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TOWARDS EFFECTIVE DETECTION OF THE BIFURCATION

LOCUS OF REAL POLYNOMIAL MAPS

LUIS RENATO G. DIAS, SUSUMU TANABÉ, AND MIHAI TIBĂR

Abstract. We answer to a problem raised by recent work of Jelonek and Kurdyka: how
can one detect by rational arcs the bifurcation locus of a polynomial map R

n → R
p in

case p > 1. We describe an effective estimation of the “nontrivial” part of the bifurcation
locus.

1. Introduction

The bifurcation locus of a polynomial map f : Rn → R
p, n ≥ p, is the smallest subset

B(f) ⊂ R
p such that f is a locally trivial C∞-fibration over R

p \ B(f). It is well known
that B(f) is the union of the set of critical values f(Singf) and the set of bifurcation

values at infinity B∞(f) (see Definition 2.1) which may be non-empty and disjoint from
f(Singf) even in very simple examples. Finding the bifurcation locus in the cases p > 1
or p = 1 and n > 2 is yet an unreached ideal. Nevertheless one can obtain approximations
by supersets of B∞(f) from exploiting asymptotical regularity conditions [23], [19], [21],
[9], [24], [16], [10], [6], [2], [13], [18], [15] etc.

Improving the effectivity of the detection of asymptotically non-regular values becomes
an important issue, for instance it leads to applications in optimisation problems [11],
[22]. Along this trend, Jelonek and Kurdyka [14] produced recently an algorithm for
finding the set of asymptotically critical values K∞(f) in case p = 1. It is known that in
this case K∞(f) is finite and includes B∞(f). A sharper estimation of B∞(f) has been
found in the real setting [7] by approximating the set of asymptotic ρa-nonregular values

of f . The later method provides a finite set of values A(f) with the following property:
B∞(f) ⊂ A(f) ⊂ K∞(f).

In case p > 1 the bifurcation locus B∞(f) may be no more finite. Actually, by the
Morse-Sard result proved by Kurdyka, Orro and Simon [16] for K∞(f), or by the one
obtained in [6] for the sharper estimation B∞(f) ⊂ S0(f) ⊂ K∞(f), one only knows that
the sets K∞(f) and S0(f) are contained in a 1-codimensional semi-algebraic subsets of
R

p.
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Our approach is based on the set S∞(f) of non-regular values at infinity with respect
to the Euclidean distance function from any point as origin, and which includes B∞(f).
Since the set of critical values f(Singf) is the image of an algebraic set and the well-known
estimation methods apply, we consider it as the “trivial” part of the job. The most difficult
task is to apprehend the complements of f(Singf) to the bifurcation locus B∞(f).

We shall detect here the “nontrivial” part NS∞(f) of the bifurcation locus at infinity
(defined at §2.6) which, roughly speaking, contains the values of S∞(f) which are not
comming from the branches at infinity of the singular locus Singf .

This note answers a question raised by the results [14] and [7], as of how can one detect
the bifurcation locus by rational arcs in the case p > 1.

More precisely, given a polynomial map f = (f1, . . . , fp) : R
n → R

p, deg fi ≤ d, we
find all the values of the “nontrivial” part NS∞(f) of S∞(f) and hence of nontrivial part
NB∞(f) of the bifurcation locus B∞(f), as follows:

(1). We consider a set of rational paths: (x(t), y(t)) =
(

∑

−ds≤i≤s ait
i,
∑

−ds≤j≤0 bjt
j
)

⊂

R
n × R

p, where s = [p(d− 1) + 1]n−p[p(d− 1)(n− p) + 2]p−1.
This means a finite number of vectorial coefficients ai ∈ R

n, for −ds ≤ i ≤ s, and
bj ∈ R

p, for −ds ≤ j ≤ 0.

