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MAASS SPEZIALSCHAR OF LEVEL N

BERNHARD HEIM

Abstract. In this paper the image of the Saito-Kurokawa lift of level N with

Dirichlet character is studied. We give a new characterization of this so called

Maass Spezialschar of level N by symmetries involving Hecke operators related

to Γ0(N). We finally obtain for all prime numbers p local Maass relations. This

generalizes known results for level N = 1.

1. Introduction

In 2012 [Ib12], T. Ibukiyama gave a systematic treatment of Saito-Kurokawa lifts

of level N with possible Dirichlet character. First results in the classical setting had

been obtained by B. Ramakrishnan, M. Manickham, and T. Vasudewa [MRV93].

In this paper, we study the image of the lifting, the Maass Spezialschar of level

N . We obtain a new characterization by symmetries, generalizing previous work

on liftings for the full Siegel modular group of degree two [He10]. We refer to the

original literature [Ma79I, Ma79II, Ma79III, Ku78] and [Za80] for the Saito-Kurokawa

conjecture and the Maass Spezialschar. An excellent introduction is given in [EZ85].

See also Oda’s general viewpoint of theta lifts [Od77].

Let F ∈ M2
k (Γ

2
0(N), χ) be a Siegel modular form of Hecke type of integral weight

k, degree 2 and level N with Dirichlet character χ. Here χ(−1) = (−1)k.

Let ∆N (l) be the set of all integral matrices g = ( a b
c d ) with determinant l, with N |c

and (a,N) = 1. We put χ(g) := χ(a) and Γ0(N) = ∆N (1). Let |k be the Petersson

slash operator and g̃↑↓ be two dual embeddings of ∆N (l) into the symplectic group

Sp2(R). Then we have the following new characterisation of the Maass Spezialschar.

The Siegel modular form F ∈ M2
k (Γ

2
0(N), χ) is a lift if and only if for all l ∈ N:

(1.1)
∑

g∈Γ0(N)\∆N (l)

χ(g)−1
(
F |kg̃↑

)
=

∑

g∈Γ0(N)\∆N (l)

χ(g)−1
(
F |kg̃↓

)
. (∗l).

The level one case was previously proven [He10] by working out the relation of the

Taylor expansion and properties of certain differential operators. In this paper we

give a new and more simple proof by studying the Fourier-Jacobi expansion. This ap-

proach, involving well-known properties of the Hecke algebra H(Γ0(N),∆N) ([Mi06])

is more transparent and natural. Here ∆N is the union of all ∆N(l). The Hecke al-

gebra is commutative, zero-divisor free and decomposes in local components. Hence
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2 BERNHARD HEIM

it is sufficient to check the symmetries only locally, which leads finally to the result

that F is in the Maass Spezialschar iff (∗p) is satisfied for all primes p. Of course

the symmetries degenerate if p|N . For further generalisation, note that the following

identity in the Hecke algebra H(Γ0(N),∆N) is crucial.

(1.2) T (m) ◦ T (n) =
∑

d|(m,n)
(d,N)=1

d T (d, d) T
(mn

d2

)

The element T (l) degenerates if (l, N) > 1 (see Miyake [Mi06], Theorem 4.5.13 (i)).

The symmetries (∗l) encode a new type of Maass relations for Saito-Kurokawa lifts

of Hecke type. Let X denote the set of half-integral positive semi definite matrices(
n r/2
r/2 m

)
. Let X ∗ be the subset, where the zero matrix is removed. We put A(T ) = 0

if T 6∈ X . Let F ∈ M2
k (Γ

2
0(N), χ) with Fourier coefficients A(T ) = A(n, r,m). Then

F is in the Maass space iff for all T ∈ X ∗ and l ∈ N:

(1.3)
∑

d|(n,r,l)

dk−1 χ(d) A

(
nl

d2
,
r

d
,m

)
=

∑

d|(l,r,m)

dk−1 χ(d) A

(
n,

r

d
,
ml

d2

)
.

Here (n, r, l) denotes the greatest common divisor. As a consequence we obtain the

useful application that F is in the Maass Spezialschar iff for all T ∈ X ∗ and for all

prime numbers p the following Maass p-relations are satisfied:

A(pn, r,m) + pk−1χ(p)A

(
n

p
,
r

p
,m

)
(1.4)

=A(n, r, pm) + pk−1χ(p)A

(
n,

r

p
,
m

p

)
.

This gives a significant generalization to the known Maass p-relations for N = 1 (see

the survey [FPRS13] for further background information). Note χ(p) = 0 iff p|N .

