that the elements a, b, c, d, e are algebraically independent over F . This proves our
claim, and so we can write u = v + w for some v ∈ D(〈1, ab, ac, ad〉) and w ∈
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D(〈bc, bd, cd, abcd〉). Now, Lemma 2.27 (6) implies that u ∈ G(φ). In particular,
applying Lemma 2.13 to the elements ae, acd, abd ∈ D(φ), we see that

(1) aeu ∈ D(φ),
(2) acdu ∈ D(φ), and
(3) abdu ∈ D(φ).

We can now complete the proof: First, note that since ae〈1, ab, ac, ad〉 ≃ e〈a, b, c, d〉 ⊂
φ, we have aev ∈ D(φ). By (1), we this implies that aew ∈ D(φ). Note however that
ae〈bc, bd, cd, abcd〉 ≃ 〈abce, abde, acde, bcde〉, and the latter form does not represent
any nonzero element of D(φ). It follows that w = 0, and so u ∈ D(〈1, ab, ac, ad〉).
Next, consider the form ρ = acd〈1, ab, ac, ad〉 ≃ 〈acd, bcd, c, d〉. By (2), we have
acdu ∈ D(ρ) ∩ D(φ). Since the elements a, b, c, d, e are algebraically independent
over F , direct inspection shows that the former intersection is equal to acdD(〈1, ab〉),
and so u ∈ D(〈1, ab〉). Finally, we can use (3) in a similar way to show that u ∈ F 2,
thus providing us with the needed contradiction. The lemma is proved. �

In fact, Vishik’s example shows more: It is generally not possible to find a sub-
form ψ ⊂ φ of codimension i1(φ) such that the pair (φ, ψ) satisfies condition (⋆),
even after making arbitrary rational extensions of F – this stronger assertion follows
from Lemma 2.35. This leads us to consider the possibility that decompositions of
the kind suggested by Proposition 4.3 may be found by passing to suitable transcen-
dental extensions of the base field, and, ultimately, to our main result. Nevertheless,
it is still interesting to ask for conditions on φ (or, more specifically, on the Kneb-
usch splitting pattern of φ) which automatically ensure the existence of the needed
subform ψ. To this end, it is natural to look to the extremities where φ is “far
from generic” (e.g., where i1(φ) is “large”). The basic example here is provided by
Proposition 2.39, which gives a characterisation of (scalar multiples of) anisotropic
quasi-Pfister forms in terms of the first higher isotropy index. To give another ex-
ample of this kind of equivalence, we state here the following conjecture, which is
directly analogous to an open problem in the nonsingular theory of quadratic forms:

Conjecture 4.5. Let n be a positive integer, and let φ be an anisotropic quasilinear
quadratic form of dimension 2n+1 over F such that i1(φ) = 2n−1. Then φ is divisible
by an (n− 1)-fold quasi-Pfister form.

Remark 4.6. Examples of such forms φ exist – see Proposition 6.4 below.

Proposition 4.3 allows us to reformulate this problem as follows:

Lemma 4.7. Let n be a positive integer, and let φ be an anisotropic quasilinear
quadratic form of dimension 2n+1 over F such that i1(φ) = 2n−1. Then the following
are equivalent:

(1) Conjecture 4.5 holds for the pair (φ, n).
(2) There exists a subform ψ ⊂ φ of codimension 2n−1 such that ndeg(ψ) = 2n+1.

Proof. Suppose first that Conjecture 4.5 holds for the pair (φ, n). In other words,
we have φ ≃ π⊗τ for some (n−1)-fold quasi-Pfister form π and some 4-dimensional
form τ . Then, if σ is any codimension-1 subform of τ and ψ = π⊗σ, then ndeg(ψ) ≥
ndeg(π) · ndeg(σ) = 2n−1 · 4 = 2n+1. Since dimψ > 2n, the reverse inequality also
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holds here (see Lemma 2.11), and so (1) implies (2). Conversely, if (2) holds, then
the pair (φ, ψ) satisfies condition (⋆). Indeed, since i1(φ) = 2n−1, φ is not similar to
a quasi-Pfister form (Proposition 2.39), and so ndeg(φ) > dimφ = 2n+1 by Corollary
3.11. Our claim therefore follows from Example 4.2. In particular, we can apply
Proposition 4 to the given pair. Let π and σ be as in the statement of the former
result. Since dimψ = 2n + 2n−1, and since i1(φ) = 2n−1, we see that π must have
dimension 2n−1 = i1(φ), and so σ ≃ π. The statement of the proposition now says
that φ is divisible by π, which shows that (1) holds. This proves the lemma. �

Remark 4.8. Using Lemma 4.7, it is not difficult to verify that Conjecture 4.5 holds
for n ≤ 2.

5. Main theorem

We are now ready to give the proof of Theorem 1.5. In order to treat the case
where p > 2, the statement needs to be modified as follows:

Theorem 5.1. Let φ be an anisotropic quasilinear p-form of dimension ≥ 2 over
F and let s be the smallest nonnegative integer such that ps ≥ i1(φ). If φ is not a
quasi-Pfister p-neighbour, then φ1 is divisible by an s-fold quasi-Pfister p-form.

Remark 5.2. Nothing is lost here by assuming that φ is not a quasi-Pfister p-
neighbour. Indeed, if φ is a quasi-Pfister p-neighbour, and n denotes the smallest
nonnegative integer such that pn+1 ≥ dimφ, then φ1 is similar to an n-fold quasi-
Pfister p-form by Corollary 3.11. If p = 2, then we have i1(φ) ≤ 1

2
dimφ ≤ 2n by

Proposition 2.39, so that n ≥ s, where s is the integer defined in the statement of
the theorem. Note, however, that if p > 2, then n may be strictly smaller than s
(again, see Corollary 3.11). This explains why the additional hypothesis is needed
here, but not in the statement of Theorem 1.5 (i.e., the case where p = 2).

Proof. To simplify the notation, we will write i1 instead of i1(φ) in what follows.
If i1 = 1, then the statement of the theorem holds trivially. We therefore assume
henceforth that i1 > 1. After multiplying φ by a nonzero scalar if necessary, we
may also assume that 1 ∈ D(φ). In particular, we can find a1, . . . , an ∈ F such
that φ ≃ 〈1, a1, . . . , an〉. For the remainder of the proof, we let φ′ = 〈a1, . . . , an〉,
and we write φ′(T ) for the “generic value” of φ′, i.e., φ′(T ) =

∑n

i=1 aiT
p
i ∈ F [T ],

where T = (T1, . . . , Tn) is a tuple of algebraically independent variables over F . By
Corollary 3.9, the function field F (φ) is F -isomorphic to F [φ′], and may therefore be
identified with Frac

(

F [T ]/(φ′(T ))
)

(see Remark 2.6 (1)). Fixing this identification

henceforth, we will write f for the image of a polynomial f ∈ F [T ] under the
canonical F -algebra homomorphism F [T ] → F (φ). We will also write m(f) for
the multiplicity multφ′(T )(f) of φ

′(T ) in f , i.e., the largest integer k such that f =

φ′(T )kh for some h ∈ F [T ]. Note here that we have f 6= 0 if and only if m(f) = 0.
Now, let ψ ⊂ φ be any subform of codimension i1(φ) such that 1 ∈ D(ψ). We

then have the following lemma:

Lemma 5.3. In the above situation, we can find elements gi,j ∈ D(ψF [T ]) (1 ≤ i <
i1, 1 ≤ j < p) such that

φF (T ) ≃ ψF (T ) ⊕ φ′(T )〈1, f1, . . . , fi1−1〉,
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where, for each 1 ≤ i < i1, fi =
∑p−1

j=1 gi,jφ
′(T )j−1.

