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PURITY, FORMALITY, AND ARRANGEMENT COMPLEMENTS

CLÉMENT DUPONT

Abstract. We prove a “purity implies formality” statement in the context of
the rational homotopy theory of smooth complex algebraic varieties, and apply
it to complements of hypersurface arrangements. In particular, we prove that
the complement of a toric arrangement is formal. This is analogous to the
classical formality theorem for complements of hyperplane arrangements, due
to Brieskorn, and generalizes a theorem of De Concini and Procesi.

1. Introduction

Rational homotopy theory, introduced by Quillen and Sullivan [Qui69, Sul77],
studies topological spaces via their rational models, which are commutative differ-
ential graded algebras. The topological spaces which have a rational model with
zero differential are called formal, and constitute a particularly nice family. There
is a partial notion of formality, called r-formality, for r > 0 an integer. The larger
the index r, the stronger the notion of r-formality, with classical formality corre-
sponding to r = ∞.

Let us restrict our attention to smooth complex algebraic varieties. Deligne
defined [Del71] a refined algebraic structure, namely a mixed Hodge structure, on
the rational cohomology groups of any smooth variety. A mixed Hodge structure
consists in particular of a weight filtration. In the smooth and compact case, this
filtration is concentrated in degree k on the k-th cohomology group; we say that we
get a pure Hodge structure of weight k and we recover classical Hodge theory. In
the general smooth case, the k-th cohomology group has weights that range from k
to 2k. If U is a smooth variety, two extreme situations are of particular interest:
when Hk(U) is pure of weight k (as in the compact case) and when Hk(U) is pure
of weight 2k (as far away from the compact case as possible). Our first theorem is a
“purity implies formality” result, where we take advantage of these two situations
to prove (partial) formality.

Theorem 1.1 (see Theorem 2.2). Let U be a smooth variety, r > 0 be an integer,
or r = ∞, and assume that one of the following conditions is satisfied:

(1) for every integer k 6 r + 1, Hk(U) is pure of weight k;
(2) for every integer k 6 r, Hk(U) is pure of weight 2k.

Then U is r-formal.

The study of the rational homotopy theory of smooth varieties can be traced
back to the seminal paper [DGMS75] by Deligne, Griffiths, Morgan and Sullivan,
whose main result is the formality of smooth compact algebraic varieties. This is
proved using classical Hodge theory. Later, Morgan [Mor78] used Deligne’s mixed
Hodge theory to introduce rational models for all smooth complex varieties. These
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2 CLÉMENT DUPONT

models are the only ingredients of the proof of Theorem 1.1.

Next, we apply Theorem 1.1 to the special case of complements of hypersurface
arrangements, as follows. Let X be a smooth (not necessarily compact) variety. A
finite set A = {L1, . . . , Ll} of smooth hypersurfaces of X is a hypersurface arrange-
ment [Dup15] if around each point of X we can find a system of local coordinates
in which each Li is defined by a linear equation. The notion of a hypersurface ar-
rangement generalizes that of a simple normal crossing divisor, for which the local
linear equations are everywhere linearly independent. We denote by

U(A) = X − L1 ∪ · · · ∪ Ll

the complement of the union of the hypersurfaces in A. A stratum of A is a con-
nected component of an intersection

⋂

i∈I Li for some I ⊂ {1, . . . , l}. The Leray
spectral sequence of the inclusion of U(A) inside X explains how the weights on the
cohomology of the strata controls the weights on the cohomology of the comple-
ment U(A). This allows us to prove, as a corollary of Theorem 1.1, a “purity implies
formality” theorem in the case of complements of hypersurface arrangements, where
the purity assumption now concerns the cohomology of the strata.

Theorem 1.2 (see Theorem 3.2). Let A be a hypersurface arrangement inside a
smooth variety X, and r > 0 be an integer, or r = ∞. Assume that for every
stratum S of A and for every integer k such that codim(S) + k 6 r, Hk(S) is pure
of weight 2k. Then U(A) is r-formal.

