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Abstract

We study the general properties of certain rank 4 rigid local systems considered by
Goursat. We analyze when they are irreducible, give an explicit integral description as
well as the invariant Hermitian form H when it exists. By a computer search, we find
what we expect are all irreducible such systems all whose solutions are algebraic
functions and give several explicit examples defined over Q. We also exhibit one
example with infinite monodromy as arising from a family of genus two curves.

1 Introduction
The question of when linear differential equations in a variable t have all of their solutions
algebraic functions of t goes back to the early 1800s. In his 1897 thesis, written under the
supervision of P. Painlevé, Boulanger [4] mentions a paper by J. Liouville of 1833 [17] as
a possible first work on the matter. The introduction of Boulanger’s thesis offers a lucid
description of the history of the question up to the time of his writing. For more recent
work on the problem, see [26].
Schwarz [21] famously described all cases of algebraic solutions to the hypergeometric

equation satisfied by Gauss’s series 2F1. This was much later extended to hypergeomet-
ric equations of all orders by Beukers and Heckman [2]. In what follows, we will often
refer to the better known hypergeometric local systems for comparison with [2] as our
main source. For general background on local systems, monodromy representations and
differential equations, see [6].
From a broader point of view, we may say that differential equations with all solutions

algebraic are a special case of motivic local systems.Without attempting a rigorous defini-
tion of what this means, we will just say that such systems should be geometric in nature.
Simpson conjectures in [25, p. 9] that all rigid local systems (see Sect. 2) satisfying some
natural conditions are motivic. This is known for rigid local systems on P1 by the work of
Katz [16], who gave a general algorithm (usingmiddle convolution) for their construction.
See also [8] for systems over a higher dimensional base and [29] for more on differential
equations and arithmetic.
Goursat in his remarkable 1886 paper [10] discusses differential equations which, in

later terminology, have no accessory parameters; i.e., where the local data uniquely deter-
mines the global monodromy representation. In this note, we consider his case II of rank
4 (denoted henceforth by G-II). These are order four linear differential equations in a
variable t with three regular singular points and semisimple local monodromies with
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eigenvalues of multiplicities 212, 22, 14, respectively (see Sect. 7). We will fix the singular
points to be 0, 1,∞. Inmodern language, G-II corresponds to certain rigid local systems of
rank 4.We will always assume the local monodromies are of finite order. This a necessary
condition for a local system to bemotivic [19, Thm. 9], the main focus of this paper. (Note
that since we assume the local monodromies are semisimple finite order is equivalent to
quasi-unipotent.)
In this paper, we study the general properties of G-II systems; for example, we ana-

lyze when they are irreducible and describe a Hermitian form H invariant under the
monodromy group when it exists. This is done in Sect. 4. As in [2], H is a key tool to
understand when this group is finite. Indeed, a necessary condition is thatH be definite in
every complex embedding of the field of definition. Finiteness of the monodromy group
is equivalent to solutions to the linear differential equations being algebraic.
We also show explicitly in Sect. 4.3 that the monodromy group can be defined in an

integral way in terms of the eigenvalues of the local monodromies (the defining data).
This abstractly follows from the fact that rigid systems over P1 are motivic (see [25, p. 9]);
on the other hand, our construction is explicit. We find (see Sect. 3) that there is a non-
trivial obstruction for the field of definition of the monodromy group. It may not be
possible to define the monodromy group in its field of moduli (the field of coefficients
of the characteristic polynomials of the local monodromies). This is in contrast with the
hypergeometric case, for example, where by a theorem of Levelt [2, Prop. 3.3] such an
obstruction does not occur. For the G-II systems, the obstruction is given by a quaternion
algebra over the field of moduli (see the end of Sect. 4.3 for the general case and Sect. 8
for the case where the field of moduli is Q).
As in the hypergeometric case, there are infinitely many cases of finite monodromy

G-II local systems which come in families. These families depend linearly on a rational
parameter. For G-II, there are two such families (see Sect. 12). All of these cases have
imprimitive monodromy groups.
By a computer search, we find in Sect. 5 what we expect are all irreducibleG-II equations

whose solutions are algebraic functions and give several explicit examples defined over
Q in Sect. 9. In Sect. 6, we show how some G-II cases can be constructed starting from
a rank 4 Coxeter group by appropriate choices of pairs of commuting reflections. We
exhibit in Sect. 11 one example with infinite monodromy as arising from a family of genus
two curves.
We should point out that G-II is a special case of rigid local systems with at least one

regular semisimple local monodromy. These were classified by Simpson in [24]. Except
for a sporadic case in rank 6 they consist of the hypergeometric cases and one other case
in each rank ≥ 2. An explicit construction of the corresponding differential equations for
these was given by [9]; see also [12] and [13].
We present in this paper our results with few detailed proofs, which will appear in a

subsequent work. We used MAGMA [3] and PARI-GP [27] for most of the calculations.

2 Rigid local systems
Following the setup and notation of [14], we consider the character varietyMμ whereμ is
an ordered k-tuple of partitions of a positive integer n. This variety parametrizes represen-
tations of π1(� \S, ∗) to GLn(C) mapping a small oriented loop around s ∈ S to a semisim-
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ple conjugacy class Cs whose generic eigenvalues have multiplicities μs = (μs
1,μ

s
2, . . .),

a corresponding partition in μ. Unless otherwise stated in what follows conjugation will
always refer to conjugation by GLn(C).
Here � is a Riemann surface of genus g and S is a finite set of k points. The eigenvalues

are assumed generic in the sense of [14]. If non-empty, the varietyMμ is equidimensional
of dimension

dμ := (2g − 2 + k)n2 −
∑

s∈S

∑

i≥1
(μs

i )
2 + 2.

In this paper, we will only consider the case where g = 0 and in detail when k = 3, n = 4
and, taking S = {0, 1,∞}, the partitions are μ0 = 212,μ1 = 22,μ∞ = 14.
To be concrete, if g = 0, given conjugacy classes C1, . . . , Ck ⊆ GLn(C) and labeling the

punctures with 1, . . . , k , we are looking for solutions to

T1 · · ·Tk = In, Ts ∈ Cs, s = 1, . . . , k, (1)

where In is the identity matrix, up to simultaneous conjugation. Given such a represen-
tation π1(� \ S, ∗), we call the image in � := 〈T1, . . . , Tk〉 ≤ GLn(C) the (geometric)
monodromy group. It is well defined up to conjugation.
Goursat in his remarkable 1886 paper [10] discusses when the local monodromy data

uniquely determines the representation, or in terms of the differential equation and in
later terminology, when are there no accessory parameters. We want local conditions that
guarantee the following. Given two k-tuples of matrices Ts ∈ Cs and T ′

s ∈ Cs for s ∈ S
satisfying (1), there exists a single U ∈ GLn(C) such that T ′

s = UTsU−1 for all s ∈ S. The
corresponding local systems (determined by the local solutions to the linear differential
equation) are known as rigid local systems [16].
To have a rigid local system is to say thatMμ consists of a single point. Therefore, it is

necessary that the expected dimension dμ be zero. This is precisely Goursat’s condition
[10, (5) p.113] (he only considers the case of g = 0) as well as Katz’s [16], which follows
from cohomological considerations.
We assume from now on that g = 0 and then to avoid trivial cases that k ≥ 3. Indeed,

for g = 0, k = 1, the group π1(� \ S, ∗) is trivial and for g = 0, k = 2 it is isomorphic to Z.
Note, as Goursat points out, that adding an extra puncture to S with associated partition
(n) does not change the value of dμ. Such points correspond to apparent singularities in
the differential equation and may hence be safely ignored. We will assume then that the
partitions μs have at least two parts.
Goursat shows that with the given assumptions k ≤ n + 1 [10, top p.114] and hence

there are only finitely many solutions of dμ = 0 for fixed n. He lists [10, p. 115] the cases
of dμ = 0 for n = 3 and n = 4 (see below).
It turns out, however, that the condition dμ = 0 is not sufficient as the varietyMμ might

be empty. Crawley-Boevey [5] proved that a necessary and sufficient condition for Mμ

to be a point, in the case of generic eigenvalues we are considering, is that μ corresponds
to a real root of the associated Kac–Moody algebra. Without getting too deeply into the
details of this condition, we present an algorithm that will allow us to determine when
Mμ is a point. This algorithm ultimately corresponds to Katz’s middle convolution and is
simply an explicit implementation of Crawley-Boevey’s criterion. The reader may consult
[18] as a general reference for this topic.
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It is more convenient to present the multiplicity data μ in the form of a star graph with
one central node and k legs (see [5] and also [14]). We illustrate this in our basic case G-II
(Goursat’s label II for n = 4).

G-II

2

1 2 4 3 2 1

The partitions can be read by starting at the central node and moving away along a leg.
The successive differences of the respective node values are the parts of the corresponding
partition. Nodes with a zero value are not included. For example, in the diagram for G-II
given above, there are three legs. The leg to the left has nodes 4, 2, 1 corresponding to the
partition (2, 1, 1) since 4−2 = 2, 2−1 = 1, 1−0 = 1, 0−0 = 0, . . .. Similarly, the vertical
leg represents the partition (2, 2) and the leg to the right (1, 1, 1, 1).
The algorithm proceeds starting from a configuration as above corresponding to an

ordered k-tuple μ of partitions of n satisfying dμ = 0 using the following moves.

• A: Replace the value n at the central node by
∑

i
ni − n,

where ni are the values at the nodes closest to the central node.
• B: Shrink to a point any segment whose endpoints values are the same.
• C: For each leg put new values on the nodes (not including the central node) so that

the set of differences of consecutive values remains the same but appear in non-
decreasing order as one moves away from the central node along the leg (so that they
correspond to a partition of the value at the central node).

The goal is to use a sequence of these moves to reach the terminal configuration of
just a central node with value 1. Under the assumptions dμ = 0, g = 0 applying A strictly
decreases the value at the central node and hence the algorithm always terminates. Indeed,
for any partition μ = μ1 ≥ μ2 ≥ · · · of n, we have nμ1 ≥ ∑

i μ
2
i . It follows that if dμ = 0

n
∑

s
μs
1 > (2g − 2 + k)n2

and since also g = 0 and n > 0 that
∑

s μ
s
1 > (k − 2)n which proves the claim.

For our running example μ = (212, 22, 14), the algorithm works as follows.
Apply A:

2

1 2 3 3 2 1

Apply B:

2

1 2 3 2 1
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Apply C:

1

1 2 3 2 1

We have arrived at the caseμ = (13, 21, 13) that corresponds to the hypergeometric equa-
tion of order 3. It is easy to see that a next stage takes us to μ = (12, 12, 12) corresponding
to the hypergeometric equation of rank 2 and finally to the desired terminal case. This
confirms that indeed G-II corresponds to a rigid local system.
The algorithm fails if at any stage we cannot perform C; i.e., applying A yields a graph

with a central value strictly smaller than one of its neighbors. This indeed happens for
Goursat’s case IV as we verify below.

G-IV

1

1

1

4 3 2 1

Apply A:

G-IV

1

1

1

2 3 2 1

Since 2 < 3, we cannot apply C on the leg going off to the right. (One of the parts would
have to be 2 − 3 = −1.)
We should note that Goursat himself showed using classical tools that his case IV did

not correspond to a differential equation without accessory parameters [10, p. 120] (…on
devra exclure la quatrième).
Here are the diagrams of all rank n = 4 rigid local systems of the type in question and

their corresponding label in Goursat’s paper (all but the case IV just discussed actually
correspond to a rigid local system).

G-I

1

1 2 3 4 3 2 1

G-II

2

1 2 4 3 2 1

G-III

1

2

1 2 4 2 1
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G-V

2

1

1

4 2 1

G-VI

2

2

2

4 1

G-VII 1

1
1

1
1

4

3 Field of definition and field of moduli
Given a rigid local system with conjugacy classes Cs for s ∈ S as in Sect. 2, let qs(T ) be the
characteristic polynomial of any element of Cs. Let K be the field obtained by adjoining
to Q the coefficients of all qs. We call K the field of moduli or simply the trace field of
the local system (see below for a justification for this name). It is the smallest field F over
which local monodromies Ts ∈ GLn(F ) of the required kind, i.e., Ts ∈ Cs, may exist. But
as is typical in such problems it does not mean that we can actually choose F = K .
Given a collection of local monodromies giving rise to our local system, we call its field

of definition the smallest extension F of Q containing all of their entries. We necessarily
have K ⊆ F . Note that by Levelt’s theorem [2, Prop. 3.3], in the hypergeometric case, we
can always take F = K , but this is not the case for Goursat’s case II that we analyze here
(see Sect. 4.3).
Let Ts ∈ Cs be a k-tuple of matrices in GLn(Q̄) satisfying (1). It is clear that for σ ∈

Gal(Q̄/K ) the k-tuple Tσ
s is another solution to (1). Hence by rigidity, there exists Xσ ∈

GLn(Q̄) such that

X−1
σ TsXσ = Tσ

s , s ∈ S. (2)

Again by rigidity, we find that there exists aσ ,τ ∈ Q̄ such that

XσXσ
τ = aσ ,τXστ .

Themap (σ , τ ) �→ aσ ,τ is a 2-cocycle giving awell-definedelement ξ ∈ H2(Gal(K̄/K ), K×).
The following is a consequence of a standard result in Galois cohomology (see [23,

Chap.10, §5]); we leave the details to the reader.

Proposition 1 There exists a solution to (1) over K if and only if ξ is trivial.

Note that (2) implies that the trace of any product of Ts’s is in the trace field K . That is, K
is indeed the smallest extension of Q containing the traces of all T ∈ �.
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4 Explicit solution for the Goursat case II
In [10, p. 131], Goursat writes down an explicit solution to (1) for S = {0, 1,∞}
in the case when T0, T1, and T∞ are diagonalizable with spectra 12a1a2, 12b2 and
c1c2c3c4, respectively (assuming that eigenvalues with different labels are distinct and
that a1a2b2c1c2c3c4 = 1). The characteristic polynomials qs of Ts are therefore

q0(T ) = (T − 1)2(T − a1)(T − a2),

q1(T ) = (T − 1)2(T − b)2,

q∞(T ) = (T − c1)(T − c2)(T − c3)(T − c4).

Sometimes it is more convenient to work with the characteristic exponents instead of
the eigenvalues. We will use Greek letters to denote them, so that aj = exp(2π iαj) and
similarly for β ’s and γ ’s.
Since the triple (T0, T1, T∞) is irreducible, the 1-eigenspaces for T0 and T1 must have a

zero intersection. Goursat then shows that in a suitable basis the matrices T0 and T1 are
given by

T0 =

⎛

⎜⎜⎜⎝

1 0 A(1 − a1) B(1 − a2)
0 1 C(1 − a1) D(1 − a2)
0 0 a1 0
0 0 0 a2

⎞

⎟⎟⎟⎠ , T1 =

⎛

⎜⎜⎜⎝

b 0 0 0
0 b 0 0

1 − b 0 1 0
0 1 − b 0 1

⎞

⎟⎟⎟⎠ . (3)

A direct computation shows that for given a1, a2, and b, the coefficients of q∞ depend
linearly onA,D, andAD−BC . Conversely, the numbersA,D, andAD−BC can be found
from q∞ by

(b − 1)(a1 − 1)(a2 − a1)
b2a21a2

A = a21q∞(a−1
1 ) − b2q∞(b−1)
a1 − b

,

(b − 1)(a2 − 1)(a1 − a2)
b2a1a22

D = a22q∞(a−1
2 ) − b2q∞(b−1)
a2 − b

,

(b − 1)2(a1 − 1)(a2 − 1)
b2a1a2

(AD − BC) = b2q∞(b−1).

(4)

In particular, these identities imply that A, D, and BC are uniquely determined from
the spectra. On the other hand, conjugation by the diagonal matrix D = diag(λ, 1, λ, 1)
preserves the shapes of T0 and T1 and maps (B, C) to (λ−1B, λC), hence only the product
BC is uniquely determined.

4.1 Criterion for irreducibility

We now find a criterion for when the constructed representation is irreducible. The
eigenmatrices for T0 and T1 are

Z0 =

⎛

⎜⎜⎜⎝

1 0 −A −B
0 1 −C −D
0 0 1 0
0 0 0 1

⎞

⎟⎟⎟⎠ , Z1 =

⎛

⎜⎜⎜⎝

0 0 −1 0
0 0 0 −1
1 0 1 0
0 1 0 1

⎞

⎟⎟⎟⎠ .
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One can easily check the following assertions: if C = 0, then the subspace of vectors
of the form (∗, 0, ∗, 0) is invariant; if B = 0, then the subspace (0, ∗, 0, ∗) is invariant; if
AD − BC = 0, then the subspace spanned by ker(T1 − I) and the vector (a, c, 0, 0) is
invariant; if AD − BC − A − D + 1 = 0, then the subspace spanned by ker(T1 − bI) and
the vector (a − 1, c, 0, 0) is invariant. Conversely, if V is a non-trivial invariant subspace,
then considering the various possibilities for V with respect to the eigenspaces of T0, we
find that one of B, C , AD − BC , or AD − BC − A − D + 1 must vanish.
Thus, the representation is irreducible if and only if

BC(AD − BC)(AD − BC − A − D + 1) 
= 0.

To get the description in terms of eigenvalues, we use the following factorizations:

AD − BC = a1a2(1 − bc1)(1 − bc2)(1 − bc3)(1 − bc4)
(1 − b)2(1 − a1)(1 − a2)

,

BC = ba32
∏

1≤i<j≤4(1 − a1bcicj)
(a1 − a2)2(1 − b)2(1 − a1)(1 − a2)

,

AD − BC − A − D + 1 = (1 − c1)(1 − c2)(1 − c3)(1 − c4)
c1c2c3c4(1 − b)2(1 − a1)(1 − a2)

.

(5)

Note that in terms of q∞ this simply becomes q∞(1) = 0, q∞(b−1) = 0, and
w2(q∞)(a−1

1 b−1) = 0, where w2(q∞) = ∏
i<j(T − cicj) is the polynomial whose roots

are products of all pairs of roots of q∞. This description agrees with the conditions given
in [20, p. 10].
To summarize, let

T := {(a1, a2, b, c1, . . . , c4) | a1a2b2c1 · · · c4 = 1} ⊆ S1 × · · · × S1 � �

be the space of eigenvalues (taken in the unit circle). Here � is the union of a1 =
1, a2 = 1, a1 = a2, b = 1 and ci = cj for 1 ≤ i < j ≤ 4 guaranteeing that
(1, 1, a1, a2), (1, 1, b, b), (c1, . . . , c4) are the eigenvalues of a G-II system. Define Tirr as the
subset corresponding to irreducible local systems. Then we have

Tirr = T � {q∞(1)q∞(b−1)w2(q∞)(a−1
1 b−1) = 0}.

The conditions for irreducibility we found can also be obtained from [5, Thm. 1.5].
Indeed the required decompositions of the real root corresponding to G-II are the follow-
ing (and their refinements). Let i1, . . . , i4 be any re-ordering of 1, . . . , 4.
i) q∞(1) = 0

1 a1 a2 1
1 b b 1
ci1 ci2 ci3 ci4

, a1a2b2ci1ci2ci3 = 1, ci4 = 1.

ii) q∞(b−1) = 0
1 a1 a2 1
1 1 b b
ci1 ci2 ci3 ci4

, a1a2bci1ci2ci3 = 1, bci4 = 1.

iii) w2(q∞)(a−1
1 b−1) = 0

1 a1 1 a2
1 b 1 b
ci1 ci2 ci3 ci4

, a1bci1ci2 = 1, a2bci3ci4 = 1.
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4.2 Invariant Hermitian form

Let T1, . . . , Tk ∈ GLn(C) correspond to an irreducible local system. Assume that there
exists a nonzeroHermitian formH onCn invariant under the group� = 〈T1, . . . , Tk〉, i.e.,

Ts
∗HTs = H, s = 1, . . . , k. (6)

Since ker(H ) is invariant under all Ts by irreducibility, we get that any such H must be
non-degenerate. This implies, in particular, that (Ts

∗)−1 and Ts are conjugate. Therefore,
the sets of eigenvalues of Ts are invariant under the map z �→ z̄−1. This is certainly the
case if the eigenvalues are in the unit circle.
On the other hand, if the eigenvalues of Ts are invariant under the map z �→ z̄−1 for all

s then the (T ∗
s )−1 give another solution to (1). If our system is rigid, then there exists H

satisfying (6). Up to a possible scalar factor H is a Hermitian form invariant under the
monodromy group.
The set Tirr has finitely many connected components. The signature of H is constant

on these components as it is continuous with integer values. We may further break the
symmetry and choose the exponents satisfyingα1 < α2 and γ1 < γ2 < γ3 < γ4 (recall that
exp(2π iαj) = aj and so on). Then we find that there is a unique connected component
where H is positive definite.
It is worth noting that (6) is a system of linear equations in the entries of H and can be

easily solved. More generally, if {Ak} and {Bk} are two collections of matrices, then we can
easily test if they are simultaneously conjugate by solving the system AkX − XBk = 0. In
our computations with monodromy groups, we often rely on this observation.
We can compute the invariant form explicitly starting from (3). Equation (4) implies in

this case thatA,D, and BC are real. After making a suitable conjugation for (B, C), wemay
assume that A, B, C, D are real numbers. The invariant Hermitian matrix is then

H = (AD − BC)

⎛

⎜⎜⎜⎝

C(1 − DE) BCE C(1 − D) BC
BCE B(1 − AE) BC B(1 − A)

C(1 − D) BC C(1 − D) BC
BC B(1 − A) BC B(1 − A)

⎞

⎟⎟⎟⎠ , (7)

where E = (A + D − 1)/(AD − BC). The determinant of H is

(BC)2(AD − BC − A − D + 1)3(AD − BC)3.

Using (7), we can easily describe Tirr+ in terms of the parameters (A,D, t) where t = BC .
If we look at the connected components of the set R3 � V ′, where V ′ = {(A,D, t) | t(t −
AD)(t − (1 − A)(1 − D)) = 0}, and compute the signature in each case, we find that H is
positive definite if and only if

⎧
⎪⎪⎨

⎪⎪⎩

0 < A,D < 1,

0 < BC < AD,

0 < BC < (1 − A)(1 − D).

To derive a criterion in terms of eigenvalues requires more work, but can be done
similarly. The final criterion is then the following. Let I1 be the open arc in S1 with end
points 0, and b−1 (any of the two possibilities), and let I2 be the arc with end points
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(b−1a−1
1 , b−1a−1

2 ), where among the two arcs we pick the one that contains the point b−1.

Proposition 2 The invariant Hermitian form H is definite if and only if for some labeling
c1, . . . , c4 of the eigenvalues of T∞ we have

(i) c1, c2 ∈ I1, c3, c4 /∈ I1,
(ii) c1c2, c3c4 , c1c3, c2c4 ∈ I2, c1c4 , c2c3 /∈ I2.

4.3 Integrality

Thematrices given by Goursat (3), when expressed in terms of the eigenvalues, have non-
trivial denominators. On the other hand, as discussed in the introduction, we should be
able to exhibit the monodromy group integrally. In particular, we should be able to find
integral form of our local monodromies. Integrality is crucial to analyze the cases with
finite monodromy (Sect. 5).
The first observation is that we may choose T∞ as the companion form of q∞ since it

has no repeated roots. After some experimentation, we foundwe can chooseT1 as follows.

T1 =

⎛

⎜⎜⎜⎝

σ1 0 0 σ−1
2 a−1

1
σ2(a1 + 1) σ1 1 σ1σ

−1
2 a−1

1
−σ1σ2a1 −σ2 0 1 + a−1

1
−σ 2

2 a1 0 0 0

⎞

⎟⎟⎟⎠ , T∞ =

⎛

⎜⎜⎜⎝

0 0 0 −τ4
1 0 0 τ3
0 1 0 −τ2
0 0 1 τ1

⎞

⎟⎟⎟⎠ ,

where σi = ei(b1, b2), τi = ei(c1, c2, c3, c4) are the elementary symmetric functions.
With these, using that

a1a2σ 2
2 τ4 = 1,

obtained by taking determinants in T0T1T∞ = I4, we get

T0 =

⎛

⎜⎜⎜⎝

(a1 + 1) 0 −σ−1
2 a2(σ1τ4 − τ3)

−σ1a1 1 σ1σ
−1
2 a2(τ2 − σ2τ4) − σ−1

2
σ2a1 0 0 −a2τ1 + σ1σ

−1
2

0 0 0 a2

⎞

⎟⎟⎟⎠ .

The trace field is generically given by K = Q(σ1, σ2, τ1, . . . , τ4) and we see that we can
always take as field of definition the quadratic extension F := K (a1). Note that we also
have tr(T0) = 2 + a1 + a2 ∈ K . Hence a1 and a2 are conjugate over K .
In fact, the local monodromies are definable over the ring R[a1], where R :=

Z[σ1, σ2, τ1, . . . , τ4 , σ−1
2 , τ−1

4 ] and hence the group � they generate as well. The traces
of all elements of the monodromy group are in R.
In particular, in the main case of interest for this paper (the motivic case, see the Intro-

duction) the characteristic polynomials q0, q1, q∞ will have only roots of unity as roots. In
this case, K is a cyclotomic field. We conclude that the monodromy can be conjugated to
lie in GL4(OF ), whereOF is the ring of integers of F = K (a1). This is consistent with the
rigid local system being motivic.
For example, consider q0 = (x − 1)2(x2 + 1), q1 = (x2 − 1)2, q∞ = x4 + (ζ 3

12 − ζ12)x3 −
ζ12x + 1, where ζ12 is a primitive 12-root of unity. This corresponds to row #3 in Table 2.
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Then our choice gives

T0 :=

⎛

⎜⎜⎜⎝

ζ 3
12 + 1 0 1 ζ 2

12 − 1
0 1 0 −ζ 3

12 + 1
−ζ 3

12 0 0 ζ 2
12

0 0 0 −ζ 3
12

⎞

⎟⎟⎟⎠ , T1 :=

⎛

⎜⎜⎜⎝

0 0 0 ζ 3
12

ζ 3
12 + 1 0 1 0
0 1 0 −ζ 3

12 + 1
−ζ 3

12 0 0 0

⎞

⎟⎟⎟⎠ ,

and

T∞ :=

⎛

⎜⎜⎜⎝

0 0 0 −1
1 0 0 ζ12
0 1 0 0
0 0 1 −ζ 3

12 + ζ12

⎞

⎟⎟⎟⎠ .

These matrices generate a group � of order 103680, which is a non-split central extension
by C4 of the simple group �25920. We see here a phenomenon that occurs frequently in
our examples. The quotient �/Z(�) has no irreducible representation of degree 4 (the
smallest non-trivial irreducible representation is of order 5), whereas a central extension,
namely �, does.
It follows from the above discussion that for G-II cases the cocycle obstruction of Sect. 3

is generically of order dividing 2 = [F : K ]. We can easily compute the corresponding
matrix Xσ for σ the generator of Gal(F/K ) as in Sect. 3. The problem is linear: we solve
TsXσ = XσTσ

s generically, where σ (a1) = a2. We find

XσXσ
σ = μI4 , (8)

where μ = −(a1σ2)3w2(q∞)
(
a−1
1 σ−1

2

)
∈ K×. Recall that w2(q∞) := ∏

i<j(T − cicj).
The cocycle can be represented by a quaternion algebra. Explicitly, this is the quaternion
algebra

(
D,μ
K

)
, where D = disc(F ) and μ is as above.

5 Finite monodromy
Wewould like to describe all cases of G-II with finite monodromy. Since the monodromy
is integral (Sect. 4.3), finite monodromy is equivalent to the invariant Hermitian form
being definite in every complex embedding of the field of definition. (This is the same
argument used in [2].) These cases are those where all solutions to the corresponding
differential equation (Sect. 7) are algebraic. Checking definiteness is easily done using
the combinatorial criterion of Proposition 2, which involves the relative position of the
eigenvalues of the local monodromies.
Apart from the infinitely many imprimitive cases discussed later in Sect. 12.5, the only

examples of irreducible cases with finite monodromy that we obtained after an extensive
search are those given in Tables 1, 2, 3 and 4.

5.1 Description of the tables

For each choice of eigenvalues, we list the order of the monodromy � ⊆ GL4(C), an
identification ofA and the quotient of �/A using standard notation (A denotes a maximal
abelian normal subgroup of�), the order of the center of� and whether� acts primitively
or not.
By a theorem of Jordan, there are finitely many possibilities for the quotient �/A. The

finite groups acting in four dimensions were classified by Blichfeldt (see [11] for a modern
description). The group denoted by �25920 is a simple group.
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Table 1 α1,α2 = 1/3, 2/3

γ |�| �/A A |Z (�)| Impr

1 1/8, 3/8, 5/8, 7/8 48 S4 C2 2 ∗
2 1/5, 2/5, 3/5, 4/5 60 A5 1 1

3 1/10, 3/10, 7/10, 9/10 120 A5 C2 2

4 1/12, 5/12, 7/12, 11/12 144 C2 × A4 C6 2 ∗
5 1/20, 9/20, 13/20, 17/20 240 A5 C4 4

6 2/9, 1/3, 5/9, 8/9 324 A4 C3
3 1 ∗

7 1/24, 7/24, 17/24, 23/24 576 S4 × A4 C2 2

8 1/28, 9/28, 3/4, 25/28 672 PSL2(F7) C4 4

9 1/20, 9/20, 11/20, 19/20 720 C2 × A5 C6 2 ∗
10 1/15, 4/15, 11/15, 14/15 1440 A5 × A4 C2 2

11 1/30, 11/30, 19/30, 29/30 1440 A5 × A4 C2 2

12 1/40, 9/40, 31/40, 39/40 2880 A5 × S4 C2 2

Table 2 α1,α2 = 1/4, 3/4

γ |�| �/A A |Z (�)| Impr

1 1/12, 5/12, 7/12, 11/12 192 C2 × S4 C4 2 ∗
2 1/20, 9/20, 13/20, 17/20 640 C4

2 � D5 C4 4

3 1/36, 13/36, 25/36, 11/12 103680 �25920 C4 4

Table 3 α1,α2 = 1/5, 4/5

γ |�| �/A A |Z (�)| Impr

1 1/12, 5/12, 7/12, 11/12 1200 C2 × A5 C10 2 ∗
2 2/15, 7/15, 8/15, 13/15 7200 A5 × A5 C2 2

3 1/20, 9/20, 11/20, 19/20 1200 C2 × A5 C10 2 ∗
4 1/30, 11/30, 19/30, 29/30 7200 A5 × A5 C2 2

We should note that we can always twist the local monodromies by multiplying by
scalars matrices so that the resulting triple is in SL4(C). If the group acts primitively, the
normal subgroup A consists of scalars. It follows that there are finitely many possible
primitive � up to twisting; we will see in Sect. 12 that this is not the case for imprimitive
groups.

5.2 Special case

We start by discussing a special, simpler case. Assume that the characteristic polynomials
q0, q1, q∞ of the local monodromies at the respective singularities have real coefficients
and that q1 = (T −1)2(T +1)2. Let γi ∈ (0, 1) for i = 1, . . . , 4 be the exponents of the roots
of q∞ (so that cj = exp(2π iγj)) and similarly let α1 ∈ (0, 1/2) be such that the exponents
of q0 are 0, 0,α1, 1 − α1.
A special case of Proposition 2 reduces in this case to the following. Let δ1, . . . , δ6 be

representatives in (0, 1) (with multiplicities) of the exponents γi + γj for i < j. Define
n1 as the number of γi in the interval (0, 1/2) and n2 the number of δi (counting with
multiplicities) in the interval (1/2 − α1, 1/2 + α1).

Proposition 3 With the above assumptions and notations the invariant Hermitian
form H is definite if and only if (n1, n2) = (2, 4).
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Table 4 General case

β ,α1 ,α2 γ |�| �/A A |Z (�)| Impr

1 1/2, 1/2, 1/3 1/8, 11/24, 5/8, 23/24 4608 (A4 × A4) � C2 C2
4 4 ∗

2 1/2, 1/2, 1/3 5/48, 23/48, 29/48, 47/48 41472 (A4 × A4) � D4 C2
6 6 ∗

3 1/2, 1/2, 1/3 11/120, 59/120, 71/120, 119/120 1036800 (A5 × A5) � C2 C2
12 12 ∗

4 1/2, 1/2, 1/4 7/48, 23/48, 31/48, 47/48 6144 C4
2 � D6 C4 · C8 8 ∗

5 1/2, 1/2, 1/5 7/40, 19/40, 27/40, 39/40 2880000 (A5 × A5) � C2 C2
20 20 ∗

6 1/2, 1/2, 1/5 19/120, 59/120, 79/120, 119/120 2880000 (A5 × A5) � C2 C2
20 20 ∗

7 1/2, 1/2, 1/6 5/36, 17/36, 29/36, 11/12 311040 �25920 C12 12

8 1/2, 1/2, 1/6 11/60, 23/60, 47/60, 59/60 311040 �25920 C12 12

9 1/2, 1/3, 1/4 7/24, 5/12, 19/24, 11/12 165888 (A4 × A4) � D4 C2
12 12 ∗

10 1/2, 1/3, 1/4 11/48, 23/48, 35/48, 47/48 165888 (A4 × A4) � D4 C2
12 12 ∗

11 1/2, 1/3, 1/5 4/15, 7/15, 23/30, 29/30 6480000 (A5 × A5) � C2 C2
30 30 ∗

12 1/2, 1/3, 1/5 17/60, 9/20, 47/60, 19/20 6480000 (A5 × A5) � C2 C2
30 30 ∗

13 1/2, 1/3, 1/5 19/60, 5/12, 49/60, 11/12 6480000 (A5 × A5) � C2 C2
30 30 ∗

14 1/2, 1/3, 1/5 29/120, 59/120, 89/120, 119/120 6480000 (A5 × A5) � C2 C2
30 30 ∗

15 1/2, 1/5, 2/5 4/15, 13/30, 23/30, 14/15 6000 S5 C2 · C2
5 10 ∗

16 1/2, 1/5, 2/5 9/40, 19/40, 29/40, 39/40 6000 S5 C2 · C2
5 10 ∗

17 1/3, 1/2, 5/6 1/18, 7/18, 13/18, 5/6 155520 �25920 C6 6

18 1/3, 1/2, 1/6 5/18, 11/18, 5/6, 17/18 155520 �25920 C6 6

19 1/3, 1/2, 1/6 11/30, 17/30, 23/30, 29/30 155520 �25920 C6 6

20 1/3, 1/3, 2/3 1/12, 11/24, 5/6, 23/24 69120 C4
2 .A6 C12 12

21 1/3, 1/3, 2/3 2/15, 8/15, 11/15, 14/15 2160 A6 C6 6

22 1/3, 1/3, 2/3 5/24, 11/24, 17/24, 23/24 2160 A6 C6 6

23 1/3, 1/3, 2/3 5/42, 17/42, 5/6, 41/42 15120 A7 C6 6

24 1/3, 1/3, 2/3 11/60, 23/60, 47/60, 59/60 69120 C4
2 .A6 C12 12

To illustrate the situation, here is a picture with the position of the various roots on
the unit circle in the case α1,α2 = 1/3, 2/3 and γ = (1/28, 9/28, 3/4, 25/28). Hence
δ = (1/14, 3/14, 5/14, 9/14, 11/14, 13/14).

01
2

1
28

9
28

3
4

25
28

n1 = 2
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5
6

1
6

1
14

3
14

5
14

13
14

11
14

9
14

n2 = 4

In the special case of this section, the finitemonodromycases found are listed inTables 1,
2, and 3.

5.3 General case

Here we consider the general case (up to twisting) where the exponents are

t exponents
0 0, 0,α1,α2
1 0, 0,β ,β
∞ γ1, γ2, γ3, γ4

The finite monodromy cases found are listed in Table 4.

6 Coxeter groups
To find explicit realizations of finite monodromy groups of G-II type, we may start with a
finite group in GL4(C) and attempt to build a G-II rigid local system by producing three
appropriate elements T0, T1, T∞. For example, we can take a finite complex reflection
group W in rank 4, hence one of the Weyl groups A4 , B4 , F4 or the non-crystallographic
case H4. Since T∞ should have distinct eigenvalues different from 1, we could start by
taking T∞ to be a Coxeter element. Similarly, we can take T1 to be the product of two
commuting reflections inW . We may assume that these reflections are simple and hence
correspond to two non-adjacent dots in the corresponding Dynkin diagram.
We illustrate the above procedure in one example in the case H4 here and give several

further examples defined over Q in Sect. 9. The Dynkin diagram is

H4 : 5

where we have circled the two chosen simple reflections. We take T∞ := s1s2s3s4 , T1 :=
s1s3 and T0 so that T0T1T∞ = 1.
With the help of MAGMA (see the actual calculations below), we find that

T0 =

⎛

⎜⎜⎜⎝

1 τ τ 0
0 0 −1 0
0 0 1 1
0 −1 −1 −1

⎞

⎟⎟⎟⎠ , T1 =

⎛

⎜⎜⎜⎝

−1 0 0 0
τ 1 1 0
0 0 −1 0
0 0 1 1

⎞

⎟⎟⎟⎠ , T∞ =

⎛

⎜⎜⎜⎝

−1 −τ −τ −τ

τ τ τ τ

0 1 0 0
0 0 1 0

⎞

⎟⎟⎟⎠ ,

where τ 2 − τ − 1 = 0.
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Taking the embedding into R where τ = (1 + √
5)/2 = 1.618033988 · · · is the golden

ratio, the exponents of the local monodromies are:

T0 : (0, 0, 1/3, 2/3), T1 : (0, 0, 1/2, 1/2), T∞ : (1/30, 11/30, 19/30, 29/30)

and hence this example corresponds to row #11 in the above table for α1,α2 = 1/3, 2/3.
This shows, in particular, that here the monodromy representation can be realized over
Z[τ ], the ring of integers of the trace field K := Q(

√
5). This is consistent with our

discussion in Sect. 4.3.

> W<s1,s2,s3,s4>:=CoxeterGroup(GrpMat,"H4");

> K<a>:=BaseRing(W);

> K;

Number Field with defining polynomial xˆ2 - x - 1

over the Rational Field

> R<x>:=PolynomialRing(K);

> Tinf:=s1*s2*s3*s4;

> T1:=s1*s3;

> T0:=Tinfˆ(-1)*T1ˆ(-1);

> CharacteristicPolynomial(Tinf);

xˆ4 + (-a + 1)*xˆ3 + (-a + 1)*xˆ2 + (-a + 1)*x + 1

> CharacteristicPolynomial(T1);

xˆ4 - 2*xˆ2 + 1

> CharacteristicPolynomial(T0);

xˆ4 - xˆ3 - x + 1

> T0;

[ 1 a a 0]

[ 0 0 -1 0]

[ 0 0 1 1]

[ 0 -1 -1 -1]

> T1;

[-1 0 0 0]

[ a 1 1 0]

[ 0 0 -1 0]

[ 0 0 1 1]

> Tinf;

[-1 -a -a -a]

[ a a a a]

[ 0 1 0 0]

[ 0 0 1 0]

> G:=sub<W|[T1,Tinf]>;

> #G;

1440

7 Differential equation
Goursat [10, §10] computes explicitly an order four linear differential equation of type
G-II with given local monodromies. Let the exponents of these local monodromies be

0 : (0, 1, 1 − α1, 1 − α2), 1 : (0, 1,β ,β + 1), ∞ : (γ1, γ2, γ3, γ4).

These are related by the equation

β = 1
2 (1 + e1(α) − e1(γ )), α := (α1,α2), γ := (γ1, . . . , γ4),

where en(x) denotes the elementary symmetric functions of the quantities x = (x1, x2, . . .).
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The shape of the exponents forces the differential equation to be of the following form

x2(x − 1)2
d4

dx4
+ (Ax − B)x(x − 1)

d3

dx3
+ (Cx2 − Dx + E)

d2

dx2

+ (Fx − G)
d
dx

+ H = 0.

for certain constants A, B, . . . , H . Imposing further that there are no logarithmic solu-
tions at x = 1 completely determines these constants. Following Goursat, we obtain the
following values (the expression for G he gives is not quite right and is here corrected.)

A = 6 + e1(γ ),

B = 3 + e1(α),

C = 7 + 3e1(γ ) + e2(γ ),

D = E + C − (β − 1)(β − 2),

E = 1 + e1(α) + e2(α),

F = 1 + e1(γ ) + e2(γ ) + e3(γ ),

G = F + 2(β − 1)(β − 2)(β − 3) + (β − 1)(β − 2)(2A − B) + (β − 1)(2C − D),

H = e4(γ ).

As worked out also by Goursat [10, (18)], the coefficients an of a power series solution∑
n≥0 anxn to the differential equation satisfy the second-order recursion

C0an = C1an−1 + C2an−2, (9)

where

C0 := (n + 1)(n + 2)[n(n − 1) + Bn + E],

C1 := (n + 1)[2n(n − 1)(n − 2) + (A + B)n(n − 1) + Dn + G],

C2 := −[n(n − 1)(n − 2)(n − 3) + An(n − 1)(n − 2) + Cn(n − 1) + Fn + H ].

For example, if we take α = (1/4, 3/4) and γ = (1/5, 2/5, 3/5,−1/5) (so that β = 1/2)
we obtain the differential equation

x2(x − 1)2
d4

dx4
+ x(x − 1)(7x − 4)

d3

dx3

+(51/5x2 − 931/80x + 35/16)
d2

dx2
+ (54/25x − 1223/800)

d
dx

− 6/625, (10)

which indeed has local exponents

0 : (0, 1, 1/4, 3/4), 1 : (0, 1/2, 1, 3/2), ∞ : (−1/5, 1/5, 2/5, 3/5).

The first few coefficients of the power series expansion of a basis of holomorphic solutions
to the differential equation at x = 0 are as follows:

φ0 = 1 + 48/21875x2 + 28088/18046875x3 + 6589643/5865234375x4

+ 57582020413/67659667968750x5 + O(x6),

φ1 = x + 1223/3500x2 + 1096811/5775000x3 + 370276451/3003000000x4

+ 15278570717561/173208750000000x5 + O(x6).

(11)
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Table 5 Signature (2, 2)

α1 ,α2 β1 ,β2 γ1 , γ2 , γ3 , γ4 D μ

1 1/3, 2/3 0, 1/2 1/4, 1/3, 2/3, 3/4 −3 −2

2 1/3, 2/3 0, 1/2 1/6, 1/4, 3/4, 5/6 −3 −2

3 1/3, 2/3 1/3, 2/3 1/6, 1/4, 3/4, 5/6 −3 −2

4 1/3, 2/3 1/3, 2/3 1/10, 3/10, 7/10, 9/10 −3 −1

5 1/3, 2/3 1/6, 5/6 1/4, 1/3, 2/3, 3/4 −3 −2

6 1/3, 2/3 1/6, 5/6 1/5, 2/5, 3/5, 4/5 −3 −1

7 1/4, 3/4 0, 1/2 1/4, 1/3, 2/3, 3/4 −4 −3

8 1/4, 3/4 0, 1/2 1/6, 1/3, 2/3, 5/6 −4 −1

9 1/4, 3/4 0, 1/2 1/6, 1/4, 3/4, 5/6 −4 −3

10 1/4, 3/4 0, 1/2 1/5, 2/5, 3/5, 4/5 −4 −1

11 1/4, 3/4 0, 1/2 1/10, 3/10, 7/10, 9/10 −4 −1

12 1/4, 3/4 1/3, 2/3 1/6, 1/4, 3/4, 5/6 −4 −3

13 1/4, 3/4 1/3, 2/3 1/10, 3/10, 7/10, 9/10 −4 −1

14 1/4, 3/4 1/3, 2/3 1/12, 5/12, 7/12, 11/12 −4 1

15 1/4, 3/4 1/4, 3/4 1/12, 5/12, 7/12, 11/12 −4 1

16 1/4, 3/4 1/6, 5/6 1/4, 1/3, 2/3, 3/4 −4 −3

17 1/4, 3/4 1/6, 5/6 1/5, 2/5, 3/5, 4/5 −4 −1

18 1/4, 3/4 1/6, 5/6 1/12, 5/12, 7/12, 11/12 −4 1

19 1/6, 5/6 0, 1/2 1/4, 1/3, 2/3, 3/4 −3 −2

20 1/6, 5/6 0, 1/2 1/6, 1/3, 2/3, 5/6 −3 −2

21 1/6, 5/6 0, 1/2 1/6, 1/4, 3/4, 5/6 −3 −2

22 1/6, 5/6 0, 1/2 1/5, 2/5, 3/5, 4/5 −3 −1

23 1/6, 5/6 0, 1/2 1/8, 3/8, 5/8, 7/8 −3 −1

24 1/6, 5/6 0, 1/2 1/10, 3/10, 7/10, 9/10 −3 −1

25 1/6, 5/6 1/3, 2/3 1/6, 1/4, 3/4, 5/6 −3 −2

26 1/6, 5/6 1/3, 2/3 1/5, 2/5, 3/5, 4/5 −3 1

27 1/6, 5/6 1/3, 2/3 1/8, 3/8, 5/8, 7/8 −3 1

28 1/6, 5/6 1/3, 2/3 1/10, 3/10, 7/10, 9/10 −3 1

29 1/6, 5/6 1/3, 2/3 1/12, 5/12, 7/12, 11/12 −3 2

30 1/6, 5/6 1/4, 3/4 1/5, 2/5, 3/5, 4/5 −3 1

31 1/6, 5/6 1/4, 3/4 1/8, 3/8, 5/8, 7/8 −3 1

32 1/6, 5/6 1/4, 3/4 1/10, 3/10, 7/10, 9/10 −3 1

33 1/6, 5/6 1/4, 3/4 1/12, 5/12, 7/12, 11/12 −3 2

34 1/6, 5/6 1/6, 5/6 1/4, 1/3, 2/3, 3/4 −3 −2

35 1/6, 5/6 1/6, 5/6 1/5, 2/5, 3/5, 4/5 −3 1

36 1/6, 5/6 1/6, 5/6 1/8, 3/8, 5/8, 7/8 −3 1

37 1/6, 5/6 1/6, 5/6 1/10, 3/10, 7/10, 9/10 −3 1

38 1/6, 5/6 1/6, 5/6 1/12, 5/12, 7/12, 11/12 −3 2

As expected from a motivic situation the denominators of the coefficients appear to
grow only exponentially, rather than what could be expected generically from solutions
to recursion (9).

8 Field of moduli Q
It is easy to list all cases of irreducible G-II rigid local systems with field of moduli Q as
there are only finitely many cyclotomic polynomials of fixed degree and with coefficients
in Q. We list the results in Tables 5 and 6 according to the signature of the respective
Hermitian form.
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Table 6 Signature (4, 0)

α1 ,α2 β1 ,β2 γ1 , γ2 , γ3 , γ4 D μ

1 1/3, 2/3 0, 1/2 1/5, 2/5, 3/5, 4/5 −3 1

2 1/3, 2/3 0, 1/2 1/8, 3/8, 5/8, 7/8 −3 1

3 1/3, 2/3 0, 1/2 1/10, 3/10, 7/10, 9/10 −3 1

4 1/3, 2/3 0, 1/2 1/12, 5/12, 7/12, 11/12 −3 2

5 1/3, 2/3 1/3, 2/3 1/5, 2/5, 3/5, 4/5 −3 −1

6 1/3, 2/3 1/3, 2/3 1/8, 3/8, 5/8, 7/8 −3 −1

7 1/3, 2/3 1/4, 3/4 1/6, 1/3, 2/3, 5/6 −3 −2

8 1/3, 2/3 1/4, 3/4 1/5, 2/5, 3/5, 4/5 −3 −1

9 1/3, 2/3 1/4, 3/4 1/8, 3/8, 5/8, 7/8 −3 −1

10 1/3, 2/3 1/4, 3/4 1/10, 3/10, 7/10, 9/10 −3 −1

11 1/3, 2/3 1/6, 5/6 1/8, 3/8, 5/8, 7/8 −3 −1

12 1/3, 2/3 1/6, 5/6 1/10, 3/10, 7/10, 9/10 −3 −1

13 1/4, 3/4 0, 1/2 1/12, 5/12, 7/12, 11/12 −4 1

14 1/4, 3/4 1/3, 2/3 1/5, 2/5, 3/5, 4/5 −4 −1

15 1/4, 3/4 1/4, 3/4 1/6, 1/3, 2/3, 5/6 −4 −1

16 1/4, 3/4 1/4, 3/4 1/5, 2/5, 3/5, 4/5 −4 −1

17 1/4, 3/4 1/4, 3/4 1/10, 3/10, 7/10, 9/10 −4 −1

18 1/4, 3/4 1/6, 5/6 1/10, 3/10, 7/10, 9/10 −4 −1

Table 7 Quaternion algebras

D\μ −3 −2 −1 1 2

−3 [3,∞] [2,∞] [3,∞] [ ] [2, 3]

−4 [3,∞] [2,∞] [2,∞] [ ]

Recall that the obstruction for the realizability of the monodromy group over the field
of moduli is given by the quaternion algebra

(
D,μ
K

)
, where D = disc(F ), with F = Q(a1),

and μ is the number computed in (8). There are only four different quaternion algebras
over Q that appear depending on α1,α2. To give these algebras is enough to give the list
[p1, . . . , p2r ] of ramified primes. These are: [ ] (i.e., the matrix algebra), [2,∞], [3,∞] or
[2, 3] (see Table 7).

9 Finite monodromy K = Q

As shown in Table 6, there are only four cases of finite monodromy with field of moduliQ
that can be realized over R (rows #1, #2, #4, and #14; note that #3 is a twist of #1). Three
cases are actually definable over Q; we list these first. We give the fourth case in Sect. 9.4;
it has the quaternion algebra ramified at [2, 3] as an obstruction and is hence not definable
over Q.
Wewill construct thesemonodromy groups as subgroups inCoxeter groups as in Sect. 6;

we circle in the corresponding Dynkin diagram the two chosen simple reflections.

9.1 (1/3, 2/3), (0, 1/2), (1/5, 2/5, 3/5, 4/5)

We can find this case as a subgroup of S5 viewed as the Coxeter group of the root system
A4.

A4 :

The monodromy group is isomorphic to A5, the alternating group in five letters, acting
in its standard representation. Here is a calculation using MAGMA.
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> W<s1,s2,s3,s4>:=CoxeterGroup(GrpMat,"A4");

> K:=BaseRing(W);

> R<x>:=PolynomialRing(K);

> Tinf:=s1*s2*s3*s4;

> T1:=s1*s3;

> T0:=Tinfˆ(-1)*T1ˆ(-1);

> CharacteristicPolynomial(T0);

xˆ4 - xˆ3 - x + 1

> CharacteristicPolynomial(T1);

xˆ4 - 2*xˆ2 + 1

> CharacteristicPolynomial(Tinf);

xˆ4 + xˆ3 + xˆ2 + x + 1

> G:=sub<W|[T0,T1,Tinf]>;

> IsIsomorphic(G,AlternatingGroup(5));

true Homomorphism of MatrixGroup(4, Rational Field) of order

2ˆ2 * 3 * 5 into

GrpPerm: $, Degree 5, Order 2ˆ2 * 3 * 5 induced by

[ 1 1 1 0]

[ 0 0 -1 0]

[ 0 0 1 1]

[ 0 -1 -1 -1] |--> (2, 5, 3)

[-1 0 0 0]

[ 1 1 1 0]

[ 0 0 -1 0]

[ 0 0 1 1] |--> (1, 2)(4, 5)

[-1 -1 -1 -1]

[ 1 0 0 0]

[ 0 1 0 0]

[ 0 0 1 0] |--> (1, 3, 5, 4, 2)

Choosing the parameters in Goursat’s differential equation (Sect. 7) as

(α1,α2) = (1/3, 2/3); β = 1/2; (γ1, γ2, γ3, γ4) = (1/5, 2/5,−2/5, 4/5)

we obtain 7, 4, 10, 413/36, 20/9, 46/25, 2387/1800,−16/625 for the eight constants
A, B, . . . , H . Then all holomorphic solutions at x = 0 have power series expansion, since
they represent algebraic functions of x, with integral coefficients, up to the power of
some constant N . (The minimal such N is called the Eisenstein constant of the algebraic
function; in this example it seems to only involve the primes 2, 5 and 11.)
The holomorphic solution to equation holomorphic at x = 0 and starting as

y := 1 − 387/1300 x − 172773/2080000 x2 − 141382989/3328000000 x3 + O(x4)

satisfies an algebraic equation of degree 10 over Q(x). (The series can be computed using
the explicit form of the differential equation given by Goursat, see Sect. 7.)
The solution over K := Q(

√−15) that starts as

1 − (123/475 + 33/1900ω)x − (271713/3800000 + 78771/15200000ω)x2 + O(x3)

where ω2 − ω + 4 = 0 is a generator of the ring of integers of K on the other hand,
satisfies the following degree five equation

P(x, y) := y5 + a3(x)y3 + a2(x)y2 + a1(x)y + a0(x) = 0,



 38 Page 20 of 34 Radchenko and Rodriguez Villegas Res Math Sci (2018) 5:38 

where

a3 := 605/8664 − 715/2888ω,

a2 := −1189825/2963088 + 70525/329232ω,

a1 := (298150/390963 − 11050/130321ω)x

− 518989705/900778752 + 19234735/300259584ω,

a0 := −(453252/2476099 + 151020/2476099ω)x2

+ (3663787/14856594 + 406915/4952198ω)x

− (82982887/900778752 + 9216415/300259584ω).

9.2 (1/4, 3/4), (0, 1/2), (1/8, 3/8, 5/8, 7/8)

We can find this case as a subgroup of the Coxeter group of the root system B4.

B4 : 4

The monodromy group is isomorphic to GL2(F3), of order 48, in its unique faithful
irreducible representation of dimension four. Here is a calculation using MAGMA.

> W<s1,s2,s3,s4>:=CoxeterGroup(GrpMat,"B4");

> K:=BaseRing(W);

> R<x>:=PolynomialRing(K);

> Tinf:=s1*s2*s3*s4;

> T1:=s2*s4;

> T0:=Tinfˆ(-1)*T1ˆ(-1);

> CharacteristicPolynomial(T0);

xˆ4 - xˆ3 - x + 1

> CharacteristicPolynomial(T1);

xˆ4 - 2*xˆ2 + 1

> CharacteristicPolynomial(Tinf);

xˆ4 + 1

> T0;

[ 0 -1 0 0]

[ 0 1 1 2]

[ 1 1 1 0]

[-1 -1 -1 -1]

> T1;

[ 1 1 0 0]

[ 0 -1 0 0]

[ 0 1 1 2]

[ 0 0 0 -1]

> Tinf;

[-1 -1 -1 -2]

[ 1 0 0 0]

[ 0 1 0 0]

[ 0 0 1 1]

> G:=sub<W|[T0,T1,Tinf]>;

> IsIsomorphic(G,GL(2,GF(3)));

true Mapping from: GrpMat: G to GL(2, GF(3))

Composition of Mapping from: GrpMat: G to GrpPC and

Mapping from: GrpPC to GrpPC and

Mapping from: GrpPC to GL(2, GF(3))
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We can change basis so that T∞ is the companion matrix of �8 = T 4 + 1. We obtain
the following triple:

T0 =

⎛

⎜⎜⎜⎝

0 1 1 0
−1 0 −1 0
0 −1 0 0
0 1 0 1

⎞

⎟⎟⎟⎠ , T1 =

⎛

⎜⎜⎜⎝

−1 −1 −1 −1
0 0 0 −1
0 1 0 1

−1 0 0 1

⎞

⎟⎟⎟⎠ , T∞ =

⎛

⎜⎜⎜⎝

0 0 0 −1
1 0 0 0
0 1 0 1
0 0 1 0

⎞

⎟⎟⎟⎠

Choosing the parameters in Goursat’s differential equation below (Sect. 7) as

(α1,α2) = (1/4, 3/4); β = 1/2; (γ1, γ2, γ3, γ4) = (1/8, 3/8,−3/8, 7/8)

weobtain 7, 4, 319/32, 3295/288, 20/9, 117/64, 383/288,−63/4096 for the eight constants
A, B, . . . , H . Then all holomorphic solutions at x = 0 have power series expansion with
integral coefficients up to powers of 2 and 5.
The holomorphic solution to equation holomorphic at x = 0 and starting as

1 + (5/256
√−8 − 29/128)x + (383/65536

√−8 − 527/8192)x2 + O(x3)

satisfies the degree eight equation

P(x, y) = y8 + a6(x)y6 + a4(x)y4 + a2(x)y2 + a0(x),

where

a6 := 230/729
√−8 − 400/729,

a4 := (1048/19683
√−8 + 19984/19683)x

− (351670/1594323
√−8 + 1034482/1594323),

a2 := (4842880/43046721
√−8 − 10078688/43046721)x,

+ (−1015591450/10460353203
√−8 + 1684358888/10460353203),

a0 := −(27028768/1162261467
√−8 + 3467632/1162261467)x3

+ (172219360/3486784401
√−8 + 238769752/3486784401)x2

− (296048878/10460353203
√−8 + 1067187679/10460353203)x

+ (22649710/10460353203
√−8 + 382087111/10460353203).

In addition, letφ0 := 1+0·x+O(x2),φ1 := 0·1+x+O(x2) be a basis of the holomorphic
solutions to the differential equation at x = 0 and define

ψ := φ2
0 − 891/16384φ2

1 .

Then ψ satisfies a degree four equation; more precisely, if ξ is the hypergeometric series
satisfying the trinomial equation

ξ4 − 4ξ3 + 27x = 0,

then ψ = −4/135ξ3 + 4/45ξ2 + 32/45ξ − 37/27.

9.3 (1/4, 3/4), (0, 1/2), (1/12, 5/12, 7/12, 11/12)

We can find this case as a subgroup of the Coxeter group of the root system F4.

F4 : 4
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The monodromy group is isomorphic to U2(F3) � C2, of order 192, in one of its irre-
ducible faithful representations of dimension four. This group is labeled (192, 988) in the
SmallGroup database. Here is a calculation using MAGMA.

> W<s1,s2,s3,s4>:=CoxeterGroup(GrpMat,"F4");

> K:=BaseRing(W);

> R<x>:=PolynomialRing(K);

> Tinf:=s1*s2*s3*s4;

> T1:=s1*s3;

> T0:=Tinfˆ(-1)*T1ˆ(-1);

> CharacteristicPolynomial(T0);

xˆ4 - 2*xˆ3 + 2*xˆ2 - 2*x + 1

> CharacteristicPolynomial(T1);

xˆ4 - 2*xˆ2 + 1

> CharacteristicPolynomial(Tinf);

xˆ4 - xˆ2 + 1

> T0;

[ 1 1 2 0]

[ 0 1 0 0]

[ 0 0 1 1]

[ 0 -1 -2 -1]

> T1;

[-1 0 0 0]

[ 1 1 2 0]

[ 0 0 -1 0]

[ 0 0 1 1]

> Tinf;

[-1 -1 -2 -2]

[ 1 0 0 0]

[ 0 1 1 1]

[ 0 0 1 0]

> G:=sub<W|[T0,T1,Tinf]>;

> IdentifyGroup(G);

<192, 988>

Conjugating so that T∞ is the companion matrix of �12 = T 4 − T 2 + 1 we obtain the
following triple

T0 =

⎛

⎜⎜⎜⎝

1 0 0 −1
0 1 0 1
0 0 1 1
0 −1 −1 −1

⎞

⎟⎟⎟⎠ , T1 =

⎛

⎜⎜⎜⎝

0 1 1 1
1 0 0 −1
0 0 −1 0
0 0 1 1

⎞

⎟⎟⎟⎠ , T∞ =

⎛

⎜⎜⎜⎝

0 0 0 −1
1 0 0 0
0 1 0 1
0 0 1 0

⎞

⎟⎟⎟⎠ .

The permutation representation of the smallest degree for this monodromy group is of
degree 24. Hence some solution to the differential equation satisfies a degree 24 equation
with coefficients in some number field but we have not attempted to find it.

9.4 (1/3, 2/3), (0, 1/2), (1/12, 5/12, 7/12, 11/12)

Asalreadymentioned in this case, thequaternion algebra is ramified at [2, 3].As it happens,
since 2 and 3 are both inert in F = Q(

√
5), the obstruction cocycle ξ becomes trivial in F .

Therefore, by Proposition 3, we should be able to realize this case over F .
This is indeed the case and we can realize it again using Coxeter groups, namely as a

subgroup of the non-crystallographic W (H4) of order 14400. Note, however, that in this
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case T∞ is not a Coxeter element; we still take T1 as a product of two commuting simple
reflections.
Here are some of the computations in MAGMA.

> W<s1,s2,s3,s4>:=CoxeterGroup(GrpMat,"H4");

> K<a>:=BaseRing(W);

> K;

Number Field with defining polynomial xˆ2 - x - 1 over the

Rational Field

> R<x>:=PolynomialRing(K);

> CC:=ConjugacyClasses(W);

> [Order(g[3]): g in CC];

[ 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 10, 10, 10,

10, 10, 10, 10, 10, 10, 12, 15, 15, 20, 20, 30, 30 ]

We see that there is a unique conjugacy class in W (H4) of order 12. The class has 1200
elements.
> C:=Conjugates(W,CC[28][3]);

> #C;

1200

We set T1 := s1s3 and look for an element T∞ of order 12 such that s1s3T∞ has charac-
teristic polynomial T 4 −T 3 −T + 1 = (T − 1)2(T 2 +T + 1). There are a fair number of
such elements; we select for example:
> Tinf;

[ 0 1 1 1]

[ a + 1 a + 1 1 0]

[ -a -a - 1 -1 0]

[-a - 1 -a - 1 -a -a]

We can now construct the whole triple and compute the order of the group they generate.
> T1:=s1*s3;

> T0:=Tinfˆ(-1)*T1ˆ(-1);

> T0;

[ a 1 0 0]

[ -a - 1 -a - 1 -1 -1]

[2*a + 1 2*a + 2 a + 2 a + 1]

[ -a - 1 -a - 1 -a - 1 -a]

> T1;

[-1 0 0 0]

[ a 1 1 0]

[ 0 0 -1 0]

[ 0 0 1 1]

> CharacteristicPolynomial(T0);

xˆ4 - xˆ3 - x + 1

> CharacteristicPolynomial(T1);

xˆ4 - 2*xˆ2 + 1

> CharacteristicPolynomial(Tinf);

xˆ4 - xˆ2 + 1

> G:=sub<W|[T0,T1,Tinf]>;

> #G;

144

> IdentifyGroup(G);

<144, 127>



 38 Page 24 of 34 Radchenko and Rodriguez Villegas Res Math Sci (2018) 5:38 

Themonodromy group is then isomorphic to SL2(F3)�S3 acting via its four-dimensional
faithful irreducible representation with rational character. Note that this representation
has Schur index 2 matching our obstruction calculation. Its smallest permutation repre-
sentation is of degree 48.

10 Hurwitz example
Some examples of G-II systems arise from modular functions. We give an example due
to Hurwitz [15]. For more details on the associated Klein curve, see [7]; for general facts
about modular forms, see [28].
Consider the modular function u7(τ ) := η(7τ )/η(τ ), where η(τ ) is Dedekind’s eta-

function. It is known that u47 is a Hauptmodul for X1(7). As a function of t := 1728/j,
where j is the standard elliptic j-invariant, u7 satisfies the algebraic equation

t(49u87 + 13u47 + 1)(74u87 + 245u47 + 1)3 − 1728u47 = 0.

It also satisfies a fourth-order differential equation of type G-II in terms of x = t−1

x2(x − 1)2
d4u7
dx4

+ x(x − 1)(7x − 4)
d3u7
dx3

+ (573/56x2 − 5899/504x + 20/9)
d2u7
dx2

+ (12297/5488x − 39779/24696)
du7
dx

− 57/87808u7 = 0 (12)

with exponents

x exponents
0 0, 1/3, 2/3, 1
1 0, 1/2, 1, 3/2
∞ −1/28, 3/28, 1/4, 19/28

.

We see that this example is a conjugate of that in row #8 of Table 1.
Furthermore, consider the following modular functions for �(7)

x(τ ) = q23/84
∏

n≡±4 (mod 7)
(1 − qn)−1,

y(τ ) = q11/84
∏

n≡±2 (mod 7)
(1 − qn)−1,

z(τ ) = q−13/84
∏

n≡±1 (mod 7)
(1 − qn)−1.

A full basis of solutions to (12) is then xyz, x2y, y2z, z2x. Note that u7 = xyz.

11 A family of genus two curves
In this section,we analyze in depth theG-II system in row#35 ofTable 5,which has infinite
monodromy group.We show explicitly that it is motivic by matching it to a Picard–Fuchs
equation of an associated family of genus two curves.
Consider the G-II rigid local system G with parameters

(α1,α2) = (1/6, 5/6), (β1,β2) = (1/6, 5/6), (γ1, γ2, γ3, γ4) = (1/5, 2/5, 3/5, 4/5)



Radchenko and Rodriguez Villegas Res Math Sci  (2018) 5:38 Page 25 of 34  38 

and trace fieldQ. We see from row #35 of Table 5 that the obstruction vanishes and hence
it is definable over Q. We find the following concrete realization

T0 =

⎛

⎜⎜⎜⎝

1 0 1 0
1 1 1 1

−1 0 0 −1
0 0 0 1

⎞

⎟⎟⎟⎠ , T1 =

⎛

⎜⎜⎜⎝

1 0 1 0
0 1 0 1

−1 0 0 0
0 −1 0 0

⎞

⎟⎟⎟⎠ , T∞ =

⎛

⎜⎜⎜⎝

−1 0 −1 −1
0 0 0 −1
1 0 0 0

−1 1 0 0

⎞

⎟⎟⎟⎠ .

Computing the invariant Hermitian form, we find that these matrices are symplectic. Let
� := 〈T0, T1, T∞〉 ⊆ Sp4(Z) be the monodromy group.
We will show that G arises fromH1 of a family of genus two curves (so it is motivic). To

find these, we use an argument we learned from D. Roberts. We will see that the group �

equals the monodromy of a finite monodromy G-II modulo 2 (denoted G1 below) and use
it to produce a family of polynomials of degree 6 which give rise to the desired curves.
Bender [1] has given the following generators for the symplectic group Sp4(Z).

K :=

⎛

⎜⎜⎜⎝

1 0 0 0
1 −1 0 0
0 0 1 1
0 0 0 −1

⎞

⎟⎟⎟⎠ , L :=

⎛

⎜⎜⎜⎝

0 0 −1 0
0 0 0 −1
1 0 1 0
0 1 0 0

⎞

⎟⎟⎟⎠ .

In terms of these generators, we have

T1 = (KL−2)3L−1, T∞ = (KL−5)4 .

We can easily verify using MAGMA that the monodromy group � := 〈T0, T1, T∞〉 ≤
Sp4(Z) is the unique subgroup of index two, namely the commutator subgroup of Sp4(Z).
Here are the calculations

> G<K,L>:=Group<K,L | Kˆ2=1, Lˆ12=1, K*Lˆ7*K*Lˆ5*K*L

= L*K*Lˆ5*K*Lˆ7*K,

Lˆ2*K*Lˆ4*K*Lˆ5*K*Lˆ7*K = K*Lˆ5*K*Lˆ7*K*Lˆ2*K*Lˆ4,

Lˆ3*K*Lˆ3*K*Lˆ5*K*Lˆ7*K = K*Lˆ5*K*Lˆ7*K*Lˆ3*K*Lˆ3,

(Lˆ2*K*Lˆ5*K*Lˆ7*K)ˆ2 = (K*Lˆ5*K*Lˆ7*K*Lˆ2)ˆ2,

L*(Lˆ6*K*Lˆ5*K*Lˆ7*K)ˆ2 = (Lˆ6*K*Lˆ5*K*Lˆ7*K)ˆ2*L,

(K*Lˆ5)ˆ5 = (Lˆ6*K*Lˆ5*K*Lˆ7*K)ˆ2>;

> H<T1,Tinf> := sub<G | (K*Lˆ(-2))ˆ3*Lˆ(-1), (K*Lˆ(-5))ˆ4>;

> Index(G,H);

2

> H eq DerivedSubgroup(G);

true

The quotient of Sp4(Z) by its level two congruence subgroup is isomorphic to Sp4(F2),
which is known to be isomorphic to S6. We see that � maps surjectively to A6 under the
projection map f .

> U:=SymmetricGroup(6);

> homs := Homomorphisms(G, U : Limit := 1);

> homs;

[

Homomorphism of GrpFP: G into GrpPerm: U, Degree 6,

Order 2ˆ4 * 3ˆ2 * 5

induced by

a |--> (1, 2)(3, 4)(5, 6)

b |--> (1, 2, 3)(4, 5)
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]

> f:=homs[1];

> f(T1);

(1, 3, 2)(4, 5, 6)

> f(Tinf);

(1, 4, 6, 5, 3)

> f(Tinfˆ(-1)*T1ˆ(-1));

(2, 3, 4)

Consider now the G-II rigid local system G1 with parameters

(α1,α2) = (1/3, 2/3), (β1,β2) = (1/3, 2/3), (γ1, γ2, γ3, γ4) = (1/5, 2/5, 3/5, 4/5).

Its trace field is Q, and indeed we find it in row #5 of Table 6 among those with finite
monodromy. Since μ = −1, the system is not definable over Q. Using a realization over
Q(

√−3) with MAGMA, we find that the monodromy group is isomorphic to SL2(F9), a
central extension of A6 by C2. This group has two irreducible representations of degree
four with Schur index two.
Here is the calculation with MAGMA.

function goursat(q)

K<a>:=GF(q);

R<x>:=PolynomialRing(K);

w:=RootsInSplittingField(xˆ2+x+1)[1][1];

T0:=[w + 1, 0, -1, 0, w, 1, -1, -1, w, 0, 0, (-w + 1)/w,

0, 0, 0, 1/w];

T1:= [-1, 0, 0, 1/w, -w - 1, -1, 1, 1/w, -w,

-1, 0, (w +1)/w,-w, 0, 0, 0];

Tinf:=[w, 1/w, -1/w, (-wˆ2 - 1)/wˆ2, wˆ2 + 2*w + 1, 1/w,

(-w - 1)/w, (-wˆ3 - wˆ2 - 1)/wˆ2, wˆ2

+ w, (w +1)/w,(-w - 1)/w, (wˆ3 + wˆ2 +1)/

-wˆ2, wˆ2, 0, 0, -w];

G:=MatrixGroup<4,K|T0,T1,Tinf>;

return G;

end function;

> G:=goursat(101ˆ2);

> #G;

720

> z:=IsIsomorphic(G,SL(2,9));

> z;

true

> Z:=Center(G);

> #Z;

2

> Z:=Center(G);

> G/Z;

Permutation group acting on a set of cardinality 6

Order = 360 = 2ˆ3 * 3ˆ2 * 5

(1, 2, 4)

(1, 3, 2)(4, 5, 6)

(2, 3, 4, 6, 5)

Note that the parameters for G and G1 are equal up to fractions with denominator 2.
This means that their respective local monodromies are the same modulo 2. It is clear,
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for example, that the monodromy of G1 is isomorphic to A6 ∼= PSL2(F9) modulo 2 as the
center acts by ±1.
The three even permutations

σ0 := f (T0) = (2, 3, 4), σ1 := f (T1) = (1, 3, 2)(4, 5, 6), σ∞ := f (T∞) = (1, 4, 6, 5, 3)

we computed above generateA6 and correspond to a Belyi map with cycle type 313, 32, 51.
D. Roberts showed us how this map is given by the following polynomial

P(x, t) := x3(x3 + 3x2 − 5) − t(3x − 1).

Indeed we have

P(x, 0) = x3(x3 + 3x2 − 5),

P(x, 1) = (x2 + x − 1)3,

P(x,∞) = 3x − 1.

We consider the family of genus two curves defined by the hyperelliptic equation

Ct : y2 = 4P(x, t).

Its Igusa invariants are

J2 = 22 · 3 · 52 · (4t + 1),

J4 = 2 · 3 · 54 · (4t + 1)2,

J6 = 22 · 54 · (736t3 + 2928t2 − 564t + 25),

J8 = 3 · 56 · (4t + 1)(1856t3 − 8112t2 + 3156t − 25),

J10 = 28 · 36 · 55 · (t − 1)4t2.

By construction, the Galois representation on the two torsion of the Jacobian of Ct for
a generic t ∈ Q is congruent modulo two to that of the Artin representation associated to
the Belyi map. We therefore expect that the motive H1(Ct ,Q) corresponds to G.
We check that this indeed the case by computing the linear differential equation satisfied

by periods of Ct . Starting with ω := dx/y we apply D := d/dt. reducing at each stage to a
representative differential form of the type p(x)/ydx with p of degree at most five modulo
exact differentials. We then look for a linear relation among ω, Dω . . . , D4ω.
In this way, we find that ω is annihilated modulo exact differentials by the differential

operator

t2(t − 1)4D4 + t(t − 1)3(9t − 5)D3 + 1
180

(t − 1)2(3456t2 − 3281t + 715)D2

+ 1
450

(t − 1)2(3888t − 2473)D + 1
810000

(186624t2 − 378373t + 169874).

It is easy to verify that the differential equation is of the expected type G-II with exponents

(−1/6, 0, 1/6, 1), (−1/6, 1/6, 5/6, 7/6), (2/5, 3/5, 4/5, 6/5)

at t = 0, 1,∞, respectively.
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Table 8 Infinite families

β ,α1 ,α2 γ �/A A |Z (�)| Impr

1 1/2, 1/2, r −r/4, 1/4 − r/4, 1/2 − r/4, 3/4 − r/4 D4 �1,n n ∗
2 1/2, 1/3, 2/3 r,−r/3, 1/3 − r/3, 2/3 − r/3 A4 �2,n gcd(n, 4) ∗

12 Infinite families
Considering the stringent conditions required for the invariant Hermitian form H to be
definite, it can seemunlikely that there would be infinitelymany examples whereH and all
its Galois conjugates are definite. However, just as for hypergeometrics [2, Theorem 5.8],
this is indeed the case. Moreover, again like hypergeometrics, they come in families all of
which have the (finite) monodromy group � ⊆ SL4(C) acting imprimitively (see Table 8).
This is not surprising in light of Jordan’s theorem (see the discussion at the endof Sect. 5.1).
In this table, r = m/n is an arbitrary rational number in the lowest terms and

�1,n ≡
⎧
⎨

⎩
C4
n v2(n) = 0,

C3
n/2Cn v2(n) ≥ 1,

�2,n ≡

⎧
⎪⎪⎨

⎪⎪⎩

C3
n , v2(n) = 0,

C3
n/2C2, v2(n) = 1,

C3
n/4C4 , v2(n) ≥ 2,

where v2 is the valuation at 2.
We will show that in fact there are such examples for all of the cases considered by

Simpson [24] with g = 0, k = 3 punctures and one partition equal to 1n for some n. For
all of these systems, there are infinite families of examples all lying in a single geodesic in
the positive components Tirr+ .

12.1 Rational powers

We start by showing that the rational powers of algebraic functions satisfy differential
equations of certain fixed order.

Proposition 4 Let f (t) be an algebraic function of degreem.Then for all r ∈ Q the function
f r satisfies Lr f r = 0, where Lr is a differential operator of order m, whose coefficients
depend polynomially on r.

Proof LetP(t, y) = 0 be the defining equation for f , and let y1(t), . . . , ym(t) be its solutions.
Denote byW (f1, . . . , fn) the Wronskian determinant and let us write

Lr[y] = W (y, yr1, . . . , yrm)
W (yr1, . . . , yrm)

= y(m) + Am−1y(m−1) + · · · + A0.

Define polynomial differential operators Dn by

f (n)i
fi

= Dn
( f ′

i
fi

)
.

Then D0(f ) = 1, D1(f ) = f , D2(f ) = f ′ + f 2, and in general they are defined by the recur-
sion Dn+1(f ) = (Dn(f ))′ + Dn(f )f . Using these operators we can write the Wronskian in
terms of logarithmic derivatives asW (f1, . . . , fn) = f1 . . . fn det(Di(f ′

j /fj))i,j . Expanding the
determinants in the definition of Lr shows that Ak can be expressed as rational functions
in r whose coefficients are symmetric expressions in y1, . . . , ym and their derivatives and
thus are rational functions of t.
For generic r (more precisely, whenever W (yr1, . . . , yrm) 
= 0) the functions yr1, . . . , yrm

form the full space of solutions ofLr , and thus, the singularities ofLr are contained in the
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Fig. 1 �5

set of singularities of yr1, . . . , yrm together with the set of points t where one of yi becomes
0. In terms of the defining equation P(t, y) = pm(t)ym + · · · + p0(t), these are exactly the
values of t where p0(t)pm(t) or the discriminant of P vanishes. ��

For instance, consider u2(τ ) := (η(2τ )/η(τ ))24. It is known that u2 is a Hauptmodul for
�0(2) and satisfies the algebraic equation

A2(u, t) := t(1 + 256u)3 − 1728u = 0, t := 1728/j,

where j is the standard elliptic j-invariant. For any r ∈ Q, its r-th power is annihilated by
the third-order differential operator

x3(x − 1)
d3

dx3
+ x2(4x − 5/2)

d2

dx2
+ x

(20
9
x + (3r + 2)(r − 1)

4

) d
dx

+ r2(r − 1)
4

,

when expressed in x = t(τ ) = 1728/j(τ ). The local exponents are

0 : (r,−r/2, (1 − r)/2), 1 : (0, 1/2, 1), ∞ : (0, 1/3, 2/3).

Hence these are hypergeometric equations.

12.2 Simpson even and odd families

Given an odd positive integer N > 1 consider the hypergeometric series

fN (t) := 2F1

(
N−1
2N

N+1
2N

3
2 1

| t
)
.

It is an algebraic functionof t satisfyingPN (fN (t), t) = 0 for apolynomialPN (u, t) ∈ Q[u, t].
This polynomial PN can be given explicitly; the information we need is the shape of its
Newton polygon�N , convex hull of the (r, s) ∈ Z2 forwhich themonomialurts inPN has a
nonzero coefficient. The polygon�N is in fact the triangle of vertices (0, 0), (1, 0), (N, (N −
1)/2). If we orient the boundary of the triangle counterclockwise starting at the origin the
three sides have slopes 0, 1/2,−κN , where κN := (N − 1)/2N , respectively.
For example, for N = 5 we find

P5(u, t) = 16u5t2 − 500u3t + 3125u − 3125

and its Newton polygon is �5 with sides of slope 0, 1/2, −2/5 (see Fig. 1).
At a zero or pole of fN (t) we have t = 0, 1 or t = ∞. Hence by Proposition 4, fN (t)r

for r ∈ Q satisfies a linear differential equation of order N with singularities only at
t = 0, 1,∞.
In general, the exponents at t = 0,∞ of the differential equation satisfied by an algebraic

function f of this kind can be read-off from its Newton polygon �. It can be proved that
these are as follows.
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Assume that the Newton polygon of f has no vertical segments. Then there exist unique
leftmost and rightmost vertices of�, say p, q, respectively. Let l be the line joining p and q.
We can distinguish the top and bottom sides of� as those above and below l, respectively.
For each slope κ ∈ Q of a side δ of the Newton polygon consider the sequence

[κ] := 0 − κr,
1
d

− κr, . . . ,
e − 1
d

− κr,

where d is the denominator of κ and e is the horizontal width of δ.
The exponents at t = 0 for f r are [κ1], [κ2], . . ., where κ1, κ2, . . . runs over the slopes of

the bottom sides. The exponents at t = ∞ are similarly determined by the slopes of the
top sides. The exponents at t = 1 are independent of r and can be computed directly from
the Newton polygon of p(u, t + 1).
In the case of fN the bottom slopes are 0, 1/2, the only top slope is −κN and we obtain

the following
t exponents
0 0,−r/2, 1/2 − r/2, . . . , (N − 2)/2 − r/2
1 0, 1/2, 1, . . . , (N − 1)/2
∞ κN r, 1/N + κN r, . . . , (N − 1)/N + κN r

.

For example, when N = 5 these exponents are
t exponents
0 0,−r/2, 1/2 − r/2, 1 − r/2, 3/2 − r/2
1 0, 1/2, 1, 3/2, 2
∞ 2/5r, 1/5 + 2/5r, 3/5 + 2/5r, 3/5 + 2/5r, 4/5 + 2/5r

.

If r ∈ Q is not an integer then the multiplicity of these exponents is (m,m, 1), (m +
1, m), (1, . . . , 1), wherem := (N −1)/2. These are precisely the multiplicities of Simpson’s
odd rank case family of rigid local systems. Hence we have obtained a geodesic completely
contained in the positive components Tirr+ of this system’s parameter space.
A completely analogous discussion holds forN evenwith the same definition of fN . Here

it ismore convenient to consider the algebraic equation for f 2N , which is thehypergeometric
function

fN (t)2 = 2F1

(
N−1
N

N+1
N

3
2 2

|t
)
.

It satisfies an algebraic equation of degreeN with Newton polygon the triangle of vertices
(0, 0), (1, 0), (N,N ). The exponents are the same as in the case N odd. The multiplicities
however are now (1, m−1, m), (m,m), (1, . . . , 1), wherem := N/2. These are themultiplic-
ities of Simpson’s even rank case family of rigid local systems [24]. Again we have obtained
a geodesic completely contained in the positive components Tirr+ of the parameter space.
For example, for N = 4 we get a geodesic for Goursat G-II up to a twