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6 A Second Adjoint Theorem for SL(2,R)

Tyrone Crisp∗ Nigel Higson†

Abstract

We formulate a second adjoint theorem in the context of tempered repre-
sentations of real reductive groups, and prove it in the case of SL(2,R).

1 Introduction

Bernstein’s famous second adjoint theorem in the smooth representation theory
of reductive p-adic groups asserts that for every parabolic subgroup P of a
reductive p-adic algebraic group G, the functor of parabolic induction has not
only a left adjoint (this is Frobenius reciprocity) but also a right adjoint. See
[Ber87, Ber92]. The purpose of this paper is to formulate and prove a similar
theorem in the context of real reductive groups, but specifically for tempered

representations. We shall concentrate on the group G = SL(2,R); much greater
generality is possible, but at the cost of complicating the discussion.

We shall approach representations in general through convolution algebras,
and tempered representations in particular through Harish-Chandra’s Schwartz
space C (G). By a tempered representation of G we shall mean a smooth,
Fréchet module (an SF-module) over C (G); see Section 2.

Denote by N+ the group of unipotent upper triangular matrices in G =

SL(2,R), by P+ the associated parabolic subgroup, and by L its Levi factor (the
diagonal matrices).

Theorem. The functor of parabolic induction

IndG
‘P+

: SFModC (L) −→ SFModC (G)

has both a left adjoint and a right adjoint.

∗Partially supported by the Danish National Research Foundation through the Centre for Sym-
metry and Deformation (DNRF92).

†Partially supported by the US National Science Foundation through the grant DMS-1101382.
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We refer the reader to Sections 5 and 6 for the precise formulation. It
is worth emphasizing here, however, that our functor of parabolic induction
is the standard one in the context of representations on Fréchet spaces; see
Proposition 4.7.

The adjoint functors that arise in our second adjoint theorem are the same
as those studied by Bernstein, namely parabolic restriction with respect to P+ in
the case of the left adjoint, and parabolic restriction with respect to the opposite
parabolic subgroup P– in the case of the right adjoint.

Moreover the adjunction isomorphisms are defined in the same way as
those studied by Bernstein: the counit transformation for the first adjunction
(Frobenius) is associated to the canonical inclusion of L as a closed subset of
the double coset space N+\G/N+, while the unit transformation for the second
adjunction is associated to the canonical inclusion of L as an open subset of
N–\G/N+.

The unit transformation for Frobenius reciprocity is straightforward too,
and is obtained directly from the formula for the action of G on parabolically
induced representations. (The unit transformation is perhaps best understood
from the perspective of operator algebras, which was our starting point. See
[CH16].)

However our approach to the counit transformation for the second adjoint
departs from Bernstein’s. We shall need to make use of the theory of the stan-
dard intertwining integral, and also Harish-Chandra’s theory of wave packets.
So the proof is not at all elementary. And whereas everything else in the paper
extends easily to general real reductive groups and parabolic subgroups, here
we shall concentrate on the special case where G = SL(2,R). The necessary
results are stated in Section 7 and proofs are given in Section 8.

Although we have not yet attempted a proof in the general case, it seems
likely to us that the approach we follow for SL(2,R) can be extended to all
G, and all parabolic subgroups. But, at the very least, a substantial amount of
Harish-Chandra’s theory will be required.

The recent work of Bezrukavnikov and Kazhdan [BK15] offers a geometric
perspective on the second adjoint theorem in the p-adic case. There is a related
approach in the tempered real case that involves the wave equation defined by
the Casimir operator. We shall present this elsewhere.

Another ongoing project is to reorganize some of the foundational discov-
eries of Harish-Chandra, Langlands and others about tempered representations
around the second adjoint theorem and its consequences. Once again we aim
to present this work elsewhere.
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2 Categories of SF-representations

By a Fréchet algebra we shall mean a Fréchet space A that is equipped with a
bilinear, continuous and associative multiplication operation. Recall that in the
context of Fréchet spaces, separately continuous bilinear maps are automati-
cally jointly continuous.

We shall denote by ⊗ the completed projective tensor product of Fréchet
spaces (actually, all the spaces that we shall calculate with will be both Fréchet
and nuclear, and for these the choice of tensor product is immaterial). If W is a
Fréchet space and a right module over an algebraA , and V is a Fréchet space
and a left module over A , then we shall denote by W ⊗A V the quotient of
W ⊗ V by the closed subspace spanned by the relators

wa⊗ v −w ⊗ av ∈W ⊗ V.

It is a Fréchet space in its own right.

2.1 Definition. Let A be a Fréchet algebra. A (left) SF-module over A is a
Fréchet space V that is equipped with a continuous action of A for which the
map

A ⊗A V −→ V

induced from the module action is an isomorphism. A morphism of SF-modules
is a continuous map of Fréchet spaces that is also anA -module map. We shall
denote by SFModA the category of SF-modules overA .

2.2 Remark. In the guiding context of p-adic groups, the relevant convolution
algebra H (G) of locally constant, compactly supported functions on a p-adic
group G is obviously not a Fréchet algebra, but we may use the algebraic tensor
product, and the smooth representations of G in the sense of [Ber92, Section
1.1] are precisely those for which the natural map

H (G)⊗H (G) V −→ V

is an isomorphism.

Now, let G be the group of real points of a connected linear reductive alge-
braic group defined over R (in brief, a real reductive group from now on). Its
algebraic-geometric structure gives G the structure of an (affine) Nash mani-
fold in the sense of [AG08], and so there is a canonical associated space S (G)
of Schwartz functions on G [AG08, Section 4]. Since we are principally inter-
ested in the group SL(2,R), let us describe the structure on S (G) explicitly in
this case.
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2.3 Definition. Let G = SL(2,R). The Schwartz space S (G) is the space of
smooth, complex valued functions f on G for which

(2.4) sup
g∈G

|(X f )(g)|<∞

for every polynomial differential operator X on G. (A polynomial differential
operator is a linear partial differential operator on G that preserves the sub-
space of functions that are polynomials in the matrix entries of g ∈ G.)

2.5 Remark. This definition is equivalent to the one appearing in [Wal88, Sec-
tion 7], where S (G) is called the space of rapidly decreasing functions, and to
the definitions in [BK14, p. 56] and [Cas89, p. 392], where S (G) is called the
Schwartz space, as above.

The seminorms appearing in (2.4) make S (G) into a nuclear Fréchet space
and a Fréchet algebra under convolution. See [Wal88, Section 7.1] and [BK14,
Section 2]. The following two propositions describe the SF-modules over
S (G).

2.6 Proposition ([BK14, Proposition 2.20]). Let V be a Fréchet space equipped

with a continuous action of S (G). The following conditions on V are equivalent:

(a) S (G)V = V

(b) There is a unique continuous G-action on V with the properties that

(i) For every continuous seminorm p on V , the function g 7→ p(g·v) is

bounded by a polynomial in the matrix entries of g, independent of v,

times q(v), where q is a second continuous seminorm on V (that is, the

action has moderate growth in the sense of Casselman [Cas89]).

(ii) The action of S (G) on V is given by the integral formula

f · v =
∫

G

f (g) g·v d g

(the integral converges in view of (i)).

(iii) For every v ∈ V the map g 7→ g·v is smooth.

2.7 Example. The left and right actions of G on the Fréchet space V = S (G)
satisfy the conditions in item (b) above (and the condition S (G)V = V follows,
for example, from the Dixmier-Malliavin theorem [DM78]).
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2.8 Proposition. If V is a Fréchet space that is equipped with a continuous action

of S (G), then V is an SF-module over S (G) if and only if S (G)V = V .

Proof. If V is an SF-module, then it is a quotient of S (G) ⊗ V . The tensor
product satisfies the conditions in item (b) of Proposition 2.6, and the class
of representations satisfying these conditions is closed under quotients [BK14,
Lemma 2.9], so V satisfies the conditions too.