Finally, a toric arrangement is a particular case of a hypersurface arrangement
inside a complex torus X = (C∗)n, where each Li is defined by a global equation

of the form {zk1

1 · · · zkn

n = a}, with k1, . . . , kn integers and a a non-zero complex
number. The study of the topology of the complement U(A), for A a toric ar-
rangement, was started by De Concini and Procesi [DCP05] as an analogue of the
classical theory of hyperplane arrangements. Following their program, we prove the
following corollary of Theorem 1.2.

Theorem 1.3 (see Theorem 3.7). Let A be a toric arrangement, then the comple-
ment U(A) is formal.

This theorem is analogous to the classical formality theorem for complements of
hyperplane arrangements, due to Brieskorn [Bri73], and which is also (Theorem 3.6)
a corollary of Theorem 1.2.

De Concini and Procesi [DCP05] already proved a special case of Theorem 1.3,
namely the case of unimodular toric arrangements; this was later generalized to
deletion-restriction type toric arrangements by Deshpande and Sutar [DS14]. In
both cases, formality is proved by exhibiting an algebra of closed differential forms
that maps bijectively to the cohomology of the complement of the arrangement,
exactly as in the case of hyperplane arrangements. Our method is very different,
and does not require any a priori understanding of the cohomology algebra.

In the present article, all cohomology groups are implicitly taken with rational
coefficients. We write “cdga” for “commutative differential graded algebra”, im-
plicitly over the rationals, where commutativity is understood in the graded sense.
We write “variety” for “complex algebraic variety”.
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Many thanks to Christin Bibby, Yohan Brunebarbe, Filippo Callegaro, Emanuele
Delucchi, Priyavrat Deshpande, Luca Moci and Sergey Yuzvinsky for stimulating
discussions. Many thanks to Ştefan Papadima for numerous helpful comments on
rational homotopy theory, and in particular for suggesting to state the results of
the present article in the context of partial formality.

2. Purity implies formality

2.1. Mixed Hodge structures. We refer to [Del71, 2.3.8] for the precise defini-
tions. For the needs of the present article, let us just mention that a mixed Hodge
structure is given in particular by a finite-dimensional rational vector spaceH along
with an increasing filtration

· · · ⊂ Wi−1H ⊂ WiH ⊂ Wi+1H ⊂ · · ·

called the weight filtration. We denote by grWi H = WiH/Wi−1H the successive quo-
tients. A mixed Hodge structure is pure of weight w if Ww−1H = 0 and WwH = H ,
i.e. if grWi H = 0 for i 6= w. If H is a mixed Hodge structure and d is an integer,
then one can construct the Tate twist H(−d), which is a mixed Hodge structure
on the same underlying vector space H for which the weight filtration is shifted
by 2d: WiH(−d) = Wi−2dH .

In [Del71], Deligne proves the existence of a functorial mixed Hodge structure
on the cohomology groups of smooth varieties. For X a smooth compact variety,
this is classical Hodge theory, and the mixed Hodge structure on Hk(X) is pure of
weight k. For U a smooth (not necessarily compact) variety, the weight filtration
in Hk(U) has the form

0 = Wk−1H
k(U) ⊂ WkH

k(U) ⊂ · · · ⊂ W2k−1H
k(U) ⊂ W2kH

k(U) = Hk(U).

In other words, the weights in Hk(U) range from k to 2k. A basic example is the
cohomology group H1(C∗), which is one-dimensional and pure of weight 2.

2.2. Rational models and formality. Let r > 0 be an integer, or r = ∞. Let
us recall that a map f : A → B of cdga’s is a r-quasi-isomorphism if the induced
map on cohomology Hi(f) : Hi(A) → Hi(B) is an isomorphism for i 6 r and an
injection for i = r + 1. A rational r-model for a topological space U is a cdga that
is connected to the algebra A•(U) of piecewise polynomial forms on U by a zig-zag
of r-quasi-isomorphisms. We say that U is r-formal if it has a rational r-model
with zero differential. See [Măc10] for a discussion of this notion.

The case r = ∞ is of particular interest: a ∞-quasi-isomorphism is just a quasi-
isomorphism, a rational ∞-model is simply called a rational model and a ∞-formal
topological space is simply called formal.

