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THETA DIVISORS WITH CURVE SUMMANDS AND THE

SCHOTTKY PROBLEM

STEFAN SCHREIEDER

Abstract. We prove the following converse of Riemann’s Theorem: let (A,Θ) be an

indecomposable principally polarized abelian variety whose theta divisor can be written

as a sum of a curve and a codimension two subvariety Θ = C +Y . Then C is smooth, A

is the Jacobian of C, and Y is a translate of Wg−2(C). As applications, we determine

all theta divisors that are dominated by a product of curves and characterize Jacobians

by the existence of a d-dimensional subvariety with curve summand whose twisted ideal

sheaf is a generic vanishing sheaf.

1. Introduction

This paper provides new geometric characterizations of Jacobians inside the moduli

stack of all principally polarized abelian varieties over the complex numbers. For a recent

survey on existing solutions and open questions on the Schottky Problem, we refer the

reader to [9].

By slight abuse of notation, we denote a ppav (principally polarized abelian variety)

by (A,Θ), where Θ ⊆ A is a theta divisor that induces the principal polarization on the

abelian variety A; the principal polarization determines Θ ⊆ A uniquely up to translation.

1.1. A converse of Riemann’s theorem. Let (J(C),ΘC) be the Jacobian of a smooth

curve C of genus g ≥ 2. We fix a base point on C and consider the corresponding Abel–

Jacobi embedding C //J(C). Addition of points induces morphisms

AJk ∶ C(k) // J(C),

whose image is denoted by Wk(C). Riemann’s Theorem [1, p. 27] says ΘC = Wg−1(C).
That is, if we identify C with its Abel–Jacobi image W1(C), then ΘC can be written as

a (g − 1)-fold sum ΘC = C + ⋅ ⋅ ⋅ +C. We prove the following converse.
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2 STEFAN SCHREIEDER

Theorem 1. Let (A,Θ) be an indecomposable g-dimensional ppav. Suppose that there

is a curve C and a codimension two subvariety Y in A such that

Θ = C + Y.

Then C is smooth and there is an isomorphism (A,Θ) ≃ (J(C),ΘC) which identifies C

and Y with translates of W1(C) and Wg−2(C), respectively.

The intermediate Jacobian of a smooth cubic threefold is an indecomposable ppav

which is not isomorphic to the Jacobian of a curve and whose theta divisor can be

written as a sum of two surfaces [3, Sec. 13]. The analogue of Theorem 1 is therefore

false if one replaces C and Y by subvarieties of arbitrary dimensions.

Recall that a d-dimensional subvariety Z ⊆ A is called geometrically non-degenerate

if there is no nonzero decomposable holomorphic d-form on A which restricts to zero on

Z, see [20, p. 466]. One of Pareschi–Popa’s conjectures (Conjecture 19 below) predicts

that apart from Jacobians of curves, intermediate Jacobians of smooth cubic threefolds

are the only ppavs whose theta divisors have a geometrically non-degenerate summand

of dimension 1 ≤ d ≤ g−2. Theorem 1 proves (a strengthening of) that conjecture if d = 1
or d = g − 2.

1.2. Detecting Jacobians via special subvarieties. Recall that a coherent sheaf F

on an abelian variety A is a GV-sheaf if for all i its i-th cohomological support locus

Si(F) ∶= {L ∈ Pic0(A) ∣ H i(A,F ⊗L) ≠ 0}

has codimension ≥ i in Pic0(A), see [17, p. 212].

Using this definition, we characterize Wd(C) ⊆ J(C) among all d-dimensional subva-

rieties of arbitrary ppavs. Our proof combines Theorem 1 with the main results in [4]

and [17].

Theorem 2. Let (A,Θ) be an indecomposable ppav, and let Z ⊊ A be a geometrically

non-degenerate subvariety of dimension d. Suppose that the following holds:

(1) Z = C + Y has a curve summand C ⊆ A,
(2) the twisted ideal sheaf IZ(Θ) = IZ ⊗OA(Θ) is a GV-sheaf.

Then C is smooth and there is an isomorphism (A,Θ) ≃ (J(C),ΘC) which identifies C,

Y and Z with translates of W1(C), Wd−1(C) and Wd(C), respectively.

The sum of geometrically non-degenerate subvarieties C,Y ⊊ A of dimension 1 and d−1

respectively yields a geometrically non-degenerate subvariety of dimension d, see Lemma

5 below. Therefore, any abelian variety contains lots of geometrically non-degenerate

subvarieties Z satisfying (1) in Theorem 2.
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The point is property (2) in Theorem 2. If d = g − 1, where g = dim(A), this is known
to be equivalent to Z being a translate of Θ, so we recover Theorem 1 from Theorem

2. If 1 ≤ d ≤ g − 2, condition (2) is more mysterious. It is known to hold for Wd(C)
inside the Jacobian J(C), as well as for the Fano surface of lines inside the intermediate

Jacobian of a smooth cubic threefold. Pareschi–Popa conjectured (Conjecture 14 below)

that up to isomorphisms these are the only examples; they proved it for subvarieties of

dimension one or codimension two.

1.3. The DPC Problem for theta divisors. A variety X is DPC (dominated by a

product of curves), if there are curves C1, . . . ,Cn together with a dominant rational map

C1 × ⋅ ⋅ ⋅ ×Cn ⇢X.1

For instance, unirational varieties, abelian varieties as well as Fermat hypersurfaces

{xd
0
+ ⋅ ⋅ ⋅ + xdN = 0} ⊆ PN of degree d ≥ 1 are DPC, see [21]. Serre [22] constructed the

first example of a variety which is not DPC. Deligne [6, Sec. 7] and later Schoen [21]

used a Hodge theoretic obstruction to produce many more examples.

On the one hand, the theta divisor of the Jacobian of a smooth curve is DPC by

Riemann’s Theorem. On the other hand, Schoen found [21, p. 544] that his Hodge

theoretic obstruction does not even prevent smooth theta divisors from being DPC. This

led Schoen [21, Sec. 7.4] to pose the problem of finding theta divisors which are not

DPC, if such exist. The following solves that problem completely, which was our initial

motivation for this paper.

Corollary 3. Let (A,Θ) be an indecomposable ppav. The theta divisor Θ is DPC if and

only if (A,Θ) is isomorphic to the Jacobian of a smooth curve.

We prove in fact a strengthened version (Corollary 23) of Corollary 3, in which the

DPC condition is replaced by the existence of a dominant rational map Z1 × Z2 ⇢ Θ,

where Z1 and Z2 are arbitrary varieties of dimension 1 and g−2, respectively. The latter

is easily seen to be equivalent to Θ having a curve summand and so Theorem 1 applies.

