

www.ams.org

Ryunosuke Ozawa, Norihiko Suzuki Stability of Talagrand's inequality under concentration topology Proceedings of the American Mathematical Society DOI: 10.1090/proc/13580

# Accepted Manuscript

This is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. It has not been copyedited, proofread, or finalized by AMS Production staff. Once the accepted manuscript has been copyedited, proofread, and finalized by AMS Production staff, the article will be published in electronic form as a "Recently Published Article" before being placed in an issue. That electronically published article will become the Version of Record.

This preliminary version is available to AMS members prior to publication of the Version of Record, and in limited cases it is also made accessible to everyone one year after the publication date of the Version of Record.

The Version of Record is accessible to everyone five years after publication in an issue.

# STABILITY OF TALAGRAND'S INEQUALITY UNDER CONCENTRATION TOPOLOGY

#### RYUNOSUKE OZAWA AND NORIHIKO SUZUKI

ABSTRACT. In this paper, we study the compatibility between Talagrand's inequality and the concentration topology, i.e., if a sequence of mm-spaces satisfying Talagrand's inequality converges with respect to the observable distance, then the limit space satisfies Talagrand's inequality.

### 1. INTRODUCTION

Gromov [4, Chapter  $3.\frac{1}{2}_{+}$ ] introduced the observable distance function  $d_{\rm conc}$  on the set  $\mathcal{X}$  of isomorphism classes of mm-spaces (metric measure spaces). This comes from the idea of measure concentration phenomenon which is stated as that any 1-Lipschitz function on an mm-space is close to a constant function on a Borel set with almost full measure. The observable distance function is defined by the difference between the sets of 1-Lipschitz functions on two mm-spaces. The topology generated by the observable distance function admits a convergence sequence of Riemannian manifolds of unbounded dimension. For example, the sequence  $\{S^n\}_{n=1}^{\infty}$  of *n*-dimensional unit spheres  $d_{\rm conc}$ -converges to one-point mm-space.

Talagrand's inequality is one of the functional approaches to the concentration phenomenon. An mm-space  $(X, d_X, \mu_X)$  satisfies Talagrand's inequality  $(T_p(K))$  if we have

$$W_p(\nu,\mu_X)^2 \le \frac{2}{K}\operatorname{Ent}(\nu|\mu_X)$$

for any  $\nu \in \mathcal{P}_p(X)$ . Here,  $W_p$  is the  $L^p$ -Wasserstein distance function, Ent $(\nu | \mu_X)$  is the relative entropy of  $\nu$  with respect to  $\mu_X$ , and  $\mathcal{P}_p(X)$  is the set of Borel probability measures with finite  $p^{\text{th}}$  moment. The case p = 2 was first proved by Talagrand [8]. He proved that *n*-dimensional Gaussian space satisfies Talagrand's inequality  $(T_2(1))$  for any  $n \in \mathbb{N}$ . After that, Sturm [7] and Lott-Villani [5] introduced the curvaturedimension condition  $\text{CD}(K, \infty)$  for mm-spaces. This is a generalized notion of Ricci curvature bound from below by  $K \in \mathbb{R}$ . Lott-Villani

Date: November 1, 2016.

<sup>2010</sup> Mathematics Subject Classification. Primary: 53C23; Secondary: 60E15. Key words and phrases. metric measure space, observable distance, Talagrand's inequality.

[5] proved that the curvature-dimension condition  $CD(K, \infty)$  implies Talagrand's inequality  $(T_2(K))$ .

In this paper, we study the compatibility between  $d_{\text{conc}}$ -convergence and Talagrand's inequality. Our main theorem stated as follows.

**Theorem 1.1.** Let  $\{X_n\}_{n=1}^{\infty}$  be a sequence of mm-spaces satisfying Talagrand's inequality  $(T_p(K))$  for K > 0 and p with  $1 \le p < \infty$ . If  $X_n$  concentrates to an mm-space Y as  $n \to \infty$ , then Y also satisfies Talagrand's inequality  $(T_p(K))$ .

Acknowledgment. During the work on this paper, the first author has been supported by JSPS KAKENHI Grant Number 24224002 and postdoctoral program at Max Planck Institute for Mathematics.

## 2. Preliminaries

In this section, we give the definitions and properties stated in [4, Chapter  $3\frac{1}{2}_{+}$ ], [6], and [9, 10].

# 2.1. Observable distance function.

**Definition 2.1** (mm-Space). A triple  $X = (X, d_X, \mu_X)$  is called an *mm-space* (*metric measure space*) if  $(X, d_X)$  is a complete separable metric space and if  $\mu_X$  is a Borel probability measure on X.

