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STABILITY OF TALAGRAND’S INEQUALITY UNDER
CONCENTRATION TOPOLOGY

RYUNOSUKE OZAWA AND NORIHIKO SUZUKI

Abstract. In this paper, we study the compatibility between Ta-
lagrand’s inequality and the concentration topology, i.e., if a se-
quence of mm-spaces satisfying Talagrand’s inequality converges
with respect to the observable distance, then the limit space satis-
fies Talagrand’s inequality.

1. Introduction

Gromov [4, Chapter 3.1
2+

] introduced the observable distance func-

tion dconc on the set X of isomorphism classes of mm-spaces (metric
measure spaces). This comes from the idea of measure concentration
phenomenon which is stated as that any 1-Lipschitz function on an
mm-space is close to a constant function on a Borel set with almost
full measure. The observable distance function is defined by the dif-
ference between the sets of 1-Lipschitz functions on two mm-spaces.
The topology generated by the observable distance function admits a
convergence sequence of Riemannian manifolds of unbounded dimen-
sion. For example, the sequence {Sn}∞n=1 of n-dimensional unit spheres
dconc-converges to one-point mm-space.

Talagrand’s inequality is one of the functional approaches to the
concentration phenomenon. An mm-space (X, dX , µX) satisfies Tala-
grand’s inequality (Tp(K)) if we have

Wp(ν, µX)
2 ≤ 2

K
Ent(ν|µX)

for any ν ∈ Pp(X). Here, Wp is the L
p-Wasserstein distance function,

Ent(ν|µX) is the relative entropy of ν with respect to µX , and Pp(X) is
the set of Borel probability measures with finite pth moment. The case
p = 2 was first proved by Talagrand [8]. He proved that n-dimensional
Gaussian space satisfies Talagrand’s inequality (T2(1)) for any n ∈ N.
After that, Sturm [7] and Lott-Villani [5] introduced the curvature-
dimension condition CD(K,∞) for mm-spaces. This is a generalized
notion of Ricci curvature bound from below by K ∈ R. Lott-Villani
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2 RYUNOSUKE OZAWA AND NORIHIKO SUZUKI

[5] proved that the curvature-dimension condition CD(K,∞) implies
Talagrand’s inequality (T2(K)).

In this paper, we study the compatibility between dconc-convergence
and Talagrand’s inequality. Our main theorem stated as follows.

Theorem 1.1. Let {Xn}∞n=1 be a sequence of mm-spaces satisfying
Talagrand’s inequality (Tp(K)) for K > 0 and p with 1 ≤ p < ∞. If
Xn concentrates to an mm-space Y as n → ∞, then Y also satisfies
Talagrand’s inequality (Tp(K)).

Acknowledgment. During the work on this paper, the first author has
been supported by JSPS KAKENHI Grant Number 24224002 and post-
doctoral program at Max Planck Institute for Mathematics.

2. Preliminaries

In this section, we give the definitions and properties stated in [4,
Chapter 31

2+
], [6], and [9, 10].

2.1. Observable distance function.

Definition 2.1 (mm-Space). A triple X = (X, dX , µX) is called an
mm-space (metric measure space) if (X, dX) is a complete separable
metric space and if µX is a Borel probability measure on X.

Definition 2.2 (mm-Isomorphism). Two mm-spaces X and Y are said
to be mm-isomorphic to each other if there exists an isometry f :
suppµX → suppµY such that f∗µX = µY , where f∗µX is the push-
foward measure of µX by f . Such an f is called an mm-isomorphism.

Note that X is mm-isomorphic to (supp(µX), dX , µX). Denote by X
the set of mm-isomorphism classes of mm-spaces.

Let I := [ 0, 1 ] and X be an mm-space. A Borel measurable map
φ : I → X is called a parameter of X if φ satisfies φ∗L = µX , where
L is the Lebesgue measure. Any mm-space has a parameter (see [6,
Proposition 4.1]). For two µX-measurable functions f, g : X → R, we
define the Ky Fan distance between f and g by

dKF(f, g) := inf{ ε > 0 | µX({ x ∈ X | | f(x)− g(x) | > ε }) ≤ ε }.
The distance function dKF is called the Ky Fan metric on the set of
µX-measurable functions on X. Note that the Ky Fan metric is a
metrization of convergence in measure of µX-measurable functions.

