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AN OPERADIC PROOF OF BAEZ-DOLAN STABILIZATION

HYPOTHESIS

M. A. BATANIN

Abstract. We prove a stabilization theorem for algebras of n-operads in a
monoidal model category E. It implies a version of Baez-Dolan stabilization
hypothesis for Rezk’s weak n-categories and some other stabilization results.
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1. Introduction

Breen [10] and later Baez and Dolan [1] suggested the following stabilization
hypothesis in higher category theory

Hypothesis 1.1. The category of n-tuply monoidal k-categories is equivalent to
the category of (n+ 1)-tuply monoidal k-categories provided n ≥ k + 2.

Baez and Dolan define n-tuply monoidal k-category as a weak n + k-category
which has only one cell in each dimension smaller then n. It is known that such a
definition, if taken naively, is not completely satisfactory because even if there is a
unique cell in lower dimension the action of higher coherence cells associated to it
can be nontrivial (see [11] for a discussion).

To get rid of this problem we have to work with weakest possible morphisms
of k-categories. Moreover, we want to be able to speak about monoidal structures
on k-categories. One technically convenient way to do it is to choose a symmetric
monoidal model category (E ,⊗, e) whose homotopy category is equivalent to the
homotopy category of weak k-categories and weak k-functors. For example, for
k = 1 one can take the category of categories with cartesian product and ‘folklore’
model structure and for k = 2 one can consider the category of 2-categories with
Gray-product as tensor product and Lack’s model structure [18]. For any k ≥ 0
the category of Θk simplicial presheaves ΘkSpk with Rezk model structure satisfies
this requirement [9, 21]. There is a widely-accepted understanding that a monoidal
k-category is just an E1-algebra in such a monoidal model category E [19].
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2 M. A. BATANIN

Now, an n-tuply monoidal weak k-category must have n monoidal structures
which interact coherently. It is another widely-accepted idea that such an interac-
tion of structures is equivalent to an action of an En-operad [19]. This is justified by
an additivity theorem for En-operads ([19][Theorem 5.1.1.2]): the tensor product
of En-operad and an Em-operad is an En+m-operad. All operads here have to be
understood as ∞-operads and tensor product is a ‘derived’ Boardman-Vogt tensor
product. The statement and proof of this theorem are subtle because of a tricky
homotopy behaviour of Boardman -Vogt tensor product [14]. Lurie’s Additivity
Theorem holds only in fully homotopised world. As a consequence the stabilisation
result ([19][Example 5.1.2.3]) gives an equivalence of (∞, 1)-categories rather than
Quillen equivalence of model categories of algebras12.

In this paper we choose a different approach to coherent interaction of monoidal
structures which comes closer to the original Baez-Dolan understanding of n-tuply
monoidal k-category as a degenerate (n + k)-category3 and does not require Ad-
ditivity Theorem (though we conjecture that Additivity Theorem can be proved
using our techniques). An n-tuply monoidal k-category for us is an algebra of a
cofibrant contractible n-operad in E .

For n = 1 this means that a monoidal k-category is an algebra of a cofibrant
nonsymmetric contractible operad, which is well known to be homotopy equivalent
to an E1-algebra structure. This simple observation was extended in [2] to arbitrary
dimension. It is shown here that the derived symmetrisation functor on a terminal
n-operad is an En-operad and, therefore, the homotopy category of algebras of
cofibrant contractible n-operads is equivalent to the homotopy category of En-
algebras. So, homotopically both approaches are equivalent. The difference is that
our point of view allows to avoid Boardman-Vogt tensor product and ∞-operads.
This has some advantage as we can use classical operadic and model theoretic
methods and final result is formulated in terms of Quillen equivalences, which is
a stronger statement. Also our techniques allows to prove stabilisation not only
for weakly unital k-categories but for nonunital algebras also. It is known that
Additivity Theorem fails in this case even for cofibrant operads [14][Section 3].
Our proof is essentially the same in all cases, we just need to choose an appropriate
category of n-operads.