**Definition 2.2** (mm-Isomorphism). Two mm-spaces X and Y are said to be *mm-isomorphic* to each other if there exists an isometry f:  $\operatorname{supp} \mu_X \to \operatorname{supp} \mu_Y$  such that  $f_*\mu_X = \mu_Y$ , where  $f_*\mu_X$  is the pushfoward measure of  $\mu_X$  by f. Such an f is called an *mm-isomorphism*.

Note that X is mm-isomorphic to  $(\operatorname{supp}(\mu_X), d_X, \mu_X)$ . Denote by  $\mathcal{X}$  the set of mm-isomorphism classes of mm-spaces.

Let I := [0, 1] and X be an mm-space. A Borel measurable map  $\varphi : I \to X$  is called a *parameter of* X if  $\varphi$  satisfies  $\varphi_* \mathcal{L} = \mu_X$ , where  $\mathcal{L}$  is the Lebesgue measure. Any mm-space has a parameter (see [6, Proposition 4.1]). For two  $\mu_X$ -measurable functions  $f, g : X \to \mathbb{R}$ , we define the Ky Fan distance between f and g by

 $d_{\mathrm{KF}}(f,g) := \inf\{\varepsilon > 0 \mid \mu_X(\{x \in X \mid |f(x) - g(x)| > \varepsilon\}) \le \varepsilon\}.$ 

The distance function  $d_{\rm KF}$  is called the *Ky Fan metric* on the set of  $\mu_X$ -measurable functions on X. Note that the Ky Fan metric is a metrization of convergence in measure of  $\mu_X$ -measurable functions.

**Definition 2.3** (Observable distance). Denote by  $\mathcal{L}ip_1(X)$  the set of 1-Lipschitz continuous functions on an mm-space X. For any parameter  $\varphi$  of X, we set  $\varphi^*\mathcal{L}ip_1(X) := \{ f \circ \varphi | f \in \mathcal{L}ip_1(X) \}$ . We define the observable distance  $d_{\text{conc}}(X, Y)$  between two mm-spaces X and Y by

$$d_{\operatorname{conc}}(X,Y) := \inf_{\varphi,\psi} d_{\operatorname{H}}(\varphi^* \mathcal{L}ip_1(X), \psi^* \mathcal{L}ip_1(Y)),$$

 $\mathbf{2}$ 

where  $\varphi : I \to X$  and  $\psi : I \to Y$  run over all parameters of X and Y, respectively, and where  $d_{\rm H}$  is the Hausdorff distance function with respect to the Ky Fan metric  $d_{\rm KF}$ . We say that a sequence of mm-spaces  $X_n, n = 1, 2, \ldots$ , concentrates to an mm-space Y if  $X_n d_{\rm conc}$ -converges to Y as  $n \to \infty$ .

The observable distance  $d_{\text{conc}}$  is a metric on  $\mathcal{X}$  (see [4, Section  $3\frac{1}{2}.45$ ] and [6, Theorem 5.16]). We call the topology on  $\mathcal{X}$  induced by  $d_{\text{conc}}$ the *concentration topology*.

**Proposition 2.4** ([3, Proposition 3.5, Proposition 3.11, Lemma 5.4], [6, Lemma 5.27, Corollary 5.35, Proposition 9.31]). Let  $X_n$  and Y be mm-spaces,  $n = 1, 2, \ldots$  If  $X_n$  concentrates to Y as  $n \to \infty$ , then there exist Borel measurable maps  $p_n : X_n \to Y$ , positive real numbers  $\varepsilon_n$  with  $\varepsilon_n \to 0$  as  $n \to \infty$  and Borel subsets  $\tilde{X}_n \subset X_n$  with  $\mu_{X_n}(\tilde{X}_n) \ge 1 - \varepsilon_n$ such that

- (1)  $d_{\mathrm{H}}(\mathcal{L}ip_1(X_n), p_n^*\mathcal{L}ip_1(Y)) \leq \varepsilon_n,$
- (2)  $(p_n)_*\mu_{X_n}$  converges weakly to  $\mu_Y$  as  $n \to \infty$ ,
- (3)  $d_Y(p_n(x_n), p_n(x'_n)) \leq d_{X_n}(x_n, x'_n) + \varepsilon_n \text{ for any } x_n, x'_n \in \tilde{X}_n,$
- (4)  $\limsup_{n \to \infty} \sup_{x_n \in X_n \setminus \tilde{X}_n} d_Y(p_n(x_n), y_0) < +\infty \text{ for any } y_0 \in Y.$

We call  $\tilde{X}_n$  the non-exceptional domain of  $p_n$  for an additive error  $\varepsilon_n$ .