Suppose conversely that S (G)V = V . The following argument, taken from
[BB92, Proposition 1.4], constructs a chain contraction of the so-called b′-com-
plex

(2.9) · · · −→ S (G)⊗S (G)⊗ V −→S (G)⊗ V −→ V

with differentials

f1 ⊗ · · · ⊗ fp ⊗ v 7−→
p∑

j=1

(−1) j−1 f1 ⊗ · · · ⊗ f j f j+1 ⊗ · · · ⊗ v

(in the formula we set fp+1 = v). At the bottom level, the chain contraction
establishes the isomorphism

S (G)⊗S (G) V
∼=−→ V

that we require.
Because S (G) is a nuclear Fréchet space, the chain groups in (2.9) identify

with the spaces
S (G× · · · × G, V )

of V -valued Schwartz functions on G×· · ·×G (to define the concept of V -
valued Schwartz function, replace the absolute value in (2.4) with any of the
continuous seminorms on V ). The contraction operators are defined by

f 7−→
h
(g0, . . . , gp) 7→ u(g0) f (g0 g1, . . . , gp)

i

where f ∈ S (G × · · · × G, V ), and where u is a smooth, compactly supported
function on G with total integral 1.

3 Tempered Representations

The focus of our attention in this paper will be a second, also well known, con-
volution algebra: the Schwartz space C (G) of Harish-Chandra. In this section
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we shall recall the definition of C (G) in the case of G = SL(2,R). We refer the
reader to [Wal88] for the general case.

Let G = SL(2,R), and denote by P+ and P– the parabolic subgroups of
upper- and lower-triangular matrices, respectively. Denote by N+ and N– their
respective unipotent radicals of unipotent upper- and lower-triangular matri-
ces, and let L = P+ ∩ P– be the common Levi subgroup of diagonal matrices.

Let δ± : L→ R+ be the homomorphisms characterized by the equalities

(3.1)

∫

N±

f (n) dn= δ±(ℓ)

∫

N±

f (ℓnℓ−1) dn

for all f ∈ C∞c (N±). Explicitly,

δ± :

�
α 0
0 α−1

�
7→ α±2.

Denote by K ⊆ G the maximal compact subgroup SO(2) of rotation matrices in
G, and denote by A⊆ G be the positive diagonal matrices. Extend δ± to maps
on G via the Iwasawa decompositions G = KAN±:

(3.2) δ±(kan) := δ±(a) (k ∈ K , a ∈ A, n ∈ N±).

3.3 Definition. The Harish-Chandra Ξ-function on G is defined by the integral
formula

ΞG(g) :=
1

vol(K)

∫

K

δ±(gk)−1/2 dk.

(Both choices of δ± give the same function ΞG. The Ξ-function does however
depend on the choice of maximal compact subgroup K .)

The most important properties of the Ξ-function are that it is a spherical
function,

(3.4) ΞG(g1)ΞG(g2) =
1

vol(K)

∫

K

ΞG(g1kg2) dk,

and that it is almost an L2-function. The latter property is made precise as
follows.

3.5 Definition. Denote by ‖ ‖ : A→ [1,∞) the function

�
α 0
0 α−1

� :=max{α,α−1}.

Extend the norm to a K-bi-invariant function G → [1,∞) using the Cartan
decomposition G = KAK:

‖k1ak2‖ := ‖a‖.
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3.6 Remark. One has log‖g‖ = d(K , gK) for the standard G-invariant Rie-
mannian metric on the Poincaré disk G/K . It thus follows from the triangle
inequality that

(3.7) ‖gh‖ ≤ ‖g‖ · ‖h‖

for all g,h ∈ G. For the purposes of defining C (G), this choice of norm is only
one of several natural options; see [Ber88, Section 4.2] and [BK14, Section
2.1].

3.8 Proposition. If t ≥ 0 is sufficiently large, then

∫

G

ΞG(g)
2(1+ log‖g‖)−t d g <∞.

For a proof, see for instance [Wal88, Section 4.5].

3.9 Definition. The Harish-Chandra Schwartz algebra C (G) is the space of all
smooth, complex-valued functions f on G for which

(3.10) sup
g∈G

|(X f Y )(g)|(1+ log‖g‖)p

ΞG(g)
<∞

for every p ≥ 0 and every pair of invariant differential operators X , Y ∈ U(g)

(the enveloping algebra of the Lie algebra of G).

The seminorms appearing in (3.10) make C (G) into a nuclear Fréchet
space. Proposition 3.8 shows that the convolution of two Harish-Chandra func-
tions is defined pointwise, and is a bounded function on G. A simple additional
argument using (3.4) shows that the convolution product lies in C (G), and
that indeed C (G) is a Fréchet algebra under convolution. See [Wal88, Section
7.1], and compare also the proof of Lemma 4.18 below.

Our aim is to study the category of SF-modules over C (G), but to conclude
this section we shall make some remarks concerning the relationship between
SF-modules over C (G), which we shall sometimes refer to as tempered SF-
modules, and SF-modules over S (G).

3.11 Lemma. The algebra S (G) embeds continuously as a dense subalgebra of

C (G), and C (G) is a left and right SF-module over S (G).

Proof. For the first statement see for example [Wal88, Theorem 7.1.1]. It is
easy to show directly that C (G) is a smooth representation of moderate growth
under left or right translation, so the second statement follows from Proposi-
tions 2.6 and 2.8.
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3.12 Proposition. The restriction to S (G) of any SF-module over C (G) is an

SF-module over S (G).

Proof. If V is an SF-module over C (G), then

V = C (G)⊗C (G) V = S (G)⊗S (G) C (G)⊗C (G) V = S (G)⊗S (G) V,

as required.

In the reverse direction, we have the following result:

3.13 Proposition. If V is an SF-module over S (G), and if the action of S (G)
extends continuously to C (G), then V is an SF-module over C (G).

Proof. The composition

S (G)⊗S (G) V −→C (G)⊗C (G) V −→ V

is an isomorphism, and so the left-hand map is a split injection. It follows that
its range is closed. But the range is dense, so the left-hand map is surjective
too. Hence it is an isomorphism by the closed graph theorem, and the lemma
follows.

Finally, a comment on notation regarding tensor products that we shall use
from now on:

3.14 Notation. Assume that V and W are left and right SF-modules over
S (G), respectively. The balanced tensor product W ⊗S (G) V does not depend
on the particular details of the definition of S (G), since to form the balanced
tensor product we need only form the quotient by the closed span of the rela-
tors w f ⊗ v − w ⊗ f v with f ∈ C∞c (G). With this in mind, and to streamline
notation a little, we shall write W ⊗G V for the balanced tensor product of
S (G)-modules. We shall use the same notation in the C (G)-module case, and
it will be important to note that in this case the S (G)- and C (G)-module bal-
anced tensor products are the same.

4 Parabolic induction and restriction

In this section we shall define parabolic induction and parabolic restriction of
SF-modules, in both the general and tempered contexts.

We continue with the notation established in the last section with regard to
G = SL(2,R) and its subgroups, except that throughout this section N will de-
note either N+ or N–, and P will denote the corresponding parabolic subgroup.
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All of the results of this section are in fact valid for an arbitrary real reduc-
tive group G, where the notation K , A, etc. is given its customary meaning, as
explained in [Wal88, Chapter 2], for example.

The homogeneous space G/N is a nonsingular real algebraic variety, and
hence a Nash manifold, so it possesses its own space of Schwartz functions
S (G/N). We let G act on S (G/N) in the standard way, by left translation:

(4.1) (g·h)(x) = h(g−1 x).

We let the diagonal subgroup L act by right translation, but shifted by the
quasicharacter δ of (3.1):

(4.2) (h·ℓ)(x) = δ(ℓ)−1/2h(xℓ−1).

Here δ = δ± if N = N±. One explanation for the appearance of δ in the
formula for the action is that with the δ-factor the action is unitary for the
L2-inner product associated to the G-invariant measure on G/N .

4.3 Remark. If G = SL(2,R) and if say N = N–, then the homogeneous space
G/N may be identified with the complement of the origin in R2 via the map
that sends the coset gN to the second column of the matrix g. Under this
identification the left action of G on the homogeneous space is through matrix
multiplication, while the right action of L is through scalar multiplication by
the (2,2)-entry of ℓ ∈ L. The space S (G/N) gets identified in this way with
the usual space of Schwartz functions on R2 that vanish to all orders at the
origin. See [AG08, Theorem 5.4.3]. Similar observations apply to N = N+, of
course.

