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ASYMPTOTIC PROPERTIES OF EXTREMAL KAHLER
METRICS OF POINCARE TYPE

HuGcues AUVRAY*

Abstract

Consider a compact Kéahler manifold X with a simple normal crossing
divisor D, and define Poincaré type metrics on X\ D as Kahler metrics on
X\D with cusp singularities along D. We prove that the existence of a
constant scalar curvature (resp. an extremal) Poincaré type Kahler metric on
X\ D implies the existence of a constant scalar curvature (resp. an extremal)
Kahler metric, possibly of Poincaré type, on every component of D. We also
show that when the divisor is smooth, the constant scalar curvature/extremal
metric on X\ D is asymptotically a product near the divisor.

INTRODUCTION

In his search for canonical representants of Kéhler classes on compact Kéh-
ler manifolds, generalising the Kéhler-Einstein problem, E. Calabi introduced ex-
tremal Kdhler metrics, defined as the minimisers of the L?-norm of the Ricci tensor
among a fixed class [Cal82].

Extremal metrics turn out to satisfy rich geometric properties, e.g. maximality
of the group of isometric automorphisms among connected compact Lie groups
of automorphisms [Cal85]. Conversely though, these properties may be viewed
as obstructions to the existence of extremal metrics; see for instance the example
produced by M. Levine [Lev85| of a complex Kéhler surface admitting no extremal
metric. The subsequent (counter)examples produced by D. Burns and P. de Bar-
tolomeis [BDB88| revealed moreover deeper links between the (non-)existence of
extremal metrics, and algebro-geometric conditions on the manifold.

*This work was started during the author’s stay at the MPIM Bonn (EPDI post-doc, 2013),
and completed at his arrival at ENS Cachan.
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Asymptotic properties of extremal Kdhler metrics of Poincaré type

In this direction, the so-called Yau-Tian-Donaldson conjecture predicts that
in the algebraic case, the existence of extremal Kéhler metrics is equivalent to
a stability condition, close to the Geometric Invariant Theory, on the polarised
manifold:

Conjecture 1 Let (X, L) be a compact polarised manifold. Then there exists an
extremal Kdhler metric in ci(L) if and only if (X, L) is K-stable relatively to a
mazimal torus of Aut’(X, L).

This conjecture, first designed for Kéahler-Einstein metrics on Fano manifolds
[Yau93| [Tia97], was reformulated [Don01] for constant scalar curvature Kahler
metrics (an important special case of extremal metrics), and finally adapted to
extremal Kahler metrics [Mab04,/Sz¢07]. This problem is still widely open in the
“if” direction, except for the notable case of its specialisation to Kéhler-Einstein
metrics on Fano manifolds, see [CDS12al[CDS12b,[(CDS13| and [Tial2].

Within the scope of finding necessary conditions for the existence of extremal
metrics, this article provides constraints to the existence of extremal Kéahler met-
rics with cusp singularities along a divisor in a compact Kéhler manifold. Cusp
singularities are compatible with the extremal condition, in the sense that such
singular canonical metrics have already been produced [Sz&é06]; they appear more
specifically along a continuity path between stable and unstable polarisations, when
following smooth extremal metrics. We believe in this respect that extremal Kéh-
ler metrics with cusp singularities might be of crucial interest in the study of
Conjecture [Il, as particular degenerations of smooth extremal metrics.

Following [Auv11l[Auv13| for the definition of the class of metrics we are in-
vestigating, fix a simple normal crossing divisor D in a compact Kéahler mani-
fold (X, J,wx), dimc X = m, of X of polydiscs U of holomorphic coordinates
(z',...,2™) of radius 3, such that UN D = {z'--- 2% = 0} for some k = k(U) €
{0,...,m}.

Definition 2 Let w be a smooth (1,1)-form on X\D. We say that w is a Poincaré
type Kéhler metric if for all U and k as above, w is quasi-isometric to the product

2?21 ﬂ% + D 82 A dzi, and has bounded derivatives at any order
with respect to this model on U\D.

We say moreover that w has class [wx] if w = wx + dd°p, where ¢ is smooth
on X\D, p=0(1+ Ele log[—log(|27])]), and ¢ has bounded derivatives at any

positive order for the model metric, in the above charts.

Notice that this definition allows a rather loose behaviour near the divisor,
in the sense that one can easily produce Poincaré type metrics such that their
restrictions to directions parallel to the divisor does not converge near the divisor.
Our first main result states nonetheless that such a convergence does occur for
extremal Poincaré type Kéahler metrics, when D C X is smooth:
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Theorem 3 Assume that w is an extremal Kdhler Poincaré type metric of class
lwx] on the complement of a smooth divisor D = Z;VZI D; in a compact Kdihler
manifold (X,wx). Then for all j there exist a; > 0, § > 0, and a metric w; €

lwx|p,] such that on any open subset U of coordinates (2',2°...,2™) such that

UND;={z =0}, thenw = % +pw;+ O log(\zlm_é) as 2t — 0.

Here p(z!,2%,...,2™) = (2%,...,2™) in U, and the O is understood at any
order with respect to Mgi% + prwj.

One easily sees from this that the induced metrics w; are extremal, and even
have constant scalar curvature if w does; in particular, the existence of a canoni-
cal Poincaré type metric on X\ D implies the existence of a canonical metric on
the components of D, canonical meaning either extremal or with constant scalar

curvature. This implication actually holds when D is no longer assumed smooth:

Theorem 4 Assume that there exists an extremal (resp. a constant scalar curva-
ture) Poincaré type Kahler metric w of class [wx] on the complement of a simple
normal crossing divisor D = Zjvzl D; in a compact Kdhler manifold (X,wx).
Then for all j, there exists an extremal (resp. a constant scalar curvature) Kdhler
metric on D\ >, ,; D¢ of class [wx|p,], of Poincaré type if D;N Y ,,; Do # @.

Theorem [ states that extremal Kéhler metrics of Poincaré type are asymptot-
ically products near the divisor. Similar results for Kahler-Einstein metrics were
already known [Sch02,[Wu06|; these previous approaches differ fundamentally to
ours though. Indeed, in that case, the Kéhler-Einstein analogue of Theorem [l
follows from topological reasons and Tian-Yau’s extension [TY90] of Aubin-Yau
theorem. Hence, starting with a Poincaré type metric with asymptotically prod-
uct behaviour, inducing on the divisor the Kdhler-Einstein metrics, and running
Tian-Yau’s continuity method towards the Ké&hler-Einstein metric on X\ D, G.
Schumacher and D. Wu prove, roughly speaking, that the asymptotics of the met-
rics are preserved under the continuity path. In the wider extremal case, the
schematic implication “existence of a canonical metric on X\ D = existence of a
canonical metric on D” must be proven by different means, as there is no such
construction as Tian-Yau’s for extremal metrics. This illustrates the interest of
Theorem [4} this also suggests why our proof of Theorem [3], based on a good under-
standing of a model (divisor) x (punctured unit disc in C), and a weighted analysis
of a Lichnerowicz fourth-order operator near the divisor, is essentially different
from Schumacher and Wu’s proofs. Let us specify also here that Theorem [3]is lim-
ited to the smooth divisor case so far, due to the weighted analysis not transposing
clearly to the normal crossing case.

One can interpret Theorems [3 and [l as giving constraints on extremal Kéhler
metrics of Poincaré type; in this way, a conjecture analogous to Conjecture [Il on
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Poincaré type metrics should keep track of this heredity property in the stability
conditions; see nonetheless the conjecture in [Szé06l §3.2] in the constant scalar
curvature case. Still in this particular case, in view of Theorem [l the topologi-
cal constraint obtained in [AuvIl3| propagates to higher codimensional crossings,
giving further obstructions to the existence of constant scalar curvature Kéhler
metrics of Poincaré type. Finally, Theorem [3] provides sharp asymptotic analytic
properties of extremal Poincaré type metrics; besides indicating what is the “right”
class of “metrics with cusp singularities” in the extremal case, this analytic pre-
requisite leads one to try and transpose analytic constructions of extremal metrics
such as that of [APSII], crucial in the treatment of the “only if” direction of
Conjecture [Il to the Poincaré framework; this will be addressed in a future paper.

Organisation of the article. — This paper is composed of four parts. In the first
three parts, we focus on the constant scalar curvature case, which already requires
most of the techniques used in proving Theorems [3] and 4l More specifically, we
analyse in Part [I] the model for Poincaré type Kihler metrics, i.e. S'-invariant
Kéhler metrics on products (punctured unit disc)x (complement of a divisor), and
prove for such metrics, with constant scalar curvature, a splitting theorem (Theo-
rem [LT]).

In Part 2l we introduce the notion of a family of Kdhler metrics of almost
constant scalar curvature on a compact manifold, and construct a parametrisation
in terms of automorphisms of the manifolds for such families (Proposition [2.2]).

Coming back to the complement of a simple normal crossing divisor in Part [3]
we use the results of Parts [Il and 2 to prove the constant scalar curvature cases
of Theorems B and @ (Theorems [B.1] and B.2]). For this we recall in Section [B.1]
fibrations used in [AuvI3|; the link with the model of Part [Il and the families of
almost constant scalar curvature is made in Section 3.2 where is proved Theorem
B2l and the last three sections of Part [3] are devoted to the weighted analysis
needed for Theorem 3.1

In Part [l we generalise what precedes to extremal Kéahler metrics, first on the
product model in Section [l where is proven the splitting theorem [4.], then on
the complement of a simple normal crossing divisor in Section

1 CONSTANT SCALAR CURVATURE KAHLER METRICS OF
POINCARE TYPE: THE MODEL CASE

Set-up and splitting theorem. — As a model of Poincaré type metrics near a divi-
sor, we consider a compact Kéhler manifold (Y, Jy,wy) together with a (possibly
empty) simple normal crossing divisor £ = E;VZI E; C Y, and take its product
with the punctured unit disc A* C C endowed with the standard complex struc-
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ture Je. The product A* x (Y'\E) inherits the natural holomorphic S'-action on
A* | if one merely declares that S! acts trivially on Y\ E.

We see A* with its hyperbolic geometry: the reference metric (or, more exactly,
Kahler form — we shall exchange them often without more specification when there
is no risk of confusion) is the Poincaré metric

2idz N dz
ae = —ddlog ( — log(|2P?)) = LN
( )= (P

— notice that this equation makes it explicit that wa~ is Einstein with negative
scalar curvature -2. It is convenient to describe wa« with help of “logarihtmic polar
coordinates” (t,9) € R x S defined via the writing z = exp ( — ¢’ — i) € A*,
that is: 1 is the opposite of the standard angular coordinate # on S!, and

t :=log (— log(|z]*)).

This way Jedt = 2e~'dd, and thus wa» = —dd°t = —d(2e~'dY) = dt A 2e~'d0.

On the factor Y\ E, we fix a Poincaré type Kahler metric wy\p of class [wy]
according to Definition 2 — such an wy\ g always exists, take for instance wy\p =
wy — dduy, where uy = Zjvzl log ( — log(|o;]%)), with o; a section of &([E}])
canonically associated to E;, and | - |; a well-chosen smooth hermitian metric on
[E] such that |oj]? < e™' on Y; see [Auvlll, §1.1] for precisions.

We now endow A* x (Y\E) with wy := wa+ + wy\g, and consider the set of
S'-invariant potentials of Kéhler metrics on A* x (Y'\ F) quasi-isometric to wp, and
whose derivatives at any order with respect to this model metric are bounded; we
restrict more specifically to those potentials uniformly dominated by 1+ uy (uy
extended constantly along A*), with bounded derivatives of positive order for wy.
In a nutshell, we look at the space:

Ji/(wo) = {QO S gQ(A*X<Y\E))‘
Clwy < Wy = wo + dd“p < Cwy for some constant C' > O},

with & (A" x (Y\E)) the set of S'-invariant — emphasised through the 0 index —
smooth functions v on A* x (Y'\ E') such that |v| < C'(1+4uy) for some constant C
and for all k, ¢ > 0 such that k+ ¢ > 1, [V*0{v|y,, < Cry, with V the Levi-Civita
connexion of wy\ g, for some constant Cj .

For ¢ € # — from now on, the reference metric, fixed, is omitted —, we use as
above and along all this part the notation w, = wy+dd“p; we refer to the resulting
metrics as Poincaré type Kaihler metrics on A* x (Y'\E), by analogy with Poincaré
type Kéhler metrics on complements of divisors in compact Kéhler manifolds. The
main result of this part deals with those w, with constant scalar curvature:
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Theorem 1.1 Assume that there exists ¢ € & such that w, has constant scalar
curvature. Then ¢ does not depend on t, and is a Poincaré type potential ¢ for
wy\g; therefore, w, splits as a product wa~ + wiﬁ, with w§£ = wy\g +ddyY a
constant scalar curvature metric, of Poincaré type if E # &, and of class [wy].

Recall that given any Kéahler metric w on an m-complex dimensional manifold,
its scalar curvature s(w) is given by the formula

= g(w)w™,

2mo(w) Aw
In the situation of Theorem [T} if m = dim¢(Y') + 1 and g, is the Ricci form of
Wy, one thus has g, A wgkl = ﬁ&ugl for some constant s.

Theorem [Tl states a splitting principle for constant scalar curvature metrics
on products A* x (Y\E), with Poincaré behaviour in the A* direction, as well
as in the (Y'\EF) direction when E is non-trivial, and can thus be viewed in the
same scope as the main results of [AHI12,[Hual2]. Notice that no existence of
constant scalar curvature Kéahler metrics (of Poincaré type) of class [wy] on Y\ E
is a priori assumed in the statement; notice also that we make an implicit use of
the general equivalence “a product metric has constant scalar curvature if and only
if its components do”, automatic in Riemannian geometry.

Moreover, if one thinks to Y as some component, D say, of a simple normal
crossing divisor D = Zjvzl D; in a compact Kahler manifold X, and E as the

induced divisor £ := Z;V:z(Dj N Dy), then Poincaré type Kéhler metrics on
A* x (Y\F) are roughly speaking asymptotic models for Poincaré type Kéhler
metrics on X\ D near D;. Heuristically, constant scalar curvature Poincaré type
metrics on X\ D are thus modelled on products near the D;, which thus admit
constant scalar curvature metrics; as is seen in Part [3] the first property indeed
holds if D is smooth, and the second one holds in general (Theorems [3.T] and B.2]).