We discuss further applications of Theorem 1 in Sections 6.1 and 6.2. Firstly, using

work of Clemens–Griffiths [3], we prove that the Fano surface of lines on a smooth

cubic threefold is not DPC (Corollary 25). Secondly, for a smooth genus g curve C,

we determine in Corollary 26 all possible ways in which the symmetric product C(k)

with k ≤ g − 1 can be dominated by a product of curves. Our result can be seen as a

generalization of a theorem of Martens’ [16, 19].

1A priori n ≥ dim(X), but by [21, Lem. 6.1], we may actually assume n = dim(X).
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1.4. Method of proofs. Although Theorem 1 is a special case of Theorem 2, it appears

to be more natural to prove Theorem 1 first. Here we use techniques that originated in

work of Ran and Welters [18, 20, 24]; they are mostly of cohomological and geometric

nature. One essential ingredient is Ein–Lazarsfeld’s result [7] on the singularities of

theta divisors, which allows us to make Welters’ method [24] unconditional. Eventually,

Theorem 1 will be reduced to Matsusaka–Hoyt’s criterion [10], asserting that Jacobians

of smooth curves are characterized among indecomposable g-dimensional ppavs (A,Θ)
by the property that the cohomology class 1

(g−1)![Θ]g−1 can be represented by a curve.

Theorem 2 follows then quickly from Theorem 1 and work of Debarre [4] and Pareschi–

Popa [17].

1.5. Conventions. We work over the field of complex numbers. A variety is a separated

integral scheme of finite type over C; if not mentioned otherwise, varieties are assumed

to be proper over C. A curve is an algebraic variety of dimension one. In particular,

varieties (and hence curves) are reduced and irreducible.

If not mentioned otherwise, a point of a variety is always a closed point. A general

point of a variety or scheme is a closed point in some Zariski open and dense set.

For a codimension one subscheme Z of a variety X , we denote by divX(Z) the cor-

responding effective Weil divisor on X ; if Z is not pure-dimensional, all components of

codimension ≥ 2 are ignored in this definition. Linear equivalence between divisors is

denoted by ∼.
For subschemes Z and Z ′ of an abelian variety A, we denote by Z +Z ′ (resp. Z −Z ′)

the image of the addition (resp. difference) morphism Z × Z ′ //A, equipped with the

natural image scheme structure. Note that for subvarieties Z and Z ′ of A, the image

Z ±Z ′ is reduced and irreducible, hence a subvariety of A. If Z ′ is a point a ∈ A, Z ±Z ′
is also denoted by Z±a.

If Z ⊆ A is a subvariety of an abelian variety, the (Zariski) tangent space TZ,z at a

point z ∈ Z is identified via translation with a subspace of TA,0.

2. Non-degenerate subvarieties

Following Ran [20, p. 464], a d-dimensional subvariety Z of a g-dimensional abelian

variety is called non-degenerate if the image of the Gauß map GZ ∶ Z ⇢ Gr(d, g) is via
the Plücker embedding not contained in any hyperplane. This condition is stronger than

the previously mentioned notion of geometrically non-degenerate subvarieties. We will

need the following consequence of Lemma II.1 in [20].

Lemma 4. Let Z ⊆ A be a codimension k subvariety of an abelian variety whose co-

homology class is a multiple of 1

k!
[Θ]k. Then Z is non-degenerate, hence geometrically

non-degenerate.
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Ran proved that a d-dimensional subvariety Z ⊆ A is geometrically non-degenerate

if and only if for each abelian subvariety B ⊆ A, the composition Z //A/B has either

d-dimensional image or it is surjective [20, Lem. II.12]. In [5, p. 105], Debarre used Ran’s

characterization as definition and proved the following.

Lemma 5. Let Z1,Z2 ⊆ A be subvarieties of respective dimensions d1 and d2 with d1+d2 ≤
dim(A).

(1) If Z1 is geometrically non-degenerate, dim(Z1 +Z2) = d1 + d2.
(2) If Z1 and Z2 are geometrically non-degenerate, Z1 +Z2 ⊆ A is geometrically non-

degenerate.

3. A consequence of Ein–Lazarsfeld’s Theorem

The purpose of this section is to prove Lemmas 7 and 8 below. Under the additional

assumption

dim(Sing(Θ)) ≤ dim(A) − 4,(1)

these were first proven by Ran [18, Cor. 3.3] and Welters [24, Prop. 2], respectively. The

general case is a consequence of the following result of Ein–Lazarsfeld [7].

Theorem 6 (Ein–Lazarsfeld). Let (A,Θ) be a ppav. If Θ is irreducible, it is normal and

has only rational singularities.

Let (A,Θ) be an indecomposable ppav of dimension ≥ 2. By the Decomposition

Theorem [2, p. 75], Θ is irreducible and we choose a desingularization f ∶ X //Θ. The

composition of f with the inclusion Θ ⊆ A is denoted by j ∶ X //A.

Lemma 7. Pullback of line bundles induces an isomorphism

j∗ ∶ Pic0(A) ∼
// Pic0(X).

Proof. By Theorem 6, f∗OX = OΘ and Rif∗OX = 0 for all i > 0. We therefore obtain

H1(X,OX) ≃ H1(Θ,OΘ) ≃H1(A,OA),
where the first isomorphism follows from the Leray spectral sequence, and the second

one from Kodaira vanishing and the short exact sequence

0 //OA(−Θ) //OA
//OΘ = j∗OX

// 0.(2)

Hence, j∗ ∶ Pic0(A) // Pic0(X) is an isogeny.

Tensoring (2) by a nontrivial P ∈ Pic0(A), we obtain

H0(X,j∗P ) ≃H0(A,P ) = 0,
where we applied Kodaira vanishing to OA(−Θ) ⊗ P . It follows that j∗P is nontrivial.

That is, j∗ is an injective isogeny and thus an isomorphism. This proves Lemma 7. �
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Lemma 8. For any a ≠ 0 in A, j ∶ X //A induces an isomorphism

j∗ ∶ H0(A,OA(Θa)) ∼
// H0(X,j∗(OA(Θa))).

Proof. Following Welters [24, Prop. 2], the assertion follows from (2) by tensoring with

OA(Θa), since OA(Θa −Θ) has no nonzero cohomology for a ≠ 0. �

4. Proof of Theorem 1

Let (A,Θ) be a g-dimensional indecomposable ppav, and suppose that there is a curve

C ⊆ A and a (g − 2)-dimensional subvariety Y ⊆ A such that

Θ = C + Y.

After translation, we may assume Θ = −Θ. We pick a point c0 ∈ C and replace C and Y

by C−c0 and Yc0. Hence, 0 ∈ C and so Y = 0 + Y is contained in Θ.