Definition 2.3 (Observable distance). Denote by Lip1(X) the set of 1-
Lipschitz continuous functions on an mm-space X. For any parameter
φ of X, we set φ∗Lip1(X) := { f ◦ φ | f ∈ Lip1(X) }. We define the
observable distance dconc(X, Y ) between two mm-spaces X and Y by

dconc(X,Y ) := inf
φ,ψ

dH(φ
∗Lip1(X), ψ∗Lip1(Y )),
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STABILITY OF TALAGRAND’S INEQUALITY 3

where φ : I → X and ψ : I → Y run over all parameters of X and
Y , respectively, and where dH is the Hausdorff distance function with
respect to the Ky Fan metric dKF. We say that a sequence of mm-spaces
Xn, n = 1, 2, . . ., concentrates to an mm-space Y if Xn dconc-converges
to Y as n→ ∞.

The observable distance dconc is a metric on X (see [4, Section 31
2
.45]

and [6, Theorem 5.16]). We call the topology on X induced by dconc
the concentration topology.

Proposition 2.4 ([3, Proposition 3.5, Proposition 3.11, Lemma 5.4],
[6, Lemma 5.27, Corollary 5.35, Proposition 9.31]). Let Xn and Y be
mm-spaces, n = 1, 2, . . .. If Xn concentrates to Y as n→ ∞, then there
exist Borel measurable maps pn : Xn → Y , positive real numbers εn with
εn → 0 as n → ∞ and Borel subsets X̃n ⊂ Xn with µXn(X̃n) ≥ 1− εn
such that

(1) dH(Lip1(Xn), p
∗
nLip1(Y )) ≤ εn,

(2) (pn)∗µXn converges weakly to µY as n→ ∞,
(3) dY (pn(xn), pn(x

′
n)) ≤ dXn(xn, x

′
n) + εn for any xn, x

′
n ∈ X̃n,

(4) lim sup
n→∞

sup
xn∈Xn\X̃n

dY (pn(xn), y0) < +∞ for any y0 ∈ Y .

We call X̃n the non-exceptional domain of pn for an additive error εn.

Remark 2.5. (1) By the inner regularity of µXn , we may assume X̃n

is a compact set.
(2) The conditions (1) and (2) of Proposition 2.4 imply the dconc-

convergence (see [3, Proposition 3.5], [6, Corollary 5.36]).

2.2. Talagrand’s inequality. Let X be a complete separable metric
space. A Borel probability measure π on X2 is a coupling of two Borel
probability measures ν0 and ν1 on X if π satisfies (proj0)∗π = ν0 and
(proj1)∗π = ν1, where proji : X ×X → X, i = 0, 1, are the projections
defined by proj0(x0, x1) = x0, proj1(x0, x1) = x1.

Definition 2.6 (Wasserstein distance). Let (X, dX) be a complete sep-
arable metric space and p ∈ [ 1,∞ ). For two Borel probability mea-
sures µ and ν on X, we define the Lp-Wasserstein distance between µ
and ν by

Wp(µ, ν) := inf
π

(∫
X×X

dX(x, x
′)p dπ(x, x′)

)1/p

, (2.1)

where π runs over all couplings of µ and ν.

Denote by Pp(X) the set of Borel probability measures µ satisfying

Wp(µ, δx0)
p =

∫
X

dX(x, x0)
p dµ(x) <∞
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4 RYUNOSUKE OZAWA AND NORIHIKO SUZUKI

for the Dirac measure δx0 of some point x0 ∈ X. The Lp-Wasserstein
distanceWp is a metric on Pp(X) (see [9, Theorem 7.3] and [10, Chapter
6]).

Remark 2.7. (1) There exists a minimizer for the infimum in (2.1).
We will call it optimal coupling of ν0 and ν1 (see [10, Theorem
4.1]).

(2) The topology generated by the Wasserstein distance is stronger
than the weak topology. If a complete separable metric space
X is bounded, then the topology generated by the Wasserstein
distance and the weak topology coincide to each other (see [9,
Theorem 7.12] and [10, Theorem 6.9]).

Definition 2.8 (Relative entropy). Let X be an mm-space and ν a
Borel probability measure on X. The relative entropy Ent(ν|µX) of ν
with respect to µX is defined as follows. If ν is absolutely continuous
with respect to µX , then

Ent(ν|µX) :=
∫
X

dν

dµX
log

(
dν

dµX

)
dµX ,

otherwise Ent(ν|µX) := ∞.

For an mm-spaceX, we denote Pcb(X) by the set of Borel probability
measures ν on X with compact support which is absolutely continuous
with respect to µX and the Radon-Nikodym derivative is essentially
bounded on X. Note that Pcb(X) is a dense subset in (Pp(X),Wp).

Lemma 2.9 ([6, Lemma 9.20]). Let X be an mm-space and ν ∈ Pp(X)
with Ent(ν|µX) < ∞. Then, for any ε > 0, there exists ν̃ ∈ Pcb(X)
such that

Wp(ν̃, ν) < ε, and | Ent(ν̃|νX)− Ent(ν|µX) | < ε.

Definition 2.10 (Talagrand’s inequality). Let X be an mm-space. X
satisfies Talagrand’s inequality (Tp(K)) for positive real numbers K
and p with 1 ≤ p <∞ if we have

Wp(ν, µX)
2 ≤ 2

K
Ent(ν|µX) (Tp(K))

for any ν ∈ Pp(X).

Sturm [7] and Lott-Villani [5] introduced the curvature-dimension
condition CD(K,∞). This is a generalized notion of Ricci curvature
bound from below by K ∈ R (see [7, Theorem 4.9] and [5, Theorem
7.3]). Lott-Villani proved the following.

Example 2.11 ([5, Theorem 6.1]). Let K > 0 and X be an mm-space
satisfying CD(K,∞). Then X satisfies Talagrand’s inequality (T2(K)).
In particular, ifM is a complete Riemannian manifold with RicM ≥ K,
then M satisfies Talagrand’s inequality (T2(K)).
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STABILITY OF TALAGRAND’S INEQUALITY 5

Remark 2.12. Consider the n-dimensional standard Gaussian measure
γn on (Rn, ∥ · ∥2). Since (Rn, ∥ · ∥2, γn) satisfies CD(1,∞) (see [7, Ex-
ample 4.10]), this space satisfies Talagrand’s inequality (T2(1)). This
coincides with Talagrand’s result (see [8, Theorem 1.1]).

Combining Csiszár-Kullback-Pinsker’s inequality (see e.g. [1, Theo-
rem 8.2.7]) and [10, Theorem 6.15], we obtain the following example.

Example 2.13. Let Kn be the complete graph with n vertices, unit
distance and uniform probability distribution. Then Kn satisfies Tala-
grand’s inequality (T1(1/4)).

3. Proof of Theorem 1.1

For a Borel subset B of an mm-space X with positive measure, we
define a Borel probability measure µB by

µB :=
µX |B
µX(B)

.

For two Borel measures µ and ν on a metric space X, we write µ ≤ ν
if µ(B) ≤ ν(B) for any Borel set B of X.

Lemma 3.1. Let X be an mm-space. If we assume that every ν ∈
Pcb(X) satisfies the condition of the definition of Talagrand’s inequality
(Tp(K)), then we have the following.

(1) µX ∈ Pp(X).
(2) X satisfies Talagrand’s inequality (Tp(K)).

Proof. We prove (1). Let C ⊂ X be a compact set with µX(C) > 0
and x0 ∈ X. Then, we obtain

Wp(µX , δx0) ≤ Wp(µX , µC) +Wp(µC , δx0)

≤
√

2

K
Ent(µC |µX) + sup

x∈C
dX(x, x0)

=

√
2

K
log

1

µX(C)
+ sup

x∈C
dX(x, x0)

<∞.

(2) follows from Lemma 2.9. □

Lemma 3.2 ([3, Lemma 3.13], [6, Lemma 9.33]). Let Xn and Y be
mm-spaces, n = 1, 2, . . .. Assume that a sequence of Borel measurable
maps pn : Xn → Y and a sequence {ε′n}∞n=1 of positive real numbers
with ε′n → 0 satisfy (1)–(3) of Proposition 2.4. For a real number δ > 0,
we give two Borel subsets B0, B1 ⊂ Y such that

diamBi ≤ δ, µY (Bi) > 0, and µY (∂Bi) = 0
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6 RYUNOSUKE OZAWA AND NORIHIKO SUZUKI

for i = 0, 1, and set

B̃i := p−1
n (Bi) ∩ X̃n ⊂ Xn,

where X̃n is a non-exceptional domain of pn. Then, there exist a
sequence {εn}∞n=1 of positive real numbers with εn → 0, Borel prob-

ability measures ξ̃n0 , ξ̃
n
1 on Xn and couplings π̃n between ξ̃n0 and ξ̃n1 ,

n = 1, 2, . . ., such that, for every sufficiently large natural number n,

(1) ξ̃ni ≤ (1+O(δ1/2))µB̃i
(i = 0, 1), where O(·) is a Landau symbol,

(2) dXn(x0, x1) ≥ dY (B0, B1)− εn for any xi ∈ B̃i, i = 0, 1,
(3) supp π̃n ⊂ { (xn, x′n) ∈ X2

n | dXn(xn, x
′
n) ≤ dY (B0, B1) + δ1/2 },

(4) −εn ≤ Wp(ξ̃
n
0 , ξ̃

n
1 )− dY (B0, B1) ≤ δ1/2 for any p ≥ 1.