Our last comment concerns the class of potentials .#"; we could have chosen,
in order to respect more closely the analogy with Definition (2], a similar definition
but with a C%-bound of type |¢| < C(|t| +uy). However, starting with an w,, with
constant scalar curvature 8 and using the same integral techniques as in [Auv13],
we would have ended up with |¢ — at] < C(Jt| + uy) for some a < 1, completely
determined by the data: = = Sy\p — 8, with Sy\g the mean scalar curvature
attached to Poincaré type Kéhler metrics of class [wy] on Y\ E. Up to a replacing
wo by flawo, there is thus no loss of generality with our choice for J#. In the
extremal case, one has to establish such a priori asymptotics for the potential,
which is thus taken in a larger space as sketched above, see Section (4.1l

The rest of this part is devoted to the proof of Theorem [L.1I

A fourth order equation on 0;¢p. — The first step towards Theorem [L.1] is:
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Lemma 1.2 For ¢ as in Theorem[11, denote by L, the Lichnerowicz operator of
order 4 associated to wy,, and set v, = ¢ — 1. Then:

(1) L,(v,) = 0.
We use here the notation " for the ¢ derivative; we use it again frequently, as well

as its twice iterated version ") in what follows. Besides, () is of course equivalent
to L,(¢) = 0, but the “v,-shape” is more convenient, as we shall see below.

Proof of Lemma L4 — For any ¢ € &, since w, has constant scalar curvature,
the Lichnerowicz operator describes the variation of scalar curvature along a de-
formation of the metric in the dd°¢ direction: for e small, s(wq, + ddc(&xb)) =
s(w,) + €Ly (¢) + O(£?), where s(w,) = § is constant; more generally, if (¢.) is a
path in JZ with ¢y = ¢ and ¢ = ddif ._g» then ds(:g“’g) .—o = Ly(¢). Notice that
this holds locally if ¢ is only locally defined.

Recall the complex coordinate z = exp ( — % 119) on A*, and consider the
(locally defined) real holomorphic vector field

7 = %e[ (logz)gz}

then Z = ‘ﬁe(logz)‘ﬁe( ‘9) Jm(log z)Jm 2 Re(logz) = loglz| = —%et,
Jm(logz) = —d up to 2, and 22 = —e & + 2 thus:

— 12 + lgi t

“2o0t 200 P Toy

In particular, Z - f makes global sense as % f for any S'-invariant f. Now as
wy = wy\p + dd°(¢ — t), Lyw, = Lywyp +dd*(Z - (o —t)) = dd*(Z - (¢ — 1)),
as Z is normal to Y. Moreover, (¢ — t) is S'-invariant, and Z - (¢ — t), globally
defined, equals (¢ — 1) = 2v,.. Therefore by the preliminary remark, denoting by
®Z the flow of Z, one has, for & small:

5 = (O7)'s(w,) = s((®7)'w,) = s(w, + 5ddv, + O() =5+ SLy(v,) + O(?),
and thus L, (v,) vanishes identically. O

A useful holomorphic gradient. — Recall that the Lichnerowicz operator is self-
adjoint by construction, as it can be defined — independently of w, having con-
stant scalar curvature — as DD, with D, = (V¥)~d, where (V¥)~ is the J-anti-
invariant part of the Levi-Civita connection of wy, and D7, the formal adjoint of
D, for w,. On compact manifolds, . and D thus have the same kernel; this comes
at once from an integration by parts, and cannot therefore be applied directly
on A* x (Y\E) in general. Our aim is to prove, however, after Lemma [[.2] that
indeed, D,(v,) = 0. An important intermediate step for this is:

7
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Lemma 1.3 For p € %, set u, = e '(p — 1) = e tv,. Then:
(2) Dy (uy) = 0;
in particular, L,(u,) = 0, and Dy(v,) = 1 (duy, - de' — d°uy, - de") + u,Dy(eh).

In this statement and from now on, we adopt the convention that a5 = a®B+Ra
for any 1-forms o and 3; o? always means o ® « though.

Proof of Lemmall.3 — When s(w,) is constant, the equation L, (u,) = 0 can be
obtained in the same way as the equation L (v,) = 0 of Lemma [[.2] using the real
holomorphic vector field Re (z%) instead of Re (z log(z)%). Now in our context
L,(u,) = 0 is not enough to deduce D, (u,) = 0, as for instance u,, a priori has
size et for t going to —oo, which brings up problematic boundary terms if one
tries and performs the usual integrations by parts. Equation (2) actually comes
from a more direct computation, and holds in general, i.e. independently of w,
having constant scalar curvature.

For any (twice differentiable, say) function f, the equation D,(f) = 0 is indeed
equivalent to V¥ f being a real holomorphic vector field, where V¥ f denotes the
gradient of f computed with respect to g, = wy(-,J-) — there should be no con-
fusion between our two different uses of V¥, as it refers to a gradient only when
used with functions, and as we always denote differentials by d. So if we check the
structural equation

0
3 Veu, =e '—,
( ) Y at
then we are done, since e_t% = —NRe (2%), as seen in the previous proof.

According to the splitting J = Jc @ Jy and the rule Jedt = 2e7'dd, and since
¢ is Sl-invariant, we have:

(4) wp=14@—@)dt A2e"dY + dt AN + dyp A 2e"dd + (wy\g + dd5 ),

where dy, dy, and dd§, are respectively the operators d, d° and dd° acting on
functions on Y — or, for instance: (dy f)(¢,9,-) = d(f(¢,9,-)), and so on.
Given any 1-form « and any function f, one has:

m w m—1

a(V“"f)% — {0 df)g, 5 = A df A ﬁ

Now observe that if one takes f = e™*(¢ — 1) =: u,, giving thus

du, = %Qetdﬁ +dyu, = e (1 + ¢ —¢)2e'dY + d5 @),
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one has, in view of @) and using S'-invariance to set w{ = (wy\g + dd§ )¢9
wp! t ()
dup N ——— = A+ ¢ —p)2etdd A dt AdS go/\i
T (m—1) T (m - 2)!

<P)m 1

1~ pyaetdg p WO

F S A (L+ @ — @)dt A2 dY A <w¢)m_2

6 e

(wf )m‘z]

c 5 A 90t
+dyo Ndyp N 2e dﬁ/\(m—Q)!

( <P)m71
(m —1)!
—2etdI AN dyp A d5p A

A+ ¢ —¢@)2e " dI A

(wf )’H}

(m —2)117

since the first and third lines of the right-hand side of the first equality cancel each

other. Therefore, for any 1-form o on A* x (Y'\E) written as audt + ayd?d + avy,
m ( <P)m71

w
a(V“’uw)ﬁ’! =etaudt A |(1+ ¢ — p)2e tdd A =1

—2et I AN dyp A d5p N

cal

On the other hand, a direct computation yields

W i g x WM . e W)
W_(l—l-@—(ﬁ)dt/\% dﬁ/\m—dt/\Qe dﬁ/\dYﬁp/\dY(p/\m’

hence a(V¥u,) = e fay = a(e*t%) for any 1-form a: equation is (3] verified.
Knowing that D,(u,) = 0, the assertion on D,(v,) now directly comes from
the definitions of D, = (V¥)~d and v, = e'u,,, and Leibniz rule. O

Finiteness of a weighted L* norm of D,(v,). For general ¢ € #, we only know
that Dy(¢) is bounded on A* x (Y\E) since e'2 ‘ﬂ is mutually bounded with the

Y\E

cylindrical volume form dt A di A G fA*X(Y\E) e }D¢ }¢>
be finite — here |- |, denotes the norm computed with gg. Comblnmg equalities ()
and (2)), we claim that this is indeed the case for ¢ such that s(w,,) is constant:

has no reason to

Lemma 1.4 For ¢ as in Theorem[1]],

/ et‘Dv(vw)‘ivol“’ < 00,
A*x(Y\E)

9
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where vol? = “2 and where we recall the notation: v, = ¢ — 1.

m!

Proof of Lemma[1]. — For s > 0, set A, := {|t| < s} C A*. First we relate

2 wlt .
fASX(Y\E) et}Dw(%)’wvol“" to fA < (V\B) € ‘v, Ly (v,) vol?, where vol? = —%; notice
though that the latter integral is always 0, by Lemma [.2l Assume momentarily
that E is empty, so that we work on Ay x Y. From (Il) and as L, = §¥6¥D,,, one

has:
0 :/ e'v,Ly,(v,) vol? :/ €'v,0969 Dy, (v,) vol?
AsxY AsxY
:/ (d(e'vy), 69Dy(vy)) vol?
AsXY s
+ / DY N2e *d) — / e DY A 2e°dd,
{t=s} {t=—s}

where
(W) ! (W)

(m—1)! (m—2)’

with w? = wy\g + dd§ (¢(s,-)). Here we use Stokes’ theorem, and the Kéhler

identities (o, B),r = a A JB A (j’nm—_zl), and (da)<r = —d°a A (” 1),
as well as w, = wi, + dy¢ A 2¢7°dV on slices {t = s}, to compute the boundary
integrals. Observe that the e® and e™® cancel each other in these terms, and there-
fore the integrands are bounded — for the metric gy\p + di)?, say — independently

of s. Consequently the boundary integrals are O(1), that is:

(5) 0= / e'v, Ly, (v,) vol? = / (d(e'vy), 5“’1)@(%)% vol” +0(1),
AsXY AsXY

Df = 6°D,(v,)() — 5D, (v, A du, A

for 1-forms,

the O(1) being understood with respect to the variable s.

We proceed to a further integration by parts, using that by definition the 6%
in the second integral of the right-hand side of (H) is the adjoint of the projection
of the Levi-Civita connexion V¥ from 1-forms and to symmetric 2-forms:

(6) O:/ etvvlw(%)volg":/ (V?d(e'v,), Dy(v,))  vol? +O(1);
AsXY AsXY #

here we have included the boundary in the O(1), since they are bounded indepen-
dently of s for the same reasons as for the first integration by parts above.

As D, (v,) is J-anti-invariant by construction, V¥d(e'v,) can be replaced by is
J-anti-invariant part Dy(e'v,) in the inner product in the right-hand side of (@l):

7 0= /A Ly (v,) vol* = / (Dy(ev,), Da(v,)). vol? +O(1);

AgxXY

10
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Expand now D,(e'v,) with Leibniz rule, using that v, = e'u, and that D, (u,) = 0:
D,(e'v,) = Dy(e*uy) = 2e* (dt - duy,)™ + u,D,(e*);

here and further on, h~ denotes the J-anti-invariant part of any symmetric 2-
form h. Moreover, D,(e*) = 2e*(dt*)” + 2¢'D,(€'), and D, (v,) = Dy(etu,) =
e'(dt - du,)™ + u,Dy(€e') by Lemma [[3] hence:

D,(e'v,) = 2e'Dy(v,) + 20,(dt*) ™.
From this and ([l) we thus infer:
1
(8) / e'|Dy(v,)|% vol? = ——/ vee' ((dt?) ™, Dy(v,)),_ vol? +O(1)
AsXY v 2 AsXY v

We shall make explicit the computations involved in the right-hand side of this
estimate, replacing the D, (v,) there by its expansion given in Lemma [[.3] that is:
(de - duy)™ + u,Dy,(e'). We also replace (dt?)~ by dt? in the inner product.
First, (dt?, (de' - duw)*>¢ is merely equal to %tdt(V“"t)duga(V“’t) -2 = |dt[3,
as du,(V¥t) = dt(VPu,) = e, and dt(V¥t) = du,(V¥t) = 0; to see these
m m m—1
vanishings, write for example d°t(V9t)=5 = (dt, d°t),~% = dt A (—dt) A % for
the first one, and d°u,(V?t) = d°t(V¥u,) = 2e'di(e~'2) = 0 for the second one.
Now D,(e') = e'(dt?)~ + " Dy(t), thus

t
(dt?, D(e")), :% (AH(V1)? + dU(V21)%) + €D, (1) (V2L V1)
t
:%|dt|j, + "D, (£)(V?t, V1),

we are left with the computation of D,,(¢)(V#t, V¥t), hence those of (V&,.,dt)(V#t)
and (Vg dt) (JV?t).
Lemma 1.5 One has: (V&,,dt)(V¥#t) = 5(V¥t) - |dt]2, and: (Vg dt)(JVeL) =
—|dt|} — 3(V*t) - |dt]?,.

Proof of Lemma [IJ. — Rewrite the first quantity to compute as <V€¢tdt, dt>@,
to see that it is indeed nothing but 3(V¥t) - |dt|%. For the second quantity we

proceed as follows: (V¥g,,dt)(JVt) = (JVL)- (dt(JV?t)) —dt(Vige,(JV?E)) =
—(Vet, Vﬁth((]vﬁ"t)%, since dt(JV¥#t) = 0. Now by Koszul formula,
2(V¥t, V?v%(JV“"t)>¢ =2(JV%t) - (V9t, IV, — (V1) - [ IV
+([IVP IV VL) + 2([VPL TV, TVEL)
= — (V¥t) - |dt]? + 2([V*t, TV, JW%,

11
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since (V¥t, JV¥9t), = 0, | JV¥t|? = [V?t]2 = |dt|?, (and of course [JV?t, JV¥t] =
0). Now

([V¥t, JV¥i], JV*"% =d°t([V*t, JV¥#1]) = 2e7'dd ([V¥t, JV¥1))
=2 [(V?t) - ((JV¥1) - 9) — (JV¥L) - ((V¥1) - V)]
_ 1
=2¢ " [(V*t) - (§€t|dt|i) - 0],
since (JV#t)-0 = di(JV?t) = 3e'dt(V¥t) = se'|dt|2, and (V¥t)-9 = dI(V¥t) = 0
as already seen. So finally ([V¥t, JV¥1], JV“"t>@ = |dt|} 4 (V#t) - |dt|?, and thus

(O]

(Vigedt) (JV9E) = —(V?t, Vig. (JV#)) = —|dt[ — 5(V?t) - [dt]2. |
We deduce from Lemma that:
1 1 1
D(t)(V¥t, V¥t) = 3 [(VE,,dt) (VPt) — (Vige,dt) (JV)] = 5(th)-|dt|§,+§|ohs|j,.