Proof. First, let us note that φ′(T ) /∈ D(ψF (T )). Indeed, if ψF (T ) were to represent
φ′(T ), then it would follow from Theorem 2.23 that a1, . . . , an ∈ D(ψ). Since 1 ∈
D(ψ) by hypothesis, this would imply that D(φ) ⊆ D(ψ), or, equivalently, that
φ ⊂ ψ (see Proposition 2.3), which is impossible for dimension reasons (recall here
that i1 > 1 by assumption). It follows that ψF (T ) ⊕ 〈φ′(T )〉 is anisotropic, and so
ψF (T ) ⊕ 〈φ′(T )〉 ⊂ φF (T ) by Proposition 2.3. Now, the affine function field F [φ]
may be identified (over F ) with the field K = F (T )φ′(T ) (see Remark 2.6 (1)).
Since F [φ] is F -isomorphic to a purely transcendental extension of F (φ) (Remark
2.6 (2)), Corollary 3.4 and Lemma 2.26 together imply that ψK ≃ (φK)an. In

particular, we have D(φF (T )) ⊂ D(φK) = D(ψK) =
∑p−1

j=0D(ψF (T ))φ
′(T )j (where

the last equality holds by Lemma 2.27 (1)). Thus, by Lemma 2.2, we can complete
the subform inclusion ψF (T ) ⊕ 〈φ′(T )〉 ⊂ φF (T ) to an isomorphism φF (T ) ≃ ψF (T ) ⊕
〈φ′(T )〉 ⊕ 〈f ′

1, . . . , f
′
i1−1〉, where, for each i, we have f ′

i =
∑p−1

j=0 gi,jφ
′(T )j for some

gi,j ∈ D(ψF (T )). Note, however, that every element ofD(ψF (T )) is (trivially) the ratio
of an element of D(ψF [T ]) and a p-th power in F [T ]. Since multiplying the f ′

i by p-th
powers in F [T ] does not change the F (T )-form 〈f ′

1, . . . , f
′
i1−1〉 up to isomorphism (see

Lemma 2.2), we can arrange it so that the gi,j belong to D(ψF [T ]). Similarly, since
substracting elements of D(ψF (T )) from the f ′

i does not change the isomorphism
class of ψF (T )⊕〈f ′

1, . . . , f
′
i1−1〉 (again, see Lemma 2.2), we can also arrange it so that

gi,0 = 0 for all i. The remaining gi,j then satisfy the statement of the lemma. �

Let us now fix elements gi,j ∈ D(ψF [T ]) (and the associated polynomials fi) sat-
isfying the statement of Lemma 5.3. We are searching here for a sufficiently large
quasi-Pfister divisor of φ1, and we would like to try to build this quasi-Pfister p-form
from the elements gi,1. The basic point here is the following:

Lemma 5.4. In the above situation, we have gi,1b ∈ D(φ1) for all b ∈ D(ψ) and all
1 ≤ i < i1.

Proof. If b = 0, then the statement is trivial. Let us now fix b ∈ D(ψ) \ {0}. We
will need another lemma:

Lemma 5.5. In the above situation, there exist elements si,j ∈ D(ψF [T ]) and ti,j ∈
F [T ] \ {0} (1 ≤ i < i1, 0 ≤ j < p) such that, for every 1 ≤ i < i1, we have:

(1) bfi =
∑p−1

j=0
si,j
t
p
i,j

φ′(T )j

bj
in F (T ).

(2) For each 0 ≤ j < p, at least one of si,j and ti,j is nonzero.

Proof. Let 1 ≤ i < i1, and consider the field L = F (T )u, where u = φ′(T )
b

. In
view of Remark 2.6 (1), L is F -isomorphic to the affine function field F [η], where
η denotes the F -form 〈b〉 ⊥ φ′. Now, since b ∈ D(ψ), and since ψ ⊂ φ, we have
D(φ′) ⊆ D(η) ⊆ D(φ). In particular, if η 6≃ φ, then it follows from Lemma 2.2
that ηan ≃ φ′. Either way, we see that L is F -isomorphic to a degree-1 purely
transcendental extension of F (φ) – in the first case, see Remark 2.6 (2); in the second,
see Remark 2.6 (3) and Corollary 3.9. By Corollary 3.4 and Lemma 2.26, it follows

that ψL ≃ (φL)an. In other words, we have D(φL) = D(ψL) =
∑p−1

j=0D(ψF (T ))u
j
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(again, see Lemma 2.27 (1) for the final equality). Now, since u is a p-th power

in L, we have bfi =
φ′(T )fi

u
∈ D(φL). We can therefore write bfi =

∑p−1
i=0 qju

j for
some qj ∈ D(ψF (T )). Since every element of D(ψF (T )) is the quotient of an element

of D(ψF [T ]) and a p-th power in F [T ], and since u = φ′(T )
b

, this shows that we can
find elements si,j ∈ D(ψF [T ]) and ti,j ∈ F [T ] \ {0} such that (1) holds. Finally,
since ψF (φ) is anisotropic, Proposition 2.33 implies that m(si,j) ≡ 0 (mod p) for all

0 ≤ j < p. For each such j, Let mj = min
(

m(si,j), pm(ti,j)
)

, and put s′i,j =
si,j

φ′(T )mj

and t′i,j =
ti,j

φ′(T )mj/p
. Then, by Theorem 2.23, we again have s′i,j ∈ D(ψF [T ]). Thus,

replacing si,j by s
′
i,j and ti,j by t

′
i,j (for each j), we arrive at the situation where, for

any j, either m(si,j) = 0 or m(ti,j) = 0. In other, words at least one of si,j and ti,j
is nonzero, as we wanted. �

Returning now to the proof of Lemma 5.4, let si,j ∈ D(ψF [T ]) and ti,j ∈ F [T ]\{0}
be as in Lemma 5.5. In particular, we have the equation

p−1
∑

l=1

bgi,lφ
′(T )l−1 = bfi =

p−1
∑

j=0

si,j
tpi,j

φ′(T )j

bj

in F (T ). Clearing denominators, we obtain

(5.1)
∏

k

tpi,k

p−1
∑

l=1

bgi,lφ
′(T )l−1 =

p−1
∑

j=0

∏

k 6=j

tpi,ksi,j
φ′(T )j

bj

Now, we claim that, for all 0 ≤ j < p, we have ti,j 6= 0, or, equivalently, m(ti,j) = 0.
To see this, let m = min{∑k 6=jm(ti,k) | 0 ≤ j < p}. Then our claim amounts to

the assertion that m =
∑p−1

k=0m(ti,k). Suppose that this is not the case, and let
0 ≤ j < p be minimal so that

∑

k 6=jm(ti,k) = m. Then, reducing both sides of (5.1)

modulo φ′(T )pm+j+1, we see that si,j ≡ 0 (mod φ′(T )). In other words, we have
si,j = 0. By the choice of the si,j and ti,j , this implies that ti,j 6= 0, or, equivalently,

that m(ti,j) = 0. But then m =
∑

k 6=jm(tk) =
∑p−1

k=0m(tk), which contradicts our

assumption. The claim is therefore proved, and so, reducing (5.1) modulo φ′(T )
and dividing through by

∏

k ti
p
, we obtain the equality gi,1b = si,0/ti,0

p
in F (φ). As

si,0 ∈ D(ψF [T ]), this shows that gi,1b ∈ D(ψF (φ)). But since ψF (φ) ≃ φ1, we have
D(ψF (φ)) = D(φ1), and the lemma is therefore proved. �

Continuing with the proof of Theorem 5.1, let us now choose elements gi,j ∈
D(ψF [T ]) as in the statement of Lemma 5.3 so that the integer

∑i1−1
i=1 degT1(gi,1) is

minimal (where for any g ∈ F [T ], degT1(g) denotes the degree of g viewed as an
element of the ring F (T2, . . . , Tn)[T1], i.e., as a polynomial in the single variable
T1

13). Consider the form σ = 〈1, g1,1, . . . , gi1−1,1〉 over F (φ). The final step in the
proof of the theorem will be to prove the following statement:

Lemma 5.6. In the above situation, σ is anisotropic.

Before proving the lemma, let us explain how this concludes the proof of Theorem
5.1. First, we claim that φ1 is divisible by σnor. By Corollary 2.20, this amounts

13With the added convention that degT1
(0) = 0.
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to checking that D(σ) ⊆ G(φ1). Since G(φ1) is a subfield of F containing F p

(Corollary 2.15), it suffices to show here that gi,1 ∈ G(φ1) for all 1 ≤ i < i1.
But by Lemma 2.13, this is equivalent to showing that, for all such i, we have
gi,1D(φ1) ⊆ D(φ1). Since D(φ1) = D(ψF (φ)) is spanned as an F (φ)p-vector space
by D(ψ), this follows immediately from Lemma 5.4. The claim is therefore proved,
and to finish the proof of the theorem, it only remains to check that dimσnor ≥ ps.
But, σ is anisotropic by Lemma 5.6, and so σ ⊂ σnor by Lemma 2.11. In particular,
we have dimσnor ≥ dimσ = i1, which is precisely the assertion that dimσnor ≥ ps.
Now, in order to prove Lemma 5.6, we need another auxiliary statement:

Lemma 5.7. If σ is isotropic, then p > 2, and there exist polynomials gj ∈
D(ψF [T ]) (1 ≤ j < p) and an integer 2 ≤ k < p such that

(1)
∑p−1

j=1 gjφ
′(T )j ∈ D(φF [T ]).

(2) m(gl) > 0 for all 1 ≤ l < k.
(3) m(gk) = 0.

Proof. If σ is isotropic, then since φ′(T ) is a Fermat-type polynomial of degree p, we
can find an integer 1 ≤ m ≤ p and polynomials h0, . . . , hi1−1, h ∈ F [T ] such that:

(i) hp0 + g1,1h
p
1 + . . .+ gi1−1,1h

p
i1−1 = φ′(T )mh in F [T ].

(ii) degT1(hi) < p for all 0 ≤ i < i1.

(iii) hi 6= 0 for some 1 ≤ i < i1.