2.3. The Deligne-Morgan model. If a smooth variety U is given as the com-
plement, in a smooth compact variety, of a normal crossing divisor, then Morgan
used Deligne’s mixed Hodge theory to define a finite-dimensional model for U that
we now describe.

Let X be a smooth compact variety and D be a simple normal crossing divisor
in X ; this means that in local charts on X , D looks like a union of coordinate
hyperplanes, and that the irreducible components of D are smooth. We label
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by D1, . . . , Ds those irreducible components. For a subset I ⊂ {1, . . . , s}, we denote
byDI =

⋂

i∈I Di the corresponding intersection, which is a disjoint union of smooth
compact varieties of codimension the cardinality of I. Let us put

Mk
q =

⊕

|I|=q−k

H2k−q(DI)(k − q).

Because of the Tate twist (k − q), Mk
q is a pure Hodge structure of weight q.

The following theorem summarizes results from [Del71] and [Mor78] on the mixed
Hodge structure and the rational homotopy theory of smooth algebraic varieties.

Theorem 2.1. (1) The direct sum M• =
⊕

q M
•
q has a natural structure of a

cdga, with product Mk
q ⊗Mk′

q′ → Mk+k′

q+q′ and differential Mk
q → Mk+1

q .

(2) We have isomorphisms Hk(M•
q )

∼= grWq Hk(X−D) that are compatible with
the product on M• and the cup-product in cohomology.

(3) The cdga M• is a rational model for X −D.

For the sake of completeness, we now give explicit formulas for the cdga struc-
ture on M•. For I ⊂ J ⊂ {1, . . . , s}, we denote by ιIJ : DJ →֒ DI the corre-
sponding closed immersion. For I, I ′ ⊂ {1, . . . , s} such that I ∩ I ′ = ∅, we denote
by sgn(I, I ′) ∈ {±1} the sign of the permutation that orders I ∪ I ′ in increasing
order.

Let us define the product

µ : Mn
q ⊗Mn′

q′ → Mn+n′

q+q′

on elements x ∈ H2n−q(DI) and x′ ∈ H2n′−q′(D′
I′). By definition, µ(x⊗x′) is zero

if I ∩ I ′ 6= ∅, and

µ(x ⊗ x′) = (−1)(q−n)q′sgn(I, I ′) (ιII∪I′)∗(x) · (ιI
′

I∪I′)∗(x′)

otherwise, where ι∗ denotes the restriction morphism associated to a closed immer-
sion ι, and α · α′ denotes the cup-product of elements α and α′ in cohomology.

Let us define the differential

d : Mn
q → Mn+1

q

on an element x ∈ H2n−q(DI). It is given by the formula

d(x) = (−1)q
∑

i∈I

sgn({i}, I − {i}) (ι
I−{i}
I )∗(x)

where ι∗ denotes the Gysin morphism associated to a closed immersion ι.

2.4. Purity implies formality.

Theorem 2.2. Let U be a smooth variety, r > 0 be an integer, or r = ∞, and
assume that one of the following conditions is satisfied:

(1) for every integer k 6 r + 1, Hk(U) is pure of weight k;
(2) for every integer k 6 r, Hk(U) is pure of weight 2k.

Then U is r-formal.
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Proof. By Nagata’s embedding theorem and Hironaka’s resolution of singularities,
there exists a pair (X,D) such that X is a smooth compact variety, D is a sim-
ple normal crossing divisor, and X − D = U . We fix such a pair and use the
corresponding model M• from Theorem 2.1.

(1) By assumption and by Theorem 2.1 (2) we have Hk(M•
q ) = 0 for q 6= k

and k 6 r + 1. We note that Mk+1
k = 0 and put, for every integer k,

Ck = Hk(M•
k ) = coker

(

Mk−1
k

d
−→ Mk

k

)

.