This yields (di?, Dw(et)% = 2 (V1) - |dt|? + e'|dt|7,, and therefore

_ 1
(9) ve{(dt*) 7, D)), = v, ldt] + vl dt], + 5vf,(th) |2
Do not use ([@) with (8]) yet; instead, focus on its last summand, and notice that:
wmfl
/ vl (V¥t) - |dt|? vol? = / vZd(|dt]%) A de(e') A %1'
AgXY AgXY (m )
wm—l
=— dt|2d(v) A d(e') N —F—— 4+ O(1
[ Ha) A n e 00)

by Stokes, since dd®(e') = 0 — here again, the boundary terms are bounded inde-
pendently of s. This we rewrite as

/A y vl (V¥t) - |dt|2 vol? = —2/ v, |dt|2dt(V¥Pv,) vol? +O(1),
s X

AgxY
and as Vv, = V¥(e'u,) = e'VPu, + e'u, Vet = & + 0, V¥, we get
/ v} (V¥t) - |dt|2 vol? = —2/ e'vg|dt|2 (14 v,|dt|2) vol¥ +O(1).
AgxY AsXY

From this latter equality and (@), we thus exactly end up with

/ %et<(dt2)_,D¢(%)>wvol“’
AgxXY

1
= / etv¢|dt|i(1 + v¢|dt|i) vol¥ +§/ etvi(V‘pt) : |dt|ivol¢ =0(1),
AsxXY AsXY

12
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that is, coming back now to (8],

/ et|D¥,(v@)|ivol*" =0O(1).
AsXY

As the integrand is nonnegative, this implies that the integral converges as s goes
to 0o; in other words, [, €'[Dy(v,)|% vol”? is finite.

When the divisor £ in Y is not a priori empty, the same arguments apply, by
replacing Ag XY by Ay x (Y\E) in the integrals above. One just has to check that
the integrations by parts still provide bounded boundary terms, which is indeed
the case thanks to the Poincaré assumption on w,. O

Vanishing of the weighted L? norm of Dy(v,). — We strengthen Lemma [ as:

Lemma 1.6 For ¢ as in Theorem [, fNX(Y\E) D, (v,)]% e vol? = 0, and thus
D, (v,) = 0.

Proof of LemmalL4 — Denote by F,, the function

S —> vwin/\Zdﬁ:élﬂ/ v, DY
{t=s} {s}x(Y\E)

(this holds by S'-invariance under the first integral); one moment’s thought — use
the flow along Z = 0, + 90y — gives: Fy(tq.) = Fu(- + a) for all a € R. Now
formula (B) — or rather its analogue on Ay x (Y'\E) — can then be rewritten as:

0 :/ e'v, Ly, (v,) vol?
Asx(Y\E)
N / <d(etv¥,),5“’Dw(v¢)> vol? +Fy(s) — Fo(—s).
Asx(Y\E) v
Similarly,
/ (d(€'v,),69Dy(v,))  vol?
Asx(Y\E) v
— [ (Due) Dufw)), O £Guls) — Gol-5)
Asx(Y\E)
if G, denotes on R the function

S > Df/\2d19:47r/ 07

{t=s} (sIX(V\B)

13



Asymptotic properties of extremal Kdhler metrics of Poincaré type

where
. o (@)t
07 :==e [Dw(%) (V#(e'vy), 0) (m—1)!
—Dy(v,) (Vg}(etvv)’ )|Y A dyvg A %
()"

=Do(v) (097 + V¥0,),8) (o

— Dy(vy) (v, VPt + VEu,, ) [y A dSv, A on Y\ E.

This way G satisfies the translation property Gy(.4a,) = Gy(- + a), and the exact
formulation of (§) is:

Jo o =3 ([ (@) D), o
sX(Y\E) Asx(Y\E)
F )4 Gul) = Fo(-5) = Gu(-9) )

Next, in our explicit computation of fASX(Y\E) veel {(dt?)™, Dw(%»@ vol?, the only
integration by parts occurs when transforming 3 | AxY e'v3(V¥t) - |dt|2 vol? into
— Ja.xy €0p|dt|2dt(V?0,) vol?; the resulting boundary term is H,(s) — Hy(—s),

where H,(s) == —47 [, v\ m) Q\dt\i&” 31 — again, H = H,(- +a) —, and
thus

/ 1D, (0, )2 v0l? = K o(5) — Ko —5),
Ax(Y\E)

with K, = —1(F, + G, + H,), and more generally fA < (V\E) e'|Dy(v,) |2 vol? =
Ko(a) =K, (b) for all a > b, if Ay :={b <t <a}; K,i is thus non-decreasing, and
has limits at £00. We will thus be done if we prove that these limits are identical.

Let us consider any increasing sequence (t;) 720 going to +00; we also assume
that (¢;41—1;),>0 increases to +00. Set a; = tJ“ % and denote by ; the function
¢( - +tjt1 — a;). Then s(w,,) is constant, equal to s(wg,) and thus

/ D, (00, )2, ¥OI7 = K (05) — Ko, (=) = Koplt 1) — Klty):
Aa. x(Y\E)

Up to considering a subsequence, one can assume that (¢;), which is uniformly
dominated by uy, and has uniformly bounded derivatives at any positive order on
A* x (Y\E) as ¢ does, converges to some ¢, € # (wp) in C™ on every compact
subset of A*x(Y\E). And asfor ¢, ass(w,..) =5, [xe, v\ 1) € [Poue (Vo) 1, vOI7

14
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is then finite, and given some compact exhaustive sequence (K;);>o of Y\ E, is thus
equal to lim;_,q anj i, €Dy (Vgoo ) [2, vOIZ.

Now, anj x K €' Dy, (Usooo)@w vol?™ = limy o0 anJ_ K "Dy, (Vg ) ik vol?* for
any fixed j. But anijj €' Dy, (vg,)]%, Vol < ankX(Y\E) €'|Dy, (vg, ]2, vOI?r =
KCo(tri1) — Ky(ty) for k > j, and therefore anijj €D, (v, )2 vol?> = 0, as
IC,(t) tends to lim, Ky, as k goes to oo.

We can thus conclude that fA*X(Y\E) "D, (v, )|? vol?> = 0, which is equiv-
alent to: D, (v, ) vanishes identically, or: V¥<uv,_ is real holomorphic. Since
Ve, = 24 V¥=t, it has shape v + Z with Z tangent to Y\ E, as di(V¥#=t) =
(dt,dV),,, = 0. Moreover y = dt(V¥=uv,_ ) = 14w, |dt|2_; furthermore, one has:

Lemma 1.7 Let Z be a real holomorphic vector field on A* x (Y\E), bounded up
to order 1 for wy. Then Z is tangent to Y\FE, and constant along A*.

The proof of this lemma is postponed after the current proof. For now we get, as
V¥#>=u, is bounded at any order with respect to wy, that v =0, i.e. oo —1 =

Voo = —\dt\;fo = —(1 + oo — Do — |dy<p'oo\§o7t), or: Qoo = \dygo'oo\iw > (). Since
©Yoo(+,y) is bounded for all y € Y\ E, this implies that ¢, is constant in the A*-
direction, thus ¢ = 0, and in particular ¢y = |dy@il%,, = 0. In other words,

Yoo 18 a function on (Y'\E), 1 say, independent of t.
We interpret this by saying that v, converges to —1, and that w,, converges

to Wy, = dt A 2etdV + wiﬁ“’, wg’ﬁ“ = wy\p + dd$ 1), in CF. topology. Hence by

dominated convergence, ICA%) = Ky, (0) tends to ICy,(0), and, as v, = —1,
’C (0) 2 / @S%o + 09000 2 |dt|2 (w;goo)m_l
(0)=—2r7 Voo, — vy _ldt|5, ~————
’ oxeney 0 (m—1)!

(wp=)m

:—27?/ 0+0— (=12 12X ~2 _ =27 Vol(Y\E),
{0}x (Y\E) - (m —1)! (AE)

as |dt|2_ =1, since w,, = dt A 2e7'dV) + wy™. We recall that the volume of Y\ E,

even if computed with respect to w;é‘x’, depends only on [wy]. On the other hand,

ICQO(%) converges to lim ., Ky; we hence get: lim o IC, = 27 Vol(Y'\ E).
These arguments apply symmetrically, and thus lim_., K, = 27 Vol(Y'\E).

Therefore lim_o K, = lim oo Ky, and finally [, 4 g €'[Dp(vp)5v0l? = 0. O

End of proof of Theorem[L1. — We have: D,(v,) = 0; as seen in the above proof
for ., this implies that ¢ does not depend on t: Theorem [l is proved. O
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Proof of Lemma[17. — Any holomorphic function f on A* which is O(1 — |z])
near A, and O(|z||log(|z])|) near 0, vanishes identically on A*. Indeed, extend
f through 0, and for r € (0,1), e > 0, pick 6 € (0,1 —r) so that |f| < e on 0A;_s.
By the maximum principle, |f| < e on A,; since r and ¢ are arbitrary, f = 0.
Now given Z as in the statement, take a open subset U of holomorphic coor-
dinates (22,...,2™) on Y\E, and write 20 = f2 + > fiz%. Fixz € U. As
Z is bounded, f(-,z) : A* — C, which is holomorphic, is O(z||log(|])|) near 0,
and O(1 — |z|) near OA, and thus f(-,2) = 0. The same holds for the W, and
as % = 0, the f; are constant along A*. U
2  PARAMETRISATION OF KAHLER METRICS OF ALMOST
CONSTANT SCALAR CURVATURE

2.1 Family of Kihler metrics of almost constant scalar cur-
vature

Definition. — We consider a compact Kéhler manifold (Y, wy, Jy) of dimension
n > 1, and define:

Definition 2.1 Let (wt)i>0 be a smooth family of Kdhler metrics in [wy] such that:

1. s(wy) converges at any order to Sy = —47?71%

s(w;) — Sy and for any positive €, Ofs(w;) — 0, in C*(Y), as t goes to 0o;

, 1.e. forany k >0,

2. (wi)e>0 is bounded in C* for any k, and there is some positive constant ¢
such that for all t > 0, wy > cwy;

we then say that (wi)i>o is a family of Kahler metrics of almost constant scalar
curvature.

We say moreover that such a family has extinguishing variation if for all posi-
tive £, O (w;) tends to 0 in all C*(Y) as t goes to .

In this definition, we assume of course that all the metrics are Kahler with
respect to the fized complex structure Jy. Notice moreover the existence of a
family (w;) of almost constant scalar curvature in [wy|, implies that of a constant
scalar curvature metric in this class: take any C'*°-limit point of (w;).

Basic example. — Assuming that wy has constant scalar curvature, and is the
unique such metric in its Kéhler class (as is the case when for instance Y has no
non-trivial holomorphic vector fields [CT08]), it is rather straightforward to see
that a family of almost constant scalar curvature tends to wy in C'*°-topology.
When there exist several constant scalar curvature metrics in a same Kéahler class,
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the situation might be more delicate, even with extinguishing variation, as the
following example illustrates: consider a smooth family of holomorphic vector fields
(Z;) such that for all £ > 0, 0fZ; tends to 0 in C*°-topology. Assume moreover
that the family of automorphisms o; of Y such that 0,0, = Z; for all t is bounded,
in the sense that ojwy stays bounded below, and bounded in C* for all k. Then
(wi) := (ofwy) is clearly a family of metrics of (almost) constant scalar curvature,
since for all ¢, s(w;) = Sy. On the other hand, we arrange easily so that (w;) does
not converge: take Z a vector field such that £zwy # 0 — this exists as soon as
the uniqueness for constant scalar curvature metrics fails —, and set Z, = f(¢)Z

with f a smooth function of ¢ tending to 0 at any order, but with f:zo f keeping
cos[log(1+4t)]

oscillating between two fixed values, e.g. f(t) = "

2.2 Parametrisation

The following proposition, which is the technical core of this part, tells us that the
previous example is asymptotically the only possible type of situation for a family
of almost constant scalar curvature with extinguishing variation:

Proposition 2.2 Let (w;) be a family of almost constant scalar curvature in [wy|,
with extinguishing variation. Then there exists a smooth family of constant scalar
curvature Kahler metrics (wy) in [wy] such that:

o w—w; =o0(l) in C*(Y) ast goes to oo, for all k > 0; in particular, (w;)e>o
1s uniformly bounded below, i.e. w; > ciwy for some positive cq;

e there exists a smooth family of holomorphic vector fields (Z;) such that if
(01); is the associated flow, then w, = ofwq for all t, and for all £ > 0,
O'Z, = o(1) in C*(Y) ast goes to oo, for all k > 0;

e wy can be taken as any limit point of (wy) in C(Y).

In other terms, a family of almost constant scalar curvature with extinguishing
variation can be parametrised, up to a small error in C'"*°-topology, as the pull-
back of a fized constant scalar curvature metric by some automorphism flow with
asymptotically vanishing time derivatives of positive order.

Proof of Proposition[2.2. — We consider a family (w;) as in the statement of the
proposition. The following strategy will guide us:

1. we fix kK > 2 and a € (0,1), call .Z the set of limit points of (w;) in C*“-
topology, show that .Z is a nonempty set of smooth metrics with constant
scalar curvature, and is actually the set of C'*°-limit points of (w;); in par-
ticular, . does not depend on x nor on «, hence is bounded at any order;

17
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2. similarly, we see that £ is connected in C*“, hence in C'*°, topologies;

3. we use a result due to Calabi to parametrise a well-chosen sequence of met-
rics in .Z as inductive pull-backs of some arbitrary fixed metric by “small”
reduced automorphisms of Y, interpolate this sequence into a family of con-
stant scalar curvature metrics, and compare it to (w;).

Points 1 and 2 require very usual arguments, which we include for the sake of
completeness; Point 3, less standard, needs a little more care.