For p|N we have A(pn, r,m) = A(n, r, pm). In the literature (see [EZ85], [Ib12]) the

equivalent Maass relations are stated as

(1.5) A(n, r,m) =
∑

d|(n,r,m)

dk−1 χ(d) A
(nm
d2

,
r

d
, 1
)

for all T ∈ X ∗.

Recently [HM15], together with Murase, we had been able to use a multiplica-

tive version of the symmetry principle (∗l) to give a characterization of holomorphic

Borcherds lifts and a new proof of Bruiniers converse theorem for the discriminant

kernel group. Borcherds proved that his lifts have certain special divisors and Bru-

inier proved that if a form has these special divisors, then the form is a lift. We refer

to [Br16] for recent developments. It would be interesting to transfer some of the

results of this paper to the theory of Borcherds lifts for congruence subgroups.
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2. Modular Forms

For basic facts about elliptic modular forms and Hecke theory we refer to [Sh71,

Mi06]. For Siegel modular forms especially of degree 2 we recommend [Fr83], [An87]

and [EZ85] (also standard reference for Jacobi forms).

2.1. Preliminaries and Basic Notations. Let R be a subring of the real numbers

R and let N, k, n, r,m usually denote integers. Let χ be a Dirichlet character modulo

N . We denote e(Z) := exp(trace(Z)) for every suitable matrix Z. The symplectic

group GSp+(n,R) of positive similitudes of degree n acts on the Siegel upper half

space Hn. Further let F be a holomorphic function on Hn and let γ = ( A B
C D ) ∈

GSp+(n,R) and Z ∈ Hn. Then

γ(Z) := (AZ +B)(CZ +D)−1

F |kγ (Z) := det(CZ +D)−k F (γ(Z))

γ̃ := det(γ)
1

2n

g↑ :=




a 0 b 0

0 1 0 0

c 0 d 0

0 0 0 1




g↓ :=




1 0 0 0

0 a 0 b

0 0 1 0

0 c 0 d


 , g =

(
a b

c d

)
∈ SL2(R)

∆N :=

{
α =

(
a b

c d

)
∈ GL+

2 (Q) ∩ Z2,2 | (a,N) = 1, N |c, det(α) > 0

}

Sp(n,R) := {γ ∈ GSp+(n,R) | det(γ) = 1}
Γ
(n)
0 (N) := {γ ∈ Sp(n,Z) | C ≡ 0 (mod N)} .

Let γ ∈ Γ
(n)
0 (N), we extend χ by χ(γ) := χ(det(D)). We identify GL2(R)+ with

GSp+(1, R) and SL2(R) with Sp(1, R), and drop the index n = 1 for simplification.

In the case n = 2 we also identify

Z =

(
τ1 z

z τ2

)
with (τ1, z, τ2).

We further put

X :=

{
T =

(
n r/2

r/2 m

)
| n, r,m ∈ Z, T ≥ 0

}
.

Then X ∗ := X − ( 0 0
0 0 ) and X+ := {T ∈ X | T > 0}. We identify T with (n, r,m).

Note that for all T with det(T ) = 0 there exists a U ∈ SL2(Z) such that T [U ] :=
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U tTU = (l, 0, 0) with l ∈ N0. Let us further denote by d|(n,m) or d|(n, r,m) that d

divides the gcd of the involved numbers. The condition d|(0, 0, 0) is empty.

2.2. Modular forms of level N .

Definition. Let k,N be natural numbers. Let χ a Dirichlet character modulo N . Let

Γ be a congruence subgroup of Γ
(n)
0 (N). A holomorphic function F on Hn is denoted

Siegel modular form of weight k, degree n and Dirichlet character χ with respect to

Γ if for all g ∈ Γ the functional equation

(2.1) F |kg = χ(g) F

is satisfied. In the case n = 1 we additionally have to propose that F is regular at

the cusps. The space of these forms is denoted by Mn
k (Γ, χ).

We refer briefly to the behavior of Saito-Kurokawa lifts at the cusps. The main

focus of this paper is the characterization of lifts independent of their Fourier expan-

sion, Although we consider the expansion at infinity to some extent.

Definition. We denote by Sn
k (Γ, χ) the subspace of cusp forms. These are F ∈

Mn
k (Γ, χ) with F |kγ vanishing at all boundaries.

See [Fr83, Mi06] and also [Ib12] for a more explicit version of the definition, guided

by the Satake compactificaton. In a nutshell, let F be holomorphic on Hn satisfying

the functional equation for all elements of Γ. Let V (Y0) := {Y ∈ Rn,n | Y ≥ Y0 > 0}
for Y0 positive definite and Γχ kernel of χ on Γ. Then F ∈ Mn

k (Γ, χ) iff F |γ is

bounded on V (Y0) for all Y0 and γ ∈ Γχ\Sp(n,Z). This property is always satisfied

for n > 1 (Koecher principle) and has only be checked for n = 1.