(2). The coefficients are subject to several conditions, namely: ‖b0‖ = 1, ∃k > 0, ak 6= 0 ∈
R

n, we ask the annulation of the coefficients of the terms with positive exponents in the
expansion of f(x(t)) and the annulation of the coefficients of the terms with non-negative
exponents in the expressions xi(t)φj(x(t), y(t)), for all i, j ∈ {1, . . . , n} (cf (13) for the
definition).

We denote by Arc∞(f) the algebraic subset of arcs obtained by this construction (steps
(1) and (2) above), and by α0(Arc∞(f)) the set of limits limt→∞ f(x(t)), i.e. the free
coefficient in the expansion of f(x(t) for (x(t), y(t)) ∈ Arc∞(f). Then our main result,
Theorem 3.5, proves the inclusions:

NS∞(f) ⊂ α0(Arc∞(f)) ⊂ K∞(f).

2. Regularity conditions at infinity and bifurcation loci

2.1. Bifurcation locus. Let f = (f1, . . . , fp) : R
n → R

p be a polynomial map, n ≥ p.

Definition 2.1. We say that t0 ∈ R
p is a typical value of f if there exists a disk D ⊂ R

p

centered at t0 such that the restriction f| : f
−1(D) → D is a locally trivial C∞-fibration.

Otherwise we say that t0 is a bifurcation value (or atypical value). We denote by B(f)
the set of bifurcation values of f .

We say that f is topologically trivial at infinity at t0 ∈ R
p if there exists a compact set

K ⊂ R
n and a disk D ⊂ R

p centered at t0 such that the restriction f| : f
−1(D) \ K → D

is a locally trivial C∞-fibration. Otherwise we say that t0 is a bifurcation value at infinity

of f . We denote by B∞(f) the bifurcation locus at infinity of f .
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2.2. The rho-regularity. Let a = (a1, . . . , an) ∈ R
n and let ρa : R

n → R≥0, ρa(x) =
(x1 − a1)

2 + . . .+ (xn − an)
2, be the Euclidian distance function to a. Let f : Rn → R

p be
a polynomial map, where n ≥ p.

Definition 2.2 (Milnor set at infinity and the ρa-nonregularity locus). [7]
The critical set Ma(f) of the map (f, ρa) : R

n → R
p+1 is called the Milnor set of f (with

respect to the distance function). The following semi-algebraic set, cf [6, Theorem 5.7]
and [7, Theorem 2.5]:

(1) Sa(f) := {t0 ∈ R
p | ∃{xj}j∈N ⊂ Ma(f), lim

j→∞
‖xj‖ = ∞ and lim

j→∞
f(xj) = t0}

will be called the set of asymptotic ρa-nonregular values. If t0 /∈ Sa(f) we say that t0 is
ρa-regular at infinity. Let S∞(f) :=

⋂

a∈Rn Sa(f).

Lemma 2.3. S∞(f) is a semi-algebraic set.

Proof. Let f : Rn → R
p be a polynomial mapping and let us consider the following semi-

algebraic set:

W := {(x, a) ∈ R
n × R

n | x ∈ Ma(f)}.

By the definition of S∞(f), we have:

S∞(f) := {y ∈ R
p | ∀a ∈ R

n, ∃{(xk, a)} ⊂ W such that f(xk) → y},

which tells that S∞(f) can be writen by using first-order formulas. This means that
S∞(f) is a semi-algebraic set, see for instance [4, pag.28-29] and [1, Prop. 2.2.4]. �

It has been proved in [24], [6], [7] that one has the inclusion B∞(f) ⊂ Sa(f), for any
a ∈ R

n, thus in particular:

(2) B∞(f) ⊂ S∞(f).

It was believed, cf [7, Conjecture 2.11], that (2) was an equality. We show here by an
example that this is not the case, at least in the real setting.

2.3. Example for B∞(f) 6= S∞(f). We consider the two-variable real polynomial1 con-
structed in [25], f : R2 → R, f(x, y) = y(2x2y2 − 9xy + 12). We show that S∞(f) = {0}
and B∞(f) = ∅.