Point 1: Regularity of elements of £, and independence from (k,«). The family
(w;) is bounded in, say, C*® with 8 € (a, 1), and therefore admits a subsequence
converging in C**: £ #+ @.

Let us consider some @y, € £, which is the C"*-limit of a subsequence (w;,)
where we can assume that (¢;) increases to co. As w, > cwy for all j, wy is
positively bounded below, and is therefore a metric; it moreover has constant
scalar curvature, since along our subsequence, the scalar curvatures converge to
s(wwso) in C" 28 while s(w;) converges to Sy as t goes to 00: $(wy) = Sy

Given moreover any A > k + 1, (wy;) is bounded in C* and thus admits a
subsequence (w%) converging in C*, necessarily to @, as C*-convergence implies
Cr%-convergence. Hence wy,, which is thus indeed C?, is a C*-limit point of
(wy), and this holds for all A > k + 1: @, is smooth (this is also deducible from
S(Ws) = Sy), and is a C*-limit point of (w;). This settles Point 1.

Point 2: Connectedness of £. The connectedness assertion on . endowed with
the induced C**-topology can be viewed as the analogue of the similar statement
on the set of limit points of a sequence in a compact metric space such that the
distance between two consecutive terms goes to 0. Now the bound on (w;) in C*
does not provide compactness in general; we nonetheless bypass this lack thanks
to higher order bounds, and to the (almost) constant scalar curvature property.
Let us thus assume that £ = % U .7, with the .Z; non-empty closed subsets
of £, for the C"*-distance dcx.«; notice that as a set of limit points, £ is closed
for this distance in the set of C"® metrics, hence so are the .Z;,. And as .Z is
bounded at any higher order, so are the .%;. We claim that there exist @’ € .%,
i = 0,1, such that € := dgw.a (%, ZA) = dore (@, wl), distance which is thus
> 0. Consider indeed two sequences (wé)jzo of elements of %, i = 0,1, such
that deee(w?, w}) — € as j — oo. Then as the (w!);>¢ are bounded in C*# for
any (3 € (a, 1), they admit subsequences (w?, k>0, (jx) independent of i € {0,1},
converging in C"™“ to respective limits w!_; moreover, w’ € .Z; closed in C"™*
0 1

topology, and & = limy dgr.a (W) ,w} ) = dore (@D, wh,).-
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We consider now an increasing sequence of “times” (¢;) admitting two disjoint
subsequences (Z;0) and (;:) such that wy, — w! as k — oo in C®*. Up to
k

adding intermediate times, we can furthermore assume that [jw;,,, —wy,|lcxe — 0
as j — 00, since ||0;w;||cx.e is bounded. Let us show that an infinite number of wy,
are a distance at least £/3 from both % and 7.

Take J large enough so that [|w;, , —wy,[|cre < 3; take also k, £ large enough so
that, if jo := j) < j; =: j1, then [Jwy, — @ocollere, [y, — @1 collera < §. Define
J2 to be the smallest integer > jo so that wy, is at distance > £ from Zp; ja is well-
defined, and j, € {jo+1,..., 71}, since wy;, is at least at distance 2—35 from .%,. One
also has dor.a (Wi, , £1) > dowa (Lo, £4) —dora (Wi, , Wiy, ) —dera (W, ,, 21) > 5.

We can repeat this argument with j, and j; as large as wanted, and thus end
up with a sequence (¢;,)x>0 going to oo such that for any £, wy,, 1s at distance at
least § from both .Z;. Now (wy, ) is bounded in C"8_ hence admits a subsequence
converging in C™“ to some @y, necessarily at distance at least § from the 2. But
by definition, w., € £, hence a contradiction with the assumption . = £ U % .

We are left with the connectedness assertion in C'*°-topology. We actually
settle this by the more general statement that the induced C** and C*°-topologies
coincide on .Z. As the elements of .Z are smooth constant scalar curvature metrics
with uniform lower bound and bounds at any order (coming from such bounds on
(wy)), this statement merely comes from the iterated observation that given smooth
w and @, then || —@ | cra is bounded by Cy o (|| —@ || cre+||s(@) —s(T) | or-2.0 ),
where C) , depends only on lower bounds and C**bounds on w and @. Let us
detail how this goes for A = k + 1. Let 1 so that @ = w + ddy, normalized by
[y ¥ @™ = 0; this way ||¢)||grr2e < Cl|@0—w||cre with C as announced. Moreover,
in local coordinates, if ¢ is the metric w(-, Jy-) and g is @ (-, Jy-),

s(@) —s(w) = — gpq(grgapaq(grg + 0,05¢) + (0p9"°) 04(Grs + 87"6§77Z)))
+ 319" 0p04(Grs) + (0p3"")04(Grs)
= — g"g" Opgesth — gP1(0pg"*) Ogrst)
~ (Opadrs) (979" — §"15") — (0q0r5)(9"70pg"" — G"10p5")

We rewrite the latter equation as:
(10) 979" Opgrsth =1 — (S(W) - S<75))

wWith 7 = —g71(Oyg™)0grsth — (Opadis) (779" — GP757) — (04s) (6P10p5" — P16,57).

A local C* 1% bound on 1 now easily follows from a C**2*bound on v, lower
bounds plus C**t1*-bounds on w and @, and a C**bound on w — ; more
precisely, [|n||cr-1.a < C1][10]|cor+2a + Co|lm — @||ore with C, Cy as announced,
hence [|7||cr-1.« < C|lw —@||ore with C as announced, by the previous control on
|%]| gr+2.a. The conclusion follows from Schauder elliptic estimates applied to (I0),
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together with [|¢)||co < Cljw — @||cre: as gP1g"*Opgrs is elliptic in the open subset
Q of work, with lower bounds and C*~1* bounds on (gP7g"™¥),4rs coming from such
bounds on @, one has [|¢||cr+s.e@) < C (|| —@||cme@)+ 8(w) —s(@) || cr-10(0)),
thus || — @||crrre@) < C(|lw — @lemea@) + |Is(@) — (@) ||er-10(0) ), with C as
announced, on a slightly smaller open subset €', hence the desired estimate as Y
is compact.

Point 3: Interpolation of a sample of limit points. We proceed to the sampling
mentioned above according to the following principle: given ¢ > 0, there exists
J = J(e) > 0 such that for any j > J, there exists w; € £ such that ||wi—; —
wjl|ore < €. Indeed, assume this does not hold, and pick € > 0 and a sequence
(jk) of nonnegative integers going to oo, such that for all k£ and all w € &,
|wizj, — @|loxe > €. As (wj,)r is bounded in C*# (8 € (a,1)), it admits a
subsequence converging in C"™* to some w.,. Hence for all w € 2, ||woo —@||cria >
¢; this contradicts the assertion wy, € .Z given by the definition of .Z.

We fix now a positive sequence (gx)r>0 going to 0, and set j, = J(ej) for k > 0,
according to our principle; we can assume that for all k, J(gx11) > J(eg). This
enables us, for all k and all j € {ji, ..., ji+1 — 1}, to pick some w; € Z such that
|wi=j — ;|| < e,. We thus constitute a sequence (w;) in £ which is asymptotic
to (wi=;) (in C™%, thus in all C*, by the estimate of the previous point).

In order to interpolate between the w;, we use the following result due to Calabi
[Cal85], see also |[Gaul, Prop. 3.3.4]: the space of extremal Kéhler metrics among
[wy] is a submanifold of the space of Kéhler metrics in [wy], and each connected
component of this submanifold is an orbit of the reduced automorphism group
Heq(Y, Jy). More precisely, the tangent space of this submanifold at each point
coincides with the tangent space of the orbit. Here extremal metrics are constant
scalar curvature metrics: indeed as seen above, for any w € £ C [wy], s(w) =
Sy, which makes the Futaki character of [wy] vanish, and forces any extremal
metric in [wy] to have constant scalar curvature. Moreover . is connected, and is
thus contained in one connected component of the space .7, of constant scalar
curvature metrics of [wy]; its elements can thus all be written as o*wy, up to
choosing wy in .Z, say. Here we can be more precise: the above statement tells
us that given any w of constant scalar curvature, all the constant scalar curvature
metrics of its neighbourhood (for any C** topology, or even for C* topology, as
the submanifold has finite dimension) can be written as oc*w with ¢ a reduced
automorphism close to identity; up to reducing the neighbourhood, these metrics
can thus all be written (®#)*w with Z a small (real) holomorphic vector field in
Jto(w) where €(w) is the set of Hamiltonian Killing fields for w, as in the constant
scalar curvature case, by := Lie (Hred(Y, Jy)) splits as €y(w) @ JEy(w).
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Now .Z is closed and bounded in .7}, ], hence compact, and therefore there
exists a function n = n(e) which is o(1) such that any ball of radius € € (0, &) and
centre w € £ is covered by the (0z)*w with Z € J¥(w), |Z| < n(e), where oz
denotes the flow at time 1 of Z.

Without loss of generality, assume (ey) is decreasing and takes value in (0, £y/3);
Assume likewise that (t) := [|uw;||ore < 2 forall t. Then for all k, and all j > jj,

j+1
151 = Fyllene < @51 = wppillene + 125 = wilon +]| [ O]
t=j ’

< 2, + 5j < &,
where §; = t]:Jg.l ~(t) dt. Hence for all k, and all j € {ji, ..., jrr1 — 1}, there exists
a holomorphic vector field Z;, |Z;] < n(2e + 0;), such that @41 = 0} @;.

We conclude as follows: let y be a nonnegative smooth function with compact
support in (0,1) and with integral 1. We define the time-dependent holomorphic
vector field Z, := > 7. X(t — j)Z;, and the associated flow 0. We set w; =
or_j,@j, for all ¢; these are metrics of constant scalar curvature, in some fixed
neighbourhood of .Z. One easily checks that indeed w;—; = w; for all j > j,
as well as the claimed asymptotic properties of (w;);. For instance, for t > jo,
Oy = Lz,m = Xx(t — [t]) Lz = x(t - [t])d(w@:(Zyy, -)); since @, is bounded at
any order, ||0yw;||cx.« is controlled by |Zy|, which is controlled by 7(2ex ) + o)
(where k() is defined by £ € {Jjk),---,Jr@-1}), hence goes to 0 as ¢ goes to oo.
Finally, as Z; = 0 for ¢t € [0, jo], wo = wj, € -Z; now w,, was arbitrarily chosen
in .Z so that ||wi—j, — @j,||cre < €. But given w € &, there exists ty so that
|wr, — @i llome < €9, and for all t > tg, dera(wy, £) < €o; the assertion on the
geniricity of wy follows by applying the previous construction to (wits,—j,) for
which one can keep the same jj. 0

3 CONSTANT SCALAR CURVATURE POINCARE TYPE KAHLER
METRICS ON THE COMPLEMENT OF A DIVISOR

We fix in this part a compact Kéhler manifold (X,wy), and a simple normal
crossing divisor D = Zj\le D; (the D; are the smooth irreducible components).

3.1 Basic tools and statements of the results

Reminder: fibration near the divisor, and previous results. — The details concern-
ing following material, necessary for what follows, can be found in [AuvI11l/Auv13|.
To fix ideas, assume first that D is smooth, and even reduced to one component.
One can endow a tubular neighbourhood Ay of D with an S'-action and an S!-
invariant projection p : Ny — D, and construct an S'-invariant function ¢ such
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that ¢t = log ( — log(|o|?)) + O(e™") at any order for Poincaré type metrics on
X\D, where o € 0([D]) is such that D = {0 = 0}, and |- | any smooth hermitian
metric on [D]. Up to adjusting N4 and A € R, we get this way a circle fibration
q=(t,p) : Na\D — [A,+0) x D, for which we construct a connexion 1-form 7,
such that d°t = 2e7'n+ O(e™") at any order — notice the analogy with the formula
Jedt = 2e7'dY on the model A*. Setting moreover w := wx — dd°log ( —log(|o|?))
with a good choice of | - | — which does not affect what precedes — we have that w
is of Poincaré type, and near D,

(11) w=dt A2 'n+pwp+ O

at any order, where wp = wyx|p. This can be generalised when the divisor has
several components, and the fibrations respect the crossings when they exist; we
simply add j indices to specify the component D; near which we work.

In [Auv13], it is proven, using these fibrations, that if a metric of Poincaré type
w, = w + dd°p has constant scalar curvature, then ¢ — Z;\le a;t; is in C>°(X\D),
i.e. is bounded at any order with respect to the model Poincaré type metric w,
where the a; are < 1, and given by ﬁ = Sp, — §; here § (resp. Sp,) denotes
the mean scalar curvature of Poincaré type metrics of class wx (resp. wp,) on
X\D (resp. on D;\ 3, Dy) — recall the formulae § = — 4rmEx [[ijEfX]m_l and
c1(Dj)-c1(Kx[D])-[wx]™ 2

c1(Dj) [wx|™t

Considering again a fixed D; and given (k, a)) € Nx 0, 1), one can use the circle
action on its neighbourhood to decompose functions f € C**(X\D) (“bounded
functions at order (k, a) for w on X\ D” — see [Auv1ll §1.2] for the exact definition)
as an S'-invariant part Ip;f and a part II, ;f with null mean against n;. Of
course Il ; f and I, ; f remain in C*°(X\D) — in particular, seen as a function on
[A, 00) x (D;\ > et Dy), I f is bounded up to order (k, ) for dt? +w|p, (-, Jp,");
moreover, as the fibres have length in e™% near D;, if T; denotes the infinitesimal
circle-action vector field, (e %T;)*I, ;f € C*% near D; for all k < k. Thus for
instance, if f € C*(X\D), then

Sp, = —4mm , typical of the Poincaré setting.

(12) df = 0y o f + pyd(Io; fe,) + Oe™)

and A, f = (0; — 831_)1107]»]‘ + pj (AMDJ_ (o fi,)) + O(e™) near D; at any order
with respect to w, and where I ;f;, = (Ilo; f)(t;, -).