Further F ∈ Sn
k (Γ, χ) iff Φ(F |kγ) = 0 for all γ ∈ Γχ\Sp(n,Z). Here Φ is the Siegel

lowering operator. We refer to Freitag ([Fr83], chapter II, Satake compactification,

see also section 3.1 and 3.2 [Ib12]).

Remark. Let n = 2 then it is sufficient to check to cuspidality for the representatives

of

γ ∈ Γχ\Sp(2,Z)/C2,1(Z).

Here C2,1(Z) is the subgroup of Sp(2,Z) with last row given by (0 0 0 1).

2.3. Fourier and Fourier-Jacobi expansion. Let Γ be a congruence subgroup of

Sp(2,Z) containing {(
12 S

0 12

)
|S = St ∈ Z2,2

}
.

Then F ∈ M2
k (Γ, χ) has the Fourier expansion

F (Z) =
∑

T∈X

A(T ) e(TZ)(2.2)

=
∑

(n,r,m)∈X

A(n, r,m) e(nτ1 + rz +mτ2)(2.3)
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In the following we will also put q1 = e(τ1), ζ = e(z) and q2 = e(τ2). Note that F is

a cusp form then A(T ) = 0 for all T ∈ X+. Note that the converse is not true. The

Fourier-Jacobi expansion of F is given by

(2.4) F (τ1, z, τ2) =

∞∑

m=0

Fm(τ1, z) q
m
2 .

Then Fm is called the m-th Fourier Jacobi coefficient of F . It is a Jacobi form of

weight k and index m. Note that Fm is a Jacobi cusp form, if F is a cusp form.

2.4. Jacobi Group. We consider the Jacobi group GJ(R) as the semi-direct product

of GL+
2 (R) and the (additive written) Heisenberg group

H(R) = {h = (µ, λ; κ) | µ, λ, κ ∈ R}
(see [Ib12], Section 2). We consider h0 = (λ, µ) as a row vector. Then

GJ(R) :=
{
(g, h) | g ∈ GL+

2 (R), h ∈ H(R)
}
.

The explicit group operation is given by:

(g1, h1)(g2, h2) = (g1g2, det(g2)
−1 (h0

1 g2, κ1) + h2).

We further define the following subgroups and monoids of GJ(Z).

Γ0(N)J :=
{
(g, h) ∈ GJ(Z) | g ∈ Γ0(N)

}

∆J
N :=

{
(g, h) ∈ GJ(R) | g ∈ ∆N and h ∈ H(Z)

}
.

Let HJ := H × C. Let γ = ( A B
C D ) ∈ GSp+(n,R). Let g = ( a b

c d ) ∈ GL+
2 (R) with

det(g) = l and h = (µ, λ; κ) ∈ H(R). Let f be a complex valued function on HJ and

F on Hn. Let k,m ∈ N0.

f̂(τ1, z, τ2) := f(τ1, z) e(mτ2), for (τ1, z, τ2) ∈ H2

ĝ :=




a 0 b 0

0 l 0 0

c 0 d 0

0 0 0 1




ĥ :=




1 0 0 µ

λ l µ κ

0 0 1 −λ

0 0 0 1




ĜJ(R) :=
{
ĝ ĥ | g ∈ GL+

2 (R), h ∈ H(R)
}
.

Obviously the map ∧ is a group isomorphism between GJ(R) and ĜJ(R), where the

semi-direct product structure can be recovered. Let (g1, h1), (g2, h2) ∈ GJ(R). Then

̂(g1, h1) ̂(g2, h2) = (ĝ1ĝ2)
(
ĝ2

−1ĥ1ĝ2ĥ2

)
,
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ĝ2
−1ĥ1ĝ2 ∈ Ĥ(R).

2.5. Jacobi Forms of level N . In this section we recall the definition of Jacobi

forms of level N with Dirichlet character. Let f : H × C −→ C and k,m ∈ N0. Let

gJ = (g, h) ∈ GJ(R) with det(g) = l. Then we attach to f the function f̃ defined by

(2.5)
(
f̂ |kĝJ

)
(τ1, z, τ2) = f̃(τ1, z) e(−mlτ2).

This leads to a canonical action of GJ(R) on HJ and the definition of Jacobi forms.

This avoids explicit calculations and displays the essential properties directly.

Definition. Let Φ be a holomorphic function on HJ . Let k,m ∈ N0. Let χ be a

Dirichlet character modulo N . Let ΓJ be a congruence subgroup of GJ(Z) with the

same Heisenberg part. We denote by Φ a Jacobi form of weight k and index m with

character χ with respect to ΓJ if Φ satisfies:

(1) Φ|k,mgJ = χ(g)Φ, for all gJ = (g, h) ∈ ΓJ

(ii) For any g ∈ GL+
2 (Q), Φ|k,mg has the Fourier expansion

∑

r,n∈Q

cg(n, r) qn ζr,

where cg(n, r) = 0 unless 4nm− r2 ≥ 0.

We say Φ is a Jacobi cusp form if cg(n, r) = 0 unless 4nm − r2 > 0 is satisfied.

The space of Jacobi form is denoted by Jk,m(Γ
J , χ) and the subspace of cusp forms

by Jcusp

k,m (ΓJ , χ)

Remark. The property(ii) needs only be checked for g ∈ SL2(Z). Here the sum is

running over n ∈ h−1
g Z, r ∈ Z with cg(n, r) = 0, unless 4nm − r2 ≥ 0 (and > for

being a cusp form).

Remark. Let F be a cusp form for a congruence subgroup on H2. Then F vanishes

at every cusp. Equivalent the Fourier expansion at each cusp has only support

(parametrization of Fourier coefficients) at positive definite half-integral matrices.

Hence at each cusp the Fourier Jacobi coefficients are Jacobi cusp forms.

Next we recall the definition of the index shift operator Vl,χ (see [Ib12], section 3)

and finally define the Saito-Kurokawa lift.

Definition. For χ a Dirichlet character modulo N and an element of ∆N :

(2.6) χ ( a b
c d ) := χ(a).

Definition. Let k,N ∈ N and let χ be a Dirichlet character modulo N . Let Φ ∈
Jk,m(Γ0(N)J , χ), m ∈ N0. Then we define for all l ∈ N the index shift operator:

Vl,χ : Jk,m(Γ0(N), χ)J −→ Jk,ml(Γ0(N), χ)J
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given by the explicit construction

Vl,χ(Φ) := lk−1
∑

g∈Γ0(N)\∆N (l)

χ(g)−1 Φ|k,mg

= lk−1
∑

g∈Γ0(N)\∆N (l)

χ(a) (cτ + d)−k e−lm cτ
2

cτ+d Φ(g(τ),
lz

cτ + d
)

= lk−1V ◦
l,χ(Φ).

Here ( a b
c d ) and g(τ) = aτ+b

cτ+d
.

Definition. Let χ be a Dirichlet character modulo N . Let Φ ∈ Jk,m(Γ0(N)J , χ).

Then LN,χ(Φ) is called the Saito-Kurokawa lift of Φ. It is defined by

(2.7) LN,χ(Φ)

(
τ1 z

z τ2

)
:= c(0)fk,χ(τ1) +

∞∑

l=1

Vl,χ(Φ)(τ1, z) e(lτ2).

Here c(0) is the constant term of Φ. For the definition of the Eisenstein series fk,χ
we refer to [Ib12], section 3.2.

Theorem 3.2 and Theorem 3.6 [Ib12] states that L is a linear injective map to

Mk(Γ
J
0 (N), χ). If Φ is a cusp form. Then L(Φ) is a cusp form. The image of L is

called Maass Spezialschar of level N .

3. Hecke Theory

References: Krieg [Kr90], Miyake [Mi06], Shimura [Sh71]. Let G be a group and

Γ a subgroup. Two subgroups are commensurable if the intersection has finite index

in each of the two subgroups. Let Γ̃ be all elements g ∈ Γ such that gΓg−1 is

commensurable with the subgroup Γ itself.

Let ∆ ⊂ G be a monoid and Ξ a set of commensurable subgroups Γ of G, such

that Γ ⊂ ∆ ⊂ Γ̃. Let R be a commutative ring with 1. Then we denote by

HR(Γ,∆) :=

{
∑

α∈∆

aα ΓαΓ | aα ∈ R and aα = 0 for almost all α

}

the free R-module generated double cosets. Let further R[Γ\∆] denote the free R-

module generated by the Γα cosets, where α ∈ ∆.

Next, let ∆ act on a R-module M by m 7→ mα. Let MΓ be the submodule

of Γ-invariant elements of M . Let ΓαΓ = ⊔iΓαi ∈ R[Γ\∆] be the disjoint coset

decomposition. This identification leads to HR(Γ,∆) = R[Γ\∆]Γ. Note that H =

HR(Γ,∆) acts on MΓ via

m|ΓαΓ :=
∑

i

mαi .

Note that mα is in general not invariant by Γ, but by α−1Γα∩Γ. Let M̃ := R[Γ\∆]Γ.