Remark 2.5. (1) By the inner regularity of  $\mu_{X_n}$ , we may assume  $X_n$  is a compact set.

(2) The conditions (1) and (2) of Proposition 2.4 imply the  $d_{\text{conc-}}$  convergence (see [3, Proposition 3.5], [6, Corollary 5.36]).

2.2. Talagrand's inequality. Let X be a complete separable metric space. A Borel probability measure  $\pi$  on  $X^2$  is a *coupling* of two Borel probability measures  $\nu_0$  and  $\nu_1$  on X if  $\pi$  satisfies  $(\text{proj}_0)_*\pi = \nu_0$  and  $(\text{proj}_1)_*\pi = \nu_1$ , where  $\text{proj}_i : X \times X \to X$ , i = 0, 1, are the projections defined by  $\text{proj}_0(x_0, x_1) = x_0$ ,  $\text{proj}_1(x_0, x_1) = x_1$ .

**Definition 2.6** (Wasserstein distance). Let  $(X, d_X)$  be a complete separable metric space and  $p \in [1, \infty)$ . For two Borel probability measures  $\mu$  and  $\nu$  on X, we define the  $L^p$ -Wasserstein distance between  $\mu$  and  $\nu$  by

$$W_p(\mu,\nu) := \inf_{\pi} \left( \int_{X \times X} d_X(x,x')^p \, d\pi(x,x') \right)^{1/p}, \qquad (2.1)$$

where  $\pi$  runs over all couplings of  $\mu$  and  $\nu$ .

Denote by  $\mathcal{P}_{p}(X)$  the set of Borel probability measures  $\mu$  satisfying

$$W_p(\mu, \delta_{x_0})^p = \int_X d_X(x, x_0)^p d\mu(x) < \infty$$

for the Dirac measure  $\delta_{x_0}$  of some point  $x_0 \in X$ . The  $L_p$ -Wasserstein distance  $W_p$  is a metric on  $\mathcal{P}_p(X)$  (see [9, Theorem 7.3] and [10, Chapter 6]).

- Remark 2.7. (1) There exists a minimizer for the infimum in (2.1). We will call it optimal coupling of  $\nu_0$  and  $\nu_1$  (see [10, Theorem 4.1]).
  - (2) The topology generated by the Wasserstein distance is stronger than the weak topology. If a complete separable metric space X is bounded, then the topology generated by the Wasserstein distance and the weak topology coincide to each other (see [9, Theorem 7.12] and [10, Theorem 6.9]).

**Definition 2.8** (Relative entropy). Let X be an mm-space and  $\nu$  a Borel probability measure on X. The *relative entropy*  $\text{Ent}(\nu|\mu_X)$  of  $\nu$ with respect to  $\mu_X$  is defined as follows. If  $\nu$  is absolutely continuous with respect to  $\mu_X$ , then

$$\operatorname{Ent}(\nu|\mu_X) := \int_X \frac{d\nu}{d\mu_X} \log\left(\frac{d\nu}{d\mu_X}\right) d\mu_X,$$

otherwise  $\operatorname{Ent}(\nu|\mu_X) := \infty$ .

For an mm-space X, we denote  $\mathcal{P}^{cb}(X)$  by the set of Borel probability measures  $\nu$  on X with compact support which is absolutely continuous with respect to  $\mu_X$  and the Radon-Nikodym derivative is essentially bounded on X. Note that  $\mathcal{P}^{cb}(X)$  is a dense subset in  $(\mathcal{P}_p(X), W_p)$ .

**Lemma 2.9** ([6, Lemma 9.20]). Let X be an mm-space and  $\nu \in \mathcal{P}_p(X)$ with  $\operatorname{Ent}(\nu|\mu_X) < \infty$ . Then, for any  $\varepsilon > 0$ , there exists  $\tilde{\nu} \in \mathcal{P}^{cb}(X)$ such that

$$W_p(\tilde{\nu},\nu) < \varepsilon$$
, and  $|\operatorname{Ent}(\tilde{\nu}|\nu_X) - \operatorname{Ent}(\nu|\mu_X)| < \varepsilon$ .