Since (A,Θ) is indecomposable, Θ is irreducible, hence normal by Theorem 6. The

idea of the proof of Theorem 1 is to consider the intersection Θ ∩Θc for nonzero c ∈ C.
Since Θ induces a principal polarization, Θ∩Θc is a proper subscheme of Θ for all c ≠ 0.
For our purposes it is more convenient to consider the corresponding Weil divisor on Θ,

denoted by

divΘ(Θ ∩Θc).
Clearly, this divisor is just the pullback of the Cartier divisor Θc from A to Θ.

Since Θ = −Θ, the map x ✤

// c−x defines an involution of Θ∩Θc. Since Θ = C +Y and

0 ∈ C, it follows that divΘ(Θ ∩Θc) contains the effective Weil divisors Yc and −Y . For

general c, these divisors are distinct and so we find

divΘ(Θ ∩Θc) = Yc +Z(c)(3)

for all c ≠ 0, where Z(c) is an effective Weil divisor on Θ which contains −Y :

(−Y ) ⊆ Z(c).(4)

In the following proposition, we prove that actually Z(c) = −Y . As a byproduct of the

proof, we are able to compute the cohomology class of C in terms of the degree of the

addition morphism

F ∶ C × Y //Θ.

Our proof uses Welters’ method [24].

Proposition 9. Let (A,Θ) be a g-dimensional indecomposable ppav with Θ = C + Y ,

Θ = −Θ and 0 ∈ C as above. For any nonzero c ∈ C,

divΘ(Θ ∩Θc) = Yc + (−Y ).(5)
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Moreover, the cohomology class of C is given by

[C] = deg(F )
(g − 1)2 ⋅ (g − 2)! ⋅ [Θ]

g−1.(6)

Proof. We fix a resolution of singularities f ∶ X //Θ and denote the composition of f

with the inclusion Θ ⊆ A by j ∶ X //A. Moreover, for each a ∈ A, we fix some divisor

Θ̃a on X which lies in the linear series ∣j∗(Θa)∣. For a ≠ 0, ∣j∗(Θa)∣ is zero-dimensional

by Lemma 8. It follows that Θ̃a is unique if a ≠ 0; it is explicitly given by

Θ̃a = divX(f−1(Θa ∩Θ)).(7)

Since Θ is normal, the general point of each component of Θa ∩ Θ lies in the smooth

locus of Θ. The above description therefore proves

f∗Θ̃a = divΘ(Θa ∩Θ),(8)

for all a ≠ 0 in A.

Next, we would like to find a divisor Ỹc on X whose pushforward to Θ is Yc. Since Yc

is in general not Cartier on Θ, we cannot simply take the pullback. Instead, we consider

the Weil divisor which corresponds to the scheme theoretic preimage of Yc,

Ỹc ∶= divX(f−1(Yc)).(9)

Since Θ is normal, Yc is not contained in the singular locus of Θ. It follows that f−1(Yc)
has a unique component which maps birationally onto Yc and the remaining components

are in the kernel of f∗. Hence,

f∗Ỹc = Yc.(10)

For all c ≠ 0 in C, we define

Z̃(c) ∶= Θ̃c − Ỹc.(11)

It follows from (3), (7) and (9) that Z̃(c) is effective. Moreover, by (3), (8) and (10),

f∗Z̃(c) = divΘ(Θ ∩Θc) − Yc = Z(c).(12)

Consider the morphism ϕ ∶X ×C //A with ϕ(x, c) ∶= f(x) − c. The scheme theoretic

preimage Y ∶= ϕ−1(Y ) has closed points {(x, c) ∈X ×C ∣ f(x) ∈ Yc} and the fibers of the

second projection pr2 ∶ Y //C are given by pr−1
2
(c) ≃ f−1(Yc). By generic flatness applied

to pr2, there is a Zariski dense and open subset U ⊆ C such that the fibers f−1(Yc) form
a flat family for c ∈ U . By the definition of Ỹc in (9), Ỹc − Ỹc′ is numerically trivial on X

for all c, c′ ∈ U . Lemma 7 yields therefore for all c, c′ ∈ U a linear equivalence

Ỹc − Ỹc′ ∼ j∗(Θz(c,c′) −Θ) ∼ Θ̃z(c,c′) − Θ̃,(13)
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where z ∶ U ×U //A is the morphism induced by the universal property of

Pic0(X) ≃ Pic0(A).
The proof of Proposition 9 proceeds now in several steps.

Step 1. Let c′ ∈ U and consider the function xc′(c) ∶= z(c, c′) + c′. For all c ∈ U with

xc′(c) ≠ 0, we have

divΘ(Θxc′(c) ∩Θ) = Yc +Z(c′).(14)

Moreover, if c′ ∈ U is general, then xc′(c) is nonconstant in c ∈ U .
Proof. Using the theorem of the square [2, p. 33] on A and pulling back this linear

equivalence to X shows Θ̃xc′(c)
∼ Θ̃z(c,c′) − Θ̃ + Θ̃c′ . By (13) and the definition of Z̃(c′) in

(11), we therefore obtain:

Θ̃xc′(c)
∼ Θ̃z(c,c′) − Θ̃ + Θ̃c′

∼ Ỹc − Ỹc′ + Θ̃c′

∼ Ỹc + Z̃(c′).
That is, Ỹc + Z̃(c′) is an effective divisor linearly equivalent to Θ̃xc′(c)

. By Lemma 8, the

linear series ∣Θ̃xc′(c)
∣ is zero-dimensional for all xc′(c) ≠ 0, and so we actually obtain an

equality of Weil divisors:

Θ̃xc′(c)
= Ỹc + Z̃(c′).

Applying f∗ to this equality, (14) follows from (8), (10) and (12).

Using again the theorem of the square on A and pulling back the corresponding linear

equivalence to X , we obtain

Θ̃z(c,c′) − Θ̃ ∼ Θ̃ − Θ̃−z(c,c′).
It therefore follows from (13) that Θ̃−z(c,c′) ∼ Θ̃z(c′,c). By Lemma 7, −z(c, c′) = z(c′, c).
For a contradiction, suppose that xc′(c) = z(c, c′) + c′ is constant in c for general

(hence for all) c′ ∈ U . It follows that z(c, c′) is constant in the first variable. Since

z(c, c′) = −z(c′, c), it is also constant in the second variable. Therefore, for general c′,

xc′(c) = z(c, c′) + c′ is nonzero (and constant in c). This contradicts (14), because its

right hand side is nonconstant in c as C + Y = Θ. This concludes step 1. �

Let us now fix a general point c′ ∈ U . By step 1, the closure of c ✤ //xc′(c) is a proper

irreducible curve D ⊆ A.
We say that a subvariety Z of A is translation invariant under D if

Zx = Zx′
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for all x,x′ ∈D. Equivalently, Z is translation invariant under D if and only if the corre-

sponding cohomology classes on A satisfy [Z]∗ [D] = 0, where ∗ denotes the Pontryagin
product. That description shows that the notion of translation invariance depends only

on the cohomology classes of Z and D. In particular, Z is translation invariant under D

if and only if the same holds for −Z or −D. If Z is not translation invariant under D,

we also say that it moves when translated by D.