It was already proved in [25] that f has no singular value, no bifurcation value and that
S0(f) ⊂ {0}. We shall prove here that this inclusion is an equality. Moreover, we prove
here that {0} ⊂ Sa(f) for any center a ∈ R

2.
For any fixed a = (a1, a2) ∈ R

2, we have:

Ma(f) = {(x, y) ∈ R
2 | y2(4xy − 9)(y − a2) = 6(x− a1)(xy − 1)(xy − 2).}

For x = 0 we eventually get solutions of the above equation but which have no influence
on the set Sa(f). By removing these solutions from Ma(f), we pursue with the resulting

1We thank Y. Chen for suggesting us to test this example.
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set, which we denote by M′
a(f). Thus, assuming that x 6= 0 and multiply the equation

by x3, we obtain:

(3) M′
a(f) = {(x, y) ∈ R

2 | x2y2(4xy − 9)(xy − xa2) = 6x3(x− a1)(xy − 1)(xy − 2)}.

We show that we can find solutions (xk, yk)k∈N of the equality in (3) such that ‖(xk, yk)‖ →
∞ and f(xk, yk) → 0. Indeed, setting z := xy our equation (3) becomes z2(4z − 9)(z −
a2x) = 6x3(x − a1)(z − 1)(z − 2). We then consider each side as a curve of variable z
with x as parameter. We consider the graphs of these two curves and observe that for
each sign of a2 the two graphs intersect at least once for any fixed and large enough |x|
and that this happens at some value of z in the interval ]0, 1[ (and in the interval ]1, 2[ in
case a2 = 0, respectively). This shows that we can find solutions (xk, yk) ∈ Ma(f) with
modulus tending to infinity and, since zk = xkyk is bounded and yk tends to 0, we get
that f(xk, yk) → 0.

In conclusion, we have shown that S∞(f) = {0}, which implies B∞(f) 6= S∞(f).

2.4. Generic dimension of the nonsingular part of the Milnor set.

The following statement has been noticed in case p = 1 in [10] (see also [8, Lemma 2.2]
or [7]). We outline the proof in case p > 1, some details of which will be used in §3.

Lemma 2.4. Let f = (f1, . . . , fp) : R
n → R

p be a polynomial map, where n > p and

deg fi ≤ d, ∀i. There exists an open dense subset Ωf ⊂ R
n such that, for every a ∈ Ωf ,

the set Ma(f) \ Singf is either a smooth manifold of dimension p, or it is empty.

Proof. We denote by MI [D(f)(x)] (respectively MI [D(f, ρa)(x)]) the minor of the Jacobian
matrix D(f)(x) (respectively D(f, ρa)(x)) indexed by the multi-index I. We set

(4) Z := {(x, a) ∈ R
n × R

n | x ∈ Ma(f) \ Singf}.

If Z = ∅, then Ma(f) \ Singf = ∅, ∀a ∈ R
n. From now on let us consider the case that

Z 6= ∅. Let (x0, a0) ∈ Z. Since Singf is closed, there is a neighborhood U ⊂ R
n of x0

such that U ∩ Singf = ∅. This means that there exists a multi-index I = (i1, . . . , ip) of
size p, 1 ≤ i1 < . . . < ip ≤ n, such that MI [Df(x)] 6= 0, ∀x ∈ U .

Let SI := {J = (j1, . . . , jp+1) | I ⊂ J} be the set of multi-indices of size p+1 such that
1 ≤ j1 < . . . < jp+1 ≤ n and i1, . . . , ip ∈ {j1, . . . , jp+1}. There are (n − p) multi-indices
J ∈ SI ; we set

(5) mJ (x, a) := MJ [D(f, ρa)(x)], (x, a) ∈ U × R
n.

From the definitions of Z, U and the functions mJ , we have:

(6) Z ∩ (U × R
n) = {(x, a) ∈ U × R

n | mJ(x, a) = 0; ∀J ∈ SI}.