2. Higher operads and symmetrization

2.1. n-ordinals and n-operads. Let n ≥ 0. Recall [2, Sec. II] that a n-ordinal is
a finite set T equipped with n binary relations <0, . . . , <n−1 such that

(i) <p is nonreflexive,
(ii) for every pair a, b of distinct elements of T there exists exactly one p such

that

a <p b or b <p a,

(iii) if a <p b and b <q c then a <min(p,q) c.

1Lurie formulated his argument in the context of (n, 1)-categories but observed that it can
be extended to a more general context of (n, k)-categories. This has been done by Gepner and
Haugseng in [15].

2A weaker version of stabilisation hypothesis was earlier proved by Simpson in [22].
3Gepner and Haugseng [15] show that such an interpretation is also possible using their weak

enrichment approach.
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A morphism of n-ordinals σ : T → S is a map of the underlying sets such that
i <p j in T implies that

(i) σ(i) <r σ(j) for some r ≥ p, or
(ii) σ(i) = σ(j), or
(iii) σ(j) <r σ(i) for r > p.

Let Ord(n) be the skeletal category of n-ordinals and their morphisms. Each
n-ordinal can be represented as a pruned planar rooted tree with n levels (pruned
n-tree for short), cf. [2, Theorem 2.1]. For example, the 2-ordinal

0 <0 2, 0 <0 3, 0 <0 4, 1 <0 2, 1 <0 3, 1 <0 4, 0 <1 1, 2 <1 3, 2 <1 4, 3 <1 4,

is represented by the following pruned tree

0 1 2 3 4

Figure 1.

The initial n-ordinal znU0 has empty underlying set and its representing pruned
n-tree is degenerate: it has no edges but consists only of the root at level 0. The
terminal n-ordinal Un is represented by a linear tree with n levels.

We also would like to consider the limiting case of ∞-ordinals.

Definition 2.2. Let T be a finite set equipped with a sequence of binary antireflexive
complimentary relations <0, <−1 . . . , <p, <p−1 . . . for all integers p ≤ 0. The set T
is called an ∞-ordinal if these relations satisfy:

• a <p b and b <q c implies a <min(p,q) c.

The definition of morphism between ∞-ordinals coincides with the definition of
morphism between n-ordinals for finite n. The category Ord(∞) denotes the skeletal
category of ∞-ordinals .

For an n-ordinal R we consider its vertical suspension S(R) which is an (n+1)-
ordinal with the underlying set R, and the order <m equal the order <m−1 on R

<0 is empty.
For example, a vertical suspension of the 2-ordinal from Figure 1 is the 3-ordinal

0 1 2 3 4

More generally, one can consider a p-suspension Sp where we trivialise the orders
<p . So, the vertical suspension is S = S0.

For example, the suspension S2 of the 2-ordinal from Figure 1 is
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0 1 2 3 4

Suspension operations give us a family of functors

Sp : Ord(n)→ Ord(n + 1), 0 ≤ p ≤ n.

We also define an∞-vertical suspension functor Ord(n) → Ord(∞) as follows. For
an n-ordinal T its ∞-suspension is an ∞-ordinal S∞T whose underlying set is the
same as the underlying set of T and a <p b in S∞T if a <n+p−1 b in T. It is not
hard to see that the sequence

Ord(0)
S
−→ Ord(1)

S
−→ Ord(2) −→ . . .

S
−→ Ord(n) −→ . . .

S∞

−→ Ord(∞),

exhibits Ord(∞) as a colimit of Ord(n).

The categories Ord(n), 0 ≤ n ≤ ∞ are operadic in the sense of Batanin and
Markl, cf. [6]. This means that Ord(n) is equipped with cardinality and fiber
functors. The cardinality functor

(1) | − | : Ord(n)→ FinSet

associates to a n-ordinal T its underlying set. Here FinSet is a skeletal version
of the category of finite sets [6].The fiber functor associates to each morphism of
n-ordinals σ : T → S and i ∈ |S| the preimage σ−1(i) with the induced structure
of an n-ordinal.

The category FinSet is another example of an operadic category. The fiber
functor is given by the preimage like above [6].