An application of Proposition 2.8 gives:

4.4 Lemma. The G- and L-actions defined above give S (G/N) the structure of a

left SF-module over S (G) and a right SF-module over S (L).

4.5 Remark. Under the obvious identification of L with R× via the (1,1)-matrix
entry, the spaceS (L) gets identified with the space of usual Schwartz functions
on R which vanish to all orders at 0.

4.6 Definition. The functor of parabolic induction

IndG
P : SFModS (L) −→ SFModS (G)

is the tensor product functor

IndG
P : V 7−→ S (G/N)⊗L V.

9



This is connected to the more familiar definition of parabolic induction in
the following way:

4.7 Proposition. The above functor of parabolic induction from L to G is natu-

rally isomorphic to the functor from SF-representations of L to SF-representations

of G that associates to π: L→ Aut(V ) the representation

�
ϕ : G→ V : ϕ is smooth and ϕ(gℓn) = δ(ℓ)−1/2π(ℓ)−1ϕ(g)

	
,

on which the action of G is by left translation.

Proof. Denote by indG
P V the space described in the statement of the lemma.

The map
α: S (G/N)⊗ V −→ indG

P V

that sends h⊗ v ∈ S (G/N)⊗ V to the function

g 7−→
∫

L

h(gℓN)δ(ℓ)1/2π(ℓ)v dℓ

induces a continuous, S (G)-module homomorphism

S (G/N)⊗L V −→ indG
P V.

Fix a smooth, compactly supported function χ on G/N with integral 1 over
each right L-orbit, and define

σ : indG
P V −→S (G/N)⊗ V

by mapping ϕ ∈ indG
P V to the V -valued function

gN 7→ ϕ(gN)χ(gN),

which lies in S (G/N , V )∼= S (G/N)⊗ V . In addition, define

τ : S (G/N)⊗ V −→S (G/N)⊗S (L)⊗ V

by means of the formula

h⊗ v 7−→
�
(x ,ℓ) 7→ χ(x)δ(ℓ)1/2h(xℓ)v

�

(regarding these formulas, compare the proof of Proposition 2.8). We compute
that α ◦σ = id, and if

β : S (G/N)⊗S (L)⊗ V −→S (G/N)⊗ V

10



is the balancing homomorphism

h⊗ f ⊗ v 7−→ hf ⊗ v − h⊗ f v,

then
β ◦ τ+σ ◦α = id: S (G/N)⊗ V −→S (G/N)⊗ V.

The proof follows from this.

Alongside parabolic induction we shall also study parabolic restriction, which
is defined in the context of SF-modules as follows. Begin with the right homo-
geneous space N\G. The real-algebraic structure on N\G yields a space of
Schwartz functions S (N\G), which becomes a right SF-module over S (G)
under the G-action

(h · g)(y) = h(y g−1)

and a left SF-module over S (L)under the shifted (unitary) L-action

(ℓ · h)(y) = δ(ℓ)1/2h(ℓ−1 y).

4.8 Definition. The functor of parabolic restriction

ResG
P : SFModS (G) −→ SFModS (L)

is defined by X 7→ S (N\G)⊗G X .

The definition will be justified by the reciprocity theorems to be proved in
the coming sections. For now, we turn to parabolic induction in the tempered
context.

4.9 Definition. For G = SL(2,R), and N = N± either the upper- or the lower-
triangular unipotent subgroup, let

ΞG/N : G/N −→ R+

be the function
ΞG/N (x) = δ(x)

−1/2

where δ = δ± if N = N± (recall from (3.2) that δ was extended from L to
G as a function that is in particular right-N -invariant; so δ descends to the
homogeneous space G/N).

4.10 Lemma. For every g ∈ G and x ∈ G/N one has

1

vol(K)

∫

K

ΞG/N (gkx) dk = ΞG(g)ΞG/N (x).

11



Proof. Considered as functions of x , both the left and the right hand sides
are left-K-invariant, and since G = KAN we may assume that x ∈ A. Since A

normalizes N , the function δ : G→ R+ satisfies

δ(g)δ(a) = δ(ga)

for all g ∈ G and a ∈ A, and thus the asserted equality follows from the defini-
tions of ΞG and ΞG/N .

4.11 Definition. Let ‖ ‖ : G/N → [1,∞) be the function
gN

= inf
n∈N
‖gn‖.

More explicitly, if g = kan in the Iwasawa decomposition, then ‖gN‖= ‖a‖.

4.12 Remark. The inequality (3.7) gives

(4.13) ‖g x‖ ≤ ‖g‖ · ‖x‖

for all g ∈ G and x ∈ G/N .

4.14 Example. Take N = N+, and identify G/N with the complement of the
origin in R2. Then, in polar coordinates, one has

ΞG/N (r,θ) = r−1 and ‖(r,θ)‖ =max{r, r−1}.

4.15 Definition. The Harish-Chandra Schwartz space C (G/N) is the space of
smooth, complex valued functions h on G/N for which

(4.16) sup
x∈G/N

|(X hY )(x)|(1+ log‖x‖)p

ΞG/N (x)
<∞

for every p ≥ 0 and every pair of invariant differential operators X ∈ U(g) and
Y ∈ U(l).

The seminorms appearing in (4.16) make C (G/N) into a nuclear Fréchet
space, containing S (G/N) as a dense subspace. Compare [Wal92, Section
15.3].

4.17 Example. Continuing Example 4.14, we see that C (G/N+) is the space of
smooth functions on the complement of the origin in R2 all of whose derivatives
satisfy estimates

sup
(r,θ )
|h(r,θ)| · r(1+ | log r|)p <∞

for all p ≥ 0. Notice in particular that such functions need not vanish at the
origin.
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The groups G and L act on C (G/N) by left and by right translation, as in
(4.1) and (4.2). These actions make C (G/N) into an SF-bimodule over S (G)
and S (L), but in fact more is true:

4.18 Lemma. The left S (G) action and the right S (L) action on C (G/N) ex-

tend continuously to actions of C (G) and C (L), respectively.

Proof. The following argument is essentially the same as the proof that C (G)
is an algebra under convolution. Fix f ∈ C (G), h ∈ C (G/N), and p ≥ 0. To
begin, we want to obtain an estimate of the form

| f h(x)|(1+ log‖x‖)p ≤ C ·ΞG/N (x),

where C depends on suitable seminorms of f and h.
Choose t ≥ 0 satisfying the L2-bound in Proposition 3.8, and then choose

r, s ≥ 0 so that

(1+ log‖x‖)p(1+ log‖g‖)t ≤ (1+ log‖g−1 x‖)r(1+ log‖g‖)s

for all g ∈ G and x ∈ G/N ; this is possible by virtue of (4.13). For x ∈ G/N we
make the estimate

(4.19)

∫

G

| f (g)h(g−1 x)| d g(1+ log‖x‖)p

≤ | f |s|h|r
∫

G

ΞG(g)ΞG/N (g
−1 x)(1+ log‖g‖)−t d g,

where

| f |s = sup
g∈G

| f (g)|(1+ log‖g‖)s

ΞG(g)
and |h|r = sup

x∈G/N

|h(x)|(1+ log‖x‖)r

ΞG/N (x)
.

The measure d g, the function ΞG and the norm ‖g‖ all K-invariant, so we may
rewrite the the right-hand side of (4.19) as

∫

G

ΞG(g)(1+ log‖g‖)−t

�
1

vol(K)

∫

K

ΞG/N (g
−1kx) dk

�
d g.

The integral inside the parentheses is equal to ΞG(g)ΞG/N (x) by Lemma 4.10
and by the equality ΞG(g

−1) = ΞG(g). This gives us an estimate

| f h(x)|(1+ log‖x‖)p ≤
�∫

G

ΞG(g)
2(1+ log‖g‖)−t d g

�
| f |s|h|r ·ΞG/N (x),
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as required. Differentiating under the integral gives similar estimates for the
left and right derivatives of f h, and these estimates show that C (G/N) is a
continuous left module over C (G).

A similar (simpler) argument shows that C (G/N) is also a continuous right
module over C (L).