Let ϕ : U × R
n → R

n−p be the map consisting of the functions mJ for J ∈ SI . Then
ϕ−1(0) = Z∩(U×R

n) and we notice that Dϕ(x, a) has rank (n−p) at any (x, a) ∈ U×R
n.

Indeed, let
(

∂ϕ

∂ak
(x, a)

)

(n−p)×(n−p)

, k /∈ I, (x, a) ∈ U × R
n.
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This is a minor of Dϕ(x, a) of size (n − p). Interchanging if necessary the order of its
lines, it is a diagonal matrix with all the entries on the diagonal equal to −MI [Df(x)]
and hence non-zero. This and (6) show that Z is a manifold of dimension n+ p.

We next consider the projection τ : Z → R
n, τ(x, a) = a. Thus, τ−1(a) = (Ma(f) \

Singf) × {a}. By Sard’s Theorem, we conclude that, for almost all a ∈ R
n, τ−1(a) =

(Ma(f) \ Singf)× {a} ∼= (Ma(f) \ Singf) is either a smooth manifold of dimension p or
an empty set. �

2.5. The relation to the Malgrange-Rabier condition.

Definition 2.5 ([21]). Let f : Rn → R
p be a polynomial map, n ≥ p. Denote by Df(x)

the Jacobian matrix of f at x. We consider

K∞(f) := {t ∈ R
p | ∃{xj}j∈N ⊂ R

n, lim
j→∞

‖xj‖ = ∞,(7)

lim
j→∞

f(xj) = t and lim
j→∞

‖xj‖ν(Df(xj)) = 0},

where

(8) ν(A) := inf
‖y‖=1

‖A∗(y)‖,

for a linear map A and its adjoint A∗.
We call the set K∞(f) of asymptotic critical values of f . If t0 /∈ K∞(f) we say that f

verifies the Malgrange-Rabier condition at t0.

We have the following relation between ρa-regularity and Malgrange-Rabier condition:

Theorem 2.6 ([7, Th. 2.8]). Let f = (f1, . . . , fp) : R
n → R

p be a polynomial map, where

n > p. Let φ :]0, ε[→ Ma(f) ⊂ R
n be an analytic path such that limt→0 ‖φ(t)‖ = ∞ and

limt→0 f(φ(t)) = c. Then limt→0 ‖φ(t)‖ν(Df(φ(t))) = 0. In particular Sa(f) ⊂ K∞(f) for

any a ∈ R
n, and S∞(f) ⊂ K∞(f). �

Remark 2.7. See [6] and more precisely [7, Theorem 2.5] for a structure result and a
fibration result on S∞(f). The inclusion S∞(f) ⊂ K∞(f) may be strict (e.g. [20] and [7,
Example 2.9]). The inclusion B∞(f) ⊂ S∞(f) may be strict, see the above Example §2.3.
One may also have Sa(f) 6= Sb(f) for some a 6= b, see [7, Example 2.10].

2.6. The nontrivial bifurcation locus at infinity. We have discussed up to now three
types of bifurcation loci: B∞(f), S∞(f) and K∞(f). All of them may contain points of
the critical locus f(Singf). This locus can be estimated separately since it is the image
by f of an algebraic set and the known estimation methods apply. What is more difficult
to apprehend are the respective complements of f(Singf). We define here the “nontrivial
parts” of the bifurcation loci and next describe a procedure to estimate the one of S∞(f).

From the definitions of Ma(f) and Sa(f), we have the equality Sa(f) = J(f|Ma(f)),
where J(f|Ma(f)) is the non-properness set of f|Ma(f). Jelonek defined this set in general:

Definition 2.8. ([12, Definition 3.3], [14]). Let g : M → N be a continuous map, where
M,N are topological spaces. One says that g is proper at the value t ∈ N if there exists
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an open neighbourhood U ⊂ N of t such that the restriction g|g−1(U) : g
−1(U) → U is a

proper map. We denote by J(g) the set of points at which g is not proper.