First, let us note that we have φ′(T )mh ∈ D(ψF [T ]) by (i) and the definition of the
elements gi,1. Since ψF (φ) is anisotropic, it follows from Proposition 2.33 that h = 0
or m = p. Either way, we can assume henceforth that m = p. Now, by (iii), there
exists 1 ≤ l < i1 such that hl 6= 0. Among all such integers l, let us fix one so that
degT1(gl,1h

p
l ) is maximal. Consider now the polynomial f = hp0+

∑i1
k=1 fkh

p
k ∈ F [T ],

where the fk are as in the statement of Lemma 5.3. Since hl 6= 0, Lemma 2.2
implies that 〈1, f1, . . . , fi1−1〉 ≃ 〈1, f1, . . . , fl−1, f, fl+1, . . . , fi1−1〉 as F (T )-forms. In
particular, we have

(5.2) φF (T ) ≃ ψF (T ) ⊕ φ′(T )〈1, f1, . . . , fl−1, f, fl+1, . . . , fi1−1〉.
Now, by definition, f =

∑p−1
j=1 g

′
jφ

′(T )j−1, where g′1 = φ′(T )mh ∈ D(ψF [T ]) and

g′j =
∑i1−1

k=1 gk,jh
p
k ∈ D(ψF [T ]) for all 2 ≤ i < p. Let r = min{m(g′j) | 1 ≤ j < p}.

Since g′j ∈ D(ψF [T ]) for all j, and since ψF (φ) is anisotropic, another application of
Proposition 2.33 shows that r ≡ 0 (mod p). In particular, for each j ≥ 1, we have

gj :=
g′j

φ′(T )r
∈ D(ψF [T ]). In view of (5.2), it follows that the exchange gl,j → gj does

not alter the statement of Lemma 5.3. By our choice of the gi,j, we therefore have

(5.3) degT1(φ
′(T )p−rh) = degT1(g1) ≥ degT1(gl,1).

Now, we claim that the elements gj (together with an appropriate integer k) satisfy
the conditions of the lemma. We have already seen here the validity of (1). At the
same time, we have m(gj) = 0 for some j ≥ 1 by construction. Thus, in order to
prove the existence of an integer k such that (2) and (3) are satisfied, we just need to
check thatm(g1) > 0. Recall again that we have g1 = φ′(T )p−rh. If h = 0, then there
is nothing to prove. Suppose now that h 6= 0. By (i) and the choice of the integer
l, we have degT1(gl,1h

p
l ) ≥ degT1(φ

′(T )ph) ≥ p2 + degT1(h). Since degT1(hl) < p (by
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(ii)), it follows that degT1(gl,1) > degT1(h). In view of (5.3), we see that r = 0 in this
case. In particular, we have g1 = φ′(T )ph, and so m(g1) ≥ p > 0, as we wanted. �

We are now ready to prove Lemma 5.6 and thus complete the proof of Theorem
5.1. If p = 2, then the statement was already proved in Lemma 5.7. Suppose now
that p > 2, and assume for the sake of contradiction that σ is isotropic. Let gj
(1 ≤ j < p) and k be as in the statement of Lemma 5.7. By condition (2) of the
lemma, we can, for each l < k, write gl = φ′(T )mlhl for some positive integer ml

and some polynomial hl. By a now familiar application of Proposition 2.33, we have
ml ≡ 0 (mod p) for every such l. In particular, the ml are all strictly larger than k.
Now, by condition (1) of the lemma, the element

φ′(T )k
(

gk+gk−1φ
′(T )+ . . .+gi1−1φ

′(T )p−k−1+h1φ
′(T )m1−k+ . . .+hk−1φ

′(T )mk−1−k
)

lies in D(φF [T ]). Using the very same argument as that used to prove Lemma 5.4
above (and the fact that the integers ml − k (l < k) are all positive), one readily
shows that bkgk ∈ D(φ1) for every b ∈ D(ψ). Note, however, that gk 6= 0 by
condition (3) of Lemma 5.7. Since 2 ≤ k < p, and since φ1 ≃ ψF (φ), it follows
from Lemma 2.22 that φ1 is a quasi-Pfister p-form. But, by Corollary 3.11, this in
turn implies that φ is a quasi-Pfister p-neighbour, thus contradicting our original
hypothesis. The lemma and theorem are therefore proved. �

6. Applications of the main theorem

We now give the basic applications of Theorem 1.5.

6.1. Possible values of the Knebusch splitting pattern. Let φ be a quasilinear
p-form of dimension ≥ 2 over F . In the previous section we have shown that the first
higher anisotropic kernel φ1 of φ is divisible by a quasi-Pfister p-form of dimension
≥ i1(φ), provided that φan is not a quasi-Pfister p-neighbour. In the terminology
of §2.11, this amounts to the assertion that if hqp(φ) ≥ 2, then d1(φ) ≥ logp

(

i1(φ)
)

(here we are also making use Corollary 3.11). By virtue of the inductive nature of
the Knebusch splitting tower construction, we also obtain analogous restrictions on
the higher isotropy indices ir(φ) (2 ≤ r < hqp(φ)) in terms of the corresponding
higher divisibility indices dr(φ). Taking the observations of §2.11 into account, our
results may be summarised as follows:

Theorem 6.1. Let φ be a quasilinear p-form over F and let d = h(φ) − hqp(φ).
Then:

(1) i(φ) = (i1(φ), . . . , ihqp(φ)(φ), p
d − pd−1, pd−1 − pd−2, . . . , p2 − p, p− 1).

(2) ihqp(φ) = dimφ− jhqp(φ)−1(φ)− pd < pd+1 − pd.
(3) d(φ) = (d0(φ), . . . , dhqp(φ)−1(φ), d, d− 1, . . . , 1, 0).
(4) d0(φ) ≤ d1(φ) ≤ . . . ≤ dhqp(φ) = d.

(5) ir(φ) ≡ 0 (mod pdr−1(φ)) for all 1 ≤ r < hqp(φ).
(6) dr(φ) ≥ logp

(

ir(φ)
)

for all 1 ≤ r < hqp(φ).
(7) For every 1 ≤ r < hqp(φ), ir(φ)− 1 is the remainder of dimφ − jr−1(φ)− 1

modulo pdr(φ).
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Proof. Parts (1), (2), (3), (4) and (5) are the statements comprising Lemmas 2.42,
2.43, 2.44 and Corollary 2.45. Since ir(φ) = i1(φr−1), dr(φ) = d1(φr−1) and dimφr−1 =
dimφ− jr−1(φ) for all 1 ≤ r ≤ h(φ), parts (6) and (7) follow immediately from The-
orem 5.1 and Corollary 3.11. �

In order to highlight the general shape of the Knebusch splitting pattern exposed
by Theorem 6.1, it is worth writing down the following result explicitly (here the
notation a | b means that a divides b):

Corollary 6.2. Let φ be a quasilinear p-form over F . Then i1(φ) ≤ pd1(φ) | i2(φ) ≤
pd2(φ) | . . . | ihqp(φ)−1(φ) ≤ pdhqp(φ)−1(φ) | ihqp(φ)(φ).
Remark 6.3. In the special case where p = 2, the chain of inequalities i1(φ) ≤ i2(φ) ≤
. . . ≤ ihqp(φ)(φ) was previously obtained in [Scu14, Thm. 9.5] using Proposition 3.16.
Here, we have given a more precise and natural explanation of this phenomenon.

We now show that, as far as the Knebusch splitting pattern is concerned, one
cannot do any better than Theorem 6.1 in general:

Proposition 6.4. Let n be any positive integer. Suppose that we are given a non-
negative integer k ≤ n and two sequences (d0, d1, . . . , dk = d) and (i1, . . . , ik) of k+1
and k nonnegative integers, respectively, such that the following conditions hold:

(i) ik = n−∑k−1
j=1 ij − pd < pd+1 − pd.

(ii) d0 ≤ d1 ≤ . . . ≤ dk = d.
(iii) 1 ≤ ir ≡ 0 (mod pdr−1) for all 1 ≤ r < k.
(iv) dr ≥ logp(ir) for all 1 ≤ r < k.

(v) For every 1 ≤ r < k, ir−1 is the remainder of n− (
∑r−1

j=1 ij)−1 modulo pdr .

Then there exists a (purely transcendental) field extension L of F and an anisotropic
quasilinear p-form φ of dimension n over L such that:

(1) hqp(φ) = k.
(2) h(φ) = k + d.
(3) d(φ) = (d0(φ), . . . , dk−1(φ), d, d− 1, . . . , 1, 0).
(4) dr(φ) ≥ dr for all 0 ≤ r < k.
(5) i(φ) = (i1, . . . , ik, p

d − pd−1, pd−1 − pd−2, . . . , p2 − p, p− 1).

Proof. We argue by induction on k. If k = 0, then Proposition 2.39 shows that
we can take L = F (T ) and φ = 〈〈T1, . . . , Td〉〉, where T = (T1, . . . , Td) is a d-tuple
of algebraically independent variables over F . Suppose now that k > 0, and let
n′ = n−i1

pd1
and i′r = ir+1

pd1
for all 1 ≤ r < k. By our hypotheses, these ratios are,

in fact, positive integers. Setting d′r = dr+1 − d1 for all 0 ≤ r < k, and putting
d′ = d′k−1, conditions (i)-(v) then imply the following:

(i′) i′k−1 = n′ −∑k−2
j=1 i

′
j − pd

′

< pd
′+1 − pd

′

.