**Definition 2.10** (Talagrand's inequality). Let X be an mm-space. X satisfies *Talagrand's inequality*  $(T_p(K))$  for positive real numbers K and p with  $1 \le p < \infty$  if we have

$$W_p(\nu,\mu_X)^2 \le \frac{2}{K}\operatorname{Ent}(\nu|\mu_X)$$
  $(T_p(K))$ 

for any  $\nu \in \mathcal{P}_p(X)$ .

Sturm [7] and Lott-Villani [5] introduced the curvature-dimension condition  $CD(K, \infty)$ . This is a generalized notion of Ricci curvature bound from below by  $K \in \mathbb{R}$  (see [7, Theorem 4.9] and [5, Theorem 7.3]). Lott-Villani proved the following.

**Example 2.11** ([5, Theorem 6.1]). Let K > 0 and X be an mm-space satisfying  $CD(K, \infty)$ . Then X satisfies Talagrand's inequality  $(T_2(K))$ . In particular, if M is a complete Riemannian manifold with  $\operatorname{Ric}_M \ge K$ , then M satisfies Talagrand's inequality  $(T_2(K))$ .

Remark 2.12. Consider the *n*-dimensional standard Gaussian measure  $\gamma^n$  on  $(\mathbb{R}^n, \|\cdot\|_2)$ . Since  $(\mathbb{R}^n, \|\cdot\|_2, \gamma^n)$  satisfies  $\text{CD}(1, \infty)$  (see [7, Example 4.10]), this space satisfies Talagrand's inequality  $(T_2(1))$ . This coincides with Talagrand's result (see [8, Theorem 1.1]).

Combining Csiszár-Kullback-Pinsker's inequality (see e.g. [1, Theorem 8.2.7]) and [10, Theorem 6.15], we obtain the following example.

**Example 2.13.** Let  $K_n$  be the complete graph with n vertices, unit distance and uniform probability distribution. Then  $K_n$  satisfies Talagrand's inequality  $(T_1(1/4))$ .

### 3. Proof of Theorem 1.1

For a Borel subset B of an mm-space X with positive measure, we define a Borel probability measure  $\mu_B$  by

$$\mu_B := \frac{\mu_X|_B}{\mu_X(B)}$$

For two Borel measures  $\mu$  and  $\nu$  on a metric space X, we write  $\mu \leq \nu$  if  $\mu(B) \leq \nu(B)$  for any Borel set B of X.

**Lemma 3.1.** Let X be an mm-space. If we assume that every  $\nu \in \mathcal{P}^{cb}(X)$  satisfies the condition of the definition of Talagrand's inequality  $(T_p(K))$ , then we have the following.

- (1)  $\mu_X \in \mathcal{P}_p(X).$
- (2) X satisfies Talagrand's inequality  $(T_p(K))$ .

*Proof.* We prove (1). Let  $C \subset X$  be a compact set with  $\mu_X(C) > 0$  and  $x_0 \in X$ . Then, we obtain

$$W_p(\mu_X, \delta_{x_0}) \leq W_p(\mu_X, \mu_C) + W_p(\mu_C, \delta_{x_0})$$
  
$$\leq \sqrt{\frac{2}{K}} \operatorname{Ent}(\mu_C | \mu_X) + \sup_{x \in C} d_X(x, x_0)$$
  
$$= \sqrt{\frac{2}{K} \log \frac{1}{\mu_X(C)}} + \sup_{x \in C} d_X(x, x_0)$$
  
$$< \infty.$$

(2) follows from Lemma 2.9.

**Lemma 3.2** ([3, Lemma 3.13], [6, Lemma 9.33]). Let  $X_n$  and Y be mm-spaces,  $n = 1, 2, \ldots$ . Assume that a sequence of Borel measurable maps  $p_n : X_n \to Y$  and a sequence  $\{\varepsilon'_n\}_{n=1}^{\infty}$  of positive real numbers with  $\varepsilon'_n \to 0$  satisfy (1)–(3) of Proposition 2.4. For a real number  $\delta > 0$ , we give two Borel subsets  $B_0, B_1 \subset Y$  such that

diam 
$$B_i \leq \delta$$
,  $\mu_Y(B_i) > 0$ , and  $\mu_Y(\partial B_i) = 0$ 

for i = 0, 1, and set

$$\tilde{B}_i := p_n^{-1}(B_i) \cap \tilde{X}_n \subset X_n,$$

where  $\tilde{X}_n$  is a non-exceptional domain of  $p_n$ . Then, there exist a sequence  $\{\varepsilon_n\}_{n=1}^{\infty}$  of positive real numbers with  $\varepsilon_n \to 0$ , Borel probability measures  $\tilde{\xi}_0^n$ ,  $\tilde{\xi}_1^n$  on  $X_n$  and couplings  $\tilde{\pi}_n$  between  $\tilde{\xi}_0^n$  and  $\tilde{\xi}_1^n$ ,  $n = 1, 2, \ldots$ , such that, for every sufficiently large natural number n,