The collection C• has a natural structure of a cdga with zero differential
for which the surjection M• ։ C• is a morphism of cdga’s. The induced
map

Hi(M•) → Hi(C•)

is an isomorphism for i 6 r+ 1, hence M• ։ C• is a r-quasi-isomorphism.
By Theorem 2.1 (3), this implies that C•, with zero differential, is a ratio-
nal r-model for U , hence the result.

(2) By assumption and by Theorem 2.1 (2) we have Hk(M•
q ) = 0 for q 6= 2k

and k 6 r. We note that Mk−1
2k = 0 and put, for every integer k,

Kk = Hk(M•
2k) = ker

(

Mk
2k

d
−→ Mk+1

2k

)

.

The collection K• has a natural structure of a cdga with zero differential
for which the injection K• →֒ M• is a morphism of cdga’s. The induced
map

Hi(K•) → Hi(M•)

is an injection for every i, and an isomorphism for i 6 r, hence K• →֒ M•

is a r-quasi-isomorphism. By Theorem 2.1 (3), this implies that K•, with
zero differential, is a rational r-model for U , hence the result.

�

Remark 2.3. In Theorem 2.2 (1), one cannot replace the inequality k 6 r + 1 by
k 6 r. Indeed, in [DPS09, Example 10.1], it is shown that the configuration space
of n > 3 ordered points on an elliptic curve is not 1-formal; on the other hand, it
is easy to show that its first cohomology group is pure of weight 1.

Remark 2.4. In the context of rational homotopy theory for (not necessarily smooth)
projective varieties, Chataur and Cirici used a similar argument to prove [CC15,
Theorem 3.3] a “purity implies formality” result analogous to Theorem 2.2 (1).

For the sake of clarity, let us state separately the case r = ∞ of Theorem 2.2.

Theorem 2.5. Let U be a smooth variety, and assume that one of the following
conditions is satisfied:

(1) for every integer k, Hk(U) is pure of weight k;
(2) for every integer k, Hk(U) is pure of weight 2k.

Then U is formal.

Remark 2.6. Theorem 2.5 (1) applies for U = X a smooth compact variety, in
which case we recover the main result of [DGMS75].
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Remark 2.7. In the context of Theorem 2.2 (2) and Theorem 2.5 (2), the proof
shows that the mixed Hodge structure on Hk(U), k 6 r, can only be of type (k, k).
Indeed, Hk(U) is a Hodge sub-structure of Mk

2k =
⊕

|I|=k H
0(DI)(−k), which has

type (k, k).

Remark 2.8. The case r = 1 of Theorem 2.2 (2) states that if H1(U) is pure of
weight 2 then U is 1-formal. This fact is well-known, being a consequence of [Mor78,
Corollary 10.3]; indeed, a topological space is 1-formal if and only if the Malcev Lie
algebra of its fundamental group is the completion of its holonomy Lie algebra.

We mention an application of Theorem 2.5.

Proposition 2.9. Let X be a smooth compact variety and p ∈ X be a point. Then
the complement X − p is formal.

Proof. Let us write d for the complex dimension of X . The long exact localization
sequence

· · · → Hk−2d(p)(−d) → Hk(X) → Hk(X − p) → Hk−2d+1(p)(−d) → · · ·

gives isomorphisms Hk(X) ∼= Hk(X − p) for k 6 2d− 2, and an exact sequence

0 → H2d−1(X) → H2d−1(X − p) → H0(p)(−d) → H2d(X) → H2d(X − p) → 0.

By definition, the morphism H0(p)(−d) → H2d(X) is the Gysin morphism of the
inclusion p →֒ X , i.e. is Poincaré dual to the morphism H0(X) → H0(p), which is
an isomorphism. We then have H2d−1(X) ∼= H2d−1(X − p) and H2d(X − p) = 0.
Thus, for every integer k, Hk(X−p) is pure of weight k and the claim follows from
Theorem 2.5 (2). �

3. Formality of arrangement complements

3.1. Hodge theory of arrangement complements. Let X be a smooth (not
necessarily compact) variety. A finite set A = {L1, . . . , Ll} of smooth hypersurfaces
of X is a hypersurface arrangement [Dup15] if around each point of X we may find
a system of local coordinates in which each Li is defined by a linear equation. The
notion of a hypersurface arrangement generalizes that of a simple normal crossing
divisor, for which the local linear equations are everywhere linearly independent.
We denote by

U(A) = X − L1 ∪ · · · ∪ Ll

the complement of the union of the hypersurfaces in A.