(ii′) d′0 ≤ d′1 ≤ . . . ≤ d′k−1 = d′.

(iii′) 1 ≤ i′r ≡ 0 (mod pd
′

r−1) for all 1 ≤ r < k − 1.
(iv′) d′r ≥ logp(i

′
r) for all 1 ≤ r < k − 1.

(v′) For every 1 ≤ r < k− 1, i′r− 1 is the remainder of n′ − (
∑r−1

j=1 i
′
j)− 1 modulo

pd
′

r .
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By the induction hypothesis, there exists a (purely transcendental) field extension
L0 of F and an anisotropic quasilinear p-form ψ of dimension n′ over L0 such that

(1′) hqp(ψ) = k − 1.
(2′) h(ψ) = k − 1 + d′.
(3′) d(ψ) = (d0(ψ), d1(ψ), . . . , dk−2(ψ), d

′, d′ − 1, . . . , 1, 0).
(4′) dr(ψ) ≥ d′r for all 0 ≤ r < k − 1.
(5′) i(ψ) = (i′1, . . . , i

′
k−1, p

d′ − pd
′−1, pd

′−1 − pd
′−2, . . . , p2 − p, p− 1).

Consider now the form σ = ψL1 ⊥ 〈T0〉 over the rational function field L1 = L0(T0).
By (3′), (5′) and Lemma 2.46, we have

(a) d(σ) = (0, d0(ψ), d1(ψ), . . . , dk−2(ψ), d
′, d′ − 1, . . . , 1, 0).

(b) i(σ) = (1, i′1, . . . , i
′
k−1, p

d′ − pd
′−1, pd

′−1 − pd
′−2, . . . , p2 − p, p− 1).

We would like to modify this further. Consider next the product τ = 〈〈T1, . . . , Td1〉〉⊗
σL over L = L1(T ), where T = (T1, . . . , Td1) is a d1-tuple of algebraically independent
variables over L1. Then, by (a), (b) and Lemma 2.48, we have

(c) d(τ) = (d1, d1(ψ) + d1, d2(ψ) + d1, . . . , dk−2(ψ) + d1, d, d− 1, . . . , 1, 0).
(d) i(τ) = (pd1, i2, . . . , ik, p

d − pd−1, pd−1 − pd−2, . . . , p2 − p, p− 1).

Now, by (iv), we have i1 = pd1−s for some 0 ≤ s < pd1. By (ii) and (iii), s is divisible
by pd0 . Let φ be any codimension-s subform of τ which is divisible by 〈〈T1, . . . , Td0〉〉.
Clearly φ is anisotropic, and by (c), (d) and Proposition 3.10, we have

(e) d(φ) = (d0(φ), d1(ψ) + d1, . . . , dk−2(ψ) + d1, d, d− 1, . . . , 1, 0).
(f) i(φ) = (i1, i2, . . . , ik, p

d − pd−1, pd−1 − pd−2, . . . , p2 − p, p− 1).

The second statement shows that φ satisfies conditions (2) and (5). At the same
time, since d0(φ) ≥ d0 by construction, and since d2(ψ) + d1 ≥ d′r + d1 = dr+1 for
all 0 ≤ r < k− 1 by (4′), (e) shows that (3) and (4) are also satisfied. Finally, since
ik < pd+1 − pd, Proposition 2.39 shows that hqp(φ) = k, i.e., that (1) holds for φ.
The pair (L, φ) therefore has all the desired properties. �

Remark 6.5. In general, it is not possible to arrange it so that dr(φ) = dr for all
0 ≤ r < k in the statement of Proposition 6.4. For example, suppose that p = 2, and
take n = 2s+1 − 2 for some s ≥ 3, k = 1, d0 = 0, d1 = s, i0 = 0, i1 = 2s − 2. As the
reader will readily verify, these integers satisfy conditions (i)-(v) of the Proposition.
On the other hand, let (L, φ) be any pair consisting of a field extension L of F and an
anisotropic form φ of dimension 2s+1−2 over L such that i1(φ) = 2s−2. By Theorem
6.6 below (see also [Scu14, Thm. 9.6]), φ is necessarily a quasi-Pfister 2-neighbour,
and therefore satisfies conditions (1)-(5) of the proposition (see Corollary 3.11). We
claim, however, that d0(φ) > 0, i.e., that φ is divisible by a binary form. Indeed, note
that, since φ is a quasi-Pfister 2-neighbour, there exists an anisotropic (s + 1)-fold
bilinear Pfister form c over L and a codimension-2 subform b ⊂ c such that φ ≃ φb.
Since det(c) = 1, we have c ≃ b ⊥ λ〈〈det(b)〉〉b for some λ ∈ L∗. In particular, we
have bLdet(b)

∼ 0. By Corollary A.2, it follows that i0(φLdet(b)
) ≥ 1

2
dimφ, and so φ is

divisible by 〈〈det(b)〉〉 (see Lemma 2.27 (6)).

Theorem 6.1 and Proposition 6.4 thus give a complete solution to the problem
of determining the possible values of the Knebusch splitting pattern for quasilinear
p-forms. In particular, we have an answer to Question 1.1 in the totally singular
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case. As noted in Example 2.47, the Knebusch and full splitting patterns need not
agree in general for quasilinear p-forms. In §8 below, we will consider the problem of
determining the possible values of the full splitting pattern in the case where p = 2.

6.2. Quasilinear p-forms with maximal splitting. Let φ be an anisotropic
quasilinear p-form of dimension ≥ 2 over F and write dimφ = pn +m for uniquely
determined integers n ≥ 0 and 1 ≤ m ≤ pn+1 − pn. By Theorem 6.1 (see also
[Scu13, Cor. 6.8]), we have i1(φ) ≤ m. If equality holds here, then we say that φ has
maximal splitting. The basic examples of forms having this property are given by
anisotropic quasi-Pfister p-neighbours (see Corollary 3.11). It is interesting to ask
here to what extent this property characterises quasi-Pfister p-neighbours. Given
Theorem 5.1, we can now prove the following general result:

Theorem 6.6. Let φ be an anisotropic quasilinear p-form of dimension ≥ 2 over F ,
and n be the smallest nonnegative integer such that pn+1 ≥ dimφ. If φ has maximal
splitting, and if either

(1) p > 2 and dimφ > pn + pn−1, or
(2) p = 2 and dimφ > 2n + 2n−2,

then φ is a quasi-Pfister p-neighbour.

Proof. By Theorem 5.1, we may assume that d1(φ) ≥ i1(φ). Suppose first that p > 2.
Since φ has maximal splitting, we have i1(φ) > pn−1 by (1), and so d1(φ) ≥ pn. On
the other hand, we have dimφ1 = dimφ−i1(φ) = pn (see Remark 2.36 (2)). It follows
that φ1 is similar to an n-fold quasi-Pfister p-form, and so φ is a quasi-Pfister p-
neighbour by Corollary 3.11. If p = 2, the same argument (and (2)) shows that φ1

is a form of dimension 2n which is divisible by an (n− 1)-fold quasi-Pfister 2-form.
Since every binary form is similar to a quasi-Pfister 2-form in this case, φ1 is, in
fact, similar to an n-fold quasi-Pfister 2-form, and we now conclude as before. �

Remark 6.7. The statement of Theorem 6.6 was originally conjectured by Hoffmann
in [Hof04, Rem. 7.32] (see also [Scu14, Que. 7.6]). The result is the best possible,
in the sense that one has examples of anisotropic quasilinear p-forms with maximal
splitting which are not quasi-Pfister p-neighbours in every dimension omitted in the
statement of the theorem (see [Hof04, Ex. 7.31]). In the special case where p = 2,
Theorem 6.6 was previously established in [Scu14, Thm. 9.6] using Proposition 3.16.
Here, we obtain a more natural explanation of this phenomenon by way of Theorem
5.1. Note that the p = 2 case of the theorem is a direct analogue of a conjecture of
Hoffmann in the theory of nonsingular quadratic forms which remains open, even
over fields of characteristic different from 2 (see [Hof95, §4], [IV00, Conj. 1.6]).