- (1)  $\tilde{\xi}_i^n \leq (1+O(\delta^{1/2}))\mu_{\tilde{B}_i}$  (i=0,1), where  $O(\cdot)$  is a Landau symbol,
- (2)  $d_{X_n}(x_0, x_1) \ge d_Y(B_0, B_1) \varepsilon_n$  for any  $x_i \in \tilde{B}_i$ , i = 0, 1, (3)  $\operatorname{supp} \tilde{\pi}^n \subset \{ (x_n, x'_n) \in X_n^2 | d_{X_n}(x_n, x'_n) \le d_Y(B_0, B_1) + \delta^{1/2} \},$ (4)  $-\varepsilon_n \le W_p(\tilde{\xi}_0^n, \tilde{\xi}_1^n) d_Y(B_0, B_1) \le \delta^{1/2}$  for any  $p \ge 1$ .

Let  $\theta(\cdot) : \mathbb{R} \to \mathbb{R}$  be a function such that  $\theta(\varepsilon) \to 0$  as  $\varepsilon \to 0$ .

*Proof of Theorem 1.1.* By Lemma 3.1, it suffices to prove

$$W_p(\nu, \mu_Y)^2 \le \frac{2}{K} \operatorname{Ent}(\nu|\mu_Y)$$
(3.1)

for any  $\nu \in \mathcal{P}^{cb}(Y)$ . Let  $p_n : X_n \to Y, n = 1, 2, \ldots$ , be Borel measurable maps as in Proposition 2.4. To prove the theorem, we first prove the inequality

$$W_p(\mu,\nu)^2 \le \frac{2}{K} (\sqrt{\text{Ent}(\mu|\mu_Y)} + \sqrt{\text{Ent}(\nu|\mu_Y)})^2.$$
 (3.2)

for any  $\mu, \nu \in \mathcal{P}^{cb}(Y)$ .

We take any  $\mu, \nu \in \mathcal{P}^{cb}(Y)$  and fix them. For any natural number m, there are finite disjoint Borel subsets  $B_j \subset Y, j = 1, 2, \ldots, J$ , such that  $\bigcup_{i=1}^{J} \overline{B_i} = \operatorname{supp} \mu \cup \operatorname{supp} \nu$ , diam  $B_j \leq m^{-1}, \mu_Y(B_j) > 0$ , and  $\mu_Y(\partial B_j) = 0$  for any j. For each  $(j,k) \in \{1,\ldots,J\}^2$ , we apply Lemma 3.2 for  $B_j$  and  $B_k$  to obtain Borel probability measures  $\tilde{\xi}_{jk}^{mn} \in \mathcal{P}^{cb}(X_n)$ ,  $n = 1, 2, \ldots$ , such that

$$\tilde{\xi}_{jk}^{mn} \le (1 + \theta(m^{-1}))\mu_{\tilde{B}_j},$$
(3.3)

for any sufficiently large natural number n. By the diagonal argument, we may assume that  $(p_n)_* \tilde{\xi}_{jk}^{mn}$  converges weakly to a Borel probability measure  $\tilde{\xi}_{jk}^m \in \mathcal{P}^{cb}(Y)$  as  $n \to \infty$  for each  $(j, k, m) \in \{1, \dots, J\}^2 \times \mathbb{N}$ . Let  $\pi$  be an optimal coupling for  $W_p(\mu, \nu)$ . We define

$$w_{jk} := \pi(B_j \times B_k)$$
  

$$\tilde{\mu}^{mn} := \sum_{j,k=1}^J w_{jk} \tilde{\xi}_{jk}^{mn}, \qquad \tilde{\nu}^{mn} := \sum_{j,k=1}^J w_{jk} \tilde{\xi}_{kj}^{mn} \in \mathcal{P}^{cb}(X_n),$$
  

$$\tilde{\mu}^m := \sum_{j,k=1}^J w_{jk} \tilde{\xi}_{jk}^m, \qquad \tilde{\nu}^m := \sum_{j,k=1}^J w_{jk} \tilde{\xi}_{kj}^m \in \mathcal{P}^{cb}(Y).$$

Appliced + Report State ion of this article, which may differ from the final published version. Copyright restrictions may apply.