Any operadic category O has an associated category of operads OpO(E) with
values in an arbitrary symmetric monoidal category (E ,⊗, e) [6]. The category
OpFinSet(E) = SOp(E) is the category of classical symmetric operads in E .

The categoryOpn(E) of n-operads in E is, by definition, the categoryOpOrd(n)(E).
Explicitly an n-operad in E is a collection {AT }, T ∈ Ord(n) of objects in E

equipped with the following structure:

- a morphism ǫ : e→ A(Un) (unit);
- a morphism mσ : A(S)⊗A(T0)⊗ · · ·⊗A(Tk)→ A(T ) (multiplication) for each

map of n-ordinals σ : T → S, where Ti = σ−1(i), i ∈ {0, . . . , k} = |S|.

They must satisfy the following identities:

- for any composite map of n-ordinals

T
σ✲ S

ω✲ R

the associativity diagram
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A(R)⊗A(S•)⊗A(T•

0 )⊗···⊗A(T•

i )⊗···⊗A(T•

k )

❄ ❄

A(R)⊗A(S0)⊗A(T•

0 )⊗...

⊗A(Si)⊗A(T•

i )⊗···⊗A(Sk)⊗A(T•

k )

∼= ✲

A(S)⊗A(T•

0 )⊗···⊗A(T•

i )⊗···⊗A(T•

k ) A(R)⊗A(T•)

A(T )

❳❳❳❳❳❳③
✘✘✘✘✘✘✾

commutes, where
A(S•) = A(S0)⊗ · · · ⊗A(Sk),

A(T •
i ) = A(T 0

i )⊗ · · · ⊗A(Tmi

i )

and
A(T•) = A(T0)⊗ · · · ⊗A(Tk);

- for an identity σ = id : T → T the diagram

A(T )⊗ e⊗ · · · ⊗ e ✲ A(T )⊗A(Un)⊗ · · · ⊗ A(Un)

≃❅❅❅❘ ✠��
�

A(T )

commutes;
- for the unique morphism T → Un the diagram

e⊗ A(T ) ✲ A(Un)⊗ A(T )

≃❅❅❅❘ ✠��
�

A(T )

commutes.
Functors between operadic categories which preserve cardinalities and fibers are

called operadic functors [6]. The cardinality functor is always an operadic functor.
An operadic functor between operadic categories p : O → O′ induces a restriction
functor p∗ : OpO′(E) → OpO(E) [6]. If E is a cocomplete symmetric monoidal
category then the restriction functor has a left adjoint p! : OpO(E)→ OpO′(E).

Any of the suspension functors is an operadic functor. In particular the following
diagram commutes:

Ord(n)
Sp✲ Ord(n + 1)

| − |❅❅❅❘ ✠��
�| − |

FinSet

(2)

Hence, it induces the following diagram of adjunctions:

Opn(E)

❍❍❍❍❍❥❍❍❍❍❍❨

✟✟✟✟✟✯✟✟✟✟✟✙
SOp(E)

✛ ✲
(Sp)!

desn+1

symn+1symndesn

Opn+1(E)
S∗

p

(3)
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In this diagram the functor desn is the restriction functor along cardinality func-
tor called desymmetrisation functor and symn is its left adjoint called symmetrisa-
tion functor [3].

Example 2.3. Let Assn ∈ Opn(E) be an n-operad given by Assn(T ) = e, T ∈
Ord(n)(E). It is immediately from the definition of the suspension functors that
S∗
p(Assn+1) = Assn. On the other hand, sym1(Ass1) = Ass is the classical sym-

metric operad for monoids while for n ≥ 2 , symn(Assn) = Com is the operad for
commutative monoids. This is the classical Ekcman-Hilton argument in disguise,
cf. [3].

Let now E be a closed symmetric monoidal category. An object X ∈ E has an
associated endomorphism symmetric operad EndX :

EndX(n) = E(X⊗
n

, X),

where E is the internal hom of E .

Definition 2.4. An algebra of a symmetric operad A ∈ SOp(E) is an object X ∈ E
equipped with a morphism of operads A→ EndX .