Two theorems on Poincaré type Kdahler metrics with constant scalar curvature. —
We can now state the main results of this part:

Theorem 3.1 Assume that D is smooth. Let w, be a constant scalar curvature
metric of Poincaré type on X\D, of class [wx]. Then at the level of Riemannian
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metrics, one has near all component D; of D the asymptotics:
Gy = a; (dt? + <2€_tj7]j)2) +pihy + (’)(e“gtf)

at any order, with 0 > 0, h; a Kdhler metric on (D;, Jp,) such that [h;(Jp,-,-)] =
lwx|p,] and with constant scalar curvature, and where a; = 2(5p, —s)~' > 0.

and:

Theorem 3.2 Assume that there exists a Poincaré type Kdihler metric of class
lwx] on X\D. Then for all components D; of D there exists a (Poincaré type)
Kihler metric on D\ >, Dy.

The rest of this part is mainly devoted to the proof of Theorem B.Il The first
step is the construction of a family of almost constant scalar curvature metrics
on a fixed D;, along which a proof of Theorem with D smooth is provided;
this is done in next section, as well as the generalisation of Theorem to the
general case. In the analytical subsequent sections, we use the produced family
and Proposition to end the proof of Theorem [B.1

3.2 A family of almost constant scalar curvature on D

Assuming D reduced to one component — hence smooth — and starting with a
constant scalar curvature w, on X\ D, we use the results of Part [l us to identify
a specific family of almost constant scalar curvature as defined in Part

Proposition 3.3 Assume that D is reduced to one component and that s(w,,) =8
on X\D, with w, = w + dd°p of Poincaré type of class [wx]. Then for T large
enough, (wf)i>r = (wp+ddHIlp(t, -))t>T, with wp = wx|p, is a family of Kdhler
metrics on D of almost constant curvature, with extinguishing variation. Moreover,
for any (k, ), and any positive £, (0Typ); — 0 in C**(D) ast goes to oc.

Proof. — Observe first that we can assume ¢ € C*°(X\D); for this, just replace
wx by twy, with a = (Sp —§) ™!, which imposes Sp = §+ 2 (see previous section).
Now the principle of the proof goes as follows: to check convergences, we pro-
ceed by contradiction: assuming the desired convergences do not hold, we use the
boundedness of ¢ at any order as well as its almost S'-invariance to identify some
subsequence of TIyp on compact subsets of [A, 00) x D converging to a limit fitting
in the framework of Section [Il and use Theorem [L.1l to contradict the assumption.

We thus set on D, for t > A, wf = wp + dd%(Ilpe)s; up to increasing A, these
are indeed metrics, uniformly bounded below, and uniformly bounded in C**(D)
for all (k, a); more precisely, ¢ — w{ is bounded in C**([A, 0o) x D) for all (k, ).
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Let us assume that there exist € > 0, a sequence (¢;), lim;_, t; = 0o, and (z;)
in D such that [s(wf)(2j) —Sp| = sup,ep [s(wi)(w) —8p| > e. We consider a
subsequence of (z;), still denoted (z;), converging to some z € D. Similarly, we
pick any (k,a) € N x (0,1); as Iy is bounded in C**([A, 00) x D), we have for
any N a sequence (Ilop) (- +1;, ) ;>jo(n) uniformly bounded in C**([—N, N] x D).
A diagonal argument thus gives us g, € C"™*(R x D) and a fixed subsequence (t;)
such that (Iop)(- + ¢, ) converges in C**/2 on every compact subset of R x D
t0 Yoo; an extra diagonal argument gives the C-convergence (of a subsequence),
hence o, € C°(R x D), i.e. is bounded at any order for dt* + h for any h on D.
Now we see R x D as a factor of A* x D, endowed with the complex structure
Jc @ Jp; we claim:

The (1,1)-form w,_ = wp+dd°(pes —t) is a Poincaré type metric on A* x D (in
the sense of Part[l), of constant scalar curvature, equal to S.

This claim decomposes into several assertions: one has to check that w,_ > cwy,
with wg := wp —dd°t, that w,_ is bounded with respect to this model at any order
and that s(w,.) = § (by construction, ¢ is S'-invariant). We start by the
positivity assertion; it is actually an easy exercise to prove that it is enough to
check it on vectors & of type {p + 0y, with £p € T'D independent of ¢ and 9 —
use the J-invariance, and the writing w,. = (97 — 9;) (oo — t)dt A 2e~td0 + dt A

000 + dpOipos A 2e7HdY + (wp + dd% oo ).

For £ as above, consider ¢ := (¢* (fﬁWO))b“, so that [(T¢).C —&ye)lwe = O(e7H®),
and in particular [(T,p)C: — (£0)g@)lwe = O(e7"®)). Then for x close to D in X\D,
as wsa = (0? — 0y)(Tlpp — t)dt A 2e7'n + dt A p*d®(0:Ilppys) + p*dOsp; A 2etdV) +
p*wf + O(e) (at any order),

[Clae = (07 = 0)(Top — 1) + 2p"(dDo1) o (Co) + P Gt(a) (o o) + O 7))
with g7 = w/ (-, Jp-) on T'D, thus:
CI2, 2 = (07 = 9) (Mo — 1) + 2(Ep - i) g(a) + 95 (€D, ED)g(a) + Oe i),

whereas for any (to, ¥y, wy) € A* x D,

‘g‘wwoo,(to7190,wo) (a - at)( - t)(to,wo) + 2(€D : at9000>(t07w0) + gf)oo (£D7 fD)(tOﬂUO)a

with g7~ = (wp + dd$[pes(to,)]) (-, Jp-) on TD. Choosing now z; in ¢~ (o +
tj,Wo), aS Puo is the C2-limit of () (- +¢;, ) on every compact subset of R x D,
we have by the latter two formulae that [C[5_,. tends to [¢ ‘w (tony)-  On the
other hand since w, > cw on X\D for some c > 0, for all z close to D one
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has [C]2_, > cl|(|? ,; reasoning as above, one sees moreover that |C\i7xj tends to
|€ |WO7 (t0.90.u0) i€TCE the positivity assertion.

Bounds on w,,__ at any order being an immediate consequence of ¢, € C*(R x
D), we are therefore left with the constant scalar curvature assertion. For this we
use the asymptotic decomposition w,, as above together with that of w (II]), and the
formula s(w,) = 2A,, [Q(w) — %aldC log (:—*’Z)] of Kéahler geometry. All computations
done and dropping the p* for simplicity, one has:

s(w,) = e * [Q(m !

e 1m )dDaféfﬂL> ) E 2ol
(- U gy IR MO 1 ()
(- MRAC AL

+(m—1)(m — )dd%ft Adpat(Ho(z) C:\Dc)lmai(ﬂogo) (w} @)m?q L),

near D on X\D, with f¢ =TI, log (Z—g) log (=& ) +0(e™), a = 6 C*(X\D);
more explicitly, f¢ = p*log [(1 + (02 — 0y — |dDH0S0|2 ) wt) ] + O(e™).

Similarly, setting f> = log ((thze—tZ§+wD)m)’

(wf>)""* A o(wp)

S(Wy..) = eI [Q(m - 1)

(wD)mfl
. . dDatQOoo A d at(poo ( <poo)m—3 A Q(WD)
(m —1)(m —2) o
Poo\m—1 c Poo\m—2
- (143} - at)f“)iiuj )3%1 +2(m — 1) 220 Cifuat;pff i)
D D
o ddyf A ()
(m 1) (wD)m—l
ddi)ft /\dDat(poo A df at(poo ( <Poo)m73

+(m—=1)(m —
(m = 1)(m 2) e
on A*x D. Hence for (o, 99, wo) and (z;) as above, s(w,, )., tends to s(wy.. ) (t,00,w0)}
since s(wy),; = S for all j, s(Wy.. ) (t,90,w0) = S, and this holds for any (to, o, wo) €
A* x D: w,_ has constant scalar curvature, equal to 8.

Now Theorem [[1lsays that ¢, does not depend on ¢, and w,,__ is thus a product

dt A 2e~tdi) + w¥, with w¥) = wp + dde, 1 € C=(D), and with s(w¥) constant,
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equal to § — 2 =5p. As w) is the C*limit of (w), we have a contradiction with
the preliminary assumption sup, [s(wf ) —Sp| > € for all j large enough.
Similarly, starting with an assumption such as supp, [(V?)"(9{Io¢)s,| > € > 0
for j > jo, with (¢;) tending to co and k > 0, £ > 1, we similarly pass to a diagonal
subsequence of the (Ilpp)(- + ¢;, ) converging in C*° on every compact subset of
R x D to a function ¢, € C°(R x D). As above, ¢, is associated to a Poincaré
type metric with constant scalar curvature on A* x D, and by Theorem [T, ¢
is independent of ¢, with contradicts the assumption. O

Proof of Theorem — Notice that the construction of the function(s) ¢o in
the above proof does not require any of the contradictory assumptions, hence the
result when the divisor is reduced to one component, which readily generalises
to the smooth divisor case. In the simple normal case, one still works near one
component, but far from the other ones in the sense that the functions ¢, are
considered on sets of type [N, N] x K, with (K,) an exhausting sequence of
compact subsets of D;\ >, +j De, before the use of the diagonal arguments. Notice
that in this case, the uniform C” bound is of type [, < C(1+37,; [t]). O

For simplicity, we assume from now on and until the end of this part
that D s reduced to one component, and thus drop the j indexes; we indeed
work around one fixed component in the subsequent sections, so that all what
is done below readily generalizes to the smooth N > 2 case. We also keep
the normalisation sp = s + 2, and fix the Poincaré type Kdhler metric
w, = w-+dd°p of constant scalar curvature, all along the rest of this part.

3.3 A fifth order equation on the potential ¢ near the divisor

Localisation. — Choose a polydisc (z!,...,2™) of holomorphic coordinates near
any point in D, such that 2! is a local equation of D. Set Z := Re [zl(log 21)%]
locally; notice that Z is bounded with bounded derivatives at any order, with
respect to any Poincaré type metric. Then we claim that for all f in C*°(X\D)
near D,

1
Z-f= éatHOf +O(e™),

where the O(e™") is understood at any order in Poincaré type metric. This follows
easily from decomposition (I2)), and the estimates

Pap(of)(Z) = O™)  and  di(Z) = 5+ O

at any order. For the first one, use that (Ilpf); has bounds at any order on
D, uniform in ¢, and that in our open subset of work, 2/ = p*(2?|p) + O(e™")
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for j = 2,...,N, at any order. Now ¢ = log ( — log(|o|?)) + O(e™") where o is
some (global) section associated to D; again, the error term is understood at any
order, and since log ( — log(|o|?)) = log ( — log(|z'[*)) + O(e™") with this O(e™")
understood likewise (see e.g. [Auvll], proof of Prop. 1.2), and Z is bounded at
any order, we are done with the following elementary computation:

dlog ( — log(\z1|2))}
07!

Z -log (—log(|z'*)) = Re [zl(logzl)

1 log 2! 1
o) ] =]
1008 gy )~ lhow(=)) 2
The equation. — Mimicking what is done is Section[I we differentiate the equation

s(wy,) = § with respect to Z, and use w = wy —dd“t + O(e™") at any order near D:
0=27"s(wy) = Ap{w,, Lz(w + ddcgo)>¢ — 2(0p, L7(w + ddccp)>¢
= —2L, (Z (o= t)) + AW, L2wx)p — 2(0p, L2wx) + O(e™),

with L, the Lichnerowicz associated to w, (see e.g. [AP0G, p.192] — recall that
w, has constant scalar curvature). One checks moreover that in Poincaré type
metrics, Lzwy = O(e™") at any order, and thus Ay (w,, Lzwx), and (0,, Lzwx),
are O(e™") at any order near D. Furthermore as Z- (p—t) = 20;(Ilyp) — 1 +O(e™)
with the O understood at any order, we get:

(13) Ly (0:(Tlog)) = O(e™)

near D at any order. Observe that (I3)) makes sense globally near D, and since
D is compact we can indeed patch together the local equations, and sum them up
into this single equation.

We now analyse the operator L, in more detail, in order to deduce asymptotics
on 0y(Ilpp) from (I3).

3.4 Asymptotics of the Lichnerowicz operator of w,
Recall that near the divisor,

wy = (14 (87 —0,) o) dt A2e "
+ dt A d50,(op) + dpd (o) A 2e'n + p*wf + O(e™),

where wf = wp + dd$,(Ipp);, and with the O(e™") at any order with respect to w.
Now according to Proposition B3] 0;(Ilpp) = o(1) at any order with respect to w,
thus if we use less precise asymptotics, we can simplify the previous formula into

(14) wy = dt A2e”'n+p*wf + o(1),
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at any order with respect to w, and with |0/wf|,,, = o(1) for all £ > 0. In other
words, though the component of w, which is parallel to D is not constant, its
derivatives in ¢ of positive order tend to 0 near D, and likewise, the mixed terms
and their time derivatives at any order tend to 0 near D. Consequently, at the
level of Ricci forms, one has:

(15) 0, = —dt A2e~'n+ p*o(wf) + o(1),
with the o(1) understood as above. From these asymptotics we deduce on Ly:

Proposition 3.4 Denote by L,y the Lichnerowicz operator associated to wy on
D for allt > A. For any k, one has on L, :=IlpoL,0q" : Crrte([A, 00) x R) —
C"’O‘([A, 00) X ]R) the asymptotics

170  0*\2 o 0 o 0

16) Ly=o(5 —55) + (5~ 55) FLor + Aup o (5 = 55) +o(1).
16 Lo =25 ~ a2 o o) Ther FRer o (g~ gp) o)

Here the Holder spaces are defined with respect to dt? 4+ h, with h fixed on D.

Proof. — We do it for the map: C** — 0%, Let f € 04"“([/1, 00) X D), seen
as ¢*f near D. As w, has constant scalar curvature, L, f = %Afof + (0, dd° f) .

By formula (I4) and the identity A, f = —A,dd°f = —mddcfﬁi,fgl_l, we can write
Apf = (0 =0;)f+p" Dy f+e(f), with [e(f)|czep1(too)xp)) < [ fllc2E(t), where
g(t) = o(1) at any order is independent of f. One more application of A, yields
ALf =0 =0} + P A% f + (0 = O7)p* Due f + P Due (0 — 0F) f + £(f) where
this time, |e(f)]|coap-1(jt,00)x0)) < || fllc«E(t). Moreover as the time derivatives of
w{ are o(1) at any order, we replace (0; — 07 )p*Ay¢ f by another p*A ¢ (9, — 97) f,
for the price of adding to €(f) a comparable error term.