4.20 Remark. One can define a satisfactory function ΞG/N , and using it a
Harish-Chandra space C (G/N), for a general real reductive group G and para-
bolic subgroup P = LN , as follows. Denote by ΞL the Harish-Chandra function
for the reductive group L, and by δL the homomorphism introduced in (3.1).
Extend both ΞL and δL to smooth functions on G that are left K-invariant and
right N -invariant, and then define ΞG/N : G −→ R+ by

ΞG/N (x) = ΞL(x)δL(x)
−1/2.

The proof of Lemma 4.18 above carries over to this context without change.

4.21 Definition. The functor of tempered parabolic induction

IndG
P : SFModC (L) −→ SFModC (G)

is defined by X 7→ C (G/N)⊗L X .

Actually, tempered parabolic induction is the same as ordinary parabolic
induction restricted to the full category of tempered SF-modules, by virtue of
the following result:

4.22 Proposition. Let X be an SF-module over C (L). The natural morphism

S (G/N)⊗L X −→C (G/N)⊗L X

is an isomorphism of SF-modules over S (G).

Proof. It suffices to show that the natural morphism

(4.23) S (G/N)⊗L C (L)−→C (G/N)

is an isomorphism of SF-modules. The Iwasawa decomposition G = KAN gives
an L-equivariant identification

G/N ∼= K ×K∩L L,

and corresponding isomorphisms

S (K)⊗K∩L S (L)
∼=−→S (G/N)
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and

S (K)⊗K∩L C (L)
∼=−→C (G/N),

both given explicitly by the formula

f ⊗ h 7−→
�

kℓN 7→
∫

K∩L

f (km)h(mℓ)δ(ℓ)−1/2 dm

�
.

The morphism (4.23) factors in this way:

S (G/N)⊗L C (L) // C (G/N)

S (K)⊗K∩L S (L)⊗L C (L)

∼=

OO

∼=
// S (K)⊗K∩L C (L)

∼=

OO

and so it is an isomorphism.

Finally, let us define parabolic restriction in the tempered context. The
Harish-Chandra space C (N\G) is defined as in Definition 4.15, using the func-
tions

ΞN\G(N y) := ΞG/N (y
−1N) and ‖N y‖ := ‖y−1N‖.

4.24 Definition. The functor of tempered parabolic restriction

ResG
P : SFModC (G) −→ SFModC (L)

is defined by X 7→ C (N\G)⊗G X .

Unlike the situation with parabolic induction, the functors of parabolic re-
striction and tempered parabolic restriction differ on the category of tempered
SF-modules over G, where they are both defined. We shall briefly study the two
functors together in the next section and show that they both satisfy Frobenius
reciprocity. Thereafter we shall focus on tempered parabolic restriction. The
second adjoint theorem that we are aiming for holds only in the tempered con-
text.

5 Frobenius reciprocity

Throughout this section we shall denote by N either one of the unipotent
groups N+ or N–, and we shall denote by P the corresponding parabolic sub-
group. We shall prove that the parabolic restriction functor ResG

P is left-adjoint
to the parabolic induction functor IndG

P , in either the general or the tempered

15



context. The argument is essentially the same as one that we have given in a
related context [CH16], and so we shall be brief.

We shall consider first the parabolic induction functor

IndG
P : SFModS (L) −→ SFModS (G),

and treat the tempered case afterwards. The adjunction isomorphism is in-
duced from an S (L)-bimodule map

(5.1) Restr : S (N\G)⊗G S (G/N)−→S (L),

that corresponds to restriction of functions of the closed subset L ⊆ N\G/N
(we shall give the precise definition in a moment). Given a morphism

T ∈ HomS (G)
�
X ,S (G/N)⊗L Y

�

we form the composition

(5.2) S (N\G)⊗G X
id⊗T−−−→S (N\G)⊗G S (G/N)⊗L Y

Restr ⊗id−−−−→ Y,

and so obtain a map

(5.3) HomS (G)
�
X ,S (G/N)⊗L Y

�
−→ HomS (L)

�
S (N\G)⊗G X , Y

�
.

Compare [ML98, Chapter IV] for this standard type of construction, and for the
language used next:

5.4 Theorem (Frobenius reciprocity). The map (5.3) is a bijection. That is, the

functor

ResG
P : SFModS (G) −→ SFModS (L)

is left adjoint to the functor

IndG
P : SFModS (L) −→ SFModS (G)

via the counit morphism (5.1).

Here are the details concerning the construction of (5.1). The subgroup
LN ⊆ G is a closed Nash submanifold, and as a result restriction of Schwartz
functions from G to LN gives a continuous linear map of Schwartz spaces

(5.5) S (G) −→S (LN).

16



This is left- and right-equivariant for the natural actions of both S (L) and
S (N). The basic idea behind (5.1) is to form the tensor product of (5.5) on
both sides by the trivial S (N)-module C:

(5.6) C⊗N S (G)⊗N C −→ C⊗N S (LN)⊗N C.

The left-hand side of (5.6) identifies with S (N\G)⊗GS (G/N), while the right-
hand side identifies with S (L), so we obtain an S (L)-bimodule map (5.1) as
required. But to obtain the correct left and right actions of L a little additional
care is required.

5.7 Definition. Let α: A→ C× be a continuous homomorphism.

(a) Denote by αC the one-dimensional space C viewed as a left S (L)-module
via α (so that ℓ ·λ= α(ℓ)λ) and as a trivial right S (L)-module.

(b) Similarly, denote by Cα the one-dimensional space C viewed as a right
S (L)-module via α (so that λ · ℓ = λα(ℓ)) and as a trivial left S (L)-
module.

We give both αC and Cα the trivial N -module structure.

Now, in place of (5.6) we form the tensor product morphism

(5.8) δ−1/2C⊗N S (G)⊗N Cδ1/2 −→ δ−1/2C⊗N S (LN)⊗N Cδ1/2 .

with the indicated diagonal actions of L. The left-hand sides of (5.8) and (5.1)
are identified as S (L)-bimodules via the diagram

δ−1/2C⊗N S (G)⊗N Cδ1/2

∼=←− δ−1/2C⊗N S (G)⊗G S (G)⊗N Cδ1/2

∼=−→S (N\G)⊗G S (G/N)

in which the leftwards isomorphism is induced from the multiplication oper-
ation on S (G), while the rightwards morphism is the tensor product of the
isomorphisms induced from integration over the right and left cosets of N :

(5.9) δ−1/2C⊗N S (G) −→S (N\G) and S (G)⊗N Cδ1/2 −→S (G/N).

For instance the left-hand map in (5.9) is

λ⊗ f 7−→
�

g 7→ λ
∫

N

f (ng) dn

�
.

17



As for the right-hand sides of (5.6) and (5.1), they are identified as S (L)-
bimodules by the isomorphism

δ−1/2C⊗N S (LN)⊗N Cδ1/2 −→S (L)

given by the formula

λ⊗ f ⊗µ 7−→
�
ℓ 7→ λ ·µ · δ(ℓ)1/2

∫

N

f (ℓn) dn

�
.

Turning to the proof to Frobenius reciprocity, we shall begin by describing
the restriction morphism (5.1) in a different way. Form the standard L2-inner
product

〈h1,h2〉L2(G/N) =

∫

G/N

h1(x)h2(x) d x

of complex-valued functions on G/N (as we noted earlier, the right action of L

is unitary for this inner product). Given h1,h2 ∈ S (G/N), let us now define

〈〈h1,h2〉〉 ∈ S (L)

by means of the formula

〈〈h1,h2〉〉: ℓ 7−→ 〈h1,h2 · ℓ−1〉L2(G/N).

As explained in [Cla13, CCH16b] this pairing enjoys a number of properties.
For instance if f1, f2 ∈ S (L), then

〈〈h1 f1,h2 f2〉〉 = f1
∗〈〈h1,h2〉〉 f2,

where the multiplication is as usual convolution, and where

f ∗(ℓ) = f (ℓ−1).

In addition, if f ∈ S (G), then

〈〈 f h1,h2〉〉 = 〈〈h1, f ∗h2〉〉.

The restriction morphism is expressible very simply in terms of 〈〈 , 〉〉 as follows:

5.10 Lemma. If h1 ∈ S (N\G) and h2 ∈ S (G/N), then

Restr : h1 ⊗ h2 7−→ 〈〈h1
∗,h2〉〉.

18



We are now ready to proceed to the proof of Frobenius reciprocity. The
formula

h1 ⊗ h2 7−→
�

h 7→ h1〈〈h2
∗,h〉〉

�

defines an S (G)-bimodule morphism

(5.11) S (G/N)⊗L S (N\G)−→ EndS (L)(S (G/N)).

Similarly the formula

h1 ⊗ h2 7−→
�

h 7→ 〈〈h∗,h1〉〉h2
�

defines an S (G)-bimodule morphism

(5.12) S (G/N)⊗L S (N\G)−→ EndS (L)(S (N\G)).

5.13 Lemma. The left action of S (G) on S (G/N) and the right action of S (G)
on S (N\G) both factor through a single S (G)-bimodule morphism

S (G)−→S (G/N)⊗L S (N\G).

Taking this for granted for a moment, the proof of reciprocity is straightfor-
ward:

Proof of Theorem 5.4. The morphism from the statement of Lemma 5.13 gives
rise to a linear transformation

HomS (L)
�
S (N\G)⊗G X , Y

�
−→ HomS (G)

�
X ,S (G/N)⊗L Y

�
.

To prove that this is inverse to the map in the statement of Theorem 5.4 it
suffices to show that the composition

S (G)⊗G S (G/N)−→S (G/N)⊗L S (N\G)⊗G S (G/N)
−→S (G/N)⊗L S (L)−→S (G/N)

is the multiplication map, as is

S (N\G)⊗G S (G)−→S (N\G)⊗G S (G/N)⊗L S (N\G)
−→S (L)⊗L S (N\G)−→S (N\G).

Compare [ML98, Chapter IV]. These facts follow immediately from Lemma 5.10
together with (5.11) and (5.12).
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Proof of Lemma 5.13. The tensor product S (G/N)⊗L S (N\G) may be identi-
fied as an SF-bimodule over S (G) with the space of smooth functions

k : G/N ×N\G −→ C

such that

(i) k(xℓ, y) = δ(ℓ)−1k(x ,ℓy), and

(ii) the function

(g1, g2) 7−→
∫

L

δ(ℓ)k(xℓ,ℓ−1 y) dℓ

is a Schwartz function on G/N ×L N\G.

The isomorphism is

h1 ⊗ h2 7−→
�
(g1, g2) 7→

∫

L

h1(g1ℓ)δ(ℓ)h2(ℓ
−1 g2) dℓ

�

Using this description of S (G/N)⊗L S (N\G) we may define a morphism

S (G)−→S (G/N)⊗L S (N\G)

by associating to f ∈ S (G) the smooth function

k f (g1, g2) =

∫

N

f (g1ng−1
2 ) dn

satisfying (i) and (ii) above. Compare [CCH16b].

5.14 Remark. There is a more familiar adjunction isomorphism in the form
(5.15)

HomS (L)
�
S (N\G)⊗G X , Y

� ∼=−→ HomS (G)
�
X ,HomS (L) (S (N\G), Y )

�
.

It is related to the Frobenius reciprocity theorem proved in this section, as
follows. The left S (G)-module HomS (L) (S (N\G), Y ) is not an SF-module (it
is not a Fréchet space) but this problem can be addressed by substituting the
(completed, projective) tensor product

(5.16) S (G)⊗G HomS (L) (S (N\G), Y ) .

This does not affect the isomorphism (5.15) as long as X is an SF-module. The
formula

h⊗ y 7−→
h

h1 7→ y Restr (h1⊗ h)
i
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defines a continuous map of S (G)-modules

S (G/N)⊗L Y −→ HomS (L)(S (N\G), Y ).

This becomes an isomorphism after tensoring with S (G). Its inverse is the
composition

S (G)⊗G HomS (L) (S (N\G), Y )

−→S (G/N)⊗L S (N\G)⊗G HomS (L) (S (N\G), Y )

−→S (G/N)⊗ Y,

that combines the unit transformation of Lemma 5.13 with the obvious evalua-
tion map. In short, Lemma 5.13 converts the standard Hom-Tensor adjunction
isomorphism into the Frobenius theorem of this section.

5.17 Remark. See [CCH16a] for a related adjunction isomorphism in the con-
text of operator modules rather than SF-modules.

Finally, let us formulate and prove the Frobenius reciprocity theorem in
the context of tempered SF-modules. The counit transformation (5.1) yields a
bimodule map

(5.18) Restr : C (N\G)⊗G C (G/N)−→C (L)
simply by tensoring (5.1) on the left and right by C (L).
5.19 Theorem (Frobenius reciprocity for tempered modules). The functor

ResG
P : SFModC (G) −→ SFModC (L)

is left adjoint to the functor

IndG
P : SFModC (L) −→ SFModC (G).

via the counit transformation (5.18).

Proof. Consider the diagram

S (G) //

��

S (G/N)⊗L S (N\G)

��
C (G) // C (G/N)⊗L C (N\G)

in which the vertical maps are induced from the inclusions of S (G) into C (G)
and of S (L) into C (L), and the top horizontal map is the unit transformation
for Frobenius reciprocity from Lemma 5.13. There is a continuous extension
along the bottom dotted arrow, and the argument used to prove Theorem 5.4
can now be repeated.
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6 The second adjoint theorem

In this section we shall formulate our second adjoint theorem. We shall define
a C (L)-bimodule morphism

(6.1) Extn : C (L) −→C (N–\G)⊗G C (G/N+),

that corresponds to the inclusion of L as an open subset of N–\G/N+. It will
serve as the unit for the second adjunction isomorphism.

We shall begin by working with S (G) rather than C (G), and produce an
S (L)-bimodule morphism

(6.2) Extn : S (L)−→S (N–\G)⊗G S (G/N+).

The Cartesian product N– LN+ is a Nash-open set in G (its complement is the
closed subset LN+ ⊆ G) and there is an associated a continuous linear map

(6.3) S (N– LN+)−→S (G)

that extends functions by zero from N– LN+ to G. Compare [AG08, Proposition
4.3.1]. Form the tensor product morphism

(6.4) δ−1/2
–
C⊗N–

S (N–LN+)⊗N+
C
δ

1/2
+

−→ δ−1/2
–
C⊗N–

S (G)⊗N+
C
δ

1/2
+

.

The right-hand side in (6.4) identifies with S (N–\G) ⊗G S (G/N) as an SF-
bimodule over S (L) via the tensor product (over G) of the bimodule isomor-
phisms

(6.5) δ−1/2
–
C⊗N–

S (G)
∼=−→S (N–\G) and S (G)⊗N+

C
δ

1/2
+

∼=−→S (G/N+)

given by integration. The left-hand side in (6.4) identifies with S (L) as an
SF-bimodule along the bimodule isomorphism

δ−1/2
–
C⊗N–

S (N– LN+)⊗N+
C
δ

1/2
+

−→S (L)

given by the formula

(6.6) λ⊗ f ⊗µ 7−→

ℓ 7→ λ ·µ · δ+(ℓ)1/2

∫

N–

∫

N+

f (n–ℓn+) dn–dn+




We obtain an “extension by zero” morphism of bimodules (6.2) as required.
And then we obtain a tempered version (6.1) by tensoring (6.2) on both sides
byC (L) and invoking Proposition 4.22. With this, we can formulate our second
adjoint theorem:
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6.7 Theorem (Second Adjoint Theorem). The functor

IndG
P+

: SFModC (L) −→ SFModC (G)

is left adjoint to the functor

ResG
P–

: SFModC (G) −→ SFModC (L)

via the unit morphism (6.1).

6.8 Remark. The theorem can be formulated in the context of SF-modules
over S (G) and S (L), using (6.2), but in this context it is false.

As one might expect in view of the previous remark, the proof of the second
adjoint theorem is much more involved than the proof of Frobenius reciprocity,
and we defer it to the next section (with some details deferred further to an
appendix). In the remainder of this section we shall prepare for the proof by
presenting a helpful explicit formula for the unit morphism.

6.9 Lemma. Let f ∈ S (L). Let v+ and v– be smooth, compactly supported

functions on N+ and N–, respectively, both with total integral 1, and define f0 ∈
S (N– LN+) by

(6.10) f0 : n– · ℓ · n+ 7−→ v–(n–) · f (ℓ)δ+(ℓ)−1/2 · v+(n+),

and then extend f0 by zero to obtain a Schwartz function on G. Let u be a smooth

compactly supported function on G with total integral 1, and define

k0 ∈ S (G)⊗S (G)∼= S (G × G)

by

(6.11) k0 : (g1, g2) 7−→ u(g1) f0(g1 g2)

The image of f ∈ S (L) under the unit morphism (6.2) is equal to the image of

k0 under the convolution and integration maps

S (G)⊗S (G) −→S (G)⊗G S (G) −→S (N–\G)⊗G S (G/N+).

Proof. Consider the diagram

C⊗N–
S (N–LN+)⊗N+

C

��

// C⊗N–
S (G)⊗N+

C

C⊗N–
S (G)⊗G S (G)⊗N+

C

∼=
OO

∼=
��

S (L)
Extn

// S (N–\G)⊗G S (G/N+)
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in which the top horizontal map is induced from (6.3), the downward vertical
maps are given by integration over N± as in (6.6) and (6.5), and the upward
vertical map is induced from the product on S (G). (We have suppressed the
decorations describing the left and right L-actions, since the L-actions are not
relevant for the proof.) The element 1⊗ f0 ⊗ 1 in the top left maps to f in the
bottom left of the diagram. It maps to the same element in the top right as
does k0. This means that k0 maps to the image of f under the unit map Extn ,
as required.

7 Proof of the Second Adjoint Theorem

In this section we shall formulate a theorem concerning intertwining integrals
and wave packets, and use it to prove our second adjoint theorem.

7.1 Lemma. If k ∈ C (G/N–), then for every g ∈ G the integral

(J+k)(g) =

∫

N+

k(gn) dn

converges absolutely and defines a smooth function on G. The resulting linear

map

J+ :C (G/N–)−→ C∞(G/N+)

is continuous. Similarly, the integral

(J–h)(g) =

∫

N–

h(gn) dn

defines a continuous linear map

J– :C (G/N+)−→ C∞(G/N–).

These are the standard intertwining integrals considered throughout the
representation theory of reductive groups, although it is more common to
consider them as defined on individual parabolically induced representations
rather than on the inducing bimodule as we are doing here.

7.2 Remark. The Fréchet spaces C∞(G/N+) and C∞(G/N–) carry continuous
and indeed smooth left actions of G, but they are not SF-modules over S (G),
let alone C (G).

The proof of the lemma for general parabolic subgroups of general reduc-
tive groups is a bit involved, but for G = SL(2,R) it is straightforward:
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Proof of Lemma 7.1. We’ll consider the first integral (the second is handled in
the same way). In view of the Iwasawa decomposition G = KAN+ it suffices to
consider g of the form g = ka, and in order to estimate the integrand we need
to solve for a1 in

kan+ = k1a1n–.

Multiplying the matrices on both sides of this equation on the left by their
transposes (which eliminates k and k1) we find that if

a =

�
et 0
0 e−t

�
and n+ =

�
1 x

0 1

�

then

(7.3) a2
1 =

�
(e−2t + x2e2t)−1/2 0

0 (e−2t + x2e2t)1/2

�
.

So according to the definition of the Harish-Chandra space C (G/N–),

(7.4) |h(gn)| ≤ constanth,p · (e−2t + x2e2t)−1/2 · (1+ 1
2

log(e−2t + x2e2t))−p

for all large x (large enough that the logarithm is positive). If p > 1, then the
bound is an integrable function of x , as required. Smoothness of J–h follows
by differentiating under the integral, and continuity follows from pointwise
continuity of J–h as a function of h and the closed graph theorem.

Here is the more elaborate result about the intertwining integrals and wave
packets that we shall require. It fits into Harish-Chandra’s general theory of
the Plancherel formula, but we shall give a direct proof for G = SL(2,R) in the
final section of the paper.

7.5 Theorem. There are continuous bimodule maps

I± : C (G/N±)→C (G/N∓)

such that:

(a) The map I± is a right-inverse to the standard intertwiner J±:

J± ◦ I± = idC (G/N±).

(b) The maps I+ and I– are L2-adjoints of one another:

〈k, I+h〉L2(G/N–)
= 〈I–k,h〉L2(G/N+)

for all h ∈ C (G/N+) and k ∈ C (G/N–).
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(c) The range of the map

B :C (G/N+)⊗L C (N–\G)−→ C∞(G)

defined by the formula

B : h⊗ k 7−→
�

g 7→ 〈k∗, g−1 I+h〉L2(G/N–)

�

lies in the vector subspace C (G)⊆ C∞(G), and B is continuous as a map into

C (G).

7.6 Remark. The formula in part (c), which expresses the counit of the second
adjunction in terms of the inverse of the standard intertwining operator, is an
analogue in our tempered, real context of the formula [BK15, Corollary 7.8] of
Bezrukavnikov and Kazhdan.

Taking Theorem 7.5 for granted, we shall now prove Theorem 6.7 by calcu-
lating that the morphisms B and Extn are the counit and unit of an adjunction.
That is, we shall show that the compositions

(7.7) C (G/N+)⊗L C (L)
1⊗Extn−−−−→C (G/N+)⊗L C (N–\G)⊗G C (G/N+)

B⊗1 // C (G)⊗G C (G/N+)
convG // C (G/N+)

and

(7.8) C (L)⊗L C (N–\G)
Extn ⊗1−−−−→C (N–\G)⊗G C (G/N+)⊗L C (N–\G)

1⊗B // C (N–\G)⊗G C (G)
convG // C (N–\G)

are the canonical isomorphisms. Compare [ML98, Chapter IV] again.
Throughout the following calculations we shall regard functions on ho-

mogenous spaces of G as functions on G itself that are constant on the ap-
propriate left or right cosets.

7.9 Lemma. Suppose that h ∈ C (G/N+) and let

h1 = I+h ∈ C (G/N–).

Suppose that an element k ∈ C (N–\G)⊗G C (G/N+) is obtained by integrating a

function

k1 ∈ S (G× G/N+)
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over left N–-cosets in the first variable (and then projecting to the balanced tensor

product). The image of the element

h⊗ k ∈ C (G/N+)⊗L C (N–\G)⊗G C (G/N+)

under the map (7.7) is the right N+-invariant function

(7.10) g 7−→
∫

G

∫

G

k1(γ
−1
1 ,γ1γ

−1
2 g)h1(γ2) dγ1dγ2.

Proof. If we apply first the map B, then we obtain from h⊗ k the element in
C (G)⊗G C (G/N+) represented by the function

(g1, g) 7−→
∫

G/N–

 ∫

N–

k1(nx−1, g) dn

!
h1(g1 x) d x .

Since h1 is right N–-invariant, we can combine the integrals and write the above
function as

(g1, g) 7−→
∫

G

k1(g2
−1, g)h1(g1 g2) d g2.

Applying to this the convolution map

C (G)⊗C (G/N+)−→C (G/N+)

we obtain the element of C (G/N+) represented by the function

g 7−→
∫

G

∫

G

k1(g2
−1, g1

−1 g)h1(g1 g2) d g1d g2

Now make the substitutions γ1 = g2 and γ2 = g1 g2 to obtain (7.10).

We are going to apply Lemma 7.9 in the case where the element k has the
form

k = Extn ( f )

for some f ∈ S (L). In this case, according to Lemma 6.9, and using the
notation introduced there, the function k1 in the statement of the lemma above
may be defined by

k1(g1, g2) =

∫

N+

u(g1) f0(g1 g2n) dn.
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From the formula

k1(γ
−1
1 ,γ1γ

−1
2 g) =

∫

N+

u(γ−1
1 ) f0(γ

−1
2 gn) dn

we find that after integrating over γ1 ∈ G in (7.10) we obtain the function

g 7−→
∫

G

∫

N+

f0(γ
−1
2 gn)h1(γ2) dγ2dn,

which in view of the change of variables γ = γ−1
2 g is equal to the function

(7.11) g 7−→
∫

G

∫

N+

f0(γn)h1(gγ
−1) dγdn.

To proceed further we shall use the following simple integration formula:

7.12 Lemma. If ϕ is any integrable function on G, then

∫

G

ϕ(γ) dγ=

∫

N–

∫

L

∫

N+

ϕ(n–ℓn+)δ+(ℓ) dn–dℓdn+.

Proof. See for example [Kna02, Proposition 8.4.5].

Keeping in mind the definition of the function f0 that appears in (7.11), by
applying Lemma 7.12 and carrying out the integration over N– in Lemma 7.12
we find that the function (7.11) is expressible as

g 7−→
∫

L

∫

N+

∫

N+

f (ℓ)δ+(ℓ)
1/2v+(n+n)h1(gn−1

+ ℓ
−1) dℓdn+dn,

and integrating over the n-variable gives

g 7−→
∫

L

∫

N+

f (ℓ)δ+(ℓ)
1/2h1(gn−1

+ ℓ
−1) dℓdn+,

or equivalently

g 7−→
∫

L

∫

N+

f (ℓ)δ+(ℓ)
−1/2h1(gℓ

−1n−1
+ ) dℓdn+.

Carrying out the integration over the n+ gives

(7.13) g 7−→
∫

L

f (ℓ)δ+(ℓ)
−1/2J+h1(gℓ

−1) dℓ.
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But this is precisely the value at g ∈ G of the convolution J+h1 · f , and since

J+h1 = J+ I+h= h,

we obtain in (7.13) the value at g ∈ G of h · f , as required in (7.7).
A similar computation, using the formula for B in terms of I–, as in item (b)

of Theorem 7.5, handles (7.8).

8 Fourier transforms and intertwiners

In this final section we shall give a proof of Theorem 7.5 (which summa-
rized the properties of the intertwining integrals J± that were needed to prove
the second adjoint theorem). The arguments rely on substantial results from
Harish-Chandra’s theory of the Plancherel formula, and are rather technical
(we shall not attempt a conceptual approach here). But once again the fact
that we are concentrating on the group G = SL(2,R) helps simplify matters.

The general idea is to analyze the intertwining integrals J± using the Fourier
transform. Denote by N ⊆ G either one of the subgroups N±, and let a be the
Lie algebra of the positive diagonal subgroup A ⊆ G. For h ∈ C (G/N) and
µ ∈ a∗ define

(8.1) bh(µ) =
∫

A

(h·a) a−iµ da,

where a−iµ is shorthand for e−iµ(log(a)). The values of the integrand are smooth
functions on G/N , and the integral converges absolutely in the Fréchet space
C∞(G/N) by virtue of the definition of the space C (G/N). Moreover

bh(µ) ∈ V (µ),

where

(8.2) V (µ) =
¦
ϕ ∈ C∞(G) | ϕ(gan) = a−iµδ(a)−1/2ϕ(g)

©
.

The Fréchet space V (µ) is a parabolically induced representation of G; in clas-
sical terms it is a direct sum of the odd and the even principal series represen-
tation associated to µ; thus

(8.3) V (µ) = V (µ)even ⊕ V (µ)odd,

where the even and odd summands are characterized by the additional condi-
tions

ϕ(gz) = +ϕ(g) and ϕ(gz) = −ϕ(g),
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respectively, involving the element z =
�
−1 0
0 −1

�
.

Thanks to the Iwasawa decomposition the space V (µ) identifies with S (K)
by restriction of functions from G to K . After making this identification, the
Fourier transform defines a topological isomorphism

(8.4) F : C (G/N)
∼=−→S (a∗,S (K)).

In order to analyze the intertwining integrals

J± : C (G/N∓)−→ C∞(G/N±)

from the point of view of the Fourier transform, we need to know a bit more
about functions in the range of J±, so as to be able to apply the Fourier trans-
form after J±.

8.5 Lemma. If h ∈ C (G/N∓), then
��(J±h)(x)

��≤ constanth · δ±(x)−1/2

for all x ∈ G/N±.

Proof. This follows from the estimate (7.4) on the integrand defining J±h.

8.6 Lemma. If h ∈ S (G/N–), then
��(J+h)(x)

��≤ constanth,m · δ+(x)m/2

for all x ∈ G/N+ and all m ≥ 1.

Proof. Identify G/N– with the complement of the origin in the plane R2, as in
Remark 4.3, where we noted that if h ∈ S (G/N–), then for every m ≥ 0 we
have an estimate

|h(x)| ≤ constanth,m · (1+ ‖x‖2)−m

(along with further estimates at x = 0 that won’t concern us). So if

a =

�
et 0
0 e−t

�
and n+ =

�
1 y

0 1

�
,

then ��h(kan+)
��≤ constanth,m · (1+ y2e2t + e−2t)−m.

Integrating the bound with respect to y, we find that

��(J+h)(kan+)
�� ≤ constanth,m ·

∫ ∞

−∞
(1+ e−2t + y2e2t)−m d y.

The integral is bounded by a constant depending on m, only, times e(2m−2)t ,
and the result follows.

30



The lemma implies that if h ∈ S (G/N–), then the Fourier transform (8.1) of
J+h (which exists in a distributional sense thanks to Lemma 8.5) extends to a
holomorphic function on the half-plane consisting of those µ ∈ a∗

C
with positive

imaginary part in the sense that

(8.7) Imµ
��

1 0
0 −1

��
> 0,

or equivalently

(8.8) δ+(a)> 1 ⇒
��a−iµ

�� > 1.

Here are the details. Denote by V±(µ) the two versions of the SF-modules V (µ)

from (8.2) associated to the two unipotent subgroups N±.

8.9 Lemma. Assume that Imµ > 0. If h ∈ S (G/N–), and if g ∈ G, then the

integral

dJ+h(µ)(g) =

∫

A

(J+h·a)(g) a−iµ da

converges absolutely and defines a holomorphic function of µ. For a fixed µ with

positive imaginary part, the same integral defines an element of V+(µ).

Proof. According to the definitions,

dJ+h(µ)(x) =

∫

A

(J+h)(xa−1)δ+(a)
−1/2a−iµ da.

The integral converges in the region δ+(a)> 1 thanks to Lemma 8.6, since
the very rapid decay of a 7→ (J+h)(xa−1) as δ+(a)→ +∞ compensates for the
exponential growth of a−iµ. The integral converges in the region δ+(a) < 1
thanks to Lemma 8.5, which tells us that (J+h)(xa−1)δ+(a)

−1/2 is bounded,
while by (8.7) the term a−iµ decays exponentially as δ+(a)→ −∞. Smooth-
ness in g ∈ G follows, as usual, by differentiating under the integral sign, and
the fact that J+h ∈ V+(µ) follows from a change of variables.

In addition, we can apply the Fourier transform first, and then apply J+:

8.10 Lemma. If Im(µ)> 0 as in (8.7), and if h ∈ V–(µ), then the integral

J+h(g) =

∫

N+

h(gn) dn

converges absolutely and defines a morphism

J+(µ) : V–(µ)−→ V+(µ)

of SF-modules over S (G).
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Proof. The proof is essentially the same as the proof of Lemma 8.6.

The convergence of the integrals involved implies that if h ∈ S (G/N–), and
if Im(µ)> 0, then

(8.11) dJ+h(µ) = J+(µ)bh(µ).
This is the formula we are seeking, since we can now appeal to the known,
detailed formulas for J+(µ) to proceed.

8.12 Remark. There is of course an exactly similar sequence of results for the
other intertwining integral,

J– : C (G/N+)−→ C∞(G/N–),

involving now µ ∈ a∗
C

with Imµ < 0. We shall use these below.

Denote by σ j : K → U(1) the continuous character defined by

σ j :
h

cos(u) − sin(u)
sin(u) cos(u)

i
7−→ e

p
−1 ju.

In the following proposition we identify V±(µ) with S (K) by restriction of
functions from G to K . Denote by

S j(K)⊆ S (K)

the (one-dimensional) σ j-isotypical subspace under the left translation action
of K .

8.13 Remark. Note that the decompositions of V±(µ) into principal series rep-
resentations corresponds to the decomposition

S (K) = S (K)even ⊕S (K)odd,

where S (K)even/odd is the closed span of all S j(K) with j even/odd.

We shall also identify a∗
C

with C by evaluation on
�

1 0
0 −1

�
.

8.14 Theorem. There are (unique) meromorphic functions

c±
( j) : a∗

C
−→ C

such that the operator

J+(µ) : S j(K)−→S j(K)

acts as multiplication by c+
( j)(µ) whenever Imµ > 0, while the operator

J–(µ) : S j(K)−→S j(K)

acts as multiplication by c–
( j)(µ) whenever Imµ < 0.
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Proof. The functions c±
( j) are computed directly in representation theory, and

one finds that

(8.15) c±
( j)(µ) =

π
1
2Γ
�
∓iµ

2

�
Γ
�

1∓iµ

2

�

Γ
�

1∓iµ+ j

2

�
Γ
�

1∓iµ− j

2

� .

See [Wal92, Lemma 10.5.1], where an integral formula for c±
( j) is derived; and

[ET92, A.3], where the integrals arising in the case of SL(2,R) are evaluated.
Compare [Var99, Theorem 31, p.252].

For odd j ∈ Z the functions c±
( j) are smooth on the real line a∗ ⊆ a∗

C
, and

they multiply the Schwartz space S (a∗) into itself.
For even j ∈ Z this is no longer true, since c±

( j)(µ) has a pole at µ = 0. But
the product µ · c±( j)(µ) multiplies the Schwartz space into itself. So c±

( j) maps
Schwartz functions into tempered distributions (namely products of Schwartz
functions times the principal value distribution 1/µ). Theorem 8.14 gives the
following formula for J±:

8.16 Theorem. For every j ∈ Z the diagram

S (a∗,S j(K))
c±
( j)

// S ′(a∗,S j(K))

C (G/N±)

F ∼=
OO

J±
// C ′(G/N∓) j

F∼=
OO

is commutative (the primes denote dual spaces of distributions).

Obviously, the theorem suggests we invert J± by forming the reciprocals of
the functions c±

( j). For odd j ∈ Z the functions c±
( j) are nowhere vanishing on

a∗, and their reciprocals do indeed multiply the Schwartz space into itself. For
even j ∈ Z the functions c±

( j) have no zeros in a∗, and once again the reciprocal
of c±

( j) is a multiplier of the Schwartz space. More is true:

8.17 Theorem. The combined operators on the algebraic direct sum

⊕

j∈Z
S (a∗,S j(K))⊆ S (a∗,S (K))

that multiply S j(K)-valued functions by c±
( j)(µ)−1 extend to continuous opera-

tors

c−1
± : S (a∗,S (K))−→S (a∗,S (K)).
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Proof. This follows from the explicit formula (8.15) and the functional equa-
tion for the Γ-function.

We have found operators satisfying item (a) of Theorem 7.5:

8.18 Theorem. The operators I± defined by the diagram

S (a∗,S (K))
c−1
± // S (a∗,S (K))

C (G/N±)

F ∼=

OO

I±
// C (G/N∓)

F∼=

OO

are right-inverse to the intertwining operators J±.

Let us turn to item (b) in Theorem 7.5. It is an immediate consequence
of the following result and the fact that, thanks to Plancherel’s formula, the
Fourier isomorphism (8.4) is a unitary isomorphism for the obvious L2-inner
products.

8.19 Theorem. If µ ∈ a∗
C

, then c–
( j)(µ) = c+

( j)(µ).

Proof. This may be verified directly from (8.15). It is also equivalent to a well-
known adjoint relation among the intertwining operators J±(µ); see [Wal92,
Section 10.5.6]

It remains to consider item (c), on wave packets. Using the Fourier isomor-
phism (8.4) the operator B from Theorem 7.5 can be viewed as the operator

bB : S (a∗,S (K))⊗S (a∗,S (K))−→ C∞(G)

defined by the wave packet formula

(8.20) f1 ⊗ f2 7−→
�

g 7→
∫

a∗
〈 f1(µ), c−1

+ (µ)g
−1 f2(µ)〉L2(K) dµ

�
,

where g−1 acts on f2(µ) ∈ S (K) via the restriction isomorphism

V+(µ)
∼=−→S (K).

We need to show that (8.20) defines a function on G that belongs to Harish-
Chandra’s Schwartz class.
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We shall use Harish-Chandra’s wave packet theorem, and for this purpose
it is convenient to consider separately the summands in the decomposition

S (a∗,S (K)) = S (a∗,S (K)even)⊕S (a∗,S (K)odd).

Note that the summands are invariant under the action of G and orthogonal,
so we need only consider the two cases

(8.21) f1, f2 ∈ S (a∗,S (K)even) or f1, f2 ∈ S (a∗,S (K)odd).

in (8.20). In either case, Harish-Chandra showed that the function

g 7→
∫

a∗
〈 f1(µ), g−1 f2(µ)〉L2(K)α(µ)dµ

belongs to C (G), where α is the Plancherel density function for either the even
or odd principal series, according to the two alternatives in (8.21). See [Var99,
Theorem 33, p.255] for the case of G = SL(2,R) that concerns us here.

In the odd case, the Plancherel density is a smooth and nowhere vanishing
function, and both it and its reciprocal multiply the Schwartz space into itself.
So since we can write

(8.22)

∫

a∗
〈 f1(µ), g−1 f2(µ)〉L2(K) dµ

=

∫

a∗
〈 f1(µ), g−1α(µ)−1 f2(µ)〉L2(K)α(µ)dµ,

we find that the left-hand side of (8.22) is a Harish-Chandra function of g ∈ G

for any f1 and f2.
The even case requires a bit more work, since the Plancherel density func-

tion vanishes at µ = 0. But µ2α(µ)−1 is smooth and multiplies the Schwartz
space to itself, and so we find by the above argument that

8.23 Theorem. If f1, f2 ∈ S (a∗,S (K)even), and if both functions vanish at µ =

0, or if one of the functions vanishes at µ = 0 to order two, then the integral

∫

a∗
〈 f1(µ), g−1 f2(µ)〉L2(K) dµ

defines a Harish-Chandra function of g ∈ G.
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In order to make use of this result, we can begin by noting that the function

c−1
+ f2 ∈ S (a∗,S (K)even)

does indeed vanish at µ = 0, thanks to the explicit formula for c+. But of
course f2 need not, and to cope with this circumstance we need to decompose
the Schwartz space S (a∗,S (K)even) into even and odd parts using normalized
intertwining operators, as follows.

8.24 Lemma. There is a G-equivariant involution

W : S (a∗,S (K)even)−→S (a∗,S (K)even)

of the form

(W f )(µ) =W (µ) f (−µ)
where each W (µ) is a unitary operator on S (K)even with respect to the L2-inner

product, and where W (0) is the identity operator.

Proof. An explicit construction of the normalized intertwiner in the special case
we are considering is given in [Var99, Proposition 22, p.243].

We can now decompose any f ∈ S (a∗,S (K)even) into symmetric or anti-
symmetric parts under the action of the involution W (that is, +1 or −1 eigen-
vectors).

8.25 Lemma. If one of f1, f2 ∈ S (a∗,S (K)even) is symmetric, and the other is

antisymmetric, then the function

g 7−→
∫

a∗
〈 f1(µ), g−1 f2(µ)〉L2(K) dµ

is identically zero.

Proof. It follows from unitarity and G-equivariance of the involution that
∫

a∗
〈(W f1)(µ), g−1 f2(µ)〉L2(K) dµ=

∫

a∗
〈 f1(µ), g−1(W f2)(µ)〉L2(K) dµ,

and the lemma follows from this.

Returning to (8.20) , decompose c−1
+ f2 into its symmetric and antisymmet-

ric parts. Since c−1
+ f2 vanishes at µ = 0, its odd part vanishes at µ = 0 too,

while its even part vanishes there to second order. Treating each separately we
find from Lemma 8.25 that (8.20) is a sum of two terms, one from a pairing of
two anti-symmetric functions, and one from the pairing of a symmetric func-
tion with another that vanishes to order two at µ = 0. Item (c) in Theorem 7.5
now follows from Theorem 8.23.
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