Then,  $(p_n)_* \tilde{\mu}^{mn}$  and  $(p_n)_* \tilde{\nu}^{mn}$  converge weakly to  $\tilde{\mu}^m$  and  $\tilde{\nu}^m$ , respectively, as  $n \to \infty$ .  $\tilde{\mu}^m$  and  $\tilde{\nu}^m$  converge weakly to  $\mu$  and  $\nu$ , respectively, as  $m \to \infty$ . Moreover,  $W_p((p_n)_* \tilde{\mu}^{mn}, \mu), W_p((p_n)_* \tilde{\nu}^{mn}, \nu) \to 0$  as  $n \to \infty$  and then  $m \to \infty$ .

Let  $\tilde{\pi}$  be an optimal coupling for  $W_p(\tilde{\mu}^{mn}, \tilde{\nu}^{mn})$ . By  $\operatorname{supp} \tilde{\mu}^{mn}$ ,  $\operatorname{supp} \tilde{\nu}^{mn} \subset \tilde{X}_n$ , and Proposition 2.4 (3), we have

$$W_p((p_n)_*\tilde{\mu}^{mn}, (p_n)_*\tilde{\nu}^{mn})^p \leq \int_{X_n \times X_n} d_Y(p_n(x_n), p_n(x'_n))^p d\tilde{\pi}(x_n, x'_n)$$
$$\leq \int_{X_n \times X_n} (d_{X_n}(x_n, x'_n) + \varepsilon_n)^p d\tilde{\pi}(x_n, x'_n)$$
$$\leq (W_p(\tilde{\mu}^{mn}, \tilde{\nu}^{mn}) + \varepsilon_n)^p.$$

Then, we have

$$W_p(\mu,\nu) = \lim_{m \to \infty} \lim_{n \to \infty} W_p((p_n)_* \tilde{\mu}^{mn}, (p_n)_* \tilde{\nu}^{mn})$$

$$\leq \liminf_{m \to \infty} \liminf_{n \to \infty} W_p(\tilde{\mu}^{mn}, \tilde{\nu}^{mn}).$$
(3.4)

By (3.3), we have

$$\frac{d\tilde{\mu}^{mn}}{d\mu_{X_n}} = \sum_{j,k=1}^J w_{jk} \frac{d\tilde{\xi}_{jk}^{mn}}{d\mu_{X_n}} \\
\leq (1 + \theta(m^{-1})) \sum_{j,k=1}^J \frac{w_{jk}}{\mu_{X_n}(\tilde{B}_j)} \chi_{\tilde{B}_j} \\
= (1 + \theta(m^{-1})) \sum_{j=1}^J \frac{\mu(B_j)}{\mu_{X_n}(\tilde{B}_j)} \chi_{\tilde{B}_j}.$$

In particular, we have  $\tilde{\mu}^{mn}(\tilde{B}_j) \leq (1+\theta(m^{-1}))\mu(B_j)$ . The monotonicity of  $f(x) = \log x$  and the previous inequality imply

$$\operatorname{Ent}(\tilde{\mu}^{mn}|\mu_{X_n})$$

$$= \int_{X_n} \log\left(\frac{d\tilde{\mu}^{mn}}{d\mu_{X_n}}(x_n)\right) d\tilde{\mu}^{mn}(x_n)$$

$$\leq \int_{X_n} \log\left((1+\theta(m^{-1}))\sum_{j=1}^J \frac{\mu(B_j)}{\mu_{X_n}(\tilde{B}_j)}\chi_{\tilde{B}_j}(x_n)\right) d\tilde{\mu}^{mn}(x_n)$$

$$= \sum_{j=1}^J \tilde{\mu}^{mn}(\tilde{B}_j) \log\left((1+\theta(m^{-1}))\frac{\mu(B_j)}{\mu_{X_n}(\tilde{B}_j)}\right)$$

$$\leq (1+\theta(m^{-1}))\sum_{j=1}^J \mu(B_j) \log\frac{\mu(B_j)}{\mu_{X_n}(\tilde{B}_j)} + \theta(m^{-1}).$$

Appliced the state of this article, which may differ from the final published version. Copyright restrictions may apply.