Likewise, on the curvature term, formulae (I4]) and (I3, the pointwise in-

ner product identity (o,,dd°f), = (Apo,)(Apdd®f) — m(m — 1)%, its
analogues for the wy , and the differentiation formula dd°f = (9? - ) fdt A
2e7 ' 4+ ddy f + dt AN dS0uf + dpOf A 2e7'n + O(|| fllcaee™) giver (0p,ddf), =
(0 = R)f + (o), ddp, fi) o +(f), with [e(f)]coe(tooxp) < [[fllcaeE(?).

Sum these expansions; as L = %Aif + (o(wf), dds, - >w¢ +3{dps(wf),dp- >w‘P’
as dps(w;) = o(1) on D at any order as well as all its time dérivatives, and denotiﬁg
by LL; the operator in the right-hand side of (I6]), one has: L, f = Ly f +¢(f) with
e(f) € C**([A,00) x D), and ||e(f)|lcoa(i,co)xp) < |[fllcaeE(t). Now conclusion
follows by applying Il to the latter equality, and from the fact that I[IlL, f = L, f,
as f is Sl-invariant. O.

These asymptotics are not sufficient to conclude however, as the w; may vary;
we hence slightly change our point of view in next section to address this difficulty.
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3.5 Twisting the equation near the divisor

Conjugated Lichnerowicz operator. — By definition, wp = wx|p, and w induces
wp on D. It is more useful for what follows to choose first wp as a limit point
of (wy); there might be no smooth @wyx in [wx] with restriction wp on D, but we
can still construct a Poincaré-type w of class [wx], and such that w = dt A 2e7'n+
p*wp + O(e™") at any order near D, see [Auvlll, §3.2.1]; of course, this does not
affect what precedes. From now on, we keep these wp and w.

According to Propositions and B3] we can write wf = o;wp + o(1) for
t > A, with this o(1) understood at any order in ¢ and D, and dfo; = o(1) in
C*°(D) for all £ > 0. Consider the following diffeomorphism of [A4, c0) x D:

a(t,w) := (t,0(w)),

where w is the variable on D. We let & act on functions on [A, c0) x D by pull-back,
with inverse action by push-forward. Recall that JLg =TIy oL, 0 ¢*, and define:

Lg = (Yo IL,?O od", ie. Liu = (). [MoLy, (¢*(6) u)],

so that Lg((&)*v) = (6)«(IlpLyv) — here we omit ¢*. According to (I3), we thus
have at any order, as t goes to oo:

(17) L ((6)+(00op)) = O(e™).

Asymptotic mapping properties of ]Lg. — Observe the following, which follows
from the properties of &, and a verification similar to that of Proposition B.4

Proposition 3.5 Denote by L., ,, the operator
1 ( o 0 )2 ( o
2\ot ot? ot ot
on [0,00) x D. Then

o P
o o)

L. p = )+ Lup + Aup o

Lj; — L p = o(1),

that is, the coefficients of this difference tend to 0 in C*°(D) at any order int, as
t — 00.

Remark 3.6 As notation suggests, L., is nothing by the Lichnerowicz operator
of dt A 2e~tdd 4+ wp on A* x D, restricted to S*-invariant functions.

The interest of Proposition lies in the following technical result, which
results from the study of L., p, and is the analytical key-step in our study of the
asymptotics of 0;(Ilpp), and thus of those of p; let x be a smooth cut-off function

on R, with x = 0 on (—o0, 3] and xy =1 on [3, o0).

73
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Proposition 3.7 For any k>0, a € (0,1) and § € R, define
Citte (1A, 00) x D) = {2V € (A, 00) x D)|u(0,-) = dyu(0,-) = 0},

and C5*([A, 00) x D) = e 9= C"([A,00) x D). Then there exist & € (0,1],
and functions Un, ... 1, € C*([Ag,0) x D), where r = dim(ker Ly, ), such that
for all § € (0,60) and all A > Ay large enough, the 1; are linearly independent on
[A+1,00) x D, and

(18) L7 : C&}r4’a([A, 00) x D) @ span (x(- — A)@/)j)j — C5([A,00) x D)

s an isomorphism.

Moreover, for any non-trivial r-tuple (A1, ..., \;), 22:1 Aj1; does not tend to
0 as t goes to infinity.

One also has an isomorphism
(19) L7 Ly"**([A,00) x D) — L**([A,00) x D),

®

where L?([A,00) x D) = {u € LIQOC’ [ertdt [ |ulPvol” < oo}, L is the
subspace of functions in u € L2 with u,...,V*u € L2, and Lg’/\ the subspace of

loc
functions u such that u(A,-) = (0wu)(A,-) = 0.
We devote next section to the proof of this result. For now, we use it to
establish the desired asymptotics on (.

Proof of Theorem[3 1l from Proposition[371. — As observed above in equation (7)),
if one sets v := ¢*(9Ilpp), then L7 (v) € CF* for any § < 1, (k,a) € N x (0,1).
Taking now A and Jy as in the statement of Proposition 3.7, one has ILZ (X(t —
A)) € C5*([A,00)x D) € L**([A,00)x D), and x(t—A)v € Li"**([A, 00) x D).

Pick ¢ € (0,1], 0 < d9. According to isomorphisms (I8]) and (I9)) in Proposition
[B.7, there exist w € C’&;A"a([A, 00) x D), and Ay, ..., A, such that

j=1

But 01l tends to 0 as t goes to oo (Proposition B.H), hence v = ¢*(911y¢p)
does so. Since this holds as well for w, we get that 22:1 A\jY; tends to 0 as t
goes to co. By Proposition B.7] this implies Ay = --- = A, = 0, that is: v €
C'(’;H’a([A, 00) x D). Such a statement is stable by pushing forward with &, so
that 0;(Ilyyp) is C’;H’a near D. This holds for all k > 0; after integrating along ¢,
and adding the II; component, we get the final statement:

¢ =pYp+ 0™,
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for some ¢p € C*°(D), with the O understood at any order near the divisor. We
easily see that the metric g}b)D, of Kéhler form w}b)D = wp + dd}Yp, has constant
scalar curvature on D (see [Auvl13] §2.2]), and that

g@ — dt2 + 4672157]2 _i_p*ng + (’)(67&)

near D at any order. U

3.6 Proof of Proposition [3.7

We subdivide this proof into three steps. We first prove an analogous statement
(Lemma [B.8) for the model operator LA., ,. We then come back to Li, and ex-
ploit its asymptotic convergence to L. to deal with its Fredholm properties and
compute its index between relevant spaces (Lemma [3.10). By contrast, its geomet-
ric origin — recall we came to Lg from the study of the constant scalar curvature
Poincaré type Kéhler metric w, — is also used to analyse its kernel in conclusion,
where we exhibit the functions v, ..., , of the statement of Proposition B.7, and
deal with their asymptotic linear independence (Lemma [3.17).

3.6.1 Mapping properties of LY., p
We first state the following, on which Proposition 3.7 is partly modelled:

Lemma 3.8 1. The map LA, : Ly""*([0,00) x D) — L2%([0,00) x D) is
an isomorphism for any k > 0.

2. There exists € > 0 such that
Lewp : Coa*(]0,00) x D) — C§*([0,00) x D)

—¢,0) for any (k,a) € N x (0,1,).

s an 1somorphism for all § € (—%

3. 8 = 0 is a critical weight for LY., p, and if (f1,...,[f,) denotes a basis of
ker L,,,, then there exists g > 0 such that

(20) LAwyp: C&#’O‘([O, 00) x D) @ span (x(t) f;) — C3*([0,00) x D)
is an isomorphism for all § € (0,0¢) and any (k,a) € N x (0,1).

Remark 3.9 1. Observe that as LY., p is invariant by translation in the t direc-
tion, we can translate these statements on [A,00) X D for any A.

2. The map @0) is well-defined, as L., (x(t)f;) = Lo, (f;) =0 on {t > 1}
forg=1,...,r.
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Proof of Lemma — We start by points 1. and 2. We will use several times
the following inequality: if f(0) =0 and [;° | f[?*!dt < oo, then

(21) / \@f\zez‘”dtzéz/ | f|2e® dt

0 0
(see [Biq97, Lemme 6.1]); this follows from Cauchy-Schwarz inequality applied to

/ o (f2e*d / (fO.f)e®tdt 4 6 / f2e®tat

where f is smooth with compact support and vanishes at ¢ = 0, plus a density
argument. Now, to simplify expressions, we denote LQ., ,, by L; we recall that

=10, - 8?)2 + (0t — 0}) + Ly, + Ay, o (9t — 07), so that

/ ulLue dt volp =

[0,00)x D
1
— / w(9y — 02)*u e*'dt volp + / w(9y — 0?)u e*'dt volp
2 J0,00)xD [0,00)x D

+ / ulL,,u e dt volp + / u(9, — 02)Apu e dt volp .
[0,00)xD [0,00)xD

We deal successively with the different summands to estimate the positivity of
f[o sy UL e?*dt volp. We assume from now on that u € Lg’; ([0, 0c] x D).

First summand: [, ., w(0 — 97)%u e?tdt volp. We claim that:
/ w(0y — 0F)*u e*'dt volp = / e (02u)? dt volp
[0,00)xD [0,00)xD

— (1+20)(1+40) / e®!(9yu)? dt volp

[0,00)x D

+26%(1 4 26)? / u?e®* dt volp

[0,00)x D

Indeed (we assume u smooth, and vanishing near infinity for convenience), if
we notice that 9, — 1 = —e! 0 9, o e™t, we get:

/ u(0, — 02)*u e®'dt
0
= / u[0,(1 = 9,)] (0, — O} )ue™dt = — / ue 219, [e7(0, — 0F)Opu] dt
0 0

_ / 2 (00) (9, — 0)9pu] it + (1 + 20) / 2 [(8, — 0)opu] dt
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by integration by parts, after using that «(0) = 0 to get rid of the boundary term
at t = 0. Now:

/ ¢*" (Opu) [(0, — 07)Opu] dt = — / A+ (9,u)y (e~*OPu) dt
0 0
= / X (02u)? dt + (1 + 20) / M (Opu) (02u) dt
0 0

after another integration by parts and using that O,uli—g = 0 to get rid of the
boundary term at ¢ = 0, hence

/ w(0, — 02)*ue®'dt
0

= / e®(Qyu)? dt + (1 + 20) {/ emu[(ﬁt — 07) 0] dt +/ e®!(Oyu)(0u) dt
0 0 0

N J/ J/

-~

=A =B

Then

A= —/ "0, (e Ofu) dt = B+ (1+ 25)/ X udPu dt
0 0

J/

-~

=C

(again, no boundary terms in the integration by parts),

B — 5/ e25t0t((8tu)2) dt = _5/ e25t<atu)2 dt
0 0

(no boundary term, dyul,—o = 0), and
C=— / 8t(e25tu)8tu dt = —/ em(@tu)2 dt — 25/ e?tudu dt
0 0 0

= — / X! (Opu)? dt + 252/ e®ty? dt,
0 0

as 20 [ e*ududt =6 [[7 e*'0,(u?) = =267 [[7 e*'u® dt. The claim now readily
follows from gathering these expressions for A, B and C, and integrating along D.

Second summand: [ u(0; — 0?)u e®tdt volp. We now see that

[0,00)x D

/ w(9y — 02 )u e*'dt volp
[0,00)xD

:/ e®!(9yu)? dt volp —6(1 4 20) / et dt volp
[0,00)x D

[0,00)x D
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We proceed exactly as above; assuming again that u is smooth and vanishes for
large t, we have

/ e?tu(0, — 0*)udt = / eU+20ty9, (e "Opu) dt
0

/ 2L pu)* dt + (1 —1—25)/ X udyu dt

0 0

:/ e (Dyu)? dt + ;(1+25)/ e®' 0, (u?) dt
0 0

/ e (Opu)* dt—5(1+25)/ Xt dt,
0 0

where we only used that u(0,-) = 0 to get rid of boundary terms. We conclude as
above.

