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Equivariant epsilon constant conjectures
for weakly ramified extensions

Werner Bley and Alessandro Cobbe

Abstract

We study the local epsilon constant conjecture as formulated by Breuning
in [3]. This conjecture fits into the general framework of the equivariant Tam-
agawa number conjecture (ETNC) and should be interpreted as a consequence
of the expected compatibility of the ETNC with the functional equation of
Artin-L-functions.

Let K/Qp be unramified. Under some mild technical assumption we prove
Breuning’s conjecture for weakly ramified abelian extensions N/K with cyclic
ramification group. As a consequence of Breuning’s local-global principle we
obtain the validity of the global epsilon constant conjecture as formulated in [1]
and of Chinburg’s Ω(2)-conjecture as stated in [9] for certain infinite families
F/E of weakly and wildly ramified extensions of number fields.

1 Introduction

We fix a Galois extension F/E of number fields and set Γ := Gal(F/E). Let S
be a sufficiently large finite set of places of E which, in particular, includes all
archimedean places and all places which ramify in F/E. Let ζF/E,S(s) denote the
S-truncated equivariant zeta-function of F/E as defined in [5, Sec. 2.3] which takes
values in the centre Z(C[Γ]) of the complex group ring C[Γ]. We recall that ζF/E,S(s)
can be considered as the vector consisting of S-truncated Artin L-functions for all
irreducible characters of Γ. For each rational integer m we write ζ∗F/E,S(m) for the

leading non-zero coefficient in the Taylor expansion of ζF/E,S(s) at s = m. It follows
easily that ζ∗F/E,S(m) is contained in the unit group of Z(R[Γ]) (cf. [5, Lemma 2.7]).

Continuing work of Burns in [7], Breuning and Burns formulate in [5] explicit
conjectures for the image of ζ∗F/E,S(0), resp. ζ

∗
F/E,S(1), under the canonical homomor-

phism ∂̂ from Z(R[Γ]) to the relative algebraic K-group K0(Z[Γ],R). We recall that
the conjectural formula for ζ∗F/E,S(0) is equivalent to the lifted root number conjecture

of Gruenberg, Ritter and Weiss (cf. [11]), and moreover, is expected to be equivalent
to the equivariant Tamagawa number conjecture for the pair (h0(Spec(F )),Z[Γ]) (cf.
[5, Prop. 4.4 and Rem. 4.5]). Under some technical hypothesis the conjectural formula
for ζ∗F/E,S(1) is shown in [6, Th. 1.1 and Cor. 1.2] to be equivalent to the equivariant

Tamagawa number conjecture as applied to the pair (h0(Spec(F ))(1),Z[Γ]).
In this paper we provide new evidence for the functional equation compatibility

of these conjectures. To be more specific, we recall that Breuning and Burns define
elements TΩ(F/E,m) in K0(Z[Γ],R) for m = 0, 1 and state their conjectures in the
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form TΩ(F/E,m) = 0 (cf. [5, Conj. 3.3 and 4.1]). Motivated by the work in [1] they
define a further element TΩloc(F/E, 1) in K0(Z[Γ],R) and show in [5, Th. 5.2] that

ψ∗
Γ (TΩ(F/E, 0))− TΩ(F/E, 1) = TΩloc(F/E, 1).

Here ψ∗
Γ denotes a natural involution on the algebraic K-group K0(Z[Γ],R).

The leading term conjectures for ζ∗F/E,S(0) and ζ
∗
F/E,S(1) force the following con-

jecture which we want to study in this paper.

Conjecture 1. (cf. [5, Conj. 5.3]) One has the equality

TΩloc(F/E, 1) = 0

in K0(Z[Γ],R).

By [1, Rem. 5.4] Conjecture 1 is equivalent to Conjecture 4.1 of [1]. We recall that
for every Galois extension F/E the invariant TΩloc(F/E, 1) lies in the finite group
K0(Z[Γ],Q)tors, the torsion subgroup of K0(Z[Γ],Q) ⊆ K0(Z[Γ],R) ([1, Cor. 6.3 (i)]).
Moreover, Conjecture 1 is known if F/E is at most tamely ramified ([1, Cor. 7.7]),
if F is an abelian extension of Q with odd conductor ([1, Cor. 5.4 (ii)]) or if F is an
extension of Q of degree ≤ 15 ([2, Cor. 7]). We also recall that by [1, Rem. 4.2 (iv)]
Conjecture 1 implies Chinburg’s Ω(2)-conjecture as stated in [9].

Conjecture 1 is essentially of local nature. In fact, it is a local approach which lies
behind the proofs of the known cases mentioned above. Based on this observation,
Breuning stated in [3] an independent conjecture for Galois extensions N/K of local
number fields. We write G for the Galois group of N/K. Breuning defined an
element RN/K in K0(Zp[G],Qp) incorporating local epsilon constants and algebraic
invariants associated to N/K. We will briefly recall the definition of RN/K in Section
2. Breuning stated the following conjecture.

Conjecture 2. (cf. [3, Conj. 3.2]) One has the equality

RN/K = 0

in K0(Zp[G],Qp).

Since TΩloc(F/E, 1) is contained in the subgroup K0(Z[Γ],Q) it can be studied
prime by prime. We let TΩloc(F/E, 1)p ∈ K0(Zp[Γ],Qp) denote its p-primary part.
Then the local conjecture is related to the global conjecture by the equation

TΩloc(F/E, 1)p =
∑

v

iΓΓw

(

RFw/Ev

)

,

where v runs through all places of E above p, w is a fixed place of F lying over v,
Γw denotes the decomposition group and iΓΓw

is the induction map on the relative
algebraic K-group, cf. [3, Th. 4.1].

In [3, 4] Breuning proved Conjecture 2 for tamely ramified extensions, for abelian
extensions of Qp with p 6= 2, for all S3-extensions of Qp, and for certain families of
dihedral and quaternion extensions. If p is odd, an algorithmic proof for Conjecture
2 is given in [2] for all Galois extensions of degree ≤ 15. If p = 2, the conjecture is
also proved in loc.cit. for all non-abelian Galois extensions of Q2 with [N : Q2] ≤ 15
and, in addition, for all abelian extensions N/Q2 with [N : Q2] ≤ 7.

In this manuscript we will focus on weakly and wildly ramified extensions N/K
of an unramified extension K/Qp. We recall that N/K is weakly ramified, if the
second ramification group in lower numbering is trivial.

We state the main result of our work.
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Theorem 1. Let p be an odd prime and let K/Qp be a finite unramified extension.
Let m denote the degree of K/Qp. Let N/K be a weakly and wildly ramified finite
abelian extension with cyclic ramification group. Let d denote the inertia degree of
N/K and assume that m and d are relatively prime. Then Conjecture 2 is true for
N/K.

Remark 1. The assumptions of the theorem imply that the ramification group is
cyclic of order p (cf. [15, Cor. 3.4]). More precisely, |G| = pd, |G0| = |G1| = p and
|Gi| = 1 for i ≥ 2. Here Gi for i ≥ 0 denotes the higher ramification subgroup.

The invariant RN/K incorporates amongst other terms the equivariant local ep-
silon constant and a certain equivariant discriminant attached to N/K. Whereas the
main ingredient in the definition of the equivariant epsilon constant is a local Gauß
sum, equivariant discriminants are closely related to norm-resolvents. The relation
between norm-resolvents and Galois Gauß sums in the context of Theorem 1 is ana-
lyzed by Pickett and Vinatier in [15]. Indeed, Theorem 2 of loc.cit. was one of the
main motivations and a starting point for our project. In addition, the strategy for
the proof of Theorem 1 was inspired by the reductions made in Section 3.3 of loc.cit.

The above relation between TΩloc(F/E, 1)p and RFw/Ev
implies results for global

Galois extensions F/E which satisfy the following property.

Property (∗). We say that the Galois extension F/E of number fields satisfies
Property (∗) if for every wildly ramified place v of E with w|v|p one of the following
cases is satisfied

a) Ev = Qp, p > 2 and Γw is abelian,

b) Ev = Qp, p = 2, Γw is abelian and |Γw| ≤ 7,

c) Ev = Qp, p ≥ 2, Γw is non-abelian and |Γw| ≤ 15,

d) Ev/Qp is unramified, p > 2, Fw/Ev is abelian and weakly ramified with cyclic
ramification group and [Ev : Qp] is coprime with the inertia degree of Fw/Ev.

Every tamely ramified extension F/E obviously satisfies Property (∗). It is easy
to construct infinite families of weakly and wildly ramified extensions of number
fields which satisfy condition d) using class field theory. In particular, if p is an odd
prime, E/Q an extension of number fields in which p is unramified and F/E a cyclic
extension of degree p which is at most weakly ramified, then F/E satisfies Property
(∗).

Corollary 1. Conjecture 1 is valid for all Galois extensions F/E which satisfy Prop-
erty (∗).

The projection onto the class group also proves Chinburg’s conjecture:

Corollary 2. Chinburg’s Ω(2)-conjecture is valid for all Galois extensions F/E
which satisfy Property (∗).

Moreover, the functorial properties of [3, Prop. 3.3] imply the following result:

Corollary 3. Conjecture 1 and Chinburg’s Ω(2)-conjecture are valid for global Galois
extensions F/E for which E ′ ⊆ E ⊆ F ⊆ F ′ with a Galois extension F ′/E ′ that
satisfies Property (∗).
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In Section 2 we will first recall Breuning’s conjecture and then give a short de-
scription of the organization of the manuscript.

Notations Given a field extension F/E, we will denote the norm and the trace
by NF/E and TF/E respectively. If K is a local field, then vK will always denote
its normalized valuation. We will write OK and pK for the valuation ring and the
maximal ideal respectively. Furthermore, UK will denote the units of OK and U

(n)
K :=

{u ∈ UK : u ≡ 1 (mod pnK)} the higher principal units.
If K is a field we write Kc for an algebraic closure. For a finite group G we write

IrrQc(G) for the set of absolutely irreducible characters of G. We often implicitly fix
an embedding Qc →֒ Qc

p and view Qc-valued characters as valued in Qc
p.