In our setting f : Rn → R
p, let us define the nontrivial ρ-bifurcation set at infinity

NS∞(f) :=
⋂

a∈Rn NSa(f), where:

NSa(f) := {t ∈ R
p | ∃{xj}j∈N ⊂ Ma(f) \ Singf, lim

j→∞
‖xj‖ = ∞, and lim

j→∞
f(xj) = t}

and note that S∞(f) = NS∞(f) ∪ J(f|Singf) and that NS∞(f) is a closed set since each
set NSa(f) is closed, which fact follows from the arguments of [6, Theorem 5.7(a)].

Similarly, we introduce the following notation for the nontrivial bifurcation set at infinity

which is the object of our main result, Theorem 3.5:

NB∞(f) := B∞(f) \ J(f|Singf ).(9)

By the above definitions and by Theorem 2.6, we immediately get:

Proposition 2.9.

NB∞(f) ⊂ NS∞(f) ⊂ K∞(f).

�

Remark 2.10. If f has a compact singular set Singf or, more generally, if J(f|Singf ) =
∅, then NS∞(f) = S∞(f), and NB∞(f) = B∞(f). However these equalities mai fail
whenever J(f|Singf ) 6= ∅.

In this matter, let us point out here that the proofs of [7, Proposition 3.1, Theorem
3.4] run actually for the set NS∞(f); one therefore needs to replace S∞(f) by NS∞(f)
in the statements of those results.

3. Detection of bifurcation values at infinity by parametrized curves

3.1. Effective Curve Selection Lemma at infinity via the Milnor set.

If t0 ∈ NS∞(f) then t0 ∈ NSa(f) for any a ∈ R
n and in particular for a ∈ Ωf , where

Ωf is as in Lemma 2.4.

Theorem 3.1. Let f = (f1, . . . , fp) : R
n → R

p be a polynomial mapping such that deg fi ≤
d, ∀i = 1, . . . , p, and n > p. Let t0 ∈ NSa(f) for some a ∈ Ωf . Then there exists an

analytic path:

(10) x(t) =
∑

−∞≤i≤s

ait
i,

with

s ≤ [p(d− 1) + 1]n−p[p(d− 1)(n− p) + 2]p−1

and such that:

(a) x(t) ∈ Ma(f) \ Singf , for any t ≥ R, for some large enough R ∈ R+;
(b) ‖x(t)‖ → ∞, as t → ∞;
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(c) f(x(t)) → t0, as t → ∞.

Proof. The case p = 1 is [7, Theorem 3.4]. We assume in the following that p > 1.
From Lemma 2.4 we have that Ma(f)\Singf is a smooth semi-algebraic set of dimension

p since non-empty by our hypothesis on t0. From the proof of Lemma 2.4 the set Ma(f)\
Singf is locally a complete intersection defined by (n− p) equations, each of which is of
degree at most p(d− 1) + 1. So let us denote by g1, . . . , gn−p these functions.

We use coordinates (x1, . . . , xn) for the affine space Rn and coordinates [x0 : x1 : . . . : xn]
for the projective space P

n. We identify the affine space R
n with the chart {x0 6= 0} of Pn.

Let X = graphf be the closure of the graph of f in P
n × R

p and let X
∞ the intersection

of X with the hyperplane at infinity {x0 = 0}. Let i : Rn → X ⊂ P
n × R

p, x 7→ (x, f(x))
be the graph embedding. Consider the closure in X of the image i(Ma(f) \ Singf) and

denote it (abusively) by Ma(f) \ Singf .

Let then w := (x, t0) ∈ Ma(f) \ Singf ∩ X
∞. We shall work in some affine chart

U ≃ R
n at infinity of Pn assuming (without loss of generality) that the point x is the

origin. We may then use an “effective curve selection lemma” to show that there is a
curve Γ ⊂ Ma(f) \ Singf such that w ∈ Γ and that this curve has a one-sided bounded
parametrization. To do so, we combine Milnor’s basic construction in [17] with the idea
of Jelonek and Kurdyka given in [14, Lemma 6.4].