For each c ≠ 0, we decompose the Weil divisor Z(c) on Θ into a sum of effective divisors

Z(c) = Zmov(c) +Zinv(c),(15)

where Zinv(c) contains all the components of Z(c) that are translation invariant under

D and the components of Zmov(c) move when translated by D.

We claim that the effective divisor −Y is contained in Zmov(c):
(−Y ) ≤ Zmov(c).(16)

Indeed, by (4), it suffices to prove that −Y moves when translated by D. This follows as

for x1, x2 ∈D with Yx1
= Yx2

,

Θx1
= C + Yx1

= C + Yx2
= Θx2

,

and so x1 = x2.
Step 2. We have xc′(c) = c and hence D = C. Moreover, for each c ≠ 0 in U ,

divΘ(Θ ∩Θc) = Yc + (−Y ) +Zinv(c′).(17)

Proof. Let Z ′ be a prime divisor in Zmov(c′). It follows from step 1 that Z ′−x ⊆ Θ for

general x ∈D, hence for all x ∈D. Multiplication with −1 shows (−Z ′)x ⊆ −Θ = Θ for all

x ∈D. Since −Z ′ ⊆ −Θ = Θ, this equality implies

(−Z ′)x ⊆ Θx ∩Θ

for all x ∈ D. Therefore, for each c ∈ U with xc′(c) ≠ 0, the prime divisor (−Z ′)xc′(c) is

contained in divΘ(Θxc′(c)
∩Θ). Hence, by (14) from step 1,

(−Z ′)xc′(c)
≤ Yc +Z(c′),(18)

for all c ∈ U with xc′(c) ≠ 0.
Let us consider (18), where we move the point c in C and keep c′ fixed and general.

By step 1, the point xc′(c) moves. Since Z ′ is a component of Zmov(c′), the translate

(−Z ′)xc′(c)
must also move. The translate Yc moves because Y + C = Θ. Clearly, Z(c′)

does not move as we keep c′ fixed. By (18),

(−Z ′)xc′(c) = Yc.(19)
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By (16), equality (19) holds for Z ′ = −Y , which proves Yxc′(c) = Yc. This implies

Θxc′(c)
= Yxc′(c)

+C = Yc +C = Θc.

Hence,

xc′(c) = c,
which proves D = C.
It remains to prove (17). Since xc′(c) = c, (16) and (19) show that −Y is actually the

only prime divisor in Zmov(c′). Hence,
Zmov(c′) = λ ⋅ (−Y )

for some positive integer λ. Using xc′(c) = c and (15) in the conclusion (14) from step 1,

we therefore obtain

divΘ(Θ ∩Θc) = Yc + λ ⋅ (−Y ) +Zinv(c′).
For (17), it now remains to prove λ = 1. That is, it suffices to prove that for general

points y ∈ Y and c ∈ C, the intersection Θ ∩ Θc is transverse at the point −y. Recall

that Θ is normal and so it is smooth at −y for y ∈ Y general. It thus suffices to see that

the tangent space TΘ,−y meets TΘc,−y = TΘ,−y−c properly. Since TΘ,−y and TΘ,−y−c have

codimension one in TA,0, it actually suffices to prove

TΘ,−y ≠ TΘ,−y−c

for general c ∈ C and y ∈ Y . In order to see this, it suffices to note that Θ is irreducible

and so the Gauß map

GΘ ∶ Θ⇢ P
g−1

is generically finite [2, Prop. 4.4.2]. Indeed, TΘ,−y = TΘ,−y−c for general c and y implies

that through a general point of Θ (which is of the form −y − c) there is a curve which is

contracted by GΘ. This concludes step 2. �

Step 3. We have the following identity in H2g−2(A,Z):
[Θ]2 ∗ [C] = 2 ⋅ deg(F ) ⋅ [Θ],(20)

where we recall that F ∶ C × Y //Θ denotes the addition morphism.

Proof. It follows from the conclusion (17) in step 2 that Zinv(c′) is actually independent

of the general point c′ ∈ U . We therefore write Zinv = Zinv(c′).
Suppose that there is a prime divisor Z ′ ≤ Zinv on Θ. Let us think of Z ′ as a codimen-

sion two cycle on A. By definition, Z ′ is translation invariant under D, hence under C

by step 2. Therefore, [Z ′]∗ [C] = 0 in H2g−2(A,Z). This holds for each prime divisor Z ′

in Zinv, hence

[Zinv] ∗ [C] = 0.
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For c ≠ 0, we may consider Θ∩Θc as a pure-dimensional codimension two subscheme of

A. As such it gives rise to an effective codimension two cycle on A, which is nothing but

the pushforward of the cycle divΘ(Θ ∩Θc) from Θ to A. Mapping this cycle further to

cohomology, we obtain [Θ]2 in H2g−4(A,Z). Conclusion (17) in step 2 therefore implies

[Θ]2 ∗ [C] = 2 ⋅ [Y ] ∗ [C] + [Zinv] ∗ [C]
= 2 ⋅ [Y ] ∗ [C]
= 2 ⋅ deg(F ) ⋅ [Θ],

where we used [Y ] = [Yc] = [−Y ] and [Zinv] ∗ [C] = 0. �

Step 4. Assertion (6) of Proposition 9 holds.

Proof. We apply the cohomological Fourier–Mukai functor to the conclusion (20) of step

3. Using Lemma 9.23 and Lemma 9.27 in [11], this yields:

2

(g − 2)! ⋅ [Θ]
g−2 ∪PD[C] = 2 ⋅ deg(F )(g − 1)! ⋅ [Θ]

g−1,(21)

where PD denotes the Poincaré duality operator. Here we used

PD ( 1
k!
⋅ [Θ]k) = 1

(g − k)! ⋅ [Θ]
g−k

for all 0 ≤ k ≤ g.
By the Hard Lefschetz Theorem, (21) implies

[C] = deg(F )
(g − 1)2 ⋅ (g − 2)! ⋅ [Θ]

g−1,

which is precisely assertion (6) of Proposition 9. �

By Lemma 4, assertion (6) of Proposition 9 implies that C is geometrically non-

degenerate. It follows from Lemma 5 that no proper subvariety of A is translation

invariant under C, hence under D by the second conclusion of step 2. This implies