If H ≤ G is a subgroup, then eH = 1
|H|

∑

σ∈H σ denotes the usual subgroup

idempotent. We also set TH := |H|eH . For a ∈ G we abbreviate ea = e〈a〉 and
Ta = T〈a〉.

For a Z-module M and a prime p we often write Mp for M ⊗Z Zp.

2 The local epsilon constant conjecture

In this section we briefly recall the formulation of Breuning’s local epsilon constant
conjecture. For further details we refer the reader to [3, Sec. 2].

2.1 The shape of the conjecture

The element RN/K is of the form

RN/K = TN/K + CN/K + UN/K −MN/K

where each of the terms is an element in K0(Zp[G],Q
c
p). This algebraic K-group lies

in an exact localization sequence of the form

K1(Zp[G]) −→ K1(Q
c
p[G]) −→ K0(Zp[G],Q

c
p) −→ 0.

If G is abelian, the determinant induces an isomorphism K1(Q
c
p[G]) ≃ Qc

p[G]
×. Since

Zp[G] is semilocal the natural map Zp[G]
× −→ K1(Zp[G]) is onto, so that in the

abelian case we can and will identify K0(Zp[G],Q
c
p) with Qc

p[G]
×/Zp[G]

×. Further-

more, we identify Qc
p[G]

× with
∏

χ

(

Qc
p

)×
where χ runs through the set IrrQc(G).

The term TN/K is called the equivariant local epsilon constant. If K is a finite
extension of Qp and χ a character of Gal(Kc/K) with values in Qc we write τK(χ) ∈
Qc for the local Galois Gauß sum as defined in [13, II, Sec. 4]. Let N/K be an abelian
extension of p-adic fields and put G := Gal(N/K). We set

τN/K :=
(

τQp

(

i
Qp

K χ
))

χ∈IrrQc(G)
∈
∏

χ

(Qc)× = Qc[G]×.

Let k : Qc −→ Qc
p be any embedding and also write k : Qc[G] −→ Qc

p[G] for the
induced map. Then TN/K ∈ Qc

p[G]
×/Zp[G]

× is defined to be the class represented by
k(τN/K). By [3, Lemma 2.2] the definition TN/K does not depend on the choice of
the embedding k.

We call CN/K the cohomological term. Let L be a full projective Zp[G]-sublattice
of ON which is contained in a sufficiently high power of the maximal ideal such
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that the exponential map of N is defined on L. We recall that in [1, Sec. 3.3] a
cohomological term E(X) ∈ K0(Z[G],Q) is defined for every cohomologically trivial
Z[G]-submodule X of finite index in UN . We write E(X)p ∈ K0(Zp[G],Qp) for its
p-part. Then, by [3, Prop. 2.6],

CN/K = E(exp(L))p − [L, ρN , HN ]

in K0(Zp[G],Q
c
p). The computation of E(exp(L))p in our special situation is the

technical heart of this paper. We therefore postpone its definition to Section 2.2. For
the definition of [L, ρN , HN ] we just recall that for a normal basis element θ ∈ ON and
L := OK [G]θ the element [L, ρN , HN ] is represented by

(

δKNK/Qp
(θ | χ)

)

χ∈IrrQc(G)
∈

∏

χ (Q
c)× where NK/Qp

(θ | χ) denotes the norm resolvent and δK is a root of the
discriminant of K (cf. [3, Lemma 2.7]).

We continue to describe the correction term MN/K . To simplify the notation we
assume that G is abelian. For x ∈ Qp[G] we define an invertible element ∗x ∈ Qp[G]

×

as follows. If Qp[G] =
∏

Fi is the Wedderburn decomposition of Qp[G] and x = (xi)
under this decomposition, then ∗x = ((∗x)i) with (∗x)i = xi if xi 6= 0 and (∗x)i = 1
if xi = 0. Let I be the ramification group of G and let σ ∈ G be a lift of the
Frobenius automorphism in G/I. Put q := |OK/pK |. Then MN/K ∈ K0(Zp[G],Qp)
is represented by

mN/K :=
∗(|G/I|eG)∗((1− σq−1)eI)

∗((1− σ−1)eI)
.

Finally we discuss the unramified term UN/K . We write Ot
p for the ring of integers

in the maximal tamely ramified extension of Qp in Qc
p. Let ι : K0(Zp[G],Q

c
p) −→

K0(Ot
p[G],Q

c
p) be the natural scalar extension map. We recall that by Taylor’s fixed

point theorem the restriction of ι to the subgroup K0(Zp[G],Qp) is injective. If G is
abelian, this injectivity is equivalent to

Qp[G]
×/Zp[G]

× →֒ Qc
p[G]

×/Ot
p[G]

×.

By [3, Prop. 2.12] we have ι(UN/K) = 0. The properties of UN/K with respect
to the action of Gal(Qc

p/Qp) ensure that RN/K ∈ K0(Zp[G],Qp). By Taylor’s fixed
point theorem it therefore suffices to show that ι(RN/K) = 0 (cf. [3, Cor. 3.5]). In the
abelian case it therefore suffices to prove that a representative of TN/K+CN/K−MN/K

actually lies in Ot
p[G]

×.

2.2 Definition of E(X)

Let N/K be a finite Galois extension of p-adic fields with group G. Let X ⊆ UN

be any cohomologically trivial Z[G]-submodule of finite index. The element E(X) ∈
K0(Z[G],Q) is defined in [1, (19)]. We recall here the approach summarized in [1,
Lemma 3.7] which allows an explicit description of E(X)p. This approach is based
on the observation of Burns and Flach made in [8, Prop. 3.5 (a)] that relates certain
complexes arising from the cohomology of the sheaf Gm to 2-extensions representing
the fundamental class of local class field theory.

We fix a Z[G]-equivariant resolution of Z of the form

0 −→ Σ
⊂

−→ Z[G]r
d2−→ Z[G]

d1−→ Z −→ 0

5



where Σ := ker(d2) and compute groups of the form Ext2Z[G](Z,−) with respect to
this resolution. We then choose a morphism ϕ ∈ HomZ[G](Σ, N

×/X) which rep-
resents the image of the local fundamental class under the canonical isomorphism
Ext2Z[G](Z, N

×) −→ Ext2Z[G](Z, N
×/X). Without loss of generality we may assume

that ϕ is surjective. We then set B := ker(d1) and K := ker(ϕ) and we write i1, i2
and i3 for the inclusion morphisms KQ

⊂
−→ ΣQ, ΣQ

⊂
−→ Q[G]r and BQ

⊂
−→ Q[G]

respectively. We also choose Q[G]-equivariant sections ρ, σ and τ to the morphisms
ϕQ, d2,Q : Q[G]r −→ BQ and d1,Q respectively. We then write θ̃ for the composite
isomorphism

(K ⊕ Z[G])Q
(id,(τ,i3)−1)

−→ KQ ⊕ (Q⊕BQ)

(id,ν−1
N

,id)
−→ KQ ⊕

(

N×/X
)

Q
⊕BQ

(i1,ρ,id)
−→ ΣQ ⊕ BQ (1)
(i2,σ)
−→ Q[G]r.

By [1, Lemma 3.7] the module K is finitely generated and Z[G]-projective and, more-
over,

E(X) = [K ⊕ Z[G], θ̃,Z[G]r]

in K0(Z[G],Q) .
Suppose now that G is abelian. In order to compute a representative of E(X)p

in Qp[G]
×/Zp[G]

× ≃ K0(Zp[G],Qp) we first note that Kp ⊕ Zp[G] is Zp[G]-free. We
choose Zp[G]-bases of Kp ⊕ Zp[G] and Zp[G]

r, respectively, and let Aθ̃ ∈ Glr(Qp[G])
denote the matrix which represents θ̃ with respect to this choice of bases. Then
E(X)p is represented by det(Aθ̃).

2.3 Plan of the manuscript

In Section 4 we will compute the term E(exp(L))p for extensions N/K as in Theorem
1 and a special choice of lattice L. The term [L, ρN , HN ] − TN/K is represented by
the quotient of a norm resolvent by Galois Gauß sums. In Section 5 we will use the
main result of [15] to quickly compute this term. Finally in Section 6 we calculate
MN/K and complete the proof of Theorem 1 by showing that a representative of
TN/K + CN/K −MN/K lies in Ot

p[G]
×.
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3 The setting

3.1 Definitions and notation

In this section we fix the setting in which we will work. We will consider local field
extensions as follows.

N0

❉❉
❉❉

❉❉
❉❉

⑤⑤
⑤⑤
⑤⑤
⑤⑤

N

❇❇
❇❇

❇❇
❇❇

⑥⑥
⑥⑥
⑥⑥
⑥⑥

Knr

②②
②②
②②
②②

M

❅❅
❅❅

❅❅
❅❅

K ′

⑤⑤
⑤⑤
⑤⑤
⑤⑤

❉❉
❉❉

❉❉
❉❉

❉

K

❆❆
❆❆

❆❆
❆❆

K̃ ′

④④
④④
④④
④④
④

Qp.

Here K/Qp is the unramified extension of degree m and K ′/K is the unramified
extension of degree d. We assume throughout that (m, d) = 1. Furthermore, M/K
is a weakly and wildly ramified cyclic extension of degree p. Since (m, d) = 1, there
exists K̃ ′/Qp of degree d such that K ′ = KK̃ ′. Further we set N = MK ′, Knr the
maximal unramified extension of K and N0 = KnrN . We will prove Conjecture 2 for
the extension N/K.

Let F ∈ Gal(N0/M) ∼= Gal(Knr/K) be the Frobenius automorphism, let F0 =
F d ∈ Gal(N0/N) ∼= Gal(Knr/K

′) and put q = pm. We consider elements a, b ∈
Gal(N0/K) such that Gal(M/K) = 〈a|M〉, a|Knr = 1, b|M = 1 and b|Knr = F−1. Since
there will be no ambiguity, we will denote by the same letters a, b their restrictions
to N . Then Gal(N/K) = 〈a, b〉 and ord(a) = p, ord(b) = d.