A stratum of a hypersurface arrangementA is a non-empty connected component
of an intersection

⋂

i∈I Li for I ⊂ {1, . . . , l}. Each stratum is a smooth subvariety
of X . We write Sr(A) for the set of strata of L of codimension r. By conven-
tion, S0(A) only contains the ambient variety X .

To a stratum S of A one canonically attaches a finite-dimensional rational vector
space AS(A) in the following way. Choose any point p ∈ S and any local chart
on X around p in which all the hypersurfaces Ti containing S are defined by lin-
ear equations. Then in this local chart A is a hyperplane arrangement, and one
defines AS(A) to be the S-local component of the Orlik-Solomon algebra of this
hyperplane arrangement, see [Loo93, 2.2] or [Dup15, 2.4] for more details.
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Theorem 3.1. The Leray spectral sequence of the inclusion U(A) →֒ X can be
computed as

(1) Ep,q
2 =

⊕

S∈Sq(A)

Hp(S)⊗AS(A)(−q) =⇒ Hp+q(U(A))

and is a spectral sequence in the category of mixed Hodge structures.

The proof of this theorem can be found in [Bib13, 3]; the same spectral sequence,
shifted, appeared in [Loo93, 2.2] and [Dup15, 4.3]. The fact that the Leray spectral
sequence of an algebraic map is compatible with mixed Hodge structures is a con-
sequence of Saito’s formalism of mixed Hodge modules [Sai88], see [PS08, Corollary
14.14].

3.2. Formality of arrangement complements. We fix, as in the previous para-
graph, a smooth (not necessarily compact) variety X and a hypersurface arrange-
ment A inside X .

Theorem 3.2. Let r > 0 be an integer, or r = ∞. Assume that for every stratum S
of A and for every integer k such that codim(S)+k 6 r, Hk(S) is pure of weight 2k.
Then the following holds:

(1) for every integer k 6 r, Hk(U(A)) is pure of weight 2k;
(2) U(A) is r-formal.

Proof. By assumption, the term Ep,q
2 in the Leray spectral sequence (1) is pure of

weight 2(p + q) for p + q 6 r. Let L be the (decreasing) Leray filtration on the
cohomology of U(A), abutment of the Leray spectral sequence. By definition the
term Ep,q

∞ = grpLH
p+q(U(A)) is a subquotient of Ep,q

2 . Since the spectral sequence
is compatible with mixed Hodge structures, L is a filtration by mixed Hodge sub-
structures, and each graded quotient grpLH

k(U(A)) is pure of weight 2k, for k 6 r.
Thus, the whole cohomology group Hk(U(A)) is pure of weight 2k, for k 6 r.
Theorem 2.2 (2) then implies the formality statement. �

For the sake of clarity, let us state separately the case r = ∞ of Theorem 3.2.

Theorem 3.3. Assume that for every stratum S of A and for every integer k,Hk(S)
is pure of weight 2k. Then the following holds:

(1) for every integer k, Hk(U(A)) is pure of weight 2k;
(2) U(A) is formal.

Remark 3.4. In the context of Theorem 3.2 and 3.3, Remark 2.7 implies that the
mixed Hodge structure on Hk(U(A)), k 6 r, can only be of type (k, k).

Remark 3.5. We may also note (although this is not necessary for our discussion)
that the Leray spectral sequence (1) degenerates at E2, i.e. E

p,q
∞ = Ep,q

2 . Indeed,
any differential dr : Ep,q

r → Ep+r,q−r+1
r has a pure Hodge structure of weight 2(p+q)

as its source and a pure Hodge structure of weight 2(p+ q+1) as its target; it must
thus be zero.