7. Some remarks on the splitting of symmetric bilinear forms in

characteristic 2

We now provide a brief and relatively informal discussion on some implications
of Theorem 5.1 for the Knebusch splitting theory of symmetric bilinear forms in
characteristic 2. The basic details of this theory, which was initiated by Laghribi
in [Lag07], are outlined in §A.2 below, and we refer there (and to §A.1) for the
relevant notation and terminology. Throughout this section, we assume that p = 2.
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By a quasi-Pfister form (resp. neighbour), we will mean a quasi-Pfister 2-form (resp.
2-neighbour).
Let b be an anisotropic bilinear form over F . By Lemma A.5, we have h(b) ≤

h(φb). Moreover, if h(b) > 0, then Lemma A.3 shows that 1
2
i1(φb) ≤ i1(b) ≤ i1(φb),

where φb denotes the quasilinear quadratic form on Vb defined by the assignment
v 7→ b(v, v). As per Remark A.4, the precise nature of the relationship between i1(b)
and i1(φb) seems to be unknown, but one can easily produce examples which show
that the given upper and lower bound on i1(b) can both be met in practice. This
suggests that prior knowledge of the Knebusch splitting pattern of φb provides only
limited information concerning that of b. With the results of the previous section
in hand, however, we can now clarify the situation a little further:

Proposition 7.1. Let b be an anisotropic bilinear form over F such that h(b) > 1
and write dimb = 2n +m for uniquely determined integers n ≥ 1 and 1 ≤ m ≤ 2n.
Then h(φb) > 1, and exactly one of the following holds:

(1) 2i1(b) < j2(φb).
(2) i1(b) = i1(φb) = i2(φb) = 2d1(φb).
(3) φb is a quasi-Pfister neighbour, m > 2n−1 and 2n−2 + m

2
≤ i1(b) ≤ m.

Proof. As mentioned above, the inequality h(φb) > 1 holds by Lemma A.5. Suppose
now that 2i1(b) ≥ j2(φb). If i2(φb) ≥ i1(φb), then it follows from Lemma A.3 that
i1(b) = i1(φb) = i2(φb). By Corollary 6.2, we are therefore in case (2). On the
other hand, if i2(φb) < i1(φb), then the same corollary implies that hqp(φb) ≤ 1. By
Corollary 3.11, this implies that φb is a quasi-Pfister neighbour and that i1(φb) = m
and i2(φb) = 2n−1. We are therefore in case (3), and so the result follows. �

This yields the following:

Corollary 7.2. Let b be an anisotropic bilinear form over F such that h(b) > 1
and write dimb = 2n +m for uniquely determined integers n ≥ 1 and 1 ≤ m ≤ 2n.
Then h(φb) > 1, and exactly one of the following holds:

(1) φb1 is a neighbour of (φb)1.
(2) i1(b) = i1(φb) = i2(φb) = 2d1(φb) and φb1 is a near neighbour of (φb)1.
(3) φb is a quasi-Pfister neighbour, m > 2n−1 and 2n−2 + m

2
≤ i1(b) ≤ m.

Proof. We apply Proposition 7.1 to the form b. By Proposition A.1 (2), φb1 is a
codimension-d subform of (φb)1, where d = 2i1(b)−i1(φb). In particular, if d < i2(φb),
then φb1 is a neighbour of (φb)1. In other words, if 2i1(b) < j2(φb), then (1) holds.
On the other hand, if 2i1(b) ≥ j2(φb), then Proposition 7.1 implies that either (3)
holds, or else i1(b) = i1(φb) = i2(φb) = 2d1(φb). In the latter situation, we have
dimb1 = dimb − 2i1(b) = dimφb − j2(φb) = dim(φb)1 − i1((φb)1), so that φb1 is a
near neighbour of (φb)1. We are therefore in case (2), whence the result. �

In the statement of Corollary 7.2, (3) may be regarded as an extreme case. The
situation is thus as follows: We know that 1

2
i1(φb) ≤ i1(b) ≤ i1(φb). If h(b) > 1 and

if we are not in case (3), then b1 is either a neighbour or a near neighbour of (φb)1,
the latter case occuring only when i1(b) = i1(φb) = i2(φb) = 2d1(φb). Appealing to
the relevant statement among those found in Proposition 3.10 and Corollary 3.14,
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and applying Lemma A.3 to the form b1, we then obtain restrictions on the invariant
i2(b) in terms of the sequence i((φb)1). Thus, repeating this process as many times
as is possible, we can, in principle, obtain non-trivial information concerning the
entire Knebusch splitting pattern of b in terms of i(φb). Of course, these ideas are
mostly of interest in situations which are distant from “generic”. We do not attempt
to make this precise, but we give here an explicit example which serves to illustrate
the broader philosophy. More specifically, we will examine some implications of
the preceding discussion for the problem of classifying bilinear forms of height 2
in characteristic 2. In spite of the simple description of anisotropic bilinear forms
of height 1 (Proposition A.6), this problem remains wide open at present. In fact,
the analogous problem in characteristic 6= 2 is also open. There, the expected
classification in even dimensions is as follows (recall here that the terms “quadratic
form” and “symmetric bilinear form” are synonymous in characteristic 6= 2):

Conjecture 7.3 (cf. [Kah96, Conj. 7]). Let φ be an anisotropic quadratic form of
even dimension over a field of characteristic 6= 2 with h(φ) = 2. If deg(φ) = d, then
exactly one of the following holds:

(1) φ ≃ π⊗ψ for some (d− 1)-fold Pfister form π and 4-dimensional form ψ of
nontrivial discriminant.

(2) φ ≃ π⊗ψ for some (d− 2)-fold Pfister form π and 6-dimensional form ψ of
trivial discriminant.

(3) φ is an excellent form14 of dimension 2n+1 − 2d for some n > d.

While the dimension-theoretic part of Conjecture 7.3 has been verified by Vishik
(see [Vis00, Thm. 3.1]), the general statement is only known in some special cases.
Returning to characteristic 2, Corollary 7.2 now yields the following:

Corollary 7.4. Let b be an anisotropic bilinear form of even dimension over F such
that h(b) = 2. If deg(b) = d, then exactly one of the following holds:

(1) dimb = 2d+1, hqp(φb) = 2 and i1(φb) = i2(φb) = 2d−1.
(2) d > 1, dimb = 2d + 2d−1, hqp(φb) = 2 and i1(φb) = i2(φb) = 2d−2.
(3) φb is a quasi-Pfister neighbour and dimb ∈ {2d+1}∪{2d+1−2i | 1 ≤ i ≤ 2d−1}.
(4) φb is a quasi-Pfister neighbour and 2n+1−2d ≤ dimb ≤ 2n+1 for some n > d.

Proof. Since h(b) = 2, b1 is a Pfister form of dimension 2d. By Theorem A.7, we
either have dimb ≥ 2d+1 or dimb = 2d+1 − 2i for some 1 ≤ i ≤ 2d−1. Now, write
dimb = 2n + m for uniquely determined integers n ≥ 1 and 1 ≤ m ≤ 2n. By
Corollary 7.2, one of the following holds:

(i) φb1 is a neighbour of (φb)1.
(ii) i1(b) = i1(φb) = i2(φb) = 2d1(φb) and φb1 is a near neighbour of (φb)1.
(iii) φb is a quasi-Pfister neighbour, m > 2n−1 and 2n−2 + m

2
≤ i1(b) ≤ m.

If (i) holds, then we have dim(φb)1 − i1((φb)1) < dimφb1 ≤ dim(φb)1. But, since
dimφb1 = 2d, Theorem 1.3 (more precisely, Hoffmann and Laghribi’s upper bound
on i1 applied to the form (φb)1) then implies that d = n and φb1 ≃ (φb)1. In view
of Corollary 3.11, we are therefore in case (3). If (ii) holds, then there are three

14That is, similar to π ⊗ σ′, where π is a d-fold Pfister form and σ′ is the pure part of some
(n− d)-fold Pfister form σ; equivalently, φ1 is defined over the base field.
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possibilities: Either we are in case (1), case (2), or we have dimb = 2n + 2n−1,
d = n− 1 and i1(b) = i1(φb) = i2(φb) = 2n−1. In the latter scenario, Corollary 3.11
implies that φb is a quasi-Pfister neighbour, and so we are in case (4). Finally, if (iii)
holds, then φb is a quasi-Pfister neighbour, m > 2n−1 and, since 2i1(b) = 2n+m−2d,
we have 2n−1 ≤ 2n−2d ≤ m. We are thus again in case (4), and the result follows. �

The reader will immediately observe basic parallels between Corollary 7.4 and the
expected classification of anisotropic quadratic forms of height 2 in characteristic
6= 2. For instance, case (1) should correspond here to case (1) of Conjecture 7.3:

Conjecture 7.5. Let b be an anisotropic bilinear form over F such that h(b) =
hqp(φb) = 2 and dimb = 2d+1, where deg(b) = d. Then b = π ⊗ c for some (d− 1)-
fold Pfister form π and some 4-dimensional form c of nontrivial determinant.

This conjecture is also directly analogous to Conjecture 4.5. In fact, we have:

Lemma 7.6. Let b be an anisotropic bilinear form over F such that h(b) = hqp(φb) =
2 and dimb = 2d+1, where deg(b) = d. Then the following are equivalent:

(1) Conjecture 7.5 holds for b.
(2) Conjecture 4.5 holds for the pair (φb, d).
(3) There exists a subform ψ ⊂ φb of codimension 2d−1 such that ndeg(ψ) = 2d−1.