Lemma 3.1.1. Let L/k be a finite tamely ramified Galois extension of p-adic fields.
Then there exists a normal integral basis generator of trace one.

Proof. Put ∆ := Gal(L/k). By Noether’s Theorem there exists an element θ ∈ OL

such that OL = Ok[∆]θ. Let t := TL/k(θ). Then t ∈ O×
k and θ

t
is an integral normal

basis generator of trace one.

Let us call A such an element for the extension K/Qp and let θ2 be such an
element for the extension K̃ ′/Qp.

Lemma 3.1.2. There exists an element θ1 ∈ pM such that OK [Gal(M/K)]θ1 = pM
and we can assume that TM/Kθ1 = p.

Proof. By [12, Th. 1.1 and Lemma 1.4 (b)] there exists an element θ̃1 ∈ pM such
that OK [Gal(M/K)]θ̃1 = pM and TM/K(θ̃1) = up with a unit u ∈ O×

K . We set

θ1 :=
1
u
θ̃1.

For the rest of the paper we fix an element θ1 ∈ pM as in Lemma 3.1.2. Since
a ∈ G1 \G2, where Gi is the i-th ramification group of G = Gal(N/K), we know by
[16, Sec. IV.2, Prop. 5] that θa−1

1 ≡ 1−α1θ1 (mod p2M) for some unit α1 ∈ O×
M . Since
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α1 can be replaced by any element in the same residue class in OM/pM = OK/pK ,
we can assume that α1 ∈ O×

K .
By our choice of A, we know that A,Af , . . . Afm−1

is a basis of OK over Zp, where

f denotes the Frobenius automorphism of Knr/Qp. Since 1 = TK/Qp
A =

∑m−1
i=0 Af i

and α1 ∈ O×
K it easily follows that also

α1, α2 = α1A, α3 = α1A
f , . . . , αm = α1A

fm−2

(2)

constitute a basis of OK over Zp. In particular, we have the equality A = α2

α1
.

Lemma 3.1.3. With the above notation, Xp − X + Aθ2 divides Xqd − X + 1 in
OK ′/pK ′[X ].

Proof. We have

Xqd −X + 1 = Xpmd

−X + TK ′/Qp
(Aθ2) ≡

md−1
∑

i=0

(Xp −X + Aθ2)
pi (mod pK ′)

and the right hand side is clearly a multiple of Xp −X + Aθ2.

Now we choose an element x2 ∈ OKnr so that the class of x2

α1
modulo pKnr is a

root of the polynomial Xp − X + Aθ2. Let ζqd−1 ∈ O×
K ′ be a primitive (qd − 1)-th

root of unity.

Lemma 3.1.4. We have

(ζqd−1(1 + x2θ1))
F0−1 ≡ θa−1

1 ≡ 1− α1θ1 (mod p2N0
).

Proof. By the choice of x2 and Lemma 3.1.3 we obtain

(

x2
α1

)qd

−
x2
α1

≡ −1 (mod pKnr).

Multiplying by αqd

1 and observing αqd−1
1 ≡ 1 (mod pKnr) we obtain

xq
d

2 − x2 ≡ −α1 (mod pN0). (3)

Now we conclude

(

ζqd−1(1 + x2θ1)
)F0−1

= (1 + x2θ1)
b−d

(1 + x2θ1)
−1

≡ (1 + xb
−d

2 θ1)(1− x2θ1) (mod p2N0
)

≡ 1 + xb
−d

2 θ1 − x2θ1 ≡ 1− α1θ1 (mod p2N0
),

where the last congruence follows from (3).

Let N̂0 denote the completion of N0.

Lemma 3.1.5. For all u ∈ UN̂0
there exists z ∈ UN̂0

such that zF0−1 = u. In

particular, there exists γ ∈ UN0 such that γF0−1 ≡ θa−1
1 (mod p

p+1
N0

) and the element
γ can be chosen so that γ ≡ ζqd−1(1 + x2θ1) (mod p2N0

).
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Proof. The first part of the lemma is contained in [14, Sec. V, Lemma 2.1]. The
second part follows from the constructions made in the proof of loc.cit. combined
with Lemma 3.1.4. For the reader’s convenience we carry out the details.

Since the residue field ofN0 is algebraically closed, there exists a solution z1 ∈ UN0

of zF0 ≡ zq
d

≡ zu (mod pN0).
Now let us assume that i ≥ 2 and that we have an element zi−1 ∈ UN0 such that

zF0−1
i−1 ≡ u (mod pi−1

N0
). By assumption, uz1−F0

i−1 − 1 is a multiple of θi−1
1 . So we can

find a solution yi ∈ ON0 of

XF0 −X −
uz1−F0

i−1 − 1

θi−1
1

≡ 0 (mod pN0).

Multiplying by θi−1
1 , we get

yF0
i θ

i−1
1 ≡ yiθ

i−1
1 + uz1−F0

i−1 − 1 (mod piN0
).

Now we set zi := zi−1(1+ yiθ
i−1
1 ) and easily verify that zF0−1

i ≡ u (mod piN0
). The zi

form a Cauchy sequence which converges to an element z ∈ UN̂0
with the requested

properties.
If u = θa−1

1 , then by Lemma 3.1.4 we can start the construction of the sequence
of the zi from the element z2 = ζqd−1(1 + x2θ1) and take γ = zp+1.

For the rest of the paper we fix an element γ ∈ UN0 as in Lemma 3.1.5.

3.2 Some preliminary results

In this subsection we collect some preliminary results which will be needed in Section
4. We assume all the notations introduced in Subsection 3.1.

Lemma 3.2.1. We have

NM/K(1− α1θ1) ≡ 1 (mod p
p+1
M ).

Proof. Recalling that by [16, Sec. V.6, Prop. 8]NM/KU
(2)
M ⊆ U

(2)
K ⊆ U

(p+1)
M , we obtain

NM/K(1− α1θ1) ≡ NM/K(θ
a−1
1 ) = 1 (mod p

p+1
M ).

Lemma 3.2.2. We have

NM/K(θ1) ≡ −α1−p
1 p (mod p

p+1
M ).

Proof. By [16, Sec. V.3, Lemma 4] we have TM/K(p
2
M) = p2K . In addition, by [16,

Sec. V.3, Lemma 5] and Lemma 3.2.1 we obtain

1 ≡ NM/K(1− α1θ1) ≡ 1 +NM/K(−α1θ1) + TM/K(−α1θ1) (mod p
p+1
M ).

Since α1 ∈ O×
K and TM/K(θ1) = p the result easily follows.

Lemma 3.2.3. We have
p− Ta = (a− 1)p−1u,

for some unit u of Zp[a] such that the augmentation ε(u) = (p− 1)!.
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Proof. One can take, for example, u =
∏p−1

i=1
ai−1
a−1

.

Lemma 3.2.4. The element (a−1)p−1−Ta is a multiple of p in Zp[a]. In particular,

(a− 1)p−1θ1 ≡ Taθ1 = p (mod p
p+1
N ).

Proof. Easy exercise.

Lemma 3.2.5. Let x ∈ N× such that vN(x) ∈ {1, 2, . . . , p−1}. Then vN((a−1)x) =
vN (x) + 1.

Proof. We have to show that vN(x
a−1−1) = 1 which is equivalent to xa−1 ∈ U

(1)
N \U (2)

N .
By our assumptions we have a ∈ G1 \ G2. If vN (x) = 1, then ON = OK ′[x] by
[16, Sec. I.6, Prop. 18] and, furthermore, [16, Sec. IV.1, Lemma 1] implies xa−1 ∈

U
(1)
N \U (2)

N . If vN (x) ∈ {2, . . . , p−1}, then we choose s, t ∈ Z such that svN(x)+tp = 1.

Then vN (x
spt) = 1, so that (xa−1)

s
= (xspt)

a−1 ∈ U
(1)
N \ U (2)

N . Hence xa−1 6∈ U
(2)
N ,

while clearly xa−1 ∈ U
(1)
N .

In the following we write (Ta, (a − 1)j) ⊆ OK [G] for the OK [G]-submodule gen-
erated by Ta and (a− 1)j where j is a non-negative integer.

Lemma 3.2.6. a) Put θ := θ1θ2. Then pN = OK [G]θ.
b) For j = 0, . . . , p− 1 we have p

j+1
N = (p, (a− 1)j)θ = (Ta, (a− 1)j)θ.

Proof. Part (a) is immediate from ON = OMOK ′ and the definition of θ1 and θ2.
By Lemma 3.2.3 we have (Ta, (a − 1)j) = (p, (a − 1)j) which shows the second

equality in (b). Lemma 3.2.5 implies the chain of inclusions Iθ ⊆ p
j+1
N ⊆ pN =

OK [G]θ, where we have set I = Ij := (Ta, (a−1)j). Since θ is a normal basis element
we derive [OK [G] : I] = [OK [G]θ : Iθ]. So it is enough to show the inequality
[OK [G] : I] ≤ [pN : pj+1

N ]. We observe that

OK [G] =

p−1
⊕

i=0

OK [b](a− 1)i.

Finally, in order to complete the proof, we recall that [pN : pj+1
N ] = qdj and note that

the qdj elements in
⊕j−1

i=0 (OK/pK)[b](a− 1)i cover the quotient OK [G]/I.

4 The computation of E(exp(L))p

We assume the notations introduced in the previous section. We put L := ppN =
p
p+1
N . By Lemma 3.1.2 L is a free Zp[G]-submodule of ON . Moreover, the exponential

function of N is defined on L and by [14, II, Satz (5.5)] we have exp(L) = U
(p+1)
N .