Zinv(c′) = 0 by its definition in (15). Assertion (5) of Proposition 9 follows therefore from

assertion (17) in step 2. This finishes the proof of Proposition 9. �

The next step in the proof of Theorem 1 is the following

Proposition 10. In the same notation as above, C is smooth, deg(F ) = g − 1 and

[C] = 1

(g−1)! ⋅ [Θ]g−1.
Proof. Let us first show that C is smooth. Indeed, (5) implies by Lemma 4 that Y is

non-degenerate. Via the Plücker embedding, its Gauß image is therefore not contained in

any hyperplane. If c0 ∈ C is a singular point, the sum of Zariski tangent spaces TC,c0+TY,y

has thus for general y ∈ Y dimension g. It follows that c0 +Y is contained in the singular

locus of Θ, which contradicts its normality (Theorem 6). Therefore C is smooth.
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In order to prove Proposition 10, it suffices by (6) to show deg(F ) = g − 1. This will

be achieved by computing the degree of i∗Θ, where i ∶ C //A denotes the inclusion, in

two ways. On the one hand, (6) implies

deg (i∗Θ) = [C] ∪ [Θ] = deg(F )
(g − 1)2 ⋅ (g − 2)![Θ]

g =
g ⋅ deg(F )
g − 1

.(22)

On the other hand, we may consider the addition morphism m ∶ C ×C × Y //A. For

y ∈ Y , the restriction of m to C ×C × y will be denoted by

my ∶ C ×C //A.

Since the degree is constant in flat families, we obtain

deg(i∗Θ) = deg(i∗(Θ−c−y)) = deg ((m∗yΘ) ∣C×c)(23)

for all c ∈ C and y ∈ Y .

Let us now fix a general point y ∈ Y . Then the image of my is not contained in Θ

because C +C + Y = A. Therefore, we can pull back the Weil divisor Θ as

m∗y(Θ) = divC×C(m−1y (Θ)),
where m−1y (Θ) denotes the scheme-theoretic preimage, whose closed points are given by

{(c1, c2) ∈ C ×C ∣ c1 + c2 + y ∈ Θ} .
Hence, m∗y(Θ) contains the prime divisors C ×0 and 0×C. We aim to calculate the right

hand side of (23) and proceed again in several steps.

Step 1. The multiplicity of C × 0 and 0 ×C in m∗y(Θ) is one.
Proof. Let λ be the multiplicity of C × 0 in m∗y(Θ). For c ∈ C general, the point (c,0)
has then multiplicity λ in the 0-dimensional scheme

m−1y (Θ) ∩ (c ×C).
Since my maps c ×C isomorphically to Cc+y, the above scheme is isomorphic to

Θ ∩ (Cc+y),
and c + y ∈ Cc+y has multiplicity λ in that intersection. If λ ≥ 2, then

TC,0 = TCc+y ,c+y ⊆ TΘ,c+y.

Since c+y is a general point of Θ, this inclusion contradicts the previously mentioned fact

that the Gauß map GΘ is generically finite and so the tangent space of Θ at a general

point does not contain a fixed line. This proves that C×0 has multiplicity one in m∗y(Θ).
A similar argument shows that the same holds for 0 ×C, which concludes step 1. �
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By step 1,

m∗y(Θ) = divC×C(m−1y (Θ)) = (C × 0) + (0 ×C) + Γ(24)

for some effective 1-cycle Γ on C ×C which contains neither C × 0 nor 0 ×C.

Step 2. Let Γ′ be a prime divisor in Γ. Then for each (c1, c2) ∈ Γ′,
−c1 − c2 − y ∈ Y.(25)

Proof. Condition (25) is Zariski closed and so it suffices to prove it for a general point

(c1, c2) ∈ Γ′. Such a point satisfies c1 ≠ 0 ≠ c2 and c1 + c2 + y ∈ Θ∩Θci for i = 1,2. We can

therefore apply (5) in Proposition 9 and obtain

c1 + c2 + y ∈ supp(Yci + (−Y )),
for i = 1,2, where supp(−) denotes the support of the corresponding effective Weil divisor.

It follows that c1 + c2 + y lies in Yc1 ∩ Yc2 or in (−Y ).
We need to rule out c1 + c2 + y ∈ Yc1 ∩Yc2. But if this is the case, then c1 + y and c2 + y

are both contained in Y . Since y ∈ Y is general, the intersection (C + y) ∩ Y is proper

and so (c1, c2) is contained in a finite set of points, which contradicts the assumption

that it is a general point of Γ′. This concludes step 2. �

Step 3. The 1-cycle Γ is reduced.

Proof. In order to see that Γ is reduced, it suffices to prove that the intersections of

m−1y (Θ) with c × C and C × c are both reduced, where c ∈ C is general. The other

assertion being similar, we will only prove that m−1y (Θ) ∩ (C × c2) is reduced, where

c2 ∈ C is general. Since my maps C × c2 isomorphically to Cc2+y, it suffices to prove that

the intersection

Cc2+y ∩Θ(26)

is transverse, where c2 ∈ C and y ∈ Y are both general.

Let us consider a point c1 ∈ C with c1 + c2 + y ∈ Θ. For c1 = 0, transversality of (26)

in c1 + c2 + y was proven in step 1. For c1 ≠ 0, step 2 implies that y1 ∶= −(c1 + c2 + y) is
contained in Y . In order to prove that the intersection (26) is transverse at −y1, we need

to see that

TC,c1 = TCc2+y
,−y1 ⊊ TΘ,−y1.(27)

This follows from the fact that c2 and y are general as follows.

Recall the addition mapm ∶ C×C×Y //A and consider the scheme theoretic preimage

m−1(−Y ) together with the projections

pr23 ∶m
−1(−Y ) //C × Y and pr3 ∶m

−1(−Y ) // Y.
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Let Γ′ be a prime divisor in Γ with (c1, c2) ∈ Γ′. It follows from step 2 that Γ′ × y is

contained in some component Z of m−1(−Y ). The restriction of pr23 to Z is surjective

because c2 and y are general. Hence, dim(Z) > dim(Y ) and so there is a curve in Z

passing through (c1, c2, y) which is contracted via m to y1. That is, there is some quasi-

projective curve T together with a nonconstant morphism (c̃1, c̃2, ỹ) ∶ T //C × C × Y ,

with c̃1(t0) = c1, c̃2(t0) = c2 and ỹ(t0) = y for some t0 ∈ T such that

c̃1(t) + c̃2(t) + ỹ(t) = −y1,
for all t ∈ T . Since c2 ∈ C and y ∈ Y are general, it follows that the addition morphism

F ∶ C × Y //Θ is generically finite in a neighbourhood of (c2, y). Hence,
c̃1(t) = −y1 − c̃2(t) − ỹ(t)

is nonconstant in t.