3.3. Application to hyperplane arrangements. A hyperplane arrangement inCn

is a finite set

A = {L1, . . . , Ll}
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where each Li is a hyperplane in Cn. The complement of the hyperplane arrange-
ment A is the smooth variety

U(A) = Cn − L1 ∪ · · · ∪ Ll.

Theorem 3.6. Let A be a hyperplane arrangement. Then the following holds:

(1) for every integer k, Hk(U(A)) is pure of weight 2k;
(2) U(A) is formal.

Proof. A hyperplane arrangement A in Cn is trivially a hypersurface arrangement;
furthermore, all strata are isomorphic to affine spaces Cd, hence their only non-zero
cohomology groups are H0(Cd) ∼= Q(0), pure of weight 0. The claim then follows
from Theorem 3.3. �

Theorem 3.6 is classical, and is often proved in a much simpler way, without
needing the Deligne-Morgan model. Let R•(A) be the subalgebra of the algebra of

holomorphic differential forms on U(A) generated by the logarithmic forms df

f
, for f

the equation of a hyperplane in A. All the differential forms in R•(A) are closed.
Then [Bri73, Lemme 5] implies that the inclusion of R•(A) inside the complex
of differential forms on U(A) is a quasi-isomorphism, which implies the formality
of U(A). The purity statement follows easily from the same argument.

3.4. Application to toric arrangements. A toric arrangement in (C∗)n is a
finite set

A = {L1, . . . , Ll}

where each Li is a translated codimension 1 subtori of (C∗)n, i.e. defined by an

equation of the form {zk1

1 · · · zkn

n = a} with k1, . . . , kn integers and a a non-zero
complex number.

The complement of the toric arrangement A is the smooth variety

U(A) = (C∗)n − L1 ∪ · · · ∪ Ll.

Theorem 3.7. Let A be a toric arrangement. Then the following holds:

(1) for every integer k, Hk(U(A)) is pure of weight 2k;
(2) U(A) is formal.

Proof. By using the exponential cover exp : Cn → (C∗)n, one sees that a toric
arrangement A in (C∗)n is a hypersurface arrangement. All strata are isomorphic
to tori (C∗)d; since H1(C∗) is pure of weight 2, one derives from the Künneth
formula that Hk((C∗)d) is pure of weight 2k for all integers k, d. The claim then
follows from Theorem 3.3. �

We note that Theorem 3.7 (1) was already proved, in a very similar way, by
Looijenga [Loo93, 2.2].

In [DCP05], De Concini and Procesi proved the formality of the complement of
unimodular toric arrangements. These are the toric arrangementsA = {L1, . . . , Ll}
for which all the intersections

⋂

i∈I Li, for I ⊂ {1, . . . , l}, are connected. Their
proof uses differential forms and goes along the same lines as the one for hyper-
plane arrangements that we have described in §3.3. This was later generalized
by Deshpande and Sutar [DS14] to a broader class of toric arrangements, called
deletion-restriction type. It is natural to ask if these proofs can be extended to
more general toric arrangements. We hope to address this question in a future
article.
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Études Sci. Publ. Math., (48):137–204, 1978.
[PS08] C. A. M. Peters and J. H. M. Steenbrink. Mixed Hodge structures, volume 52 of

Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern
Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A
Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2008.

[Qui69] D. Quillen. Rational homotopy theory. Ann. of Math. (2), 90:205–295, 1969.
[Sai88] M. Saito. Modules de Hodge polarisables. Publ. Res. Inst. Math. Sci., 24(6):849–995

(1989), 1988.

[Sul77] D. Sullivan. Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ.
Math., (47):269–331 (1978), 1977.

Max-Planck-Institut für Mathematik, Vivatsgasse, 7, 53111 Bonn, Germany

E-mail address: cdupont@mpim-bonn.mpg.de


	1. Introduction
	2. Purity implies formality
	2.1. Mixed Hodge structures
	2.2. Rational models and formality
	2.3. The Deligne-Morgan model
	2.4. Purity implies formality

	3. Formality of arrangement complements
	3.1. Hodge theory of arrangement complements
	3.2. Formality of arrangement complements
	3.3. Application to hyperplane arrangements
	3.4. Application to toric arrangements

	References