An algebra of an n-operad B ∈ Opn(E) is an object X ∈ E equipped with a
morphism of operads B → desn(EndX).

Lemma 2.5. Let E be a cocomplete closed symmetric monoidal category and let
B ∈ Opn(E). The following categories are equivalent:

(1) the category of algebras of the n-operad B;
(2) the category of algebras of the (n+ 1)-operad (Sp)!(B);
(3) the category of algebras of the symmetric operad symn(B).

Proof. If E is cocomplete the symmetrisation functor symn exists and we use the
adjuction symn ⊣ desn to transform a B-algebra structure B → desn(EndX) to
a symn(B)-algebra structure symn(B) → EndX . The proof for (Sp)!(B)-algebra
structure is similar. �

Definition 2.6. A symmetric operad (n-operad) A ∈ SOp(E) (A ∈ Op(E)) is called
constant-free if A(0) (A(znU0)) is an initial object in E .

The category CFSOp(E) of constant free symmetric operad is equivalent to
the category OpFinSet0(E) where FinSet0 is an operadic subcategory of FinSet of
nonemty finite sets and surjective maps. Analogously, the category of constant-free
n-operads CFOpn(E) is equivalent to OpOrd0(n)(E) where Ord0(n) is the operadic
category of nonempty n-ordinals and surjections. This observation allows us to
reformulate all previous statements for symmetric operads and n-operads in the
context of constant-free operads. So, the commutative triangle of adjunctions (3),
as well as the analogue of Lemma 2.5 hold for constant-free operads too.

2.7. Polynomial monads. Symmetric and n-operads are examples of algebras of
polynomial monads.

Definition 2.8. A finitary polynomial P is a diagram in Set of the form

J ✛ s
E

p ✲ B
t ✲ I
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where p−1(b) is a finite set for any b ∈ B.

Each polynomial P generates a functor called polynomial functor between functor
categories

P : SetJ → SetI

which is defined as the composite functor

SetJ
s∗✲ SetE

p∗✲ SetB
t! ✲ SetI

So, the functor P is given by the formula

(4) P (X)i =
∐

b∈t−1(i)

∏

e∈p−1(b)

Xs(e),

which explains the name ‘polynomial’ that is a sum of products of formal variables.
A cartesian morphism between polynomial functors is their natural transforma-

tion such that each naturality square is a pullback. Composition of finitary polyno-
mial functors is again a finitary polynomial functor. Finitary polynomial functors
and their cartesian morphisms form a 2-category category Polyf .

Definition 2.9. A finitary polynomial monad is a monad in the 2-category Polyf .

Remark 2.10. A finitary polynomial functor preserves filtered colimits and pull-
backs. A polynomial monad is cartesian that is its underlying functor preserves
pullbacks and its unit and multiplication are cartesian natural transformations.

Remark 2.11. One can consider more general polynomial functors of nonfinitary
type. Since in this paper we don’t need these more general functors we call finitary
polynomial monads simply polynomial monads.

Let E be a cocomplete symmetric monoidal category and P be a polynomial
functor. One can construct a functor P E : EI → EI given by the formula similar to
(4):

PE(X)i =
∐

b∈t−1(i)

⊗

e∈p−1(b)

Xs(e).

If I = J and P was given a structure of a polynomial monad then PE acquires a
structure of a monad on EI .

Definition 2.12. The category of algebras of a polynomial monad P in a cocom-
plete symmetric monoidal category E is the category of algebras of the monad PE .

Example 2.13. There is a polynomial monad SO whose category of algebras is
isomorphic to the category of symmetric operads. This monad is given by the
polynomial

FinSet ✛s
OrderedRootedTrees

∗
p✲ OrderedRootedTrees

t✲ FinSet

in which FinSet is the set of isomorphism classes of objects in FinSet and
OrderedRootedTrees is the set of isomorphism classes of ordered rooted trees. The
multiplication in SO is induced by insertion of a tree to a vertex of another tree,
cf. [5][Section 9.4].

There is a polynomial monad O(n) whose category of algebras is isomorphic to
the category of algebras of n-operads. It is generated by the polynomial

Ord(n) ✛
s

nPlanarRootedTrees
∗

p✲ nPlanarRootedTrees
t✲ Ord(n)
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where Ord(n) is the set of isomorphism classes of n-ordinals and nPlanarRootedTrees
is the set of isomorphism classes of n-planar trees. The multiplication of the
monad is induced by insertion of n-planar trees into vertices of n-planar trees,
cf. [5][Proposition 12.15]

The commutative triangle (2) induces in an obvious way a commutative triangle
of polynomial monads

O(n) ✲ O(n + 1)

| − | ❅❅❅❘ ✠��
� | − |

SO

(5)

and the triangle of adjunctions (3) is also induced by (5).

Example 2.14. There is a polynomial monad CFSO such that its category of alge-
bras is equivalent to the category of constant-free symmetric operads CFSOp(E).
[5][Section 9.4]. The corresponding generating polynomial is

FinSet0
✛s OrderedRootedTrees

∗
reg

p✲ OrderedRootedTreesreg

t✲ FinSet0

where FinSet0 is the set of isomorphism classes of nonempty finite sets and
OrderedRootedTreesreg is the set of isomorphism classes of regular ordered rooted
trees. We call a tree regular if for any vertex of the tree the set of incoming edges
at this vertex is not empty (so regular trees do not have stumps) .

Similarly there is a polynomial monad CFO(n) whose category of algebras is
equivalent to the category of constant-free n-operads CFOpn(E), cf. [5][Proposition
12.19]. It is generated by a polynomial

ROrd(n) ✛
s

nPlanarRootedTrees
∗
reg

p✲ nPlanarRootedTreesreg

t✲ ROrd(n)

where ROrd(n) is the set of isomorphism classes of nonempty n-ordinals;
nPlanarRootedTreesreg is the set of isomorphism classes of regular n-planar trees.

2.15. Classifiers for maps between polynomial monads. For any cartesian
morphism of cartesian monads φ : S → T one can associate a category (in fact
a strict categorical T -algebra) TS with certain universal property [3, 5, 24]. This
category is called the classifier of internal S-algebras inside categorical T -algebras.

Classifiers allow to compute the left adjoint functor between categories of alge-
bras induced by φ is terms of a colimit over TS. In particuar, the symmetrisation

functor symn admits an explicit description as a colimit over the classifier SOO(n)

of the map of polynomial monads | − | : O(n)→ SO. (See [3].)

The homotopy type of the nerve of the classifier SOO(n) was computed in [2]:

N(SOO(n)) =
∐

k

N(SO
O(n)
k )

where N(SO
O(n)
k ) has homotopy type of the configuration space of k points in R

n. It

follows that for n ≥ 2 and 0 ≤ i ≤ n−2 the homotopy groups πi(N(SO
O(n)
k ), a) = 0.

This can be reformulated as that the nerve of the unique map of categories

(6) ! : SO
O(n)
k → 1

is an (n− 2)-local weak equivalence of simplicial sets [12][Corollary 9.2.15].
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For n =∞ we also have a classifier SOO(∞). It is not hard to see that SOO(∞) is
the colimit of this sequence of classifiers SOO(n) induced by the vertical suspension

functor and so the nerve of SOO(∞) is a contractible simplicial symmetric operad.

3. Stabilization of algebras of n-operads

3.1. Model categories of symmetric operads, n-operads and their alge-

bras. Now we assume that our base symmetric monoidal category (E ,⊗, e) is a
cofibrantly generated monoidal model category. Let C be a set and (T, µ, ǫ) be a
monad on the category EC . There is a product model structure on the category
EC and so one can try to induce a model structure on the category of T -algebras
as follows. We define an algebra morphism f : X → Y to be a weak equivalence
(fibration) if U(f) is a weak equivalence (resp. fibration) in EC , where U is the
forgetful functor from T -algebras to EC . It is more often with this definition that
we will get only a semimodel structure [13, 26] not the full model structure on alge-
bras, but it is sufficient for our purpose. If such a (semi)model structure exists we
call it transferred model structure. An algebra X of T is called relatively cofibrant
if U(X) is a cofibrant object in EC .