For a contradiction, suppose TC,c1 ⊂ TΘ,−y1, where we recall −y1 = c1 + c2 + y. The

image of (c̃2, ỹ) ∶ T //C × Y is a curve through the general point (c2, y). It follows that
(c̃2(t), ỹ(t)) is a general point of C×Y for general t ∈ T . Replacing (c2, y) by (c̃2(t), ỹ(t))
in the above argument therefore shows

TC,c̃1(t) ⊂ TΘ,−y1

for general (hence all) t ∈ T , since −y1 = c̃1(t) + c̃2(t) + ỹ(t). As c̃1(t) is nonconstant

in t, TC,c is contained in the plane TΘ,−y1 for general c ∈ C. Hence, C is geometrically

degenerate, which by Lemma 4 contradicts (6) in Proposition 9. This contradiction

establishes (27), which finishes the proof of step 3. �

Step 4. For c2 ∈ C general, deg(Γ∣C×c2) = deg(F ).
Proof. Let c2 ∈ C be general. By step 3, Γ is reduced and so its restriction to C × c2 is a

reduced 0-cycle. Since c2 and y are general, −c2 − y is a general point of Θ. Therefore,

F −1(−c2 − y) is also reduced. It thus suffices to construct a bijection between the closed

points of the zero-dimensional reduced schemes supp(Γ)∩(C × c2) and F −1(−c2−y). This
bijection is given by

φ ∶ supp(Γ) ∩ (C × c2) //F −1(−c2 − y),
where φ((c1, c2)) = (c1,−c1 − c2 − y). The point is here that φ is well-defined by step 2;

its inverse is given by

φ−1((c1, y1)) = (c1,−c1 − y1 − y).
This establishes the assertion in step 4. �
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By step 4, deg(Γ∣C×c2) = deg(F ) for a general point c2 ∈ C. Using (23) and (24), we

obtain therefore

deg (i∗Θ) = 1 + deg(Γ∣C×c2) = 1 + deg(F ).
Comparing this with (22) yields

g ⋅ deg(F )
g − 1

= 1 + deg(F ),

hence deg(F ) = g − 1, as we want. This finishes the proof of Proposition 10. �

Proof of Theorem 1. Let (A,Θ) be an indecomposable ppav with Θ = C+Y . As explained

in the beginning of Section 4, we may assume Θ = −Θ and 0 ∈ C. By Proposition 10

and Matsusaka–Hoyt’s criterion [10, p. 416], C is smooth and there is an isomorphism

ψ ∶ (A,Θ) ∼ // (J(C),ΘC) which maps C to a translate of W1(C). Since 0 ∈ C, it follows
that ψ(C) =W1(C) − x2 for some x2 ∈W1(C).
For x1 ∈W1(C) with x1 ≠ x2, Weil [23] proved

divWg−1(C)(Wg−1(C) ∩Wg−1(C)x1−x2
) =Wg−2(C)x1

+ (−Wg−2(C))−κ−x2
,(28)

where κ ∈ J(C) is such that −Wg−1(C) =Wg−1(C)κ. We move x1 in W1(C) and compare

(5) with (28) to conclude that ψ(Y ) is a translate of Wg−2(C). This finishes the proof

of Theorem 1. �

Remark 11. Welters [24, p. 440] showed that the conclusion of Proposition 9 implies

the existence of a positive-dimensional family of trisecants of the Kummer variety of

(A,Θ). The latter characterizes Jacobians by results of Gunning’s [8] and Matsusaka–

Hoyt’s [10] and could hence be used to circumvent Proposition 10 in the proof of Theorem

1. We presented Proposition 10 here because its proof is elementary and purely algebraic,

whereas the use of trisecants involves analytic methods, see [8, 12]. It is hoped that this

might be useful in other situations (e.g. in positive characteristics) as well. We also

remark that Proposition 10 can be used to avoid the use of Gunning’s results in Welters’

work [24].

Remark 12. In [14, p. 254], Little conjectured Theorem 1 for g = 4; a proof is claimed if

Θ = C+S is a sum of a curve C and a surface S, where no translate of C or S is symmetric

(hence C is non-hyperelliptic) and some additional non-degeneracy assumptions hold.

However, some parts of the proof seem to be flawed and so further assumptions on C and

S are necessary in [14], see [13].
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5. GV-sheaves, theta duals and Pareschi–Popa’s conjectures

The purpose of this section is to prove Theorem 2 stated in the introduction and to

explain two related conjectures of Pareschi and Popa. We need to recall some results of

Pareschi–Popa’s work [17] first.

Let (A,Θ) be a ppav of dimension g. By [17, Thm. 2.1], a coherent sheaf F on A is a

GV-sheaf if and only if the complex

R Ŝ(RHom(F ,OA))(29)

in the derived category of the dual abelian variety Â has zero cohomology in all degrees

i ≠ g. Here, R Ŝ ∶ Db(A) // Db(Â) denotes the Fourier–Mukai transform with respect to

the Poincaré line bundle [11, p. 201].

For a geometrically non-degenerate subvariety Z ⊆ A, Pareschi and Popa consider the

twisted ideal sheaf IZ(Θ) = IZ ⊗OA(Θ).2 It follows from their own and Höring’s work

respectively that this is a GV-sheaf if Z is a translate of Wd(C) in the Jacobian of a

smooth curve or of the Fano surface of lines in the intermediate Jacobian of a smooth

cubic three-fold, see [17, p. 210]. Both examples are known to have minimal cohomology

class 1

(g−d)![Θ]g−d. Pareschi–Popa’s Theorem [17, Thm. B] says that this holds in general:

Theorem 13 (Pareschi–Popa). Let Z be a d-dimensional geometrically non-degenerate

subvariety of a g-dimensional ppav (A,Θ). If IZ(Θ) is a GV-sheaf,

[Z] = 1

(g − d)![Θ]
g−d.

Combining Theorem 13 with Debarre’s “minimal class conjecture” in [4], Pareschi and

Popa arrive at the following, see [17, p. 210].

Conjecture 14. Let (A,Θ) be an indecomposable ppav of dimension g and let Z be a

geometrically non-degenerate d-dimensional subvariety with 1 ≤ d ≤ g − 2. If

IZ(Θ) is a GV-sheaf,(30)

then either (A,Θ) is isomorphic to the Jacobian of a smooth curve C and Z is a translate

of Wd(C), or it is isomorphic to the intermediate Jacobian of a smooth cubic threefold

and Z is a translate of the Fano surface of lines.