Then the action of H on M̃ implies the following multiplication of double cosets. Let
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ΓαΓ = ⊔iΓαi and ΓβΓ = ⊔iΓβi. Then

(3.1) ΓαΓ ◦ ΓβΓ :=
∑

γ

ΓγΓ,

where

cγ = ♯ {(i, j) |Γαiβj = Γγ} .

3.1. Representations of Hecke algebras. We make the assumption that G =

GL+
2 (R) and Γ a Fuchsian group with finite character χ. Let H be the Hecke algebra

attached to the Hecke pair (Γ,∆). We further assume that

(i) χ can be extended to a character of ∆ and

(ii) that for α ∈ ∆ and γ ∈ Γ with αΓα−1 ∈ Γ:

χ(αγα−1) = χ(γ).

Let Ξ be the set of all subgroups of Γ of finite index. Let k ∈ Z be fixed. Let Γ1 be

any element of Ξ. Let Mk(Γ1, χ) be the vector space of holomorphic functions on H

(and the cusps) satisfying:

(f |kγ) (τ) := j(γ, τ)−k f(γ(τ))

= χ(γ) f(τ) for all γ ∈ Γ1.

Then ∆ acts on the Z-module

M :=
⋃

Γ1 ∈ Ξ

Mk(Γ1, χ)

by mapping f ∈ Mk(Γ1, χ) to an element fα ∈ Mk(Γ1 ∩ α−1Γ1α, χ):

f 7→ fα := χ(α) f |kα
(here we apply property (ii) from above). Let ΓαΓ = ⊔iΓαi. Then the operation of

of the Hecke algebra H on MΓ is given by

(3.2) f |ΓαΓ :=
∑

i

fαi.

This extends linearly to h ∈ H and called Hecke operators. We refer to Miyake [Mi06],

Remark 2.8.1 and 2.8.2 for a short discussion on elements of the Hecke algebra and

Hecke operators.

3.2. Structure of the Hecke Algebra H(Γ0(N),∆N ).

Let χ be a Dirichlet character modulo N . We have extented (2.6) to ∆N in such a

way that (ii) is satisfied. The Hecke theory applies to G = GL+
2 (R),∆ = ∆N ,Γ =

Γ0(N) and R = Z. Let H = H(Γ0(N),∆N ). Let [a, d] be the diagonal matrix ( a 0
0 d ).

Every double coset

Γ0(N)αΓ0(N) = Γ0(N) [a, d] Γ0(N) =: T (a, b)
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can be uniquely represented by a diagonal matrix [a, d], where (a,N) = 1, a|d, and ad =

det(α). Further let

(3.3) T (l) =
∑

ad=l, a|d,
(a,N)=1

T (a, d) =
⊔

ad=l, (a,N)=1,
b mod d

Γ0(N) ( a b
0 d ) = Γ0(N)\∆N (l).

Here we identified double cosets with elements in

Z[Γ0(N)\∆N ]
Γ0(N).

Double cosets decompose in local components. Let a1|d1 and a2|d2. Then
(3.4) T (a1a2, d1d2) = T (a1, d1) ◦ T (a2, d2) if (d1, d2) = 1.

The Hecke algebra is commutative and decomposes as a restricted tensor product in

local Hecke algebras Hp for all prime numbers p.

H = ⊗pHp,

where Hp is generated by T (p) and T (p, p) if p 6 |N and T (p) otherwise. Hence for

every h ∈ Hp with (p 6 |N) we have h ∈ Z[x, y], where

x = T (p) = Γ0(N)
(
p 0
0 1

) ⊔

b (mod d)

Γ0(N)
(
1 b
0 p

)

y = T (p, p) = Γ0(N)
(
p 0
0 p

)
.

Let p|N . Then h ∈ Z[T (p)], where

T (p) =
⊔

b (mod d)

Γ0(N)

(
1 b

0 p

)
for p|N.

We will transfer the result of [Mi06], Theorem 4.5.13 (1) to the theory of lifts.

Theorem 3.1. Let m,n are natural numbers. Then we have the following identity

in the Hecke algebra H(Γ0(N),∆N ).

(3.5) T (m) ◦ T (n) =
∑

d|(m,n)
(d,N)=1

d T (d, d) T
(mn

d2

)
.

To apply the general theory define Ξ to be the set of all subgroups of Γ0(N) and

M :=
⋃

Γ∈Ξ

Mk(Γ, χ).

Then ∆N operates on M by fα := χ(α) f |k α. The Hecke algebra operates on

MΓ0(N). Actually it already operates on Mk(Γ0(N), χ). We are mainly interested in
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the operation of T (l, l) and T (l) on MΓ0(N).

f 7→ T (l, l)(f) = f [l,l] = χ(l) l−k f

f 7→ T (l)(f) =
∑

ad=l, (a,N)=1
b (mod d)

χ(a) f |k
(
a b

0 d

)
.