Since  $B_j$  satisfies  $\mu_Y(\partial B_j) = 0$ , Proposition 2.4 (2) and the portmanteau theorem (see [2, Corollary 8.2.10]) imply

$$\lim_{n \to \infty} \mu_{X_n}(\tilde{B}_j) = \lim_{n \to \infty} \mu_{X_n}(p_n^{-1}(B_j) \cap \tilde{X}_n) = \mu_Y(B_j)$$

and then we obtain

$$\limsup_{n \to \infty} \operatorname{Ent}(\tilde{\mu}^{mn} | \mu_{X_n})$$

$$\leq (1 + \theta(m^{-1})) \sum_{j=1}^{J} \mu(B_j) \log \frac{\mu(B_j)}{\mu_Y(B_j)} + \theta(m^{-1}).$$
(3.5)

Define a probability measure  $\overline{\mu}^m$  by

$$\overline{\mu}^m := \sum_{j=1}^J \frac{\mu(B_j)}{\mu_Y(B_j)} \mu_Y|_{B_j}.$$

Jensen's inequality implies

$$\operatorname{Ent}(\mu|\mu_{Y})$$

$$= \int_{Y} \frac{d\mu}{d\mu_{Y}}(y) \log \frac{d\mu}{d\mu_{Y}}(y) d\mu_{Y}(y)$$

$$= \sum_{j=1}^{J} \int_{B_{j}} \frac{d\mu}{d\mu_{Y}}(y) \log \frac{d\mu}{d\mu_{Y}}(y) d\mu_{Y}(y)$$

$$\geq \sum_{j=1}^{J} \left( \int_{B_{j}} \frac{d\mu}{d\mu_{Y}}(y) d\mu_{Y}(y) \right) \log \left( \frac{1}{\mu_{Y}(B_{j})} \int_{B_{j}} \frac{d\mu}{d\mu_{Y}}(y) d\mu_{Y}(y) \right)$$

$$= \sum_{j=1}^{J} \mu(B_{j}) \log \frac{\mu(B_{j})}{\mu_{Y}(B_{j})}$$

$$= \operatorname{Ent}(\overline{\mu}^{m}|\mu_{Y}).$$

Combining this inequality and (3.5) and taking the limit as  $n \to \infty$ , we obtain

$$\limsup_{m \to \infty} \limsup_{n \to \infty} \operatorname{Ent}(\tilde{\mu}^{mn} | \mu_{X_n}) \le \operatorname{Ent}(\mu | \mu_Y).$$
(3.6)

In the same way, we also obtain

$$\limsup_{m \to \infty} \limsup_{n \to \infty} \operatorname{Ent}(\tilde{\nu}^{mn} | \mu_{X_n}) \le \operatorname{Ent}(\nu | \mu_Y).$$
(3.7)

The triangle inequality and Talagrand's inequality on  $X_n$  imply

$$W_p(\tilde{\mu}^{mn}, \tilde{\nu}^{mn}) \le W_p(\tilde{\mu}^{mn}, \mu_{X_n}) + W_p(\mu_{X_n}, \tilde{\nu}^{mn})$$
$$\le \sqrt{\frac{2}{K}} (\sqrt{\operatorname{Ent}(\tilde{\mu}^{mn} | \mu_{X_n})} + \sqrt{\operatorname{Ent}(\tilde{\nu}^{mn} | \mu_{X_n})}),$$

which together with (3.4), (3.6), and (3.7) imply (3.2).

Let us next prove that  $\mu_Y$  belongs to  $\mathcal{P}_p(Y)$ . We take an optimal coupling  $\overline{\pi}$  for  $W_p(\mu_{X_n}, \tilde{\mu}^{mn})$ . By Proposition 2.4 (4) and  $\tilde{\mu}^{mn}(X_n \setminus \tilde{X}_n) = 0$ , there exists a constant D > 0 such that

$$d_Y(p_n(x_n), p_n(x'_n)) \le D$$

for  $\overline{\pi}|_{(X_n \setminus X_n) \times X_n}$ -a.e.  $(x_n, x'_n) \in X_n^2$ . This together with Proposition 2.4 (3) and Talagrand's inequality on  $X_n$  imply

$$W_{p}((p_{n})_{*}\mu_{X_{n}}, (p_{n})_{*}\tilde{\mu}^{mn})^{p} \leq \int_{\tilde{X}_{n}\times\tilde{X}_{n}} (d_{X_{n}}(x_{n}, x_{n}') + \varepsilon_{n})^{p} d\overline{\pi}(x_{n}, x_{n}') \\ + \int_{(X_{n}\setminus\tilde{X}_{n})\times\tilde{X}_{n}} d_{Y}(p_{n}(x_{n}), p_{n}(x_{n}'))^{p} d\overline{\pi}(x_{n}, x_{n}') \\ \leq (W_{p}(\mu_{X_{n}}, \tilde{\mu}^{mn}) + \varepsilon_{n})^{p} + D^{p}\varepsilon_{n} \\ \leq \left(\sqrt{\frac{2}{K}}\operatorname{Ent}(\tilde{\mu}^{mn}|\mu_{X_{n}}) + \varepsilon_{n}\right)^{p} + D^{p}\varepsilon_{n}.$$