Pareschi and Popa [17, Thm. C] proved Conjecture 14 for d = 1 and d = g−2. Theorem
2 stated in the introduction proves it for subvarieties with curve summands and arbitrary

dimension. Before we can explain the proof of Theorem 2, we need to recall Pareschi–

Popa’s notion of theta duals [17, p. 216].

2In fact, Pareschi and Popa treat the more general case of an equidimensional closed reduced sub-

scheme Z ⊆ A, but for our purposes the case of subvarieties will be sufficient.
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Definition 15. Let Z ⊆ A be a subvariety. Its theta dual V(Z) ⊆ Â is the scheme-

theoretic support of the g-th cohomology sheaf of the complex

(−1Â)∗R Ŝ(RHom(IZ(Θ),OA))
in the derived category Db(Â).
From now on, we use Θ to identify Â with A. The theta dual of Z ⊆ A is then a

subscheme V(Z) ⊆ A. For Wd(C) inside a Jacobian of dimension g ≥ 2, Pareschi and

Popa proved [17, Sect. 8.1]

V(Wd(C)) = −Wg−d−1(C),(31)

for 1 ≤ d ≤ g − 2. Apart from this example, it is in general difficult to compute V(Z).
However, the reduced scheme V(Z)red can be easily described as follows.

Lemma 16. Let Z ⊆ A be a subvariety. The components of the reduced scheme V(Z)red
are given by the maximal (with respect to inclusion) subvarietiesW ⊆ A such that Z−W ⊆
Θ.

Proof. By [17, p. 216], the set of closed points of V(Z) is {a ∈ A ∣ Z ⊆ Θa}. This proves

the lemma. �

We will use the following consequence of (31) and Lemma 16.

Lemma 17. Let C be a smooth curve of genus g ≥ 2 and let Z be a (g−d−1)-dimensional

subvariety of J(C) such that Wd(C)+Z is a translate of the theta divisor ΘC. Then, Z

is a translate of Wg−d−1(C).
Proof. By assumption, there is a point a ∈ J(C) with Wd(C) +Za = ΘC . Hence,

(−Z)−a ⊆ V(Wd(C))
by Lemma 16. By (31), (−Z)−a ⊆ −Wg−d−1(C) and equality follows because of dimension

reasons. �

For a geometrically non-degenerate subvariety Z ⊆ A of dimension d,

dim(V(Z)) ≤ g − d − 1(32)

follows from Lemmas 5 and 16. Moreover, if equality is attained in (32), then Θ = Z −W
for some component W of V(Z)red, and so Θ has Z as a d-dimensional summand.

Pareschi and Popa proved the following [17, Thm. 5.2(a)].

Proposition 18. Let Z ⊆ A be a geometrically non-degenerate subvariety. If IZ(Θ) is
a GV-sheaf, equality holds in (32).
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Motivated by Proposition 18, Pareschi and Popa conjectured [17, p. 222] that Conjec-

ture 14 holds if one replaces (30) by the weaker assumption

dim(V(Z)) = g − d − 1.(33)

By the above discussion, their conjecture is equivalent to

Conjecture 19. Let (A,Θ) be an indecomposable ppav of dimension g and let Z be a

geometrically non-degenerate subvariety of dimension 1 ≤ d ≤ g − 2. Suppose that

Θ = Z +W(34)

for some subvariety W ⊆ A. Then, either (A,Θ) is isomorphic to the Jacobian of a

smooth curve C and Z is a translate of Wd(C), or it is isomorphic to the intermediate

Jacobian of a smooth cubic threefold and Z is a translate of the Fano surface of lines.

Theorem 1 proves (a strengthening of) Conjecture 19 for d = 1 and d = g − 2. This

provides the first known evidence for that conjecture.

Remark 20. Conjecture 14 is implied by Conjecture 19, as well as by Debarre’s “minimal

class conjecture” in [4]. Similar implications among the latter two conjectures are not

known.

We end this section with the proof of Theorem 2.

Proof of Theorem 2. Let Z ⊊ A be as in Theorem 2. Since IZ(Θ) is a GV-sheaf, equality

holds in (32) by Proposition 18. The reduced theta dual V(Z)red contains thus by

Lemmas 5 and 16 a (g−d−1)-dimensional componentW with Z−W = Θ. By assumption

(1) in Theorem 2, we obtain

Θ = C + Y −W.

By Theorem 1, C is smooth and there is an isomorphism ψ ∶ (A,Θ) ∼ // (J(C),ΘC) which
identifies C and Y −W with translates of W1(C) and Wg−2(C), respectively. Hence,

ψ(Z) − ψ(W ) = ψ(C) +ψ(Y ) − ψ(W ) =Wg−1(C)a,(35)

for some a ∈ J(C) and it remains to prove that ψ(Y ) is a translate of Wd−1(C).
If d = g − 1, then ψ(W ) is a point and ψ(Y ) is a translate of Wg−2(C), as we want.

We may therefore assume d ≤ g − 2 in the following. By Theorem 13, the GV-condition

on IZ(Θ) implies

[Z] = 1

(g − d)! ⋅ [Θ]
g−d.

By Debarre’s Theorem [4], ψ(Z) is thus a translate of Wd(C) or −Wd(C).
Case 1: ψ(Z) is a translate of Wd(C).
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By (35), Wd(C)−ψ(W ) is here a translate of Wg−1(C) and so −ψ(W ) is a translate of

Wg−d−1(C) by Lemma 17. Hence, Wg−d(C) + ψ(Y ) is a translate of Wg−1(C). Applying
Lemma 17 again shows then that ψ(Y ) is a translate of Wd−1(C), as we want.

Case 2: ψ(Z) is a translate of −Wd(C).
By (35), Wd(C)+ψ(W ) is in this case a translate of −Wg−1(C) and thus of Wg−1(C).

By Lemma 17, ψ(W ) is therefore a translate of Wg−d−1(C). Since 1 ≤ d ≤ g −2, it follows
from (35) that

Wg−1(C) =W1(C) −W1(C) +W ′,(36)

where W ′ is a translate of ψ(Y ) −Wg−d−2(C). By Lemma 17,

−W1(C) +W ′ =Wg−2(C).(37)

Let c0 ∈ C be the preimage of 0 ∈ J(C) under the Abel–Jacobi embedding. Any point on

W ′ is then represented by a divisor D − g ⋅ c0 on C, where D is effective of degree g. It

follows from (37) that D − c0 − c is effective for all c ∈ C. Thus,

D − c0 ∈W 1

g−1(C) ⊆ Picg−1(C)
is a divisor whose linear series is positive-dimensional. By (37), we have dim(W ′) ≥ g−3
(in fact equality holds by Lemma 5) and so dim(W 1

g−1(C)) ≥ g−3. A theorem of Martens

[1, p. 191] implies that C is hyperelliptic and so case 1 applies. This concludes the

proof. �

6. Dominations by products

6.1. The DPC Problem for theta divisors. We have the following well-known

Lemma 21. Let A be an abelian variety and let F ∶ Z1×Z2 ⇢ A be a rational map from a

product of smooth varieties Z1 and Z2. Then there are morphisms fi ∶ Zi
//A for i = 1,2

such that F = f1 + f2.