Proposition 3.2. If e ∈ E is cofibrant then for any polynomial monad T the
category AlgT (E) admits a transferred semimodel structure in which all cofibrant
algebras are relatively cofibrant.

Proof. The category of algebras of T is isomorphic to the category of algebras of
a coloured symmetric operad O(T ) [5] whose spaces of operations are of the form
e⊗O(c1, . . . , cm; c) = ⊔O(c1,...,cm;c)e where O(c1, . . . , cm; c) is a set with free action
of symmetric groups. If e is cofibrant this underlying object of operations is a Σ-
cofibrant object and so O(T ) is Σ-cofibrant operad. The statement of proposition
follows now from [26][Theorem 6.3.1]. �

Proposition 3.3. If e is cofibrant in E then

(1) The categories Opn(E), CFOpn(E), SOp(E) and CFSOp(E) admit trans-
ferred semimodel structures;

(2) Cofibrant symmetric and n-operads are relatively cofibrant;
(3) The triangle (3) is a triangle of Quillen adjunctions;
(4) The category of algebras of cofibrant symmetric and cofibrant n-operads

admit transferred (semi)model structures;
(5) For any weak equivalence between cofibrant operads f : A→ B the induced

adjunction f! ⊣ f∗ between categories of algebras is a Quillen equivalence.

Proof. Symmetric operads (general or constant free) as well as n-operads (general
or constant free) are algebras of polynomial monads. So we are in the conditions
of Proposition 3.2. The existence of transferred (semi)model structure on algebras
of cofibrant symmetric operads is proven in [13][Proposition 4.4.3] and [26]. The
existence of transferred model structure on algebras of cofibrant n-operads follows
from this and Lemma 2.5. Indeed, since symn is a left Quillen functor symn(A) is
a cofibrant symmetric operad for any cofibrant n-operad A. The last point of the
Proposition is proven in [13][Proposition 4.4.6]. �

Remark 3.4. This semimodel structure on operads is often a full model structures
[5, 26] but not always. For example, the category of symmetric operads (n-operads
for n ≥ 2) in the category of chain complexes of finite characteristic does not admit
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full model structures [5] but there is a full model structure on the category of
constant-free symmetric or n-operads for any compactly generated monoidal model
category which satisfies the monoid axiom of Schwede and Shipley [5].

3.5. Stabilization of algebras. In this section we prove stabilisation of homotopy
categories of algebras of n-operads. The same proof works for constant-free n-
operads so we do not mention them anymore. To simplify notation we fix a p ≥ 0
and call p-suspension of an n-ordinal simply a suspension and we denote it S :
Ord(n) → Ord(n + 1). We also denote S the map of polynomial monads induced
by the suspension. The proof of our main result does not depend on p.

Let E satisfies all assumptions of Proposition 3.3. Let Gn ∈ Opn(E) be a cofibrant
replacement for Assn. We will denote by Bn(E) the category of Gn-algebras in E .
Let also E∞(E) be the model category of E∞-algebras in E that is the category of
algebras of a cofibrant replacement E of the symmetric operad Com.

Remark 3.6. The category Bn(E) is equivalent to the category of algebras of the
symmetric operad symn(Gn) which is a cofibrant En-operad, cf. [2].

By Lemma 2.5 there is an isomorphism of categories of algebras of an n-operad
Gn and an (n+1)-operad S!(Gn). Also observe that S! is a left Quillen functor and,
hence, preserves cofibrations. In particular, the operad S!(Gn) is cofibrant. There
is a map of (n+ 1)-operads i : S!(Gn)→ Gn+1. Indeed, since S∗(Assn+1) = Assn
by adjunction we have a map S!(Gn) → Assn+1. We also have a trivial fibration
Gn+1 → Assn+1. Since S!(Gn) is cofibrant there is a lifting i : S!(Gn) → Gn+1.

Without loss of generality we can think that i is a cofibration because if it is not we
can always factorise it as cofibration followed by a trivial fibration and so replace
Gn+1 by another cofibrant operad with a trivial fibration to Assn+1.