Proof. The equivalence of (2) and (3) has already been shown in Lemma 4.7, while
the implication (1) ⇒ (2) is trivial. We now sketch the proof of (2) ⇒ (1), making
free use of known results from the theory of symmetric bilinear forms in characteristic
2. Without loss of generality, we may assume that 1 ∈ D(φb). Suppose now that
(2) holds, i.e., that φb ≃ σ ⊗ τ for some (d− 1)-fold quasi-Pfister form σ and some
form τ of dimension 4. We claim that bF (σ) ∼ 0. Since h(b) = 2, the Arason-Pfister
Hauptsatz (which is a special case of Theorem A.7) implies that it will be sufficient
to check that i0(bF (σ)) > i1(b). By Corollary A.2, we have i0(bF (σ)) ≥ 1

2
i0((φb)F (σ)) =

1
2
(1
2
dimφb) = 2d−1 = i1(b). If equality holds here, then we necessarily have that:

(1) (bF (σ))an is a d-fold Pfister form.
(2) φ(bF (σ))an ≃ ((φb)F (σ))an.

But this implies that ndeg((φb)F (σ))) = 2d = 1
4
ndeg(φb), which contradicts Lemma

2.31 (3). Our claim is therefore proved. Now, by [AB03, Cor. 3.3], it follows that
there exists an anisotropic d-fold Pfister form η over F such that deg(b ⊥ η) ≥ d+1.
But, since 1 ∈ D(φb) ∩D(φη), b ⊥ η is isotropic, and so dim(b ⊥ η)an < 2d+1 + 2d.
By Theorem A.7, it follows that (b ⊥ η)an is similar to an (d+ 1)-fold Pfister form.
By a standard linkage result (see [EKM08, Prop. 6.21]), we deduce that b ≃ π ⊗ c

for some (d − 1)-fold Pfister form π and 4-dimensional form c over F . As b is not
similar to a Pfister form, c necessarily has nontrivial determinant. �

Similarly, one would expect case (2) of Corollary 7.4 to correspond to case (2) of
Conjecture 7.3. Note here, however, that if b is either (i) the product of a (d−1)-fold
Pfister form and a 4-dimensional form of nontrivial determinant, or (ii) a generalised
Albert form of dimension 2d+2d−1, then φb can be a quasi-Pfister neighbour, and so b
may, in fact, belong to the class of forms described in Corollary 7.4 (3). Furthermore,
it is appropriate to separate the latter case from cases (1) and (2). Indeed, for any
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1 ≤ i ≤ 2d−1, one can easily construct forms of dimension 2d+1 − 2i, degree d and
height 2 as the difference of two d-fold Pfister forms having (i − 1) common slots.
Case (3) of Corollary 7.4 can therefore occur in every permitted dimension. We
thus have an entirely new class of height 2 forms of even dimension in characteristic
2. Moreover, as pointed out by Laghribi (see [Lag11, Thm. 1.1]), new forms of
height 2 and degree d ≥ 1 also appear in case (4) of Corollary 7.4. These forms
are of dimension 2n+1 (n > d) and are divisible by suitable Pfister forms of degree
d− 1. Of course, we also have here the direct analogues of those forms (of dimension
2n+1−2d) appearing in case (3) of Conjecture 7.3. It seems to be unknown, however,
if any other dimensions can occur in the situation of Corollary 7.4 (4). As for the
classification of odd-dimensional anisotropic bilinear forms of height 2, we have:

Corollary 7.7. Let b be an anisotropic bilinear form of odd dimension over F such
that h(b) = 2. Then dimb1 = 2d−1 for some d ≥ 2, and exactly one of the following
holds:

(1) dimb = 5, hqp(φb) = 3 and i1(φb) = i2(φb) = 1.
(2) φb is a quasi-Pfister neighbour and dimb = 2d+1−2i±1 for some 1 ≤ i ≤ d.
(3) φb is a quasi-Pfister neighbour and 2n − 2d − 1 ≤ dimb ≤ 2n+1 − 1 for some

n > d.

Proof. Since h(b) = 2, b1 is similar to a codimension-1 subform of a Pfister form
by Proposition A.6. As such, we have dimb1 = 2d − 1 for some d ≥ 2. Let
c = (b ⊥ 〈det(b)〉b)an. Note that, for any extension L of F , we have dim(bL)an =
dim(cL)an ± 1. In particular, if (Fr) denotes the Knebusch splitting tower of c, then
dim(bFh(c)−1

)an = 2deg(c)±1. By the Arason-Pfister Hauptsatz (see Theorem A.7), it

follows that deg(c) ≥ d. Now, write dimb = 2n+m for uniquely determined integers
n ≥ d and 1 ≤ m ≤ 2n. By Corollary 7.2, one of the following holds:

(i) φb1 is a neighbour of (φb)1.
(ii) i1(b) = i1(φb) = i2(φb) = 2d1(φb) and φb1 is a near neighbour of (φb)1.
(iii) φb is a quasi-Pfister neighbour, m > 2n−1 and 2n−2 + m

2
≤ i1(b) ≤ m.

If (i) holds, then we have dim(φb)1−i1((φb)1) < dimφb1 ≤ dim(φb)1. Since dimφb1 =
2d − 1, Theorem 1.3 (more precisely, Hoffmann and Laghribi’s upper bound on i1
applied to the form (φb)1) then implies that we necessarily have dim(φb)1 = 2d.
Since φb1 is both a quasi-Pfister neighbour and a codimension-1 neighbour of (φb)1,
it follows that the latter form is similar to a quasi-Pfister form. By Corollary 3.11,
this means that φb is a quasi-Pfister neighbour. Furthermore, we must have that
n = d. Since dimb = dim c ± 1, and since deg(c) ≥ d, it follows from Theorem A.7
that dimb = 2d+1−2i±1 for some 1 ≤ i ≤ d, and we are therefore in case (2). Now,
if (ii) holds, then another application of Theorem 1.3 shows that dimb = 2d+1 and
i1(b) = i1(φb) = i2(φb) = 1. If d > 2, then Theorem A.7 implies that dim c = 2d,
and so c is a Pfister form. But this implies that φb is a quasi-Pfister neighbour,
which contradicts the fact that i2(φb) = 1 (see Corollary 3.11). We thus conclude
that d = 2, and so we are in case (1). Finally, as in the proof of Corollary 7.4, the
reader will immediately verify that we are in case (3) whenever (iii) holds. �

In characteristic 6= 2, it is expected that any odd-dimensional anisotropic qua-
dratic form of height 2 is excellent of dimension 2n+1 − 2d + 1 for some integers
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n ≥ d > 1, with one exceptional case occuring in dimension 5. Again, although
we see obvious parallels between this conjectural statement and Corollary 7.7, we
remark here that new values can appear among the dimensions of odd-dimensional
forms of height 2 in characteristic 2. For example, it is easy to check that any
codimension-1 subform of a generalised Albert form belonging to class (3) of Corol-
lary 7.4 has height 2. Finally, let us note that, in the situation of Corollary 7.4
(resp. Corollary 7.7), we have hqp(φb) ≤ 2 (resp. hqp(φb) ≤ 3) in all cases. More
generally, we have:

Corollary 7.8. Let b be an anisotropic bilinear form over F such that h(b) > 1.

(1) If dimb is even, then hqp(φb) ≤ 2h(b)− 2.
(2) If dimb is odd, then hqp(φb) ≤ 2h(b)− 1.

Proof. We proceed by induction on h(b). The case where h(b) = 1 follows from
Proposition A.6 and Corollary 3.11. Suppose now that h(b) > 1. If hqp(φb) ≤
1, then there is nothing to prove. We can therefore assume that hqp(φb) > 1,
or, equivalently, that φb is not a quasi-Pfister neighbour (see Corollary 3.11). By
Corollary 7.2, it follows that φb1 is either a neighbour or a near neighbour of (φb)1.
Thus, by Proposition 3.10 and Corollaries 3.14 and 3.11, we have that hqp(φb1) ≥
hqp

(

(φb)1
)

− 1. By the induction hypothesis, we therefore have

hqp(φb) = hqp
(

(φb)1
)

+ 1 ≤ hqp(φb1) + 2 ≤ 2h(b1) + 2− ǫ = 2h(b)− ǫ,

where ǫ = 2 (resp. ǫ = 1) if dimb is even (resp. odd). This proves the result. �

Remark 7.9. Standard consideration of “generic” forms shows that the bounds of
Corollary 7.8 cannot be improved in general.

8. Full splitting of quasilinear quadratic forms

Having determined all possible standard splitting patterns of quasilinear p-forms
(Theorem 6.1, Proposition 6.4), we now turn our attention towards the problem
of obtaining a similar result for the full splitting pattern. Here, we restrict our
considerations to the case of quasilinear quadratic forms, where we can take direct
inspiration from the following theorem of Vishik (which may be deduced from the
existence of “excellent connections” in the integral Chow motives of anisotropic
quadrics over fields of characteristic 6= 2 – see [Vis11, Thm. 1.3]):

Theorem 8.1 (Vishik, [Vis11]). Let φ be an anisotropic quadratic form of dimension
≥ 2 over a field k of characteristic 6= 2, and write dimφ− i1(φ) = 2r1 − 2r2 + . . .+
(−1)s−12rs for uniquely determined integers r1 > r2 > . . . > rs−1 > rs + 1 > 1. Let

1 ≤ l ≤ s, and put Dl =
∑l−1

i=1(−1)i−12ri−1 + ǫ(l)
∑s

j=l(−1)j−12rj , where ǫ(l) = 1

(resp. ǫ(l) = 0) if l is even (resp. odd). Then, for any field extension L of k, we
either have i0(φL) ≥ Dl + i1(φ) or i0(φL) ≤ Dl.