Proof. Since A does not contain rational curves, F is in fact a morphism, which by the

universal property of Albanese varieties factors through Alb(Z1)×Alb(Z2). We conclude

as morphisms between abelian varieties are translates of homomorphisms. �

The following result shows that property (1) in Theorem 2 is in fact a condition on

the birational geometry of Z.

Corollary 22. An n-dimensional subvariety Z of an abelian variety A has a d-dimensional

summand if and only if there is a dominant rational map F ∶ Z1 ×Z2 ⇢ Z, where Z1 and

Z2 are varieties of dimension d and n − d respectively.
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Proof. If Z has a d-dimensional summand Z1, the decomposition Z = Z1+Z2 for a suitable

Z2 gives rise to a dominant rational map F ∶ Z1 × Z2 ⇢ Z as we want. Conversely, if

F ∶ Z1 × Z2 ⇢ Z is given, after resolving the singularities of Z1 and Z2, the assertion

follows from Lemma 21. This proves Corollary 22. �

Corollary 3 stated in the introduction is an immediate consequence of Riemann’s

Theorem and

Corollary 23. Let (A,Θ) be an indecomposable g-dimensional ppav. Suppose there is a

dominant rational map

F ∶ Z1 ×Z2 ⇢ Θ,

where Z1 and Z2 are varieties of dimension 1 and g − 2 respectively. Then (A,Θ) is iso-
morphic to the Jacobian of a smooth curve C. Moreover, if we identify Θ with Wg−1(C),
there are rational maps f1 ∶ Z1 ⇢W1(C) and f2 ∶ Z2 ⇢Wg−2(C) with F = f1 + f2.
Proof. After resolving the singularities of Z1 and Z2, we may assume that both varieties

are smooth. By Lemma 21, F ∶ Z1 ×Z2 ⇢ Θ ⊆ A is then a sum of morphisms f1 ∶ Z1
//A

and f2 ∶ Z2
//A. Hence,

f1(Z1) + f2(Z2) = Θ,
and so Corollary 23 follows from Theorem 1. �

Remark 24. For an arbitrary ppav (A,Θ), Corollary 3 implies that each component

of Θ is DPC if and only if (A,Θ) is a product of Jacobians of smooth curves. Indeed,

if (A,Θ) = (A1,Θ1) × ⋅ ⋅ ⋅ × (Ar,Θr) with indecomposable factors (Ai,Θi), then Θ has r

components which are isomorphic to Θi×∏j≠iAj where i = 1, . . . , r. A product of varieties

is DPC if and only if each factor is DPC. Since abelian varieties are DPC, it follows

that the components of Θ are DPC if and only if each Θi is DPC, hence the result by

Corollary 3.

Corollary 25. The Fano surface of lines on a smooth cubic threefold X ⊆ P4 is not

dominated by a product of curves.

Proof. By [3, Thm. 13.4.], the theta divisor of the intermediate Jacobian (J3(X),Θ)
is dominated by the product S × S, where S is the Fano surface of lines on X . Since

(J3(X),Θ) is indecomposable and not isomorphic to the Jacobian of a smooth curve [3,

p. 350], Corollary 25 follows from Corollary 23. �

6.2. Dominations of symmetric products of curves. Theorem 1 is nontrivial even

in the case where (A,Θ) is known to be a Jacobian. This allows us to classify all possible

ways in which the symmetric product C(k) of a smooth curve C of genus g ≥ k + 1 can

be dominated by a product of curves. Before we explain the result, we should note that
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AJk ∶ C(k) //Wk(C) is a birational morphism for g ≥ k, and that −Wg−1(C) is a translate

of Wg−1(C). In particular, multiplication by −1 on J(C) induces a nontrivial birational

automorphism

ι ∶ C(g−1)
∼
⇢ C(g−1).

Corollary 26. Let C be a smooth curve of genus g. Suppose that for some k ≤ g − 1,
there are smooth curves C1, . . . ,Ck together with a dominant rational map

F ∶ C1 × ⋅ ⋅ ⋅ ×Ck ⇢ C(k).

Then there are dominant morphisms fi ∶ Ci
//C with the following property:

● If k < g − 1, then F = f1 + ⋅ ⋅ ⋅ + fk.
● If k = g − 1, then F = f1 + ⋅ ⋅ ⋅ + fg−1 or F = ι ○ (f1 + ⋅ ⋅ ⋅ + fg−1).

Proof. We use the birational morphism AJk ∶ C(k) //Wk(C) to identify C(k) birationally

with its image Wk(C) in J(C). By Lemma 21, the rational map

AJk ○F ∶ C1 × ⋅ ⋅ ⋅ ×Ck ⇢Wk(C)
is a sum of morphisms Ci

//Wk(C). If C ′i denotes the image of Ci in J(C), then
ΘC = C ′1 + ⋅ ⋅ ⋅ +C ′k +Wg−k−1(C)(38)

by Riemann’s Theorem. Proposition 10 yields therefore [C ′i] = 1

(g−1)![ΘC]g−1 for all i. It

follows for instance from Debarre’s Theorem [4] that each C ′i is a translate of C or of −C,

where C ⊆ J(C) is identified with its Abel–Jacobi image. If C is hyperelliptic, Corollary

26 follows.

Assume now that C is non-hyperelliptic. Then there is some 0 ≤ r ≤ k, such that Ci is

a translate of −C for precisely r many indices i ∈ {1, . . . , k}. By (38), Wg−r−1(C)−Wr(C)
is then a translate of ΘC . However, Lemma 5.5 in [4] yields

[Wg−r−1(C) −Wr(C)] = (g − 1
r
) ⋅ [ΘC],

which coincides with [ΘC] if and only if r = 0 or r = g − 1. This proves Corollary 26. �

Corollary 26 implies a theorem of Martens [16, 19] asserting that any birational map

C
(k)
1

∼
⇢ C

(k)
2

between the k-th symmetric products of smooth curves C1 and C2 of genus g ≥ k + 2 is

induced by an isomorphism C1
∼
// C2.

For k ≥ g, the symmetric product C(k) is birational to J(C) × Pk−g. This shows that

Corollary 26 is sharp as for k ≥ g, the product J(C) × Pk−g admits a lot of nontrivial

dominations. For instance, it is dominated by k − g arbitrary curves (whose product

dominates Pk−g) together with any choice of g curves in J(C) whose sum is J(C).
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