In this section we will compute a representative in K0(Zp[G],Qp) ≃ Qp[G]
×/Zp[G]

×

for E(exp(L))p = E(U
(p+1)
N )p as described at the end of Section 2.2.
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4.1 The local fundamental class

We will need the algebra Nnr = Knr ⊗K N , on which the group Gal(Knr/K) ×
G acts canonically. We obtain an isomorphism Nnr → Nd

0 by sending x ⊗ y to
(F d−1(x)y, F d−2(x)y, . . . , F (x)y, xy). Then the action of Gal(Knr/K) × G on Nnr

induces an action on Nd
0 . For later reference we explicitly describe the action for

some particular elements (see [9, Sec. VI]):

(F−1 × b)(x1, x2, . . . , xd) = (xb1, x
b
2, . . . , x

b
d),

(1× a)(x1, x2, . . . , xd) = (xa1, x
a
2, . . . , x

a
d), (4)

(F × 1)(x1, x2, . . . , xd) = (xF0
d , x1, x2, . . . , xd−1).

In particular, we deduce from (4)

(1× b)(x1, x2, . . . , xd)

= (F × 1)(F−1 × b)(x1, x2, . . . , xd) = ((xbd)
F0 , xb1, x

b
2, . . . , x

b
d−1). (5)

If L is a field extension of Qp we put L(s) := L×/U
(s)
L for each non-negative

integer s. Let ω : N×
nr → Z be the sum of the discrete valuations of the different

components of N×
nr ≃ (N×

0 )
d. By the same arguments as in the proof of [9, Prop. 6.1]

we obtain the following proposition.

Lemma 4.1.1. We have the following exact sequence

0 → N(p+ 1) → Nnr(p+ 1)
(F−1)×1
−−−−−→ Nnr(p+ 1)

ω
−→ Z → 0 (6)

of Z[G]-modules. The extension class of this sequence is induced by the negative of
the local fundamental class in Ext2Z[G](Z, N

×).

Proof. Analogous to the proof of [9, Prop. 6.1].

Let
F ′ = Z[G]z1 ⊕ Z[G]z2,

F≥n =

p−1
⊕

j=n

m
⊕

k=1

Z[G]vk,j

and let
F = F≥0.

Note that the assignment vk,j 7→ αkwj induces an isomorphism

Fp := F ⊗Z Zp
≃

−→

p−1
⊕

j=0

m
⊕

k=1

Zp[G]αkwj =

p−1
⊕

j=0

OK [G]wj (7)

of free Zp[G]-modules.
In the following we let [x1, . . . , xd] denote the class in Nnr(p + 1) represented by

(x1, . . . , xd). If x = x1 = . . . = xd we will often write [x] instead of [x, . . . , x].

11



Lemma 4.1.2. There is a commuting diagram

0 // X(2)⊕ F //

f4
��

F ′ ⊕ F
δ2 //

f3
��

Z[G]z0 //

f2
��

Z //

=

��

0

0 // N(p+ 1) // Nnr(p+ 1)
(F−1)×1 // Nnr(p+ 1) // Z // 0.

of Z[G]-modules with

δ2(z1) = (b− 1)z0,

δ2(z2) = (a− 1)z0,

δ2(vk,j) = 0 for all k and j,

f2(z0) = f3(z1) = [θ1, 1, 1, . . . , 1],

f3(z1) = [θ1, 1, . . . , 1],

f3(z2) = [γ, γ, . . . , γ],

f3(vk,j) = 1 + αk(a− 1)jθ for all k and j.

Further, X(2) := ker(δ2 |F ′) and f4 is the restriction of f3 to X(2)⊕ F .

Proof. Straightforward verification.

The diagram in Lemma 4.1.2 will be fundamental for our proof of Theorem 1.
We will use the top exact sequence to compute groups of the form Ext2Z[G](Z, ). By
Proposition 4.1.4 below we can then apply the recipe described in Section 2.2 with
Σ = X(2)⊕F and ϕ = −f4 to compute E(U

(p+1)
N )p.

In the remainder of this subsection we will provide the proof of the following
lemma.

Lemma 4.1.3. The homomorphism f4 is surjective.

As a consequence we obtain

Proposition 4.1.4. The map −f4 represents the local fundamental class.

Proof. This can be proved by mimicking the proof of [9, Lemma 6.3].

Lemma 4.1.5. We have

X(2) = 〈(a− 1)z1 − (b− 1)z2, Tbz1, Taz2〉Z[G].

Proof. The inclusion ”⊇” is immediate from the definition of δ2. Let us consider the
reverse inclusion. Let

x =

p−1
∑

i=0

d−1
∑

j=0

αi,ja
ibjz1 +

p−1
∑

i=0

d−1
∑

j=0

βi,ja
ibjz2 ∈ X(2)

with αi,j, βi,j ∈ Z. From δ2(x) = 0 we derive

αi,j−1 − αi,j + βi−1,j − βi,j = 0 (8)

for all 0 ≤ i < p and 0 ≤ j < d. Here and in the following we regard all indices as
integers modulo p and d respectively.

12



From (8) we deduce that α :=
∑p−1

i=0 αi,j does not depend on the choice of j. Now
we are looking for integers γi,j, µi, νj , for 0 ≤ i < p and 0 ≤ j < d, such that

x =

p−1
∑

i=0

d−1
∑

j=0

γi,ja
ibj((a− 1)z1 − (b− 1)z2) +

p−1
∑

i=0

µia
iTbz1 +

d−1
∑

j=0

νjb
jTaz2

=

p−1
∑

i=0

d−1
∑

j=0

(γi−1,j − γi,j + µi)a
ibjz1 +

p−1
∑

i=0

d−1
∑

j=0

(−γi,j−1 + γi,j + νj)a
ibjz2.

So, in other words, the lemma is proved if we find integers γi,j, µi, νj such that

αi,j = γi−1,j − γi,j + µi (9)

and
βi,j = −γi,j−1 + γi,j + νj . (10)

With νj := β0,j, µ0 := α, µi = 0 for i > 0 and γi,j = −
∑

1≤ℓ≤i αℓ,j it is straightforward
to verify (9). Equality (10) is proved by an easy induction on i using (8).

We evaluate f4 at the three special elements of X(2) given by the last lemma.

Lemma 4.1.6. We have

f4((a− 1)z1 − (b− 1)z2) = [γ]1−b, (11)

f4(Tbz1) = [θ1] (12)

and
f4(Taz2) = [γ]Ta . (13)

Proof. Straightforward computation using (4), (5), θb1 = θ1 and [θ1, 1, . . . , 1]
a−1 =

[θb1, 1, . . . , 1]
a−1 = [γb(F0−1), 1, . . . , 1].

We write f̂4 : X(2)p ⊕ Fp −→ N(p + 1)p for the p-completion of f4. For an
element β ∈ OK [G] we write β =

∑m
k=1 λkαk with uniquely determined λk ∈ Zp[G]

and according to (7) we set f̂4(βwj) :=
∏m

k=1 f4(vk,j)
λk .

Lemma 4.1.7. Let β ∈ OK [G]. Then we have for j = 0, . . . , p− 1

f̂4(βwj) ≡ 1 + (a− 1)jβθ (mod U
(j+2)
N ).

Proof. As above we write β =
∑m

k=1 λkαk. We note that that for n ≥ 1 the map

x 7→ 1 + x induces an isomorphism pnN/p
n+1
N ≃ U

(n)
N /U

(n+1)
N of Zp[G]-modules. By

Lemma 3.2.5 we have vN((a− 1)jθ) = j + 1. Therefore,

f̂4(βwj) =

m
∏

k=1

(1 + αk(a− 1)jθ)λk

≡ 1 +

m
∑

k=1

λkαk(a− 1)jθ (mod U
(j+2)
N )

≡ 1 + β(a− 1)jθ (mod U
(j+2)
N ).

13



Lemma 4.1.8. For j = 0, . . . , p, any element of U
(j+1)
N /U

(p+1)
N is the image under

f̂4 of an element in (F≥j)p.

Proof. For j = p, F≥p = {0} and U
(p+1)
N /U

(p+1)
N = {0}, so the result is trivial.

We assume the result for j + 1 and proceed by descending induction. If x ∈
U

(j+1)
N /U

(p+1)
N , then x = 1+µpθ+ν(a−1)jθ for some µ, ν ∈ OK [G] by Lemma 3.2.6.

Since µpθ ∈ p
p+1
N , Lemma 4.1.7 implies

x ≡ 1 + ν(a− 1)jθ ≡ f̂4(νwj) (mod U j+2
N ).

This means that x is the product of an element in the image of (F≥j)p and an element

in U
(j+2)
N /U

(p+1)
N , which is by assumption in the image of (F≥j+1)p ⊆ (F≥j)p.

After these preparations we are ready to provide the proof of Lemma 4.1.3.

Proof of Lemma 4.1.3. We recall the properties of γ described in Lemma 3.1.5. Since
a is in the inertia group, by (13) we obtain f4(Taz2) = [γ]Ta ≡ [γ]p (mod pN ). Since

γ ≡ ζqd−1 (mod pN0), its class is a generator of UN/U
(1)
N . Since p is co-prime to

the order qd − 1 of UN/U
(1)
N , we conclude that the projection of f4(X(2)) onto N(1)

contains the torsion subgroup UN/U
(1)
N of N(1).

By (12) we obtain f4(Tbz1) = [θ1] and recall that θ1 is a prime element in N . We
conclude that any element of N(p + 1) is the product of an element in the image of

f4 and an element in U
(1)
N /U

(p+1)
N . It therefore remains to prove that U

(1)
N /U

(p+1)
N is

also in the image of f4. Since U
(1)
N /U

(p+1)
N is a finite p-group this follows immediately

from Lemma 4.1.8.

4.2 The kernel of f̂4

In order to compute a representative of E(exp(L))p we have to compute a Zp[G]-

basis of ker(f4)p = ker(f̂4). As a first step in this direction we construct certain

explicit elements in ker(f̂4) and show that they form a complete set of generators.
We then manipulate this set of generators in order to obtain a basis. The main result
is summarized in Proposition 4.2.10.

Lemma 4.2.1. Let m̃ be an integer such that mm̃ ≡ 1 (mod d). Set

t̃1 := (a− 1)z1 − (b− 1)z2 +

(

m
∑

i=2

αib
1−(i−2)m̃ +

(

α1 −
m
∑

i=2

αi

)

bm̃

)

w0.

Then there exists y1 ∈ (F≥1)p, such that t1 := t̃1 + y1 ∈ ker(f̂4).

Proof. We calculate f̂4(t̃1) modulo p2N . First we recall that γ ≡ ζqd−1(1 + x2θ1)
(mod p2N0

) by Lemma 3.1.5. Note also that for any integer s ≥ 2 one has ζqd−1 = 1

in the p-completion N(s)p of N(s). By the definition of f̂4, Lemma 4.1.6 and Lemma
4.1.7,

f̂4(t̃1) ≡ γ1−b(1 + α1b
m̃θ)

m
∏

i=2

(

(1 + αib
1−(i−2)m̃θ)(1 + αib

m̃θ)−1
)

(mod p2N0
)

≡ (1 + x2θ)
1−b

(

1 + α1θ
bm̃ +

m−2
∑

i=0

αi+2θ
b1−im̃

−
m−2
∑

i=0

αi+2θ
bm̃

)

(mod p2N0
).
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Now we see that

(1 + x2θ1)
1−b ≡ (1 + x2θ1)(1 + x2θ1)

−b ≡ (1 + x2θ1)(1− xb2θ1) (mod p2N0
)

≡ 1 + x2θ1 − xb2θ1 ≡ 1 +

(

(

x2
α1

)F

−
x2
α1

)b

α1θ1 (mod p2N0
)

≡ 1 +

((

x2
α1

)q

−
x2
α1

)b

α1θ1 (mod p2N0
).

(14)

By the choice of the basis α1, . . . , αm in (2) we have Af i

= αi+2

α1
for i = 0, . . . , m− 2

and Afm−1
= 1−

∑m−2
i=0 Af i

= 1−
∑m−2

i=0
αi+2

α1
. So we get

(

x2
α1

)q

−
x2
α1

≡
m−1
∑

i=0

(

(

x2
α1

)pi+1

−

(

x2
α1

)pi
)

(mod pN0)

≡
m−1
∑

i=0

((

x2
α1

)p

−

(

x2
α1

))pi

(mod pN0)

(i)
≡ −

m−1
∑

i=0

(Aθ2)
pi (mod pN0)

(ii)
≡ −

m−2
∑

i=0

Apiθp
imm̃

2 −Apm−1

θp
(m−1)mm̃

2 (mod pN0)

≡ −
m−2
∑

i=0

αi+2

α1

θq
im̃

2 −

(

1−
m−2
∑

i=0

αi+2

α1

)

θq
1−m̃

2 (mod pN0).

The congruence (i) follows from our choice of x2 and (ii) is immediate from θ2 ∈ K̃ ′.
Combining the last congruence with the computation in (14) and recalling that

θb1 = θ1 we obtain

(1 + x2θ1)
1−b ≡ 1−

(

m−2
∑

i=0

αi+2

α1
θq

im̃

2 +

(

1−
m−2
∑

i=0

αi+2

α1

)

θq
1−m̃

2

)b

α1θ1 (mod p2N0
)

≡ 1−
m−2
∑

i=0

αi+2θ
b1−im̃

− α1θ
bm̃ +

m−2
∑

i=0

αi+2θ
bm̃ (mod p2N0

).

So we conclude that

f̂4(t̃1) ≡ 1−

(

α1θ
bm̃ +

m−2
∑

i=0

αi+2θ
b1−im̃

−
m−2
∑

i=0

αi+2θ
bm̃

)2

≡ 1 (mod p2N0
).

Therefore f̂4(t̃1)
−1 ∈ U

(2)
N /U

(p+1)
N and by Lemma 4.1.8 there exists y1 ∈ (F≥1)p such

that f̂4(y1) ≡ f̂4(t̃1)
−1 (mod p

p+1
N ), i.e. t̃1 + y1 ∈ ker(f̂4).

Lemma 4.2.2. The element

t2 := Taz2 − βwp−1 with β =

{

α1, if m = 1,

α2, if m > 1,

is in the kernel of f̂4.
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Proof. Since ζqd−1 = 1 in N(p+1)p and γ ≡ ζqd−1(1+x2θ1) (mod p2N0
) the formulae

in Lemma 4.1.6 and Lemma 4.1.7 imply

f̂4(t2) ≡ γTa(1− β(a− 1)p−1θ) (mod p
p+1
N0

)

≡ NN0/Knr(1 + x2θ1)(1− β(a− 1)p−1θ) (mod p
p+1
N0

).

Note that by [16, Sec. V.6, Prop. 8] we know that NN0/KnrU
(2)
N0

⊆ U
(2)
Knr

⊆ U
(2p)
N0

⊆

U
(p+1)
N0

so that it suffices to work with γ modulo p2N0
. Using Lemma 3.2.4, [16,

Sec. V.3, Lemma 5], the fact that x2 ∈ OKnr and Lemma 3.2.2, we get

f̂4(t2) ≡ NN0/Knr(1 + x2θ1)(1− βθ2p) (mod p
p+1
N0

)

≡ (1 + TN0/Knr(x2θ1) +NN0/Knr(x2θ1))(1− βθ2p) (mod p
p+1
N0

)

≡ (1 + x2p− xp2α
1−p
1 p)(1− βθ2p) (mod p

p+1
N0

)

≡ 1 + (x2 − xp2α
1−p
1 − βθ2)p (mod p

p+1
N0

).

By the choice of x2 made after Lemma 3.1.3 we have

xp2α
1−p
1 = α1

(

x2
α1

)p

≡ α1 ·

(

x2
α1

−Aθ2

)

≡ x2 −Aα1θ2 ≡ x2 − βθ2 (mod pKnr),

so that f̂4(t2) ≡ 1 (mod p
p+1
N0

).

Lemma 4.2.3. The elements t1 and t2 generate
(

ker f̂4 + Fp

)

/Fp as a Zp[G]-

module.

Proof. We write W ⊆ X(2)p ⊕ Fp for the Zp[G]-submodule which is generated by

Fp, t1 and t2. For each x ∈ ker f̂4 we have to show that x ∈ W . In the following all
congruences are modulo W . By Lemma 4.1.5 there exist x1, x2, x3 ∈ Zp[G] such that

x ≡ x1((a− 1)z1 − (b− 1)z2) + x2Tbz1 + x3Taz2.

From the definitions of t1 and t2 we immediately obtain

Taz2 ∈ W and (a− 1)z1 − (b− 1)z2 ∈ W.

Hence x ≡ x2Tbz1. Without loss of generality we may assume x2 ∈ Zp[a]. By

considering f̂4(x) modulo U
(1)
N and using Lemma 4.1.6, we see that, to kill the [θ1],

x2 must be in the augmentation ideal. Therefore there exists x4 ∈ Zp[a] such that
x2 = x4(a− 1). Then x ≡ x4(a− 1)Tbz1 = x4Tb ((a− 1)z1 − (b− 1)z2) ≡ 0.

Lemma 4.2.4. Let 0 ≤ j ≤ p − 1, 1 ≤ k ≤ m. Then there exists µj,k ∈ (F≥j+2)p
such that the element

sj,k = αk(a− 1)wj − αkwj+1 + µj,k

is in the kernel of f̂4. Here wp should be interpreted as 0.
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Proof. For l ≥ 1 we put ηl := αk(a − 1)l−1θ. Note that vN (ηl) = l for 1 ≤ l ≤ p.

In the following all congruences are modulo U
(j+3)
N . Then, for 0 ≤ j < p − 1, we

compute

f̂4((a− 1)αkwj − αkwj+1)

= (1 + ηj+1)
a−1(1 + ηj+2)

−1

≡ (1 + aηj+1)(1− ηj+1 + η2j+1)(1− ηj+2)

≡ (1− ηj+1 + η2j+1 + aηj+1 − (aηj+1)ηj+1)(1− ηj+2)

≡ (1 + ηj+2 − ηj+1ηj+2)(1− ηj+2)

≡ (1 + ηj+2)(1− ηj+2) ≡ 1.

For j = p− 1, using Lemma 3.2.4, we have

f̂4((a− 1)αkwp−1) = (1 + αk(a− 1)p−1θ)a−1 ≡ (1 + αkθ2p)
a−1 = 1 (mod U

(p+1)
N ).

Now we conclude using Lemma 4.1.8 as in the proof of Lemma 4.2.1.

By construction, any element of F ′
p ⊕Fp can be written as a linear combination

of z1, z2 and αiwj, for i = 1, . . . , m and j = 0, . . . , p − 1 with coefficients in Zp[G].

In this context we will speak of z1-, z2- and αiwj-components of elements of ker f̂4.
We recall that m̃ is an integer such that mm̃ ≡ 1 (mod d).

Lemma 4.2.5. The element

r1 = Tat1 + (b− 1)t2

belongs to ker f̂4 ∩ Fp and its α1w0-component is bm̃Ta.

Proof. By the definition of t1 and t2 in Lemmata 4.2.1 and 4.2.2 the element r1
belongs to ker(f̂4). Hence it suffices to prove that the z1- and z2-components of
r1 are zero and the α1w0-component is bm̃Ta. This follows by a straightforward
computation.

Lemma 4.2.6. The elements

rk = αkTaw0 + (b−m̃αk+1 − αk)wp−1,

for 1 < k < m, and

rm = αmTaw0 +

(

b−m̃α1 − b−m̃

m
∑

i=2

αi − αm

)

wp−1

are in the kernel of f̂4.