By the inequality just before and (3.6), we have

$$\limsup_{m \to \infty} \limsup_{n \to \infty} W_p((p_n)_* \mu_{X_n}, (p_n)_* \tilde{\mu}^{mn}) \le \sqrt{\frac{2}{K}} \operatorname{Ent}(\mu | \mu_Y).$$
(3.8)

We take any point  $y_0 \in Y$  and fix this. Fatou's lemma, Proposition 2.4 (2), and  $W_p((p_n)_*\tilde{\mu}^{mn}, \mu) \to 0$  as  $n, m \to \infty$  together imply

$$\int_{Y} d_{Y}(y, y_{0})^{p} d\mu_{Y}(y) \leq \liminf_{R \to \infty} \int_{Y} (d_{Y}(y, y_{0}) \wedge R)^{p} d\mu_{Y}(y)$$

$$= \liminf_{R \to \infty} \lim_{n \to \infty} \int_{Y} (d_{Y}(y, y_{0}) \wedge R)^{p} d(p_{n})_{*} \mu_{X_{n}}(y)$$

$$\leq \liminf_{n \to \infty} \int_{Y} d_{Y}(y, y_{0})^{p} d(p_{n})_{*} \mu_{X_{n}}(y)$$

$$= \liminf_{n \to \infty} W_{p}((p_{n})_{*} \mu_{X_{n}}, \delta_{y_{0}})^{p}$$

$$\leq \left(\sqrt{\frac{2}{K}} \operatorname{Ent}(\mu|\mu_{Y}) + W_{p}(\mu, \delta_{y_{0}})\right)^{p}$$

$$< \infty.$$

This means  $\mu_Y$  belongs to  $\mathcal{P}_p(Y)$ . We apply Lemma 2.9 for  $\mu_Y$  and then obtain the inequality (3.1). This completes the proof.

#### References

[1] C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto, and G. Scheffer, *Sur les inégalités de Sobolev logarithmiques*, Panoramas et Synthèses [Panoramas and Syntheses], vol. 10, Société Mathématique de France, Paris, 2000 (French, with French summary). With a preface by Dominique Bakry and Michel Ledoux.

Appla apd Book Statsion of this article, which may differ from the final published version. Copyright restrictions may apply.

#### RYUNOSUKE OZAWA AND NORIHIKO SUZUKI

- [2] V. I. Bogachev, Measure theory. Vol. I, II, Springer-Verlag, Berlin, 2007.
- [3] K. Funano and T. Shioya, Concentration, Ricci curvature, and eigenvalues of Laplacian, Geom. Funct. Anal. 23 (2013), no. 3, 888–936.
- M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, vol. 152, Birkhäuser Boston Inc., Boston, MA, 1999.
- [5] J. Lott and C. Villani, *Ricci curvature for metric-measure spaces via optimal transport*, Ann. of Math. (2) 169 (2009), no. 3, 903–991.
- [6] T. Shioya, *Metric measure geometry*, IRMA Lectures in Mathematics and Theoretical Physics, vol. 25, EMS Publishing House, Zürich, 2016. Gromov's theory of convergence and concentration of metrics and measures.
- [7] K.-T. Sturm, On the geometry of metric measure spaces. I, Acta Math. 196 (2006), no. 1, 65–131.
- [8] M. Talagrand, Transportation cost for Gaussian and other product measures, Geom. Funct. Anal. 6 (1996), no. 3, 587–600.
- [9] C. Villani, *Topics in optimal transportation*, Graduate Studies in Mathematics, vol. 58, American Mathematical Society, Providence, RI, 2003.
- [10] \_\_\_\_\_, Optimal transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, Springer-Verlag, Berlin, 2009. Old and new.

MAX PLANCK INSTITUTE FOR MATHEMATICS, VIVATSGASSE 7, 53111 BONN, GERMANY

*E-mail address*: ozawa@mpim-bonn.mpg.de

MATHEMATICAL INSTITUTE, TOHOKU UNIVERSITY, SENDAI 980-8578, JAPAN *E-mail address*: sb2m20@math.tohoku.ac.jp