Proof. This is nothing else but a restatement of [Vis11, Prop. 2.6] in terms of Witt
indices. To see how it may be derived from [Vis11, Thm 2.1] in further detail, we
refer the reader to [Scu14, Proof of Thm. 1.2]. �
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Examples 8.2. Let φ be an anisotropic quadratic form of dimension ≥ 2 over a
field k of characteristic 6= 2, and write dimφ = 2n + m for uniquely determined
integers n ≥ 0 and 1 ≤ m ≤ 2n.

(1) For l = 1, Theorem 8.1 asserts that i0(φL) ≥ i1(φ) whenever φL is isotropic.
(2) For l = 2, Theorem 8.1 asserts that, for any field extension L of k, we either

have i0(φL) ≥ m or i0(φL) ≤ m− i1(φL).
(3) For l = s, Theorem 8.1 asserts that, for any field extension L of k, we either

have i0(φL) ≥ 1
2
(dimφ+ i1(φ)−2rs) or i0(φL) ≤ 1

2
(dimφ− i1(φ)−2rs). Taking

L = k (so that i0(φL) =
[

1
2
dimφ

]

), we see that i1(φ) ≤ 2rs, which gives a
proof of Hoffmann’s Conjecture 1.2 in this setting (see [Vis11, Thm 2.5.])

We expect, in fact, that Theorem 8.1 extends verbatim to our setting. Henceforth,
let us assume that p = 2. We state the following:

Conjecture 8.3. Let φ be an anisotropic quasilinear quadratic form of dimension
≥ 2 over F , and write dimφ − i1(φ) = 2r1 − 2r2 + . . . + (−1)s−12rs for uniquely
determined integers r1 > r2 > . . . > rs−1 > rs + 1 > 1. Let 1 ≤ l ≤ s, and

put Dl =
∑l−1

i=1(−1)i−12ri−1 + ǫ(l)
∑s

j=l(−1)j−12rj , where ǫ(l) = 1 (resp. ǫ(l) = 0)

if l is even (resp. odd). If L is any field extension of F , then we either have
i0(φL) ≥ Dl + i1(φ) or i0(φL) ≤ Dl.

This expectation is partly justified by:

Proposition 8.4. Conjecture 8.3 holds for l ≤ 2.

Proof. As in Example 8.2 (1) (resp. (2)), the l = 1 (resp. l = 2) case is nothing else
but Lemma 4.1 (resp. Theorem 3.18). �

At present, we do not have a general approach to the l > 2 case of Conjecture 8.3.
Using Theorem 1.3, however, we can provide further evidence for the l = s case.
First, it is worth stating here the following lemma:

Lemma 8.5. In order to prove Conjecture 8.3, we may assume that i1(φL) ≥ i1(φ).

Proof. Suppose that the statement of the conjecture fails to hold. In other words,
suppose that i1(φ) > 1 and i0(φL) = Dl + t for some 1 ≤ t < i1(φ). Note that we
necessarily have rs > 0 by Theorem 1.3. Now, let σ = (φL)an. Since D(σ) is spanned
by elements of D(φ), there exists a subform ρ ⊂ φ such that σ ≃ ρL (see Lemma
2.2). Let ψ be any codimension-(t− 1) subform of φ containing ρ. By construction,
we have D(ψL) ⊆ D(φL) = D(σ) = D(ρL) ⊆ D(ψL), whence D(ψL) = D(σ), or,
equivalently, (ψL)an ≃ σ. In particular, we have i0(ψL) = Dl + 1. On the other
hand, since t < i1(φ), ψ is a neighbour of φ, and so dimψ− i1(ψ) = dimφ− i1(φ) =
2r1 − 2r2 + . . . + (−1)s−12rs (Proposition 3.10). We therefore conclude that the
statement of the conjecture also fails for the triple (ψ, l, L). Since we are looking
to produce a contradiction, we can replace φ by ψ in order to arrive at the case
where t = 1. In this case, we claim that i1(φL) ≥ i1(φ). To see this, note first that
L(φ) is L-isomorphic to a purely transcendental extension of L(σ) (Remark 2.6 (3)).
In view of Lemma 2.26, it follows that i1(φL) = i1(σL(φ)). In particular, we have
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i0(φL(φ)) = i0(φL) + i0(σL(φ)) = i0(φL) + i1(φL). The statement of Proposition 3.16
may therefore be rewritten here as

(8.1) i1(φL) + i0(φL)− i1(φ) ≥ min

{

i0(φL),

[

dimφ− i1(φ) + 1

2

]}

.

But, since rs > 0, we have i0(φL) = Dl + 1 ≤ 2r1−1 − 2r2−1 + . . . + (−1)s−12rs−1 =
1
2

(

dimφ − i1(φ)
)

. Inequality (8.1) therefore yields the desired assertion, and so the
lemma is proved. �

We can now prove:

Proposition 8.6. Conjecture 8.3 holds when l = s and L = F (Q) is the function
field of any integral (affine or projective) quadric Q over F .

Proof. In view of Lemma 2.26, the statement of the conjecture is stable under re-
placing F by any separable extension of itself. We may therefore assume that L is
a purely inseparable quadratic extension of F . By Lemma 8.5, we may also assume
that i1(φL) ≥ i1(φ). Suppose now that the statement fails to hold, so that i1(φ) > 1
and i0(φL) = Ds + t for some 1 ≤ t < i1(φ). We then have

dim(φL)an =

{

2r1−1 − 2r2−1 + . . .− 2rs−2−1 + 2rs−1−1 + i1(φ)− t if s is even

2r1−1 − 2r2−1 + . . .− 2rs−1−1 + 2rs + i1(φ)− t if s is odd.

Since i1(φL) ≥ i1(φ), and since 1 ≤ i1(φ)− t < i1(φ), Theorem 1.3 implies that

i1(φL) ≥
{

2rs−1−1 + i1(φ)− t if s is even

2rs + i1(φ)− t if s is odd,

from which we conclude that

i0(φL) + i1(φL) ≥
{

2r1−1 − 2r2−1 + . . .+ 2rs−1−1 + i1(φ) if s is even

2r1−1 − 2r2−1 + . . .+ 2rs−2−1 + i1(φ) if s is odd.

But i0(φL) + i1(φL) = i0(φL(φ)) = i1(φ) + i0((φ1)L(φ)) (see the proof of Lemma 8.5),
and so we have

i0((φ1)L(φ)) ≥
{

2r1−1 − 2r2−1 + . . .+ 2rs−1−1 if s is even

2r1−1 − 2r2−1 + . . .+ 2rs−2−1 if s is odd.

Either way, we see that i0((φ1)L(φ)) > 2r1−1−2r2−1+ . . .+(−1)s−12rs−1 = 1
2

(

dimφ−
i1(φ)

)

= 1
2
dimφ1. Since L(φ) is a purely inseparable quadratic extension of F (φ),

this is impossible by Lemma 2.27 (5), and so the result follows. �

In general, it suffices to prove Conjecture 8.3 in the case where L is a finite
purely inseparable extension of F . Proposition 8.6 shows that the l = s case of
the conjecture holds for degree 2 purely inseparable extensions. More generally, the
proposition covers the case where ndeg(φL) = 1

2
ndeg(φL). Indeed, using Lemma

2.26 and 2.27 (3), one can easily reduce this case to that of a quadratic extension.
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Appendix A. Symmetric bilinear forms in characteristic 2

We collect here some some basic facts from the theory of symmetric bilinear forms
over fields of characteristic 2 which are needed in §7 above. Throughout this section,
we assume that p = 2.

A.1. Basic notions. Let b be a symmetric bilinear form on a finite-dimensional F -
vector space V . We will say that b is nondegenerate if the F -linear map l : V → V ∨

which sends v ∈ V to l(v) : w 7→ b(v, w) is bijective, and that b is alternating if
dimkV ≥ 1 and b(v, v) = 0 for all v ∈ V . In what follows, a symmetric bilinear
form over F will always mean a nondegenerate symmetric bilinear form on some
finite-dimensional F -vector space.
Let b be a symmetric bilinear form over F . The underlying F -vector space of b

will be denoted by Vb. Its will be called the dimension of b and will be denoted by
dimb. Given a field extension L of F , we will write bL for the unique symmetric
bilinear form on the L-vector space Vb ⊗F L such that bL(v⊗ 1, w⊗ 1) = b(v, w) for
all (v, w) ∈ Vb × Vb. The determinant of b, denoted det(b), is defined as the image

of det(l) in the square class group F ∗/(F ∗)2 (where l : V
∼−→ V ∨ is as above).