Proof. For 1 < k ≤ m, using [16, Sec. V.3, Lemma 4 and Lemma 5], Lemma 3.1.2
and Lemma 3.2.2,

f̂4(αkTaw0) ≡ NN/K ′(1 + αkθ) (mod p
p+1
N )

≡ 1 +NN/K ′(αkθ) + TN/K ′(αkθ) (mod p
p+1
N )

≡ 1 + (θ2αk)
pNN/K ′(θ1) + θ2αkTN/K ′(θ1) (mod p

p+1
N )

≡ 1− (θ2αk)
pα1−p

1 p+ θ2αkp (mod p
p+1
N )

≡ 1 +

(

θ2αk

α1
−

(

θ2αk

α1

)p)

α1p (mod p
p+1
N ).
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Now we note that θp2 ≡ θp
mm̃

2 ≡ θq
m̃

2 ≡ θb
−m̃

2 (mod pK̃ ′) and by (2) we have for
1 < k < m,

(

αk

α1

)p

=
(

Afk−2
)p

≡ Apk−1

≡
αk+1

α1

(mod pK)

and

(

αm

α1

)p

=
(

Afm−2
)p

≡ Afm−1

= 1−
m−2
∑

i=0

Af i

= 1−
m−2
∑

i=0

αi+2

α1
(mod pK).

Therefore, for 1 < k < m,

f̂4(αkTaw0) ≡ 1 +

(

θ2αk

α1
−
θb

−m̃

2 αk+1

α1

)

α1p (mod p
p+1
N )

≡ 1 +
(

αkθ2 − αk+1θ
b−m̃

2

)

p (mod p
p+1
N )

and

f̂4(αmTaw0) ≡ 1 +

(

θ2αm

α1
− θb

−m̃

2

(

1−
m−2
∑

i=0

αi+2

α1

))

α1p (mod p
p+1
N )

≡ 1 +

(

αmθ2 − α1θ
b−m̃

2 +

m
∑

i=2

αiθ
b−m̃

2

)

p (mod p
p+1
N ).

Recalling Lemma 3.2.4, for 1 < k < m we obtain

f̂4((b
−m̃αk+1 − αk)wp−1) ≡ (1 + αk+1pθ2)

b−m̃

(1 + αkpθ2)
−1 (mod p

p+1
N )

≡ 1−
(

αkθ2 − αk+1θ
b−m̃

2

)

p (mod p
p+1
N )

and

f̂4

((

b−m̃α1 − b−m̃

m
∑

i=2

αi − αm

)

wp−1

)

≡ (1 + α1pθ2)
b−m̃

m
∏

i=2

(1 + αipθ2)
−b−m̃

(1 + αmpθ2)
−1 (mod p

p+1
N )

≡ 1−

(

αmθ2 − α1θ
b−m̃

2 +
m
∑

i=2

αiθ
b−m̃

2

)

p (mod p
p+1
N )

Therefore we conclude that in all cases rk ∈ ker f̂4.

Lemma 4.2.7. The pm+m elements rk, sj,k for 0 ≤ j ≤ p− 1, 1 ≤ k ≤ m generate

ker f̂4 ∩ Fp as a Zp[G]-module.

Proof. We define elements rj,k, for 0 ≤ j ≤ p − 1, 1 ≤ k ≤ m, as follows: r0,k = rk
and rj,k = Tasj−1,k, for j > 0. It will suffice to show that the 2pm elements rj,k, sj,k
for 0 ≤ j ≤ p− 1, 1 ≤ k ≤ m are generators of ker f̂4 ∩ Fp.

It is obvious that they generate ker f̂4∩(F≥p)p = {0}. Let us assume they generate

ker f̂4∩ (F≥j+1)p, for some j < p, and let us prove that they generate ker f̂4∩ (F≥j)p.
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Let x ∈ ker f̂4 ∩ (F≥j)p. We can write x = λ1wj + λ2, for some λ1 ∈ OK [G] and

λ2 ∈ (F≥j+1)p. Then by Lemma 4.1.7 we have f̂4(x) ≡ 1+ (a−1)jλ1θ (mod U
(j+2)
N ),

which must be congruent to 1 by the assumption that x ∈ ker f̂4. Hence

(a− 1)jλ1θ ∈ p
j+2
N . (15)

By Lemma 3.2.5, if vN (λ1θ) = 1, then vN ((a− 1)jλ1θ) = j + 1 (recall that j < p),
and this contradicts (15). Hence vN (λ1θ) > 1, so that Lemma 3.2.6 implies λ1θ ∈
p2N = (Ta, a−1)θ. It follows that λ1 ∈ (Ta, a−1). So in particular λ1wj is a sum of a
linear combination of the elements rj,k and sj,k, for k = 1, . . . , m, and an element in
(F≥j+1)p. Hence also x is a combination of the elements rj,k and sj,k and an element

in (F≥j+1)p, which must also be in ker f̂4. To conclude we only need to recall the
inductive hypothesis.

Now we consider the αiwp−1-components, i = 1, . . . , m, of t2 and rk for k =
2, . . . , m. We write these components as the columns of an m ×m matrix M. We
have to distinguish two cases. If m > 1,

M =



























0 0 0 . . . 0 0 0 b−m̃

−1 −1 0 . . . 0 0 0 −b−m̃

0 b−m̃ −1 . . . 0 0 0 −b−m̃

0 0 b−m̃ . . . 0 0 0 −b−m̃

...
...

...
. . .

...
...

...
0 0 0 . . . b−m̃ −1 0 −b−m̃

0 0 0 . . . 0 b−m̃ −1 −b−m̃

0 0 0 . . . 0 0 b−m̃ −1− b−m̃



























.

If m = 1, then the matrix is determined only by t2 and, recalling its definition
from Lemma 4.2.2, we get M = (−1).

Lemma 4.2.8. The determinant of M is (−1)mb−m̃(m−1) = (−1)mbm̃−1.

Proof. This is an easy calculation.

Lemma 4.2.9. For k = 1, . . . , m we have sp−1,k ∈ 〈t2, r2, . . . , rm〉Zp[G].

Proof. We fix k such that 1 ≤ k ≤ m. Recall that sp−1,k = αk(a−1)wp−1. By Lemma
4.2.8 there is a Zp[G]-linear combination x of t2 and the elements ri, i = 2, . . . , m,
such that the αkwp−1-component of x is 1 and the αjwp−1-components for j 6= k are
zero. The components of x outside of αiwp−1 are (by the definition of t2 and ri)
always multiples of Ta. Therefore we can conclude that (a− 1)x = sp−1,k.

We are now ready to state and prove the main result of this subsection.

Proposition 4.2.10. The pm + 1 elements t1, t2, rk, for k = 2, . . . , m, sj,k for

0 ≤ j ≤ p− 2, 1 ≤ k ≤ m constitute a Zp[G]-basis of ker f̂4.

Proof. By [1, Lemma 3.7], ker f̂4 is Zp[G]-free. From (1) with r = pm + 2 we
deduce that the Zp[G]-rank is pm+1. It therefore suffices to show that t1, t2, rk, for

k = 2, . . . , m, sj,k for 0 ≤ j ≤ p− 2, 1 ≤ k ≤ m generate ker f̂4.
By Lemma 4.2.9 and the definition of r1, it is enough to show that the pm+m+2

elements t1, t2 and rk, sj,k for 0 ≤ j ≤ p − 1, 1 ≤ k ≤ m are generators. This has
been shown in Lemma 4.2.3 and Lemma 4.2.7.
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Writing the z1-, z2- and αiwj-components of the above generators as the columns
of a matrix M we obtain

M =



























a− 1 0 0 0 0 · · · 0 0
1− b Ta 0 0 0 · · · 0 0

v 0 TaĨ (a− 1)I 0 · · · 0 0
∗ 0 0 −I (a− 1)I · · · 0 0
∗ 0 0 ∗ −I · · · 0 0
...

...
...

...
...

. . .
...

...
∗ 0 0 ∗ ∗ · · · −I (a− 1)I

∗ −e2 M̃ ∗ ∗ · · · ∗ −I



























,

where I is the m × m-identity matrix and M̃ and Ĩ denote the matrices obtained
by removing the first column of M and I respectively. If m > 1 the vector e2 is the
second vector in the canonical basis of Zp[G]

m, and if m = 1 we set e2 = (1). Finally,
v ∈ Zp[G]

m is a vector with first component bm̃.

4.3 Computation of the representative of E(exp(L))p

We recall that G = Gal(N/K) = 〈a〉 × 〈b〉. Any irreducible character ψ of G
decomposes as ψ = χφ, where χ is an irreducible character of 〈a〉 and φ an irreducible
character of 〈b〉.

We also recall that we always identify K0(Zp[G],Qp) with Qp[G]
×/Zp[G]

×. The
following proposition describes a representative of E(exp(L))p in Qp[G]

×, which we
regard as a subset of Qc

p[G]
× ≃

⊕

χ,φQ
c,×
p .

Proposition 4.3.1. We assume the setting introduced in Section 3. For L = p
p+1
N

the element E(exp(L))p is represented by ε ∈ Qp[G]
× where

εχφ =











dpm if χ = χ0 and φ = φ0,
φ(b)m̃

1−φ(b)
pm if χ = χ0 and φ 6= φ0,

(−1)m+1φ(b)m̃−1(χ(a)− 1)m(p−1) if χ 6= χ0.

Proof. By Proposition 4.1.4 the map −f4 represents the local fundamental class.
Following the recipe described in Section 2.2 we therefore consider the following
diagram.

0

��

0

%%❑❑
❑❑

❑❑
❑❑

❑❑
❑ 0

ker f4

i1
��

ker δ1
σ

��

i3

$$■
■■

■■
■■

■■

99ttttttttttt

0 // X(2)⊕ F
i2 //

−f4
��

F ′ ⊕ F
δ2

@@

δ2 // Z[G]z0
δ1

44 Z
τqq

// 0

N(p + 1)

��

ρ

TT

0
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Here the dotted maps τ, σ, ρ denote G-equivariant splitting morphisms. They only
exist after tensoring with Q. Since we are only interested in the p-part of E(exp(L))
we tensor right away with Qp. In the following, if Y is a Z-module, we set YQp

:=
Qp ⊗Z Y .