Third summand.: f[o 00)x D ully,,u e?tdt volp. We only prove that this summand is

nonnegative, independently of ¢. Integrating first along D, as L, = (Dp)*?Dp,
this is straightforward:

/ ULWDU€25tdtVOID :/ et dt volp </ u(DD)*DDDUVOID)
[0,00)x D 0 D

:/ 625tdtVOlD </ ’DDUIQDVOID).
0 D
Last summand: fo

[ C>O)XDu(&f — O Apue?tdtvolp. We use now a different ap-
proach to see that, for all 9,

/ u(0y — 02 Apu et dtvolp > —5(1 + 6) / |dpu|% e dt volp
[0,00)xD [0,00)xD

Consider for this an L? orthonormal basis (¢;); 50 of eigenfunctions of Ap, and
call u; the nonnegative eigenvalue attached to ¢;, i.e. App; = pjp;. Set moreover
u = > 7 ujpj; the u; are thus functions of ¢, and as uli—o = (0yu)|=0 = 0, we
have u;(0) = dyu;(0) = 0 for all j > 0. This decomposition yields

/ u(0y, — 0F) Apu e®tdt volp = Zﬂj VOI(D)/ (0 — 0wy dt
[0,00)x D

=0 0

zi 0 Vol(D)( /0 Xt (Dpu;)? dt — 5(1 + 20) /O et 2dt)
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since for all j, [° e®u; (0, — OFyu; dt = [;° e®(Qyuy)* dt — 6(1 4 20) [;° e*tu? dt,
see the paragraph “second summand” above. Now the introductory inequality (21])
gives us fooo e®!(Opu;)? dt > 62 OOO ezatug dt for all j > 0, so that:

/ w(9, — 87) Apue®dtvolp > (6% — 6(1 + 26)) Z i Vol(D) / e%tui dt
[0,00)xD 0

J=0

=—0(1+ 5)/ |dpul? e*tdtvolp .
[0,00)x D

Recapitulation. According to the previous four paragraphs, we have for all 6 € R

1
/[ ) De%tuILu dt volp 25/ ezét(afu)thvolD
0,00) X

[0,00)x D

+ %(1 — 65 — 85%) / e (Opu)* dt volp

[0,00)x D

+0(1+26)(20 — 1)(0 + 1) / u?e® dt volp

[0,00)x D

—5(1+5)/ |dpul? et dt volp,
[0,00)x D

hence

1
/ Xyl dt volp >=(1 — 76)(1 + 0) / e®(9yu)? dt volp
[0,00)x D 2

[0,00)x D

+5(1+25)(25—1)(5+1)/ u?e®" dt volp

[0,00)xD

—5(1+5)/ |dpu|% e dt volp,
[0,00)x D

where we get to the second inequality after applying the version of (2I]) inte-
grated along D to the summand [, . . e?t(92u)? dt volp; this is justified since
(8yu)]i=o = 0. Since (1 —70)(1+0) >0 for § € (—1,%), and in particular for § €

(—1,0), we can apply (2I) to the summand $(1—76)(146) f[O,OO)M) et (Qyu)? dt volp,
and get for those §:

1
/ X ullu dt volp >=6(1+0)(6 — 1)(6 + 2) / u?e®t dt volp
[0,00)XD 2 [0,00)XD

—5(1+5)/ |dpul|? e*dt volp,
[0,00)x D
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It readily follows that L is an isomorphism L?:g — L% for all § € (—1,0). Now
as ker L, is never trivial (it contains al least constants on D), § = 0 is clearly a
critical value. To see what its index becomes for small § > 0, consider functions
uj, j =0,...N on D, such that IL( Zj‘\f:o tjuj) = 0, with unyy # 0 . The Nth degree
term in L(Zé\f:o t'u;) is Ly, uy, hence L, uy = 0. Now if N > 0, the (N — 1)th
degree term is N(uy + A, un) + Ly un—1, which thus vanishes; integrating it
against uy vol”, we get: 0 = N [, (u3 + |dun|h) volp + [, unLe,un—1 volp =
N [ (u+|duy|3) volp + [, un—1Ly,uy volp = N [ (ui+|duy|}) volp, so uy =
0. Hence N =0, and Lug = L, up: up € kerL,,. Since L is elliptic and invariant
by translation, its index thus becomes —dimkerL,, for 6 > 0 small, 6 € (0, dp)
say (see [LMS85], Theorem 1.2]). We hence get an operator

L: L34([0,00) x D) & xker Ly, — L3([0,00) x D)

of 0 index, which is an isomorphism as its domain lies inside LQ_’;1 19,07 for 0 € (0, do).

The analogous statements with Holder spaces instead of Sobolev spaces are
deduced from these statements. [

3.6.2  Asymptotic kernel and Fredholm properties of L7,

We keep the notation L for L}., , and take dy as in Lemma B.8 which we
assume < 1.

Lemma 3.10 For all § € (—1,60), d # 0, and large A, the operator
ILZ : C’g’#’a([A, 00) X D) — CF*([A, 00) x D)

15 Fredholm, with the same index as L; in particular, it has inder —dimker L,
for 6 € (0,00). Moreover, I, has zero kernel for 6 > —1.

Proof. — Since the coefficients of Lg and LL differ by some o(1) at any order, we
know that L7, is Fredholm for the same 0 as L, and that the difference between
their indices does not depend on ¢, see [LM85, Thm. 6.1]. Now, for instance,
L: C&#’a([A, 00) X D) — C5*([A, 00) x D) is an isomorphism for § € (—1,0),
independently of A. Therefore, up to increasing A, the same assertion holds for
Lg; fixing such an A, Lg and L have same index, 0, for § = %, and hence for all §.
From this and the Fredholm assertion we deduce that:

° ]Lg has no critical weight in (—1,0), and as a result has constant kernel and
cokernel for ¢ in this range; it is thus an isomorphism for ¢ € (0, 1);

e L7 has index —dimkerL,,, for § € (0,d), and this corresponds to (minus)
a cokernel dimension, since Cj the - Cy Jj/oé for such ¢. [
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3.6.3 Making explicitly ]Lg into an isomorphism for small positive weights

According to the latter lemma, if r denotes dimker L, , there exist r linearly
independent functions ¢, ..., 92 (resp. 1, ..., 1), which are in (.., Cf:f,%’o‘ such

.....

.....

Now as seen at the end of the proof of Lemma 3.8, the 1/1;-) are easy to determine:
one can take @Z);] =x(t)f;,j=1,...,r,where (fi,..., f,) denotes a basis of ker L, , .

On the other hand, we have to look for other candidates for the v;, since in
general, L7(f;) is only o(1), and not O(e~*") with § > 0 — unless one of those f;
is a constant, which only settles the case when ker L, is reduced to R. The good
candidates involve the f; however:

Lemma 3.11 For j=1,...,r, set Z; := V¥(p*f;). Then
(22) Lg[(0): (0" f; +To(Z; - 9))] = O(e™)

at any order for j =1,...,r. Moreover, the (6)*(fj +11o(Z; - go)) remain asymp-
totically linearly independent, in the sense that E;Zl A [(&)* (fj +11y(Z; - ))] — 0
as t goes to oo implies A\y = --- = \. = 0.

Proof. — Let us settle the linear independence assertion. We chose wp as a
limit point of w|p + dd$,(Ilpp), and built w so that w|p = wp, which means that
there exists (¢;) going to co so that (dpIlyp)|fs,} tends to 0 in C°(D). Moreover
o(Z; - ) = Z;j - (o) + Z; - (MLp) —TL(Z; - ) = Z; - (Tlgp) + O(e™) at any
order, for j = 1,...,r. Consequently, for any (\;)i<j<, as the Z; are tangent to
D, () Yy N [(0)«(f5 + TTo(Z; - )] }t:tf — > 51 Ajfj as £ goes to co. Now if
PRPY [(6)«(f; +o(Z;-¢))] — 0, then > i1 Aifj =0, hence Ay = --- = A, = 0.

Notice that (22) is equivalent to L, (f; + IIo(Z; - ¢)) = O(e™"). We get these
latter equations in a way similar to the starting point of this part, L, (8t(H0<p)) =
O(e™"). Namely, j being fixed, we choose in X a neighbourhood U of coordinates
(2%,...,2™) around some point of D where D is given by z! = 0, we extend
Zi|p = V*? f; in U independently of 2! and denote this holomorphic extension by
Z;; we have: Z; = Z; + O(e™") at any order. Since s(w,) is constant,

0=2; s(w,) = A, (AL w,) —2(Lgwy, Q(w“’))w'

We will thus be done if we prove that £; w, = dd° (p* f; + y(Z; - ¢)) on U up to
some O(e™) at any order, as L, = 3A2 + (o, dd"),, and as replacing Z; by Z
(which is globally defined around D) in the expression L, (HO(Zj - ¢)) only gives
rise to an error term which is O(e™") at any order.

Now w, = wp + dd°(p — t) + O(e™") near D, where wp extends wp in U inde-
pendently of z!, and with the O at any order. Thus by Cartan’s formula, £ 7,We =
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d(&JD(Zj, ) + L5 dd*(p—1)+O(e™"). Observe that wp(Z;, <) = gp(JpV* f;,) =
dpf; on D by definition of Z;, and that d°(p*f;) = d5f; + O(e™) near D.
Moreover L dd(¢ —t) = dd*(Z; - (p — t)) = dd°(ILo(Z; - ¢)), as di(Z;) and
1,(Z; - ¢) are O(e™*) at any order. Summing these estimates thus gives Ly w,=

dde(p* f; + Io(Z; - ¢)) + O(e™") near D on U, as wanted. [

To complete the proof of Proposition B, just set v; := x(A — ¢)(5).(f; +
HO(Zj~g0)),f0rj:1,...,r. O

4 THE EXTREMAL CASE

4.1 Extremal K&hler metrics on the model A* x (Y\F)

4.1.1 Potentials of extremal Kahler metrics of Poincaré type on A* x (Y'\E)

We come back in this section to the point of view of Part [I, and recall that
wax = —dd°t = dt A\ 2e7'dV, that wy\p is a fixed Kéhler metric of Poincaré type
of class [wy] on Y\E, and that wy = wa+ + wy\g on A* x (Y\E).

As we will see below, the following class of potentials on A* x (Y'\ E) is useful
when working on extremal metrics: we say that ¢ € #"(wg) if dyp = 0, || <
C(uy +|t]), dp is bounded at any order with respect to wy, and w, = wy+ dd®p >
cwy for some ¢ > 0. We say that w,, is extremal if K, := V¥s(w,) is holomorphic
on A* x (Y\E).

Observe now that if one takes ¢ € J#'(wy) instead of ¢ € J# (wp), and if
L,(¢ — 1) = 0, without assuming that w, has constant scalar curvature, as ¢ is
bounded at any order for wy and Dy[e " (¢ — 1)] = 0 is automatic as underlined in
the proof of Lemma [L.3] then the proof of Lemma [[.4] which is the major step in
the proof of Theorem [LLI remains valid. In this regard, the aim of this section is:

Theorem 4.1 Let ¢ € " (wy) such that w, is extremal. Then ¢ = at + 1, with
a<landy € &Y\E). Therefore, w, = (1—a)wa-+w?, where w? = wy\ g+dds
is thus extremal on Y\E, of class [wy], and of Poincaré type if E #+ &.

The assertion “¢p € &(Y'\E)” means: ¢ € C22(Y\E), [¢| < C(1+4+uy), and dy
is bounded at any order with respect to wy\g.

Next paragraph is devoted to the proof; for now, as evoked above, another
elementary but crucial step in proving Theorem [A.1] similarly to Theorem [IL.1] is:

Lemma 4.2 Let ¢ € " (wg) such that w, is extremal. Then L,(¢ — 1) = 0.
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Proof. — Let ¢ be a potential as in the statement. Then K, is holomorphic and
bounded at any order, so by Lemma [I.7] is tangent to D and constant along A*:
K, = Kp for a fixed (holomorphic) Kp € C°(TD). As in Part [ let Z be the
locally defined PRe(z(log z)%) with z the coordinate on A*. Then as dys(w,) = 0,
Ko, Z)p = Z - s(w,) = 3048(wy). Now Lzw, = 3dd°(¢ — 1), and the infinitesimal
variation of the scalar curvature along a deformation ¢ of the potential ¢ is given
by —2L,¢ + (ds(wy), dd),, hence Z - s(w,) = =Ly, (¢ — 1) + 1 {ds(w,), d(¢ — 1)>@.
Therefore L,(¢ — 1) = 0 is equivalent to (ds(w,),d(¢ — 1)>¢ = 0;s(wy), and
this latter follows from (ds(w,),d( — 1)>¢ = e'(ds(w,), dle™"(¢ — 1)]><p + (¢ —
1)(ds(w,),dt), = €' - e 'Os(wy,) + (¢ — 1)dt(K,), and dt(K,) = 0, as K,, is tangent
to D. Here we used identity [@): V¥#(e7*(¢ — 1)) = e7'8;, holding in general, see
the proof of Lemma [I.3 O

4.1.2 Proof of the splitting theorem for extremal metrics on A* x (Y'\E)

Fix ¢ € J'(wp) such that w, is extremal. So far one has all the required
ingredients to reach the statement : fA*X(Y\E) e'[Dy(p — 1)|% vol¥ < oo. To pass

from this to the statement fA*X(Y\E) e'|Dy(¢p— 1)|s20 vol” = 0, we use a subsequence
similar to that of the proof of Lemma [I.6, adapted as follows:

1. to have a subsequence bounded at any order on compact subsets, replace
(¢;) by (v — ¢;(0,-)) (this does not affect the attached metrics); without
loss of generality, we assume it converges at any order on compact subsets;

2. call po the C-limit; it verifies |p| < C(uy + [t]), dps is bounded at any
order for wy, and wy + dd°p. > cwp, as uniform local bounds pass to the
limit. One gets by dominated convergence D, (¢s —1) = 0. Again, ¢oo =0
follows from this, which in the current situation provides ¢., = ot + 9y
with 11,1y functions on Y\E. As dp. is bounded, this implies diy = 0,
and finally ¢, = at + 1, with 1, a function on Y\ F and a a constant,
necessarily < 1, since then, w,_ = (1 — a)wa- + (wy + dd§ ¥ );

3. compute lim. o Ky = Ky (0) = 27 [} 5(0bo — 1)2|dt|iw% = 2m(1 —
a) Vol(Y'\E). Symmetrically, lim_., %, = 27(1 — b) Vol(Y'\ E) for some b <
1. Hence we are done if we prove that a = b, since as for ¢, we then deduce
that o = at + 1, ¥ € &(Y\E), from D,(¢ — 1) = 0.

One proves that a = b as follows. Considering the sequence of times ¢; along which
oo arises, one has w, = (1 —a)wa~ —i—wg’ﬁ“ +¢; at t = t;, with ¢; uniformly bounded
at any order for wy, and €; — 0 in C(Y'\E) as j — 0o. As a result, s(w,)(t;, ),
which is uniformly bounded along Y\E, tends to %= + s(wi>=) in CY (Y\E);

1 loc

39



Asymptotic properties of extremal Kdhler metrics of Poincaré type

likewise, w; , uniformly bounded along Y\ E, tends to wl> in C° (Y\E). Thus, if
Aoy ={0<t<s}CA* for s >0, as K, is tangent to D:

m—1

w
0= / e'dt(K,) vol? = / ds(w,) A de" N —F—
Ao,i; X (Y\E) Ao,i; X(Y\E) (m —1)!

w? m—1 P\m—1
= 27T</ S(wga)i' - / S(wga)wl) as ddcet =0
{t;}x(Y\E) (m—1)! {0} (Y\E) (m—1)!