Namely we consider small enough spheres centered at w ∈ U of equation ρw = β and a
function hl := x0l, for some linear function l in the local coordinates. One can then prove
like in [14, Lemma 6.4] (where an apparently more particular situation was considered,
but the proof works as well) that, for a general such linear function l, the set of critical

points of the map (ρw, hl) : U ∩ Ma(f) \ Singf → R+ × R is an analytic curve and its
branches are the singular points of the restrictions of the quadratic function hl to the
levels {ρw = β} ∩ Ma(f) \ Singf . It is shown in [14, Lemmas 6.5 and 6.6] that these
singular points are all Morse for a generic choice of l, and that there is at least one Morse
point on each level, for small enough β > 0.

Let us then consider a branch of this analytic curve as our x(t). By its definition,
this curve is a solution of the following system of equations: g1 = 0, . . . , gn−p = 0 and
dg1 ∧ · · · ∧ dgn−p ∧ dρw ∧ dhl = 0, the first of which are of degree at most p(d− 1)+ 1 and
the last one means the annulation of p− 1 minors of degree at most p(d− 1)(n− p) + 2.
Thus our algebraic set of solutions has degree δ verifying the inequality:

δ ≤ [p(d− 1) + 1]n−p[p(d− 1)(n− p) + 2]p−1.

Finally, by using the effective Curve Selection Lemma of Jelonek and Kurdyka [14,
Lemma 3.1 and Lemma 3.2] which says that there exists a parametrization of our curve
x(t) bounded by the degree δ of the curve, we get exactly an expansion like (10). This
finishes the proof of our theorem. �

3.2. Finite length expansion for curves detecting asymptotically critical values.

We need a preliminary result which follows by applying [14, Lemma 3.3] to each function
hi in the following statement:
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Lemma 3.2. Let h = (h1, . . . , hm) : R
k → R

m be a polynomial map and deg hi ≤ d̃, ∀i. Let

x(t) =
∑

−∞≤i≤s ait
i, where t ∈ R , ai ∈ R

k, s > 0 and that ‖x(t)‖ → ∞ and h(x(t)) → b.

Then, for any D ≤ −d̃s+ s, the truncated curve

x̃(t) =
∑

D≤i≤s

ait
i,

verifies ‖x̃(t)‖ → ∞ and h(x̃(t)) → b. �

If we try to replace x(t) given in (10) by a truncated path, we may go out of the set
Ma(f) \ Singf . Bearing in mind the inclusion Sa(f) ⊂ K∞(f) of Theorem 2.6, instead
of searching in vain a truncated expansion inside the Milnor set, we may show that there
exists a truncation which verifies the Malgrange-Rabier condition (7). The proof of the
following result employs the technique of [6, Theorem 3.2] and [5, Theorem 2.4.8], where
we have used the t-regularity to find a geometric interpretation for K∞(f).

Proposition 3.3. Let f = (f1, . . . , fp) : R
n → R

p be a polynomial map such that n > p
and that deg fi ≤ d, ∀i. Let

x(t) = (x1(t), . . . , xn(t)) =
∑

−∞≤i≤s

ait
i,

where t ∈ R, ai ∈ R
n, s > 0 and such that:

(a) ‖x(t)‖ → ∞, as t → ∞;

(b) f(x(t)) → b, as t → ∞;

(c) ‖x(t)‖ν(Df(x(t))) → 0, as t → ∞.

Then the truncated expansion

x̃(t) =
∑

−ds≤i≤s

ait
i,

verifies the following conditions:

(i) ‖x̃(t)‖ → ∞, as t → ∞;

(ii) f(x̃(t)) → b, as t → ∞;

(iii) ‖x̃(t)‖ν(Df(x̃(t))) → 0, as t → ∞.