Explicitly, we define τ : Qp → Qp[G]z0 by setting τ(1) = eGz0. For the definition
of σ we first note that (ker δ1)Qp

is generated by (1 − eG)z0 as a Qp[G]-module. It
is easy to see that σ((1 − eG)z0) := 1−eb

b−1
eaz1 + 1−ea

a−1
z2 determines a well defined

splitting σ : (ker δ1)Qp
→ (F ′ ⊕ F)Qp

. Here 1−eb
b−1

denotes the inverse of b − 1 on the

(1− eb)-component of Qp[b]. Analogously we define 1−ea
a−1

.
Finally, we also need to define ρ : N(p + 1)Qp

→ (X(2)⊕ F)Qp
. We have N(p +

1)Qp
= 〈θ1〉Qp

≃ Qp because UN/U
(p+1)
N is torsion. We define ρ(θ1) := −eaTbz1 and

easily see that it defines a G-equivariant splitting of −f4.
In the following all maps are morphisms of Qp[G]-modules, even though this will

not be apparent in the notation. The isomorphism θ̃ of Section 2.2 specialized to our
situation is now explicitly given by

θ̃ : (ker f4)Qp
⊕Qp[G]

(id,(τ,i3)−1)
−−−−−−−→ (ker f4)Qp

⊕ (Qp ⊕ (ker d1)Qp
)

(id,ν−1
N

,id)
−−−−−−→ (ker f4)Qp

⊕N(p + 1)Qp
⊕ (ker d1)Qp

(i1,ρ,id)
−−−−→ (X(2)⊕ F)Qp

⊕ (ker d1)Qp

(i2,σ)
−−−→ F ′

Qp
⊕ FQp

.

We fix Zp[G]-bases of ker f̂4⊕Zp[G] and F ′
p⊕Fp, respectively. For ker f̂4⊕Zp[G] we

take (0, 1), (vl, 0), 1 ≤ l ≤ pm + 1, where vl runs through the elements specified in
Proposition 4.2.10. For F ′

p⊕Fp we simply use the basis z1, z2, αkwj, 1 ≤ k ≤ m, 0 ≤
j ≤ p − 1. We now compute the matrix Aθ̃ with respect to these bases. Following
the definition of θ̃ we get

θ̃ : (0, 1) 7→ (0, 1, 1− eG)

7→ (0, θ1, 1− eG)

7→ (−eaTbz1, 1− eG)

7→ −eaTbz1 +
1− eb
b− 1

eaz1 +
1− ea
a− 1

z2.

Writing the z1-, z2- and αiwj-components of θ̃((0, 1)) as a column vector we obtain

w =



















ea
(

1−eb
b−1

− Tb
)

1−ea
a−1

0
0
...
0



















.

Since θ̃|ker f̂4 = i2 ◦ i1 is the inclusion, we obtain Aθ̃ = (w,M), which is the matrix
whose columns are w and the columns of the matrix M defined at the end of Section
4.2.
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Case 1: χ = 1 and φ = 1.
Here (χφ)(Aθ̃) is of the form



























−d 0 0 0 0 0 · · · 0 0
0 0 p 0 0 0 · · · 0 0

0 χφ(v) 0 pĨ 0 0 · · · 0 0
0 ∗ 0 0 −I 0 · · · 0 0
0 ∗ 0 0 ∗ −I · · · 0 0
...

...
...

...
...

...
. . .

...
...

0 ∗ 0 0 ∗ ∗ · · · −I 0

0 ∗ −e2 χφ(M̃) ∗ ∗ · · · ∗ −I



























,

where we recall that the first component of the vector v is bm̃. The determinant is
(−1)(p−1)mdpm = dpm.

Case 2: χ = 1 and φ 6= 1.
In this case (χφ)(Aθ̃) is of the form



























1
φ(b)−1

0 0 0 0 0 · · · 0 0

0 1− φ(b) p 0 0 0 · · · 0 0

0 χφ(v) 0 pĨ 0 0 · · · 0 0
0 ∗ 0 0 −I 0 · · · 0 0
0 ∗ 0 0 ∗ −I · · · 0 0
...

...
...

...
...

...
. . .

...
...

0 ∗ 0 0 ∗ ∗ · · · −I 0

0 ∗ −e2 χφ(M̃) ∗ ∗ · · · ∗ −I



























.

The determinant is

−(−1)(p−1)m φ(b)m̃

φ(b)− 1
pm =

φ(b)m̃

1− φ(b)
pm.

Case 3: χ 6= 1 and any φ.
The matrix (χφ)(Aθ̃) is here given by



























0 χ(a)− 1 0 0 0 · · · 0 0
1

χ(a)−1
1− φ(b) 0 0 0 · · · 0 0

0 χφ(v) 0 (χ(a)− 1)I 0 · · · 0 0
0 ∗ 0 −I (χ(a)− 1)I · · · 0 0
0 ∗ 0 ∗ −I · · · 0 0
...

...
...

...
...

. . .
...

...
0 ∗ 0 ∗ ∗ · · · −I (χ(a)− 1)I
0 ∗ χφ(M) ∗ ∗ · · · ∗ −I



























.

Using Lemma 4.2.8 we compute for the determinant

−(−1)(p−1)m2

det(χφ(M))(χ(a)− 1)m(p−1) = (−1)m+1φ(b)m̃−1(χ(a)− 1)m(p−1).

This concludes the proof of Proposition 4.3.1.
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5 The computation of TN/K − [L, ρN , HN ]

In this section we compute a representative of TN/K− [L, ρN , HN ] in K0(Zp[G],Q
c
p) ≃

Qc
p[G]

×/Zp[G]
×. The individual terms are described in Section 2.1.

5.1 Norm resolvents and Gauß sums

If L/K is a finite abelian extension of p-adic fields with Galois group H and β ∈ L
a normal basis element for L/K, i.e L = K[H ]β, then we define the resolvent of β
for every irreducible character χ of H by

(β | χ) :=
∑

g∈H

g(β)χ(g−1).

The norm resolvent NK/Qp
(β | χ) is defined by

NK/Qp
(β | χ) :=

∏

ω

(β | χω−1

)ω,

where ω runs through a (right) transversal of Gal(Qc
p/Qp) modulo Gal(Qc

p/K).
For later reference we state the following lemma which is well known and easy to

prove.

Lemma 5.1.1. a) Let L2 ⊇ L1 ⊇ K be a tower of extensions of finite abelian p-adic
fields. Let β ∈ L2 be a normal basis element for L2/K and let χ be an irreducible

character of Gal(L1/K). We write ψ = inf
Gal(L2/K)
Gal(L1/K)(χ) for the inflation of χ. Then

(β | ψ) = (TL2/L1(β) | χ).

b) Let L1/K and L2/K be finite abelian extensions of p-adic fields such that
L1 ∩ L2 = K. Let β1 and β2 be normal basis elements for L1 and L2, respectively.
We write each irreducible character χ of Gal(L1L2/K) in the form χ = χ1χ2 with
irreducible characters of Gal(L1/K) and Gal(L2/K). Then β := β1β2 is a normal
basis element for L1L2/K and

(β | χ) = (β1 | χ1)(β2 | χ2).

Proof. Easy verification.

Given an extension L/K of local fields and an irreducible character ψ of Gal(L/K)
we will use the short notation ψ(α) to denote ψ((α, L/K)) where (α, L/K) is the
Artin symbol for α ∈ K×.

Lemma 5.1.2. Let L/K be a finite abelian wildly and weakly ramified extension with
group H. Suppose that K/Qp is unramified. Let χ, φ denote irreducible characters
of H and suppose that φ is unramified. Then

τK(φ) = 1 and τK(φχ) = φ(p−2)τK(χ).

Proof. This is a simple reformulation of [15, Prop. 3.8]. If K/Qp is an arbitrary
finite extension, then we let DK = πs

KOK denote the absolute different of K/Qp.
Then τK(φ) = φ(π−s

K ) by the definition of s and local Galois Gauß sums. If K/Qp is
unramified, then s = 0 and we obtain the first equality. The second equality is the
last displayed equality in the proof of [15, Prop. 3.8] with s = 0 and πK = p.
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Following the arguments of [15, bottom of page 1188] we apply Corollary 3.4 of
loc.cit. with π = p. So there exist extensions M̃ and K̃ ′ such that M̃/K is a weakly
and wildly ramified extension of degree p, the extension K̃ ′/K is unramified and
such that we have a diagram of the form

Ñ

⑦⑦
⑦⑦
⑦⑦
⑦⑦

❅❅
❅❅

❅❅
❅❅

M̃

❆❆
❆❆

❆❆
❆❆

N K̃ ′

⑥⑥
⑥⑥
⑥⑥
⑥⑥

K

Moreover we may assume that Ñ/N is unramified. By [14, V, Cor. (5.6)] p belongs
to the norm group NM̃/K(M̃

×), so that we can apply [15, Th. 2].

Lemma 5.1.3. There exist a normal basis generator αM̃ of the square root of the
inverse different of M̃/K and choices in the definitions of the norm resolvents such
that for all irreducible characters χ̃ of Gal(M̃/K) we have

NK/Qp
(αM̃ | χ̃)

τK(χ̃)
=

{

1, χ̃ = χ̃0,

p−mχ̃(4), χ̃ 6= χ̃0.

Proof. By [15, Th. 2] and using the notation of loc. cit. we may assume that

NK/Qp
(αM̃ |χ̃)τ ⋆K(χ̃− χ̃2) = 1. (16)

The proof of Lemma 5.1.3 now follows immediately from the definition of τ ⋆K . In a
little more detail, if χ̃ = χ̃0 is the trivial character, then τ ⋆K(χ − χ2) = 1 and also
τK(χ̃0) = 1. For χ̃ 6= χ̃0 we have

τ ⋆K(χ̃− χ̃2) = χ̃

(

cχ̃
4cK,2

)

ψK(c
−1
χ̃ )−1,

by [15, Prop. 3.9]. Furthermore, τK(χ̃) = pmχ̃(c−1
χ̃ )ψK(c

−1
χ̃ ), by the last displayed

formula in the proof of [15, Prop. 3.9]. In our case we can choose cK,2 = p2 and since
p is in the norm group of M̃/K we have χ̃(cK,2) = 1. Hence we obtain τ ⋆K(χ̃− χ̃2) =
pmτK(χ̃)

−1χ̃(4)−1. The result now follows from (16).