We have the two Hecke algebras H := H(Γ0(N)),∆N ) and HJ := H(Γ̂J
0 (N)), ∆̂J

N).

We are mainly interested in the image of the embedding

ι : H →֒ HJ , Γ0(N)αΓ0(N) 7→ Γ̂0(N)J α̂ Γ̂0(N)J .

This map respects the coset decomposition
⊔

Γ0(N) αi 7→
⊔

Γ̂0(N)J α̂i.

Note that this property is implicitly used in the definition of the operator VN,χ(l) in

[EZ85], [Ib12] (see also [He99], section 3). Let

(3.6) MJ :=

∞⋃

m=0

⋃

Γ∈Ξ

Ĵk,m (Γ⋉H(Z), χ) .

Here Ξ denotes the set of all congruence subgroup of Γ0(N). Let α ∈ ∆N(l), then

MJ −→ MJ ,Φ 7→ Φα̂, where Φ ∈ Jk,m(Γ
J
0 (N), χ). Then

Φ|ΓJ
0 (N)αΓJ

0 (N) :=
∑

i

Φαi ∈ Jk,ml(Γ
J
0 (N), χ)

=
∑

i

χ(αi) Φ|k,mαi.

We frequently switch between Φ and Φ̂ and consider α as element of ∆N , ∆
J
N , and ∆̂N

accordingly. We make all the obvious identifications if clear from the context. Note

that cusp forms map to cusp forms. Finally we perform the translation of the formula

(3.1 into the Hecke-Jacobi algebra. Note that a priori it was not clear that this is

possible, since the general Hecke-Jacobi algebra is not abelian and has zero divisors

[He99]. Let V 0(m) correspond to T (m) and V 0(d, d) if (d,N) = 1 as elements of HJ .

Then we obtain inside the Hecke algebra H(ΓJ
0 (N),∆N ) the important algebraic

identity

(3.7) V 0(m) ◦ V 0(n) =
∑

d|(m,n)
(d,N)=1

d V 0(d, d) V 0
(mn

d2

)
.

4. Main Results

The Maass Spezialschar of level N is given by

(4.1) MSpez
k (Γ2

0(N), χ) :=
{
LN,χ(Φ) | Φ ∈ Jk,1(Γ

J
0 (N), χ)

}
.



MAASS SPEZIALSCHAR OF LEVEL N 11

The subspace of cusp form we denote by SSpez
k (Γ2

0(N), χ). A Siegel modular form

FM2
k (Γ0(N)J , χ) is in the Maass Spezialschar iff all the Fourier coefficients of F

satisfy the general Maass relations

(4.2) A(n, r,m) =
∑

d|(n,r,m)

dk−1 χ(d) A
(nm
d2

,
r

d
, 1
)
.

See also [Ib12]section 3.4 and the observations at the end of the proof of Theorem 4.1.

Our argument is the following. All Fourier coefficients A(T ), T ∈ X ∗ are determined

by the first Fourier-Jacobi coefficient of F . This is a Jacobi form of weight k and

index 1 of level N and the relations reflect exactly the definition of LN,χ.

In this section we prove that F is a Saito-Kurokawa lift iff F satisfies symmetries

(∗l) for all l ∈ N. We state two applications. First, it is sufficient to check (∗p) for
prime numbers and second we obtain symmetric Maass relations (of course equivalent

to (4.2). Combined we obtain local Maass p-relations generalizing the known level

N = 1 case, discovered first by Pitale, Schmidt and the author [FPRS13].

4.1. Maass Spezialschar and Symmetries. Saito-Kurokawa lifts, elements in the

Maass Spezialschar, can be characterized by symmetries. Note that these symmetries

(∗l) for all l ∈ N make it possible to study Saito-Kurokawa lifts by properties of the

Hecke algebra H(Γ0(N),∆N ) originally constructed to study elliptic modular forms.

Theorem 4.1. Let k and N be positive integers. Suppose χ is a Dirichlet character

modulo N satisfying χ(−1) = (−1)k. Let F ∈ Mk(Γ
(2)
0 (N), χ) be a Siegel modular

form of weight k, degree 2, and level N with Dirichlet character χ. Then F is a

Saito-Kurowaka lift if and only if F satisfies for all l ∈ N the symmetry relation (∗l)
given by

(4.3)
∑

g∈Γ0(N)\∆N (l)

χ(g)−1
(
F |kg̃↑

)
=

∑

g∈Γ0(N)\∆N (l)

χ(g)−1
(
F |kg̃↓

)
. (∗l).