Let c be another symmetric bilinear form over F . If there exists a bijective F -linear
map f : Vb → Vc such that c(f(v), f(w)) = b(v, w) for all (v, w) ∈ Vb×Vb, then we say
that b and c are isomorphic and write b ≃ c. Note that in this case, we necessarily
have det(b) = det(c). If b ≃ ac for some a ∈ F ∗ (where ac denotes the symmetric
bilinear form on Vc given by (v, w) 7→ ac(v, w)), then we say that b and c are
similar. The sum b ⊥ c (resp. the product b⊗ c) is defined as the unique symmetric
bilinear form on Vb ⊕ Vc (resp. Vb ⊗F Vc) such that (b ⊥ c)

(

(v1, v2), (w1, w2)
)

=
b(v1, w1) + c(v2, w2) (resp. (b ⊗ c)(v1 ⊗ v2, w1 ⊗ w2) = b(v1, w1)c(v2, w2)) for all
(v1, w1) ∈ Vb × Vb and all (v2, w2) ∈ Vc × Vc. Given a positive integer n, n · b will
denote the orthogonal sum of n copies of b (this is not the same as nb). If there
exists a symmetric bilinear form d over F such that b = c ⊥ d (resp. b = c ⊗ d),
then we will say that c is a subform of b (resp. that b is divisible by c).
Given elements a1, . . . , an ∈ F ∗, we write 〈a1, . . . , an〉b for the symmetric bilinear

form
(

(µ1, . . . , µn), (λ1, . . . , λn)
)

7→ ∑n

i=1 aiµiλi on the F -vector space F⊕n. For any
a ∈ F ∗, the 2-dimensional symmetric bilinear form 〈a, a〉b will simply be denoted by
Ma. Forms of this type are called metabolic planes. The hyperbolic plane, denoted
H, is defined as the 2-dimensional symmetric bilinear form

(

(v1, v2), (w1, w2)
)

7→
v1w2 + v2w1 on the F -vector space F ⊕ F .
The assignment v 7→ b(v, v) defines a quadratic form φb on Vb. If dimb ≥ 1 and

b is not alternating, then φb is quasilinear in the sense of §2.1. Conversely, it is
clear that every quasilinear quadratic form over F is isomorphic the diagonal part
of some non-alternating symmetric bilinear form defined on its underlying space.
Henceforth, by a bilinear form over F , we will mean a symmetric bilinear form over
F which is not alternating. Note that this class includes all forms of the shape
〈a1, . . . , an〉b, but does not include the hyperbolic plane H.
Let b be a bilinear form over F . We say that b is isotropic if dimb ≥ 1 and

φb isotropic, and that b is anisotropic otherwise. We can now state the following
refined version of the classical Witt decomposition theorem:
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Proposition A.1 (cf. [Mil71], [Lag07, Prop. 5.15]). Let b be a bilinear form over F .
Then there exist a unique pair of nonnegative integers (s, t), elements a1, . . . , at ∈ F ∗

and, up to isomorphism, a unique anisotropic bilinear form ban such that:

(1) b ≃ ban ⊥ (s ·H) ⊥ Ma1 ⊥ . . . ⊥ Mat .
(2) (φb)an ≃ φban ⊥ 〈a1, . . . , at〉.
The form ban is called the anisotropic kernel of b. If dimban ≤ 1, then we will say

that b is split. Given another bilinear form c over F , we will write b ∼ c whenever
ban ≃ can. The integer s+ t appearing in the statement of Proposition A.1 is called
the Witt index of b, and is denoted i0(b). Clearly i0(b) is bounded from above by
dimb/2. At the same time, the proposition immediately yields:

Corollary A.2. Let b be a bilinear form over F . Then 1
2
i0(φb) ≤ i0(b) ≤ i0(φb).

The most important examples of bilinear forms are the Pfister forms. Here,
we say that b is an n-fold (resp. 1-fold) Pfister form if b ≃ 〈〈a1, . . . , an〉〉b :=
〈1, a1〉b ⊗ . . .⊗ 〈1, an〉b for some a1, . . . , an ∈ F ∗ (resp. b ≃ 〈1〉b). Note that if b is
a Pfister form, then we can write b ≃ 〈1〉b ⊥ b′ for some bilinear form b′ over F .
If b is additionally anisotropic, then it follows from the Witt cancellation theorem
(see [EKM08, Cor. 1.28]) that b′ is uniquely determined up to isomorphism. In
this case b′ is called the pure subform of b. Finally, note that if b ≃ 〈〈a1, . . . , an〉〉b
(resp. b ≃ 〈1〉b), then the associated quasilinear quadratic form φb is quasi-Pfister
(see §2.3), being isomorphic to 〈〈a1, . . . , an〉〉 (resp. 〈1〉).
A.2. Knebusch splitting of symmetric bilinear forms in characteristic 2.

In [Lag07], Laghribi has initiated a splitting theory of bilinear forms in characteristic
2 by way of analogy with the Knebusch splitting theory of quadratic forms. More
explicitly, one proceeds here as follows:
Let b be a bilinear form over F . Set F0 = F , b0 = ban, and inductively define

Fr = Fr−1(φbr−1), br = (bFr)an, with the understanding that this (finite) process
stops when we reach the first non-negative integer h(b) such that bh(b) is split. The
integer h(b) and the tower of fields F = F0 ⊂ F1 ⊂ . . . ⊂ Fh(b) will be called
the height and Knebusch splitting tower of b, respectively. For 1 ≤ r ≤ h(b), the
anisotropic form br is called the r-th higher anisotropic kernel of φ. The r-th higher
Witt index of b, denoted ir(b), is defined as the difference i0(bkr) − i0(bkr−1). The
sequence i(b) =

(

i1(b), . . . , ih(b)(b)
)

will be called the Knebusch splitting pattern of

b15. Note that, by the inductive nature of the construction, we have ir(b) = i1(br−1)
for every 1 ≤ r ≤ h(b). Since F1 = F (φban), Corollary A.2 immediately implies:

Lemma A.3. Let b be an anisotropic bilinear form of dimension ≥ 2 over F . Then
1
2
i1(φb) ≤ i1(b) ≤ i1(φb).

Remark A.4. To the author’s knowledge, there are no known results indicating the
precise nature of the relationship between i1(b) and i1(φb).

By similar reasoning, we also have:

Lemma A.5. Let b be a bilinear form over F . Then h(b) ≤ h(φb).

15See Footnote 12.
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Proof. We proceed by induction on dimb. The case where dimb = 1 is trivial. Sup-
pose now that dimb > 1, and let L be any extension of F such that bL is isotropic.
Then, by the induction hypothesis, we have h(bL) = h

(

(bL)an
)

≤ h(φ(bL)an). On
the other hand, Proposition A.1 (2) implies that φ(bL)an is a subform of ((φb)L)an,

and so h(φ(bL)an) ≤ h
(

((φb)L)an
)

by Corollary 2.40. We therefore conclude that

h(bL) ≤ h
(

((φb)L)an
)

. Now, if b is split, then applying the above to L = F yields
the desired inequality h(b) ≤ h((φb)an) = h(φb). If b is not split, then taking
L = F (φban), we compute

h(b) = h(b1) + 1 = h(bL) + 1 ≤ h
(

((φb)L)an
)

+ 1 = h((φb)1) + 1 = h(φb),

and so the result also holds in this case. �

The classification of bilinear forms of height 1 in characteristic 2 has been estab-
lished in by Laghribi in [Lag07]. This result is directly analogous to the well-known
classification of nonsingular quadratic forms of height 1 (see [EKM08, Prop 25.6,
Ex. 28.2]), and, in the even-dimensional case, to Proposition 2.39 above:

Proposition A.6 ([Lag07, Thm. 4.1]). Let b be an anisotropic bilinear form of
even (rep. odd) dimension ≥ 2 over F . Then h(b) = 1 if and only if b is similar to
a Pfister form (resp. the pure subform of a Pfister form).

In particular, if c is an even-dimensional bilinear form of height > 0 over F , then
ch(c)−1 is similar to a Pfister form, and therefore has dimension equal to a power of
2. This allows one to define the degree deg(b) of an arbitrary bilinear form b over
F as follows:

(1) If dimb is odd, then deg(b) = 0.
(2) If dimb is even and h(b) = 0, then deg(b) = ∞
(3) If dimb is even h(b) > 0, then deg(b) = log2(dimbh(b)−1).

We conclude this appendix by mentioning the following deep result concerning
the degree invariant, which may be deduced from its characteristic-0 analogue due
to Karpenko (see [Kar04]):

Theorem A.7 (see [Lag07, Thm. 4.5, Prop. 5.7]). Let b be an anisotropic bilinear
form of even dimension over F such that h(b) > 0. Then either:

(1) dimb ≥ 2deg(b)+1, or
(2) dimb = 2deg(b)+1 − 2i for some 1 ≤ i ≤ deg(b).
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