We now fix αM̃ as in Lemma 5.1.3. Choose an integral normal basis element θ̃2
of K̃ ′/K such that TK̃ ′/K(θ̃2) = 1 and set

αM := TÑ/M(αM̃ θ̃2).

It is easy to verify that αM is an OK [G]-generator of the square root of the inverse
different of M/K.

Lemma 5.1.4. Let χ be an irreducible character of Gal(M/K). Then

NK/Qp
(αM |χ)

τK(χ)
=

{

1 if χ = χ0

p−mχ(4) if χ 6= χ0.
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Proof. We write inf for inf
Gal(Ñ/K)
Gal(M/K). Since Ñ/M is unramified we see that for each

irreducible character χ of Gal(M/K) we obtain inf(χ) = χ̃φ̃0, where φ̃0 is the trivial
character of Gal(K̃ ′/K) and χ̃ is a uniquely determined irreducible character of
Gal(M̃/K). Moreover, χ = χ0 if and only if χ̃ = χ̃0.

By Lemma 5.1.1 we have

(αM | χ) = (αM̃ θ̃2 | inf(χ)) = (αM̃ | χ̃)(θ̃2 | φ̃0) = (αM̃ | χ̃)

because (θ̃2 | φ̃0) = TK̃ ′/K θ̃2 = 1. Recall that local Galois Gauß sums are invariant
under inflation of characters (see e.g. [15, (5)] and [13, p. 18]). We therefore get

from inf(χ) = inf
Gal(Ñ/K)

Gal(M̃/K)
(χ̃)

NK/Qp
(αM |χ)

τK(χ)
=

NK/Qp
(αM̃θ2|infχ)

τK(infχ)
=

NK/Qp
(αM̃ |χ̃)

τK(χ̃)
.

To conclude by Lemma 5.1.3 we notice that

χ̃(4) = inf
Gal(Ñ/K)

Gal(M̃/K)
(χ̃)((4|Ñ/K)) = inf

Gal(Ñ/K)
Gal(M/K)(χ)((4|Ñ/K)) = χ(4).

Proposition 5.1.5. We assume the setting introduced in Section 2.1. Let ψ = χφ
be a character of G. Then

NK/Qp
(p2αMθ2|χφ)

τK(φχ)
=

{

p2mNK/Qp
(θ2|φ) if χ = χ0

pmχ(4)NK/Qp
(θ2|φ)φ(p2) if χ 6= χ0,

Proof. The result follows from Lemma 5.1.1, Lemma 5.1.2 and Lemma 5.1.4.

5.2 A representative for TN/K − [L, ρn, HN ]

In the following proposition we describe a representative in Qc
p[G]

× for the element
TN/K − [L, ρn, HN ].

Proposition 5.2.1. We assume the setting introduced in Section 2.1. For L = p
p+1
N

the element TN/K − [L, ρn, HN ] is represented by η ∈ Qc
p[G]

× where

(η)χφ =

{

p−2mNK/Qp
(θ2|φ)−1δ−1

K if χ = χ0

p−mχ(4)−1NK/Qp
(θ2|φ)−1φ(b)2δ−1

K if χ 6= χ0,

where δK is a square root of the discriminant of K.

Proof. Recall that L = OK [G](p
2αMθ2). As already explained in Section 2.1 the

element [L, ρn, HN ] is then represented by
(

(δKNK/Qp
(p2αMθ2 | χφ)

)

χ,φ
.

By definition the term TN/K is represented by
(

τQp
(i

Qp

K (χφ)
)

χ,φ
. Since Gauß sums

are inductive in degree zero and τK(φ) = 1 for unramified characters by Lemma 5.1.2
we have

τQp
(i

Qp

K χφ) = τQp
(i

Qp

K (χφ− χ0φ0))τQp
(i

Qp

K χ0φ0) = τK(χφ)τQp
(i

Qp

K χ0φ0).

Since K/Qp is unramified, i
Qp

K (χ0φ0) is a sum of unramified characters so that

τQp
(i

Qp

K χ0φ0) = 1 and we obtain τQp
(i

Qp

K χφ) = τK(χφ). Furthermore, φ(p2) =
φ((p2, K ′/K)) = φ(F 2) = φ(b)−2 by [16, XIII, §4, Prop. 13] and the definition of
b. Combining these observations with Proposition 5.1.5 concludes the proof of the
proposition.
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6 Proof of Theorem 1

In our setting the correction term MN/K is explicitly given by

MN/K =
∗ (deG)

∗ ((1− b−1q−1)eI)
∗ ((1− b)eI)

.

It is represented by m = mN/K where

mχφ =











d(1− q−1) if χ = χ0 and φ = φ0

1−φ(b)−1q−1

1−φ(b)
if χ = χ0 and φ 6= φ0

1 if χ 6= χ0.

As explained in Section 2.3 we must show that a representative of TN/K + CN/K −
MN/K lies in Ot

p[G]
×.

Combining the results of the previous sections we see that TN/K +CN/K −MN/K

is represented by an element ω ∈ Qc
p[G]

× where ω = εη/m. Let Wθ2 ∈ Ot
p[G] be such

that χφ(Wθ2) = NK/Qp
(θ2|φ)δK . Then

ωχφ =















dpm

p2md(1−q−1)
· 1
χφ(Wθ2

)
if χ = χ0 and φ = φ0

φ(b)m̃pm(1−φ(b))
(1−φ(b))p2m(1−φ(b)−1q−1)

· 1
χφ(Wθ2

)
if χ = χ0 and φ 6= φ0

(−1)m+1φ(b)m̃−1(χ(a)−1)m(p−1)

pmχ(4)φ(b)−2 · 1
χφ(Wθ2

)
if χ 6= χ0

=















1
pm−1

· 1
χφ(Wθ2

)
if χ = χ0 and φ = φ0

φ(b)m̃+1

φ(b)pm−1
· 1
χφ(Wθ2

)
if χ = χ0 and φ 6= φ0

(−1)m+1 φ(b)m̃+1

χ(4)
·
(

(χ(a)−1)p−1

p

)m

· 1
χφ(Wθ2

)
if χ 6= χ0

=







φ(b)m̃+1

φ(b)pm−1
· 1
χφ(Wθ2

)
if χ = χ0

(−1)m+1 φ(b)m̃+1

χ(4)
·
(

(χ(a)−1)p−1

p

)m

· 1
χφ(Wθ2

)
if χ 6= χ0.

We can easily write ω as an element of Qc
p[G]

×,

ω =
1

Wθ2

(

bm̃+1

bq − 1
ea + (−1)m+1bm̃+1σ−1

4

(

(a− 1)p−1

p

)m

(1− ea)

)

,

where σ4 = (4,M/K) ∈ Gal(M/K) = 〈a〉 ⊆ G. We have to prove that ω ∈ Ot
p[G]

×.
Since K/Qp is unramified, we know that δK is a unit in Ot

p[G]
×. Then by [10,

Sec. I, Prop. 4.3] the same is true for Wθ2 . Since also bq− 1 is clearly a unit, we can
study ω̃ = Wθ2(bq − 1)ω instead of ω. We have

ω̃ = bm̃+1ea − bm̃+1σ−1
4

(

−
(a− 1)p−1

p

)m

(bq − 1)(1− ea).

We first show that ω̃ is contained in Ot
p[G]. To that end it is enough to show that

the coefficient of bj for all j is contained in Ot
p[a]. The only non-zero coefficients are

those of bm̃+1 and bm̃+2 which are, respectively,

ea + σ−1
4

(

−
(a− 1)p−1

p

)m

(1− ea).
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and

−σ−1
4

(

−
(a− 1)p−1

p

)m

q(1− ea).

The second one has clearly coefficients in Zp. As for the first one, its integrality is
equivalent to

1 ≡ χ(σ4)
−1

(

−
(χ(a)− 1)p−1

p

)m

(mod 1− ζp),

for any non-trivial character χ, which follows from (χ(a)−1)p−1

p
≡ −1 (mod 1− ζp).

We have now shown that ω ∈ Ot
p[G]. By [3, Cor. 3.8] ω is actually a unit in

Mt where Mt denotes the maximal order in Qt
p[G]. Here Qt

p = Quot(Ot
p) denotes

the maximal tamely ramified extension of Qp. It follows that ω ∈ (Mt)
× ∩ Ot

p[G] =
Ot

p[G]
×.

Acknowledgements

The second named author would like to thank the Max Planck Institute for Mathe-
matics in Bonn for its hospitality and support during the preparation of this paper.

References

[1] W. Bley and D. Burns. Equivariant epsilon constants, discriminants and étale
cohomology. Proc. London Math. Soc. (3), 87(3):545–590, 2003.

[2] W. Bley and R. Debeerst. Algorithmic proof of the epsilon constant conjecture.
Math. Comp., 82(284):2363–2387, 2013.

[3] M. Breuning. Equivariant local epsilon constants and étale cohomology. J.
London Math. Soc. (2), 70(2):289–306, 2004.

[4] M. Breuning. On equivariant global epsilon constants for certain dihedral ex-
tensions. Math. Comp., 73(246):881–898 (electronic), 2004.

[5] M. Breuning and D. Burns. Leading terms of Artin L-functions at s = 0 and
s = 1. Compos. Math., 143(6):1427–1464, 2007.

[6] M. Breuning and D. Burns. On equivariant Dedekind zeta-functions at s = 1.
Doc. Math., (Extra volume: Andrei A. Suslin sixtieth birthday):119–146, 2010.

[7] D. Burns. Equivariant Tamagawa numbers and Galois module theory. I. Com-
positio Math., 129(2):203–237, 2001.

[8] D. Burns and M. Flach. On Galois structure invariants associated to Tate
motives. Amer. J. Math., 120(6):1343–1397, 1998.

[9] T. Chinburg. Exact sequences and Galois module structure. Ann. of Math. (2),
121(2):351–376, 1985.

27
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