Proof. Note that (∗l) is well-defined, since

χ(γ g) = χ(g) = χ(a)−1; g =

(
a b

c d

)
∈ ∆N(l) and γ ∈ Γ0(N).

First we show that (∗l) implies that the l-th Fourier-Jacobi (FJ) coefficients Fl of

F satisfy Fl = Vl,χ(F1). This implies that for F ∈ Sk(Γ
(2)
0 (N), χ) all FJ coefficients

are obtained by Vl,χ(F1), where F1 ∈ Jcusp
k,1 (ΓJ

0 (N), χ). Hence F = Ln,χ(F1). For the

general case we refer to the end of this proof. Let

A :=

(
1 0

0 1

)
×
(√

l 0

0
√
l
−1

)
, then A

(
τ1 z

z τ2

)
=
(
τ1,

√
lz, lτ2

)
.

We deform (∗l) on both sides by |kA. This breaks the symmetry of (∗l). Nevertheless
the projective matrices g̃↑↓ become integral and the iff part of the Theorem still
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remains. Let (∗Al ) be given by

(4.4)
∑

g∈Γ0(N)\∆N (l)

χ(g)−1
(
F |kg̃↑A

)
=

∑

g∈Γ0(N)\∆N (l)

χ(g)−1
(
F |kg̃↓A

)
. (∗Al ).

We calculate the left side of (∗Al ). Note that

g̃↑A =
√
l
−1
(
g ×

(
l 0

0 1

))
,

which implies that
(
F |kg̃↑A

)
= lkF |kĝ. This action is compatible with the FJ expan-

sion of F :

F (τ1, z, τ2) =
∞∑

m=1

Fm(τ1, z) q
m
2 with q2 = e(τ2).

Finally we obtain for the l-th FJ coefficient of the left side of (∗Al ) the expression

lkV 0
l,χ(F1).

Next we determine the l-th FJ-coefficient of the right side of (∗Al ). We fix for

Γ0(N)\∆N (l) the special representation system (3.3) and obtain:

∑

a,d∈N; ad=l
b (mod d)

(
d

l

)−k

χ(a)F

(
τ1, az, a

2τ2 +
b

d

)
.

The l-th of this expression is equal to

∑

a,d∈N; ad=l

(
d

l

)−k

χ(a)F l

a2
(τ1, az)


 ∑

b (mod d)

e

(
l

a2
b

d

)
 ,

which simplifies to l Fl (only the term d = l contributes).

Conversely, assuming that Vl,χ(F1) = Fl for all implies (∗l) for all l ∈ N by applying

a pure algebraic relation in a corresponding Hecke algebra. We start in comparing

the m-th Fourier Jacobi coefficients of both sides of (∗Al ), where m = l1 l2 and l2 = l.

We obtain for the left side:

lk2
∑

a,d∈N; ad=l
b (mod d)

χ(a)Fl1

(
aτ1 + b

d
, az, l2τ2

)

= lk2 V 0
l2,χ

(Fl1) = lk2 lk−1
1

(
V 0
l2,χ

◦ V 0
l1,χ

)
(F1).



MAASS SPEZIALSCHAR OF LEVEL N 13

For the right side we obtain:

∑

a,d∈N; ad=l2

(
d

l2

)−k

χ(a)F m

a2
(τ1, az)


 ∑

b (mod d)

e

(
m

a2
b

d

)


=
∑

ad=l2, a|l1

d

(
d

l2

)−k

χ(a)F m

a2
(τ1, az)

= l2
∑

a|(l1,l2)

ak−1 χ(a)F m

a2
(τ1, az)

= l2 (l1l2)
k−1

∑

a|(l1,l2)

a1−k χ(a) V 0
l1l2

a2
χ
(F1)(τ1, az).

The operator V 0(a, a) is defined by

V 0(a, a)(F )(τ1, z, τ2) := χ(a) F |k
(̂
a 0

0 a

)
(τ1, z, τ2)

= χ(a) a−kF (τ1, az, a
2τ2),

which leads to an action on Jacobi forms. Hence the right side is equal to

(4.5) l2 (l1l2)
k−1

∑

a|(l1,l2)
(a,N)=1

a

(
V 0(a, a) ◦ V 0

l1l2

a2
χ

)
(F1).

Comparing the left and right side, we are left with showing the following identity

inside the Hecke algebra H(ΓJ
0 (N),∆J

N):

(4.6) V 0(m) ◦ V 0(n) =
∑

d|(m,n)
(d,N)=1

d V 0(d, d) V 0
(mn

d2

)
.