Let θ(·) : R → R be a function such that θ(ε) → 0 as ε→ 0.

Proof of Theorem 1.1. By Lemma 3.1, it suffices to prove

Wp(ν, µY )
2 ≤ 2

K
Ent(ν|µY ) (3.1)

for any ν ∈ Pcb(Y ). Let pn : Xn → Y , n = 1, 2, . . ., be Borel measur-
able maps as in Proposition 2.4. To prove the theorem, we first prove
the inequality

Wp(µ, ν)
2 ≤ 2

K
(
√

Ent(µ|µY ) +
√
Ent(ν|µY ))2. (3.2)

for any µ, ν ∈ Pcb(Y ).
We take any µ, ν ∈ Pcb(Y ) and fix them. For any natural number

m, there are finite disjoint Borel subsets Bj ⊂ Y , j = 1, 2, . . . , J ,

such that
∪J
j=1Bj = suppµ∪ supp ν, diamBj ≤ m−1, µY (Bj) > 0, and

µY (∂Bj) = 0 for any j. For each (j, k) ∈ { 1, . . . , J }2, we apply Lemma

3.2 for Bj and Bk to obtain Borel probability measures ξ̃mnjk ∈ Pcb(Xn),
n = 1, 2, . . ., such that

ξ̃mnjk ≤ (1 + θ(m−1))µB̃j
, (3.3)

for any sufficiently large natural number n. By the diagonal argument,
we may assume that (pn)∗ξ̃

mn
jk converges weakly to a Borel probability

measure ξ̃mjk ∈ Pcb(Y ) as n → ∞ for each (j, k,m) ∈ { 1, . . . , J }2 × N.
Let π be an optimal coupling for Wp(µ, ν). We define

wjk := π(Bj ×Bk)

µ̃mn :=
J∑

j,k=1

wjkξ̃
mn
jk , ν̃mn :=

J∑
j,k=1

wjkξ̃
mn
kj ∈ Pcb(Xn),

µ̃m :=
J∑

j,k=1

wjkξ̃
m
jk, ν̃m :=

J∑
j,k=1

wjkξ̃
m
kj ∈ Pcb(Y ).
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STABILITY OF TALAGRAND’S INEQUALITY 7

Then, (pn)∗µ̃
mn and (pn)∗ν̃

mn converge weakly to µ̃m and ν̃m, respec-
tively, as n → ∞. µ̃m and ν̃m converge weakly to µ and ν, respec-
tively, as m → ∞. Moreover, Wp((pn)∗µ̃

mn, µ), Wp((pn)∗ν̃
mn, ν) → 0

as n→ ∞ and then m→ ∞.
Let π̃ be an optimal coupling forWp(µ̃

mn, ν̃mn). By supp µ̃mn, supp ν̃mn ⊂
X̃n, and Proposition 2.4 (3), we have

Wp((pn)∗µ̃
mn, (pn)∗ν̃

mn)p ≤
∫
Xn×Xn

dY (pn(xn), pn(x
′
n))

p dπ̃(xn, x
′
n)

≤
∫
Xn×Xn

(dXn(xn, x
′
n) + εn)

p dπ̃(xn, x
′
n)

≤ (Wp(µ̃
mn, ν̃mn) + εn)

p.

Then, we have

Wp(µ, ν) = lim
m→∞

lim
n→∞

Wp((pn)∗µ̃
mn, (pn)∗ν̃

mn) (3.4)

≤ lim inf
m→∞

lim inf
n→∞

Wp(µ̃
mn, ν̃mn).

By (3.3), we have

dµ̃mn

dµXn

=
J∑

j,k=1

wjk
dξ̃mnjk
dµXn

≤ (1 + θ(m−1))
J∑

j,k=1

wjk

µXn(B̃j)
χB̃j

= (1 + θ(m−1))
J∑
j=1

µ(Bj)

µXn(B̃j)
χB̃j

.