Proof. We treat here the case p > 1. See Remark 3.4 for the case p = 1.
By the definition of ν (Definition 2.5 and (8)), condition (c) means:

(11) ‖x(t)‖

(

inf
‖y‖=1

‖Df(x(t))∗(y)‖

)

→ 0, as t → ∞,

where Df(x(t))∗ denotes the adjoint of Df(x(t)).
Since ν is a semi-algebraic mapping (see e.g [16, Proposition 2.4]), the Curve Selection

Lemma and (11) imply that there there exists an analytic path (see also the proofs of [6,
Theorem 3.2] and [3, Proposition 2.4] for this argument):
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y(t) =
∑

−∞≤i≤0

bjt
j = (y1(t), . . . , yp(t)), bj ∈ R

p,

such that ‖y(t)‖ = 1, ∀t ≫ 0, and that:

(12) ‖x(t)‖

∥

∥

∥

∥

y1(t)
∂f1
∂x

(x(t)) + · · ·+ yp(t)
∂fp
∂x

(x(t))

∥

∥

∥

∥

→ 0, as t → ∞,

where ∂fi
∂x

(x(t)) :=
(

∂fi
∂x1

(x(t)), . . . , ∂fi
∂xn

(x(t))
)

for i = 1, . . . , p.

For any fixed j ∈ {1, · · · , n} we set φj : R
n × R

p → R,

(13) φj(x, y) :=

(

y1
∂f1
∂xj

(x) + · · ·+ yp
∂fp
∂xj

(x)

)

.

It then follows that deg φj ≤ d and that our path:

(x(t), y(t)) :=

(

∑

−∞≤i≤s

ait
i,
∑

−∞≤i≤0

bjt
j

)

verifies the conditions:

(1) ‖x(t)‖ → ∞ as t → ∞, and ‖y(t)‖ = 1;
(2) xi(t)φj(x(t), y(t)) → 0 as t → ∞, for any i, j ∈ {1, . . . , n}.

Applying Lemma 3.2 to the mapping (xiφj)
n
i,j=1, we get that, for any D ≤ −(d+1)s+s =

−ds, the truncated path:

(x̃(t), ỹ(t)) :=

(

∑

D≤i≤s

ait
i,
∑

D≤i≤0

bjt
j

)

verifies the conditions:

(1’) ‖x̃(t)‖ → ∞ and ‖ỹ(t)‖ → 1 as t → ∞;
(2’) x̃i(t)φj(x̃(t), ỹ(t)) → 0, as t → ∞, for any i, j ∈ {1, 2, . . . , n}.

These imply:

(14) ‖x̃(t)‖

∥

∥

∥

∥

ỹ1(t)
∂f1
∂x

(x̃(t)) + · · ·+ ỹp(t)
∂fp
∂x

(x̃(t))

∥

∥

∥

∥

→ 0 as t → ∞,

and, since ‖ỹ(t)‖ → 1, we obtain:

(15) ‖x̃(t)‖
1

‖ỹ(t)‖

∥

∥

∥

∥

ỹ1(t)
∂f1
∂x

(x̃(t)) + · · ·+ ỹp(t)
∂fp
∂x

(x̃(t))

∥

∥

∥

∥

→ 0, as t → ∞.

The later implies that ‖x̃(t)‖ν(Df(x̃(t))) → 0, as t → ∞, which shows (iii).
Next, (i) follows by (1’), and (ii) follows from Lemma 3.2 for h := f , since −ds < −ds+s.

�
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Remark 3.4. In case p = 1, in the proof of Proposition 3.3 we may consider φj : R
n →

R, φj(x, y) =
∂f

∂xj
(x) since in this case y = 1. Then deg φj ≤ d−1 and by applying Lemma

3.2 as above to the mapping (xiφj)
n
i,j=1 we get that, for any D ≤ −ds+ s, the truncation

˜̃x(t) =
∑

D≤i≤s ait
i satisfies (i), (ii) and (iii).