This is pure algebraic and independent of the involved Jacobi forms and Fourier

Jacobi expansions. This formula has been obtained in section 3 on Hecke theory.

Finally we consider the case when F is not necessarily a cusp form. Let A(n, r,m)

be the Fourier coefficients of F . Then (∗l) implies that

(4.7)
∑

d|(n,l)

dk−1 χ(d)A

(
nl

d2
, 0, 0

)
=
∑

d| l

dk−1 χ(d)A (n, 0, 0) .

Let a(l) := A(l, 0, 0). Then we obtain

a(l) =


∑

d| l

dk−1 χ(d)


 a(1).
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All possible a(0) such that

(4.8) f(τ) =
∞∑

n=0

a(n) qn ∈ Mk(Γ0, χ)

are classified in [Ib12]. Hence F is a Saito-Kurokawa lift in the sense of Ibukiyama.

�

4.2. Applications.

Corollary 4.2. Let F ∈ M2
k (Γ

(2)
0 (N), χ) with Fourier expansion

F (τ1, z, τ2) =
∑

T=(n,r,m)∈X

A(n, r,m) qn1 ζ
r qm2 .

Then the following properties are equal.

(i) F is a Saito-Kurokawa lift (also called Maass lift)

(ii) All the Fourier coefficients of F satisfy:

A(n, r,m) =
∑

d|(n,r,m)

dk−1 χ(d) A
(nm
d2

,
r

d
, 1
)
.

(iii) All the Fourier coefficients of F satisfy for all l ∈ N:

∑

d|(n,r,l)

dk−1 χ(d) A

(
nl

d2
,
r

d
,m

)
=

∑

d|(l,r,m)

dk−1 χ(d) A

(
n,

r

d
,
ml

d2

)
.

Proof. The Maass lift (called also Saito-Kurokawa lift, see [Ib12] Introduction) and

the relations of Fourier coefficients is given in [Ib12], section 3.4. For the readers

convenience we recall the equivalence of (i) and (ii). Let F be a Maass lift then (ii)

is satisfied (Proposition 3.8, [Ib12]). If (ii) is satisfied then F is uniquely determined

by the first Fourier-Jacobi coefficient and all the other Fourier-Jacobi coefficients are

the expected lifts in the setting of Jacobi forms.

(iii) implies (i) by putting m = 1 in formula (iii). Next we show that (i) implies (iii).

We have already proven that F is a Maass lift if and only if
∑

g∈Γ0(N)\∆N (l)

χ(g)−1
(
F |kg̃↑

)
=

∑

g∈Γ0(N)\∆N (l)

χ(g)−1
(
F |kg̃↓

)
. (∗l)

for all l ∈ N. We fix for Γ\∆N(l) the special representative system

(4.9)

{(
a b

0 d

) ∣∣∣ a, b ∈ N; ad = l; (a,N) = 1; b = 0, 1, . . . , d− 1

}
.

Note that χ(g)−1 = χ(a). Then the left side of the equation (∗l) is equal to
∑

a,b∈N; ad=l
b (mod d)

l
k

2 d−kχ(a)F

(
aτ1 + b

d
, l−

1

2az, τ2

)
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We consider the left side of (∗l). For convenience we map z 7→
√
l z and keep in mind

that
∑

b (mod d) e(n
b
d
) = d if d|n and 0 otherwise. We obtain
∑

n,r,m

l
k

2

∑

a,d∈N
ad=l, d|n

d−k+1 χ(a)A(n, r,m) q
an

d

1 ζraqm2 .

This is equal to

l1−
k

2

∑

n,r,m

∑

a|(n,r,l)

ak−1 χ(a) A

(
nl

a2
,
r

a
,m

)
qn1 ζ

r qm2 .

Since the left side of the relation (∗l) is symmetric to the right side this leads to the

proof. �

Actually one has to check the relations in (iii) only for l prime numbers. This

follows from the observation

Corollary 4.3. Let F be a Siegel modular form of level N . Then F is a Saito-

Kurowaka lift if and only if F satisfies the symmetry relation (∗l) for all prime num-

bers l.

Proof. This follows from the results of section 3.2. �

Putting this together leads to

Corollary 4.4. (Maass p-relations)

Let F be a Siegel modular form of level N . Then F is a Saito-Kurokawa lift iff the

Fourier coefficients of F satisfy

(4.10) A(np, r,m)+pk−1χ(p) A

(
n

p
,
r

p
,m

)
= A(n, r, pm)+pk−1χ(p) A

(
n,

r

p
,
m

p

)
.

for all prime numbers p. Note that for p|N the relations degenerate to

A(np, r,m) = A(n, r, pm).

Acknowledgements. To be entered later.
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