In particular, we have µ̃mn(B̃j) ≤ (1+θ(m−1))µ(Bj). The monotonicity
of f(x) = log x and the previous inequality imply

Ent(µ̃mn|µXn)

=

∫
Xn

log

(
dµ̃mn

dµXn

(xn)

)
dµ̃mn(xn)

≤
∫
Xn

log

(
(1 + θ(m−1))

J∑
j=1

µ(Bj)

µXn(B̃j)
χB̃j

(xn)

)
dµ̃mn(xn)

=
J∑
j=1

µ̃mn(B̃j) log

(
(1 + θ(m−1))

µ(Bj)

µXn(B̃j)

)

≤ (1 + θ(m−1))
J∑
j=1

µ(Bj) log
µ(Bj)

µXn(B̃j)
+ θ(m−1).
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8 RYUNOSUKE OZAWA AND NORIHIKO SUZUKI

Since Bj satisfies µY (∂Bj) = 0, Proposition 2.4 (2) and the portman-
teau theorem (see [2, Corollary 8.2.10]) imply

lim
n→∞

µXn(B̃j) = lim
n→∞

µXn(p
−1
n (Bj) ∩ X̃n) = µY (Bj)

and then we obtain

lim sup
n→∞

Ent(µ̃mn|µXn) (3.5)

≤ (1 + θ(m−1))
J∑
j=1

µ(Bj) log
µ(Bj)

µY (Bj)
+ θ(m−1).

Define a probability measure µm by

µm :=
J∑
j=1

µ(Bj)

µY (Bj)
µY |Bj

.

Jensen’s inequality implies

Ent(µ|µY )

=

∫
Y

dµ

dµY
(y) log

dµ

dµY
(y) dµY (y)

=
J∑
j=1

∫
Bj

dµ

dµY
(y) log

dµ

dµY
(y) dµY (y)

≥
J∑
j=1

(∫
Bj

dµ

dµY
(y) dµY (y)

)
log

(
1

µY (Bj)

∫
Bj

dµ

dµY
(y) dµY (y)

)

=
J∑
j=1

µ(Bj) log
µ(Bj)

µY (Bj)

= Ent(µm|µY ).

Combining this inequality and (3.5) and taking the limit as n → ∞,
we obtain

lim sup
m→∞

lim sup
n→∞

Ent(µ̃mn|µXn) ≤ Ent(µ|µY ). (3.6)

In the same way, we also obtain

lim sup
m→∞

lim sup
n→∞

Ent(ν̃mn|µXn) ≤ Ent(ν|µY ). (3.7)

The triangle inequality and Talagrand’s inequality on Xn imply

Wp(µ̃
mn, ν̃mn) ≤ Wp(µ̃

mn, µXn) +Wp(µXn , ν̃
mn)

≤
√

2

K
(
√

Ent(µ̃mn|µXn) +
√

Ent(ν̃mn|µXn)),

which together with (3.4), (3.6), and (3.7) imply (3.2).
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STABILITY OF TALAGRAND’S INEQUALITY 9

Let us next prove that µY belongs to Pp(Y ). We take an optimal
coupling π for Wp(µXn , µ̃

mn). By Proposition 2.4 (4) and µ̃mn(Xn \
X̃n) = 0, there exists a constant D > 0 such that

dY (pn(xn), pn(x
′
n)) ≤ D

for π|(Xn\X̃n)×Xn
-a.e. (xn, x

′
n) ∈ X2

n. This together with Proposition

2.4 (3) and Talagrand’s inequality on Xn imply

Wp((pn)∗µXn , (pn)∗µ̃
mn)p

≤
∫
X̃n×X̃n

(dXn(xn, x
′
n) + εn)

p dπ(xn, x
′
n)

+

∫
(Xn\X̃n)×X̃n

dY (pn(xn), pn(x
′
n))

p dπ(xn, x
′
n)

≤ (Wp(µXn , µ̃
mn) + εn)

p +Dpεn

≤

(√
2

K
Ent(µ̃mn|µXn) + εn

)p

+Dpεn.

By the inequality just before and (3.6), we have

lim sup
m→∞

lim sup
n→∞

Wp((pn)∗µXn , (pn)∗µ̃
mn) ≤

√
2

K
Ent(µ|µY ). (3.8)

We take any point y0 ∈ Y and fix this. Fatou’s lemma, Proposition
2.4 (2), and Wp((pn)∗µ̃

mn, µ) → 0 as n,m→ ∞ together imply∫
Y

dY (y, y0)
p dµY (y) ≤ lim inf

R→∞

∫
Y

(dY (y, y0) ∧R)p dµY (y)

= lim inf
R→∞

lim
n→∞

∫
Y

(dY (y, y0) ∧R)p d(pn)∗µXn(y)

≤ lim inf
n→∞

∫
Y

dY (y, y0)
p d(pn)∗µXn(y)

= lim inf
n→∞

Wp((pn)∗µXn , δy0)
p

≤

(√
2

K
Ent(µ|µY ) +Wp(µ, δy0)

)p

<∞.

This means µY belongs to Pp(Y ). We apply Lemma 2.9 for µY and
then obtain the inequality (3.1). This completes the proof. □
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