In the definition of Arc(f), the lower bound is −ds+ s instead of −ds. Since the value
of the degree s from Theorem 3.1 is dn−1 in case p = 1, we recover the result in [7].

3.3. Arc space and the main result. We may now apply to a polynomial map f =
(f1, . . . , fp) : R

n → R
p, deg fi ≤ d, a similar procedure as the one described by Jelonek

and Kurdyka [14] in case p = 1. Thus, in case p > 1, we consider the following space of
arcs associated to f :

(16) Arc(f) :=

{

(x(t), y(t)) =

(

∑

−ds≤i≤s

ait
i,
∑

−ds≤j≤0

bjt
j

)

, (ai, bi) ∈ R
n × R

p

}

,

where s := [p(d− 1) + 1]n−p[p(d− 1)(n− p) + 2]p−1, as in Theorem 3.1. Then Arc(f) is a
vector space of finite dimension.

Referring to the notations in (16), we define, in a similar manner as [14, Definition
6.10], the asymptotic variety of arcs Arc∞(f) ⊂ Arc(f), as the algebraic subset of the
rational arcs (x(t), y(t)) ∈ Arc(f) verifying the following conditions:

(a’) ∃k > 0 such that ak 6= 0 ∈ R
n, and ‖b0‖ = 1.

(b’) ordtf(x(t)) ≤ 0.
(c’) ordt (xi(t)φj(x(t), y(t))) < 0, for any i, j ∈ {1, . . . , n}, where φj is defined at (13)

in the proof of Proposition 3.3.

Let us then set α0 : Arc∞(f) → R
p, α0(ξ(t)) := limt→∞ f(x(t)), where ξ(t) = (x(t), y(t)).

In view of the above results, we may now give an estimation of the nontrivial ρ-
bifurcation set at infinity NS∞(f), thus of the nontrivial bifurcation locus NB∞(f), cf
Proposition 2.9:

Theorem 3.5. NS∞(f) ⊂ α0(Arc∞(f)) ⊂ K∞(f).

Proof. If α ∈ NS∞(f) then α ∈ NSa(f) for any fixed a ∈ Ωf . By Theorem 3.1, there
exists a path

x(t) =
∑

−∞≤i≤s

ait
i ∈ Ma(f) \ Singf,

such that limt→∞ f(x(t)) = α. It follows from Theorem 2.6 that x(t) verifies the conditions
(a)–(c) of Proposition 3.3. Moreover, the truncation x̃ defined in the same Proposition
3.3 verifies the properties (i)–(iii). Since conditions (i)–(iii) are equivalent to conditions
(a’)–(c’), we conclude that the first inclusion holds.

The second inclusion α0(Arc∞(f)) ⊂ K∞(f) is a direct consequence of the definitions of
Arc∞(f) and K∞(f) since properties (a’), (b’) and (c’) characterize the values α0 ∈ K∞(f)
as shown in the proof of Proposition 3.3. This completes our proof. �



BIFURCATION LOCUS OF REAL POLYNOMIAL MAPS 11

Let us remark that the first inclusion can be strict, as shown by the next example:

Example 3.6 ([7, Example 2.10]). Let f : R2 → R, f(x, y) = y(x2y2+3xy+3). We have
NS∞(f) = ∅, 0 ∈ α0(Arc∞(f)) and 0 ∈ K∞(f).

In trying to prove the equality in place of the second inclusion in Theorem 3.5 one
notices that the inverse inclusion depends on the possibility of truncating paths which
detect some value α0 ∈ K∞(f) at the order provided by Theorem 3.1. But our Theorem
3.1 is based on paths in the Milnor set Ma(f) \ Singf , which provide in principle lower
degrees than working with the Malgrange-Rabier condition (7), and we know that the
later is not equivalent to ρ-regularity (cf §2). Else, for the same reason, it would be
difficult to obtain examples to disprove the inverse inclusion.
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