ER 27T<V01(Y\E)(—2 +Syg) — / G Dl >m_1)
l-a {0}x (Y\E) P m = 1))
by domi d e 2 _ 1 wH)mt o Th
y dominated convergence, i.e. =, = g f{O}X(Y\E)S<w%0) o — Sv\e- The
same holds symmetrically for %_b, and thus a = b, which ends this proof. 0

4.2 Applications to extremal Poincaré type metrics on X\D

On a compact Kéhler manifold (X, wx) with a simple normal crossing divisor D =
ijzl D;, we say that a Poincaré type Kéhler metric is extremal if the gradient of
its scalar curvature is real holomorphic. Asin the compact case, one can check that
this corresponds to being a critical point of the Calabi functional, i.e. the squared
L? norm of the scalar curvature. We set, for j = 1,..., N, E; = Z#j D; N Dy,
and use below the fibrations introduced in Section [3.11

421 Existence of extremal metrics on the divisor

We start exploiting Theorem [A.J] with a statement analogous to Theorem [3.2¢

Proposition 4.3 Assume that there exists an extremal Poincaré type Kdihler met-
ric of class [wx]| on X\D. Then for any j, there exists an extremal (Poincaré type)
Kdhler metric of class [wx|p,] on D;\E;.

Proof. — Proceeding as in the proof of Proposition [3.3] after fixing j, we construct
a sequence (t) going to oo such that ¢y, := ((Ilo;¢)(- + tx, ) — (o) (tk, 20)),
with zy € D;\Ej;, converges at any order on compact subsets of R x (D;\E;) to
some Sl-invariant ¢, € 7 (wax + wp,\g,;) — the normalisation is required for the
C%bound. As in the constant scalar curvature case, equations pass to the limit
and the resulting w,_ is extremal on A* x (D;\E;). Then Theorem [l tells us
that ¢ splits as at+ 1, ¢ € &(D;\E;), and w}b)j = wp;\r; +ddp 1) is an extremal
metric, of Poincaré type if E; # @, and of class [wx|p,]. O

Remark 4.4 A by-product of this proof is: under the same assumptions as in
Proposition [{.3, fit j € {1,...,N}, and xy € D;\E;. Then for any (t;) going
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to 0o, any subsequence of ((Io;©)(- + tr,-) — (Ho;)(- + tr, x0)), converging in
cx (]R X (Dj\Ej)) has limit of shape at+1, with ¢ € &(D;\E;), |al, \dw\ij\Ej <
sup x\ p |delw, wlw)j = wp;\p; +ddp ) an extremal Poincaré type metric on D;\Ej,
and 1 —a < ¢!, w%j > ¢, where w, > cw on X\D. Therefore any subsequence
of t = Oy,Ily p(t,-) converging in Cf.(D;\E;) tends to a constant a as above,

loc

whereas for any all € > 2, t — ijHO,jcp(t, -) tends to 0 in Co(D;\E;) as t — oo.

loc

4.2.2 A numerical constraint

Here we use notations of Part Bt for fixed j € {1,..., N}, the volume Vol(D;)
is computed with respect to the (Poincaré) class induced on D;, as well as the
mean scalar curvature §p,. We use the content of previous paragraph to prove a
constraint on extremal Poincaré type metrics on X'\ D, generalizing the constraint
“Sp, > §" of the constant scalar curvature case [Auv13]. Notice that in this special
case though, the analytical background was less involved; in particular, the analysis
of the model case was not required. The extremal constraint states as:

Proposition 4.5 Assume that w, is an extremal Kdhler metric of Poincaré type
of class [wx|, Then for all j =1,..., N indexing a component of D, one has:

(23) Sp +; —/ K ~etf%+/ sAetf% >0
7 4rwVol(D;) o m! xo 0 oml ’

where we set s, = s(w,,), and recall that K, = V¥s,,.

Remark 4.6 When s, =8, one recovers the obstruction Sp, > s in this way: if
_ Swlt — W _
sp =8, Ky =0, and [ ,8,80e"75 =8 [, Apet 5 = —4nsVol(D;). One

: , ‘ N
can moreover rewrite constraint ([23)) as: fX\D L,(e")—5 <0.

Proof of Proposition [{.5 — We first make an easy but crucial observation about
the statement. If indeed dde’ is bounded for Poincaré type metrics (see [Auv13)
Part 5]), making Age’ integrable for the volume form wg', the analogue about
K, - €% deserves a slight explanation. Now, as an L? holomorphic vector field on
X\D, K, extends smoothly through D, and its normal component vanishes along
the divisor ( [Auvll], proof of Lemma 5.2). In other words, in an open set U of
local coordinates (2!, ..., 2™) centred at some point of D; such that D; is given by
z! =0, K, can be written as 9%(21]%% + fza%2 + -+ fm%), with fi,..., fm
holomorphic on U. Moreover in U, € = —log(|z!|?) + fjuv with f; a smooth
function by construction, and therefore, K, - e = —Re(f1) + K, - f; . From this
we get that K, - €' is bounded near D;, hence on X\ D, and is thus L' for We'
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This being said, let us come to the proof of the proposition itself. By Remark
B4, on p; ' ({tr} x (D;\E;)), one has:

(24) wy = apdt; A 2", + piwf +e(ty, 2),

where: a, > ¢ (c such that w, > 2ew), the wf = wp, + ddp, [o;p(tk, )] are
uniformly bounded on (D;\E;) at any order in the Poincaré sense and positively
bounded below on compact subsets, and all the 85 e, 0 >0, tend to 0in CX.(D;\ E;)

as k goes to co. Consequently, a direct computatlon yields, on p; "{te} x (D \E;)):
(25) Sp = —2aydt; A 2e”Yn; + pio(wf) +eilty, 2),

with ¢; tending to 0 in the same sense as € above. We can now write, for s large
and seeing {t; < s} as a subset of X\ D:

m—1

/ s, dd°e ti A Y
{t;<s} (m —1)!
wm 1 wm 1
- d(s dc’fﬂ/\7> / ds, N deh N
/{tjgs} (m —1)! <y (m —1)!

wm 1 wm
:/ Spd’e” N / Ko e
{tj=s} ( ) {t;<s} m:

where we used Stokes’ theorem to pass from the integral of shape [ (t;<s} da in the
second line to the integral of shape || (ty=s} @ in the third line (there is no interference
with the other D, here, as the a in play, and its differential are Ll) and applied
a hermitian identity to K, = V¥s,, to replace ds, A d°e" /\ (] by K, - e’ 75 in
the last summand. Now f{tjgs} spddeeti A (m—_ll), = — f{tjgs} s, €' vol? tends to
- fX\D s,Aye' vol? as s goes to oo; likewise, f{tjgs} Ky - etf% tends to fX\D K

elivol? as s goes to co. Finally, taking s = ¢, and using the asymptotics (24))

m—1

and (28)) with the evoked uniformwbounds, we get that [ (ti=ta} spdeli A % =
478p, Vol(D;) — 4x fD_\E_ a;, ' vol“ik +0(1) as k goes to oo, and the last integral is
J J

> ¢~ Vol(D;), hence the result. O

Remark 4.7 We also get from this proof that (ax)y tends to the inverse of the
left-hand-side of (23)), a; say, that depends only on wy, this for all sequence ().
We hence sharpen Remark[{.4) by saying that: t — 0,1y ;0(t,-) tends to (1 — a;)
in CX.(D\Ej;).
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4.2.3 Asymptotics of extremal Kahler metrics of Poincaré type (smooth divisor)

When D is smooth, we have a perfect analogue of Theorem [3.1k

Theorem 4.8 Assuming D smooth, let w, be an extremal metric of Poincaré type
on X\D, of class [wx]. One has near D; the asymptotics of Riemannian metrics:

Gy = a; (dt? + (26’”7})2) +p*gp, + (’)(e’étf)

with gp, an extremal Kdhler metric on (D;, Jp,), such that [gp,(Jp;-,-)] = [w|p,],
and where a; > 0 is the inverse of the left-hand side of ([23); this holds for all j.

Proof. — The ingredients are the same as in the constant scalar curvature case.
Namely, 1. starting from an equation analogous to (I3]), 2. we twist it after
parametrising judiciously the “family of almost extremal metrics” (wy);, and then
3. lead the appropriate asymptotic analysis of the arising Lichnerowicz-modelled
operator. Before examining those three points, and more precisely why they adapt
to the extremal situation, we assume that the divisor is reduced to one component,
and we proceed to the following normalisation: call ap = ap(w,) the inverse of
the left hand-side of (23); up to working with al’)lwg,, which near D can be written
as ap'w — dd°t + dd°(ap' ¢ — (ap" — 1)t) — recall that w, = w + dd*(p — t) —, we
can assume that ap = 1, as ap(Aw,) = Aap(w,) for all A > 0, by ([23). We then
recover, by Remarks 4] and 7], the extremal analogue of Proposition 3.3l

The first point goes as follows. Again we work on an open subset U of coordi-
nates (2%,...,2™) centred at some point of D, such that z! is the local equation of
D, and use the holomorphic local vector field Z = 9%( Y(log 2 ) ) to differentiate
s,. On the one hand, Z -s, = ds,(Z); on the other hand,

Z.s,=— 2(%A§, (Z - (p—1t)) + {04, dd°[Z - (p — t)]>g,>
-+ A¢<A¢£wa) — 2<Q¢, EZWX>¢ + O(e*t)
= =2y [Z - (o= )] + (ds,, d(Z - (o — 1)), + O(e™),

as L, = $A2 + (0,,dd*), + 5(ds,,d - > and Lywx = O(e™*) at any order.
Now ds,(Z) = dsg,(ipl(logpl)apl) + O(e7!) with z! = p1e?, and thus Z =
%(pl(logpl)a‘zl +018(Z ) Set Kp = Ky|p. Then K, = Kp + O(e™") in U, and
therefore ds,(Z) = 1(K,, p1(log p1) ap1> + O(e™) = 1dpo, (How)(KD) + O(e™),
as dt(pi1(log p1) pl) =1+ 0(e?) and T}(/h log p1) (,%) e™"), whereas d(Z -
(¢ —t)) = 2d0,(Ilpp) + O(e™), hence:

(d55,d(Z - (0 1)), = 5Ko AlTTop) + O(e™) = Sdpdh(TTup) (Kp) + Oc™")
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Conclude that L,[Z-(p—t)] = O(e™); as above, rewrite the latter as L, [0, (IIop)] =
O(e™ "), which makes sense globally near D.

For second point, we mostly have to see that the extremal condition can replace
the constant scalar curvature condition in the construction of Part2l Observe that:

¢ on a compact manifold, the extremal condition is a non-linear 6th order
elliptic equation on the Kéhler potential, with C*°-bounded coefficients as
soon as the metrics are bounded in C*°, and bounded below;

¢ Calabi’s theorem is stated on extremal Kdhler metrics.

Consequently, one recovers by the same methods the exact analogues of the results
of Part 2 with the vectors Z of this part in the Jyto(w) & (D, b)) for w
extremal, where Z; holomorphic is in f)(’\) iff £, vesw)Z1 = Ay 2.

In passing, we fix wp = gp(Jp-, ) a limit point of (w;), which is extremal by
Remark .4} this way, V9Ps(wp) = Kp := K, |p. We assume also that w|p = wp.

Now for the third and last point, the splitting formula (I6]) is still valid (since
wy = dtA2e 'n+p*wf+o(1), ds, = p*ds(w;)+o(1), which is parallel to D up to an
0(1)). Lemmas 3.8 (dealing with the model operator) and (on the conjugated
geometric operator) thus remain valid. To recover the full analogue of Proposition
8.7, we need to identify the non-asymptotically small functions whose image by ]LZ:’J
are exponentially small; in other words, we need the analogue of equations (22]).
We can actually use the same candidates as those of Lemma [B.11] with the same
notations as in this lemma; similar computations yield:

Zj-8, = _QL«J[JCJ' + HO(ZJ - )] + <d(fj + H0<Zj ), dsg@>¢ + O(eit)S

if we prove that ds,(Z;) = (d(f; +o(Z; - ¢)), ds¢>¢ + O(e™"), which is somehow
the most delicate point of our argument, we will thus be done in the same way as
in the constant scalar curvature case.

Fix in X an open neighbourhood U of holomorphic coordinates of any point in
D, and extend vector fields on U N D, such as Z;|p, to U, in the natural way. Set
also a ~ [ if a = g+ O(e™") at any order for w in U.

Observe now that on the one hand, ds,(Z;) = (K, Zj), ~ (Kp, Zj|p)gs, as
Ky, ~ Kp, Z;j ~ Zj|p and g, = (1 + (97 — 9) o) (dt? + de~'n?) + dt - dpllpp +
2e7'n - d5 1o + p*gf + O(e™"), with gf = wf (-, Jp-). On the other hand, (d(f; +
Io(Z; - ¢)),ds(wy)), = Ky« (fi + To(Z; - 9)) ~ Kp - fj + Ky - To(Z; - @) ~
(Kb, Zj|D)wp + Ky - Ho(Z; - ). Comparing those two expressions, our next task is
to show that K, - IIy(Z; - ¢) ~ dd},(Ilow)(Kp, JpZ;|p).

By deﬁnition, dd%(Hmp)(KD,JDZJ‘D) = KD . [di)H0(p<JDZJ|D)] — (JDZj‘D) .
[dHop(Kp)] — dblloe([Kp, JpZs|p]) on D. But as K, ~ K, and Z; ~ Zj|p,
Kp - [d5Iow(IpZ;|p)] = Kp - [dplloe(Z;|p)] ~ K, - (dllyp(Z;)); moreover, as
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KD = ngS<wD) and Zj|D € JDE()(MD), [KD, JDZ]'|D] = 0. Finally, di)HogO(K
—(JK,) - ¢, and on X\D, Lk, w, = 0, whereas near D, w, ~ p*wp + dd°(¢ — t),

p) ~

JKy ~ JpKp and Ly k,wp = 0, so that £k, w, ~ dd°((JK,) - (¢ — t)), and
dd®((JK,) - ) ~ dd°((JK,) - (p —t)) ~ 0. According to the weighted 00-lemma
of [Auv11] (or more precisely to the proof of [Auv1ll, Lemma 3.10], which is a local
version near the divisor), this implies that (JK,) - ¢ ~ ¢ for some constant ¢, so

that (JZ;) - [(JK,) - ¢] ~ 0, hence (JpZ;|p) - [dpHop(Kp)] ~ 0. O
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