The morphism i induces a Quillen adjunction between algebras of S!(Gn) and al-
gebras of Gn+1 and so between algebras of Gn and Gn+1. Slightly abusing notations
we will denote this adjunction i∗ ⊢ i!.

Recall that a standard system of simplices in a monoidal model category E is a
cosimplicial object δ in E satisfying the following properties [8, Definition A.6]:

(i) δ is cofibrant for the Reedy model structure on E∆,
(ii) δ0 is the unit object I of E and the simplicial operators [m] → [n] act via

weak equivalences δm → δn in E , and
(iii) the simplicial realization functor |−|δ = (−)⊗∆δ : E∆

op

→ E is a symmetric
monoidal functor whose structural maps

|X |δ ⊗V |Y |δ → |X ⊗V Y |δ

are weak equivalences for Reedy-cofibrant objects X,Y ∈ E∆
op

.

Recall also that a model category E is called k-truncated if for all X,Y ∈ E

πi(Ẽ(X,Y ), a) = 0 , i > k,

for any choice of base point a. Here Ẽ(X,Y ) is a homotopy function complex of E
[16].

Theorem 3.7. Let (E ,⊗, e) be a cofibrantly generated monoidal model category
whose unit e ∈ E is cofibrant. Then

(a) for any 2 ≤ n <∞ there is a commutative triangle of Quillen adjunctions:
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Bn(E)

❍❍❍❍❍❥❍❍❍❍❍❨

✟✟✟✟✟✯✟✟✟✟✟✙
E∞(E)

✛ ✲
i!

Bn+1(E)
i∗

(b) If E has a standard system of simplices then there is a Quillen equivalence

B∞(E)
✛ ✲ E∞(E)

(c) If, in addition, E is k-truncated then the triangle from (a) is a triangle of
Quillen equivalences for any n ≥ k + 2.

Proof. Apply the symmetrisation functor symn to the cofibrant replacement Gn →
Assn. We have a morphism Pn : symn(Gn) → symn(Assn) = Com and, hence
a lifting of this morphism to the morphism of operads symn(Gn) → E. By (3)
we can replace it by a morphism symn+1(S!(Gn)) → E. Applying symn+1 to the
cofibration i : S!(Gn)→ Gn+1 we have a composite

symn+1(S!(Gn))→ symn+1(Gn+1)→ symn+1(1n+1) = Com

and since Gn is cofibrant we have a lifting

symn+1(S!(Gn))→ E.

So, we have a commutative square of operads

symn+1(S!(Gn))

✑✑
✑✑

✑✑✸

❄

✲

Pn+1

symn+1(i)

E

❄
symn+1(Gn+1) ✲ Com

and, hence, a lifting symn+1(Gn+1) → E. The upper commutative triangle of
operads induces the triangle of Quillen adjunctions. This proves statement (a).

Let us first prove statement (c) of the theorem, so we assume that E is k-
truncated.

By construction the composite of left vertical morphism and the bottom hor-
izontal morphism is symn+1(S!(Pn)) and by naturality of isomorphism symn ≃
symn+1(S!) is isomorphic to Pn. To finish the proof it will be enough to show that
Pn and Pn+1 are weak equivalences of operads and so symn(Gn) and symn+1(Gn+1)
are both cofibrant replacements of Com in the category of symmetric operads in E .
The morphism symn+1(i) is then a weak equivalence by two out of three property.

Since Gn is cofibrant the operad symn(Gn) is weakly equvalent to the operad
Lsymn(Gn), where Lsymn is the left derived symmetrisation functor. The underly-
ing object of Gn is cofibrant and E has standard system of simplices so we can apply
Theorem 8.2 from [5]. This theorem states that Lsymn(Gn)(T ) is the homotopy

colimit in E of a diagram G̃n : SOO(n) → E .
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The functor G̃n representing the n-operad Gn has value on an object τ ∈ SOO(n)

given by a certain tensor product of values of the operad Gn and, hence, the functor

G̃n is equipped with a canonical weak equivalence G̃n(τ)→!∗(e), where !∗(e) is the

constant functor on SOO(n) whose value is the tensor unit e. Since both functors G̃n

and !∗(e) are pointwise cofibrant we have a weak equivalence of homotopy colimits.
It remains to show that the canonical morphism

hocolim
SOO(n) !∗(e)→ e

is a weak equivalence. For this it is enough to prove that for any fibrant object
S ∈ E the induced map of simplicial sets

Ẽ(hocolim
SOO(n) !∗(e), S)← Ẽ(e, S)

is a weak equivalence. Equivalently, we have to prove that for any fibrant k-
truncated simplicial set W the map

(7) holim
SOO(n) !∗(W )←W

is a weak equivalence. Let S(−,−) be the internal hom in simplicial sets. We have

S(N(SOO(n)),W ) ≃ S(hocolim
SOO(n) !∗(1),W ) ≃

≃ holim
SOO(n) !∗(S(1,W )) = holim

SOO(n) !∗(W ),

and the map (7) is induced by (6) so it is a weak equivalence since N(!) is an
(n − 2)-equivalence and, hence, i-equivalence for each i ≤ n − 2. So, we proved
point (c) of the Theorem.

The argument for (b) is identical but we don’t need E to be truncated because
the classifier of ∞-operads inside symmetric operads is contractible.

�

Corollary 3.8 (Stabilisation for weak k-groupoids). The suspension functor in-
duces an equivalence between homotopy category of n-tuply monoidal weak k-groupoids
and (n+ 1)-tuply monoidal weak k-groupoids for n ≥ k + 2.

Proof. We apply Theorem 3.7 to the category of homotopy k-types Spk which is
the k-truncation of the model category of simplicial sets Sp = Set∆

op

with its Kan
model structure [12]. Weak k-groupoids are fibrant objects in this category. �

Remark 3.9. Corollary 3.8 implies classical Freudental stabilisation theorem (cf.
[1]).

Recall that Rezk’s (m+k,m)-categories are fibrant objects in the model category
ΘmSpk,−2 ≤ k ≤ ∞ which is a truncation of the model category of Rezk’s complete
Θm-spaces ΘmSp∞ . The category ΘmSp∞ is itself a certain Bousfireld localisation
of the category of simplicial presheaves SpΘ

op
m with its injective model structure.

This is a cartesian closed model category which is (m + k)-truncated and satisfies
all hypothesis of Theorem 3.7(see [21]).

Definition 3.10. The category of Rezk’s n-tuply monoidal (m + k,m)-categories
is the category of fibrant objects in the (semi)model category Bn(ΘmSpk).

We immediately have
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Corollary 3.11 (Stabilisation for Rezk’s (m + k,m)-categories). The suspension
functor induces an equivalence between homotopy category of Rezk’s n-tuply monoidal
(m+ k,m)-categories and Rezk’s (n+ 1)-tuply monoidal (m+ k,m)-categories for
n ≥ m+ k + 2.

Remark 3.12. If m = 0 the category Θ0Spk is isomorphic (as a cartesian model
category) to the category Spk (cf. [21]) and so the Corollary 3.11 is a particular
case of Corollary 3.8.

If k = 0 the fibrant objects of the category ΘmSpm are weak m-categories and
so we proved classical Baez-Dolan Stabilization Hypothesis for Rezk m-categories.

Remark 3.13. The choice of the suspension functor amounts to the choice of a mul-
tiplicative structure on an algebras from Bn+1(E) which we would like to ‘forget’.
Theorem 3.7 asserts that up to homotopy this choice in stable dimensions is not
important.

Remark 3.14. The argument of the Theorem 3.7 works equally well for the Swiss-
Cheese type symmetric and n-operads [2]. The stabilisation result amounts then
to the stable version of the Swiss-Cheese conjecture of Kontsevich, cf. [17].

Remark 3.15. Another conclusion from the proof of the Theorem 3.7 is that some
interesting results about equivalence of homotopy categories of algebras can be
proved once we have a map of polynomial monads φ : S → T such that the classifier
TS is aspherical with respect to a fixed fundamental localiser W [12]. We hope to
make use of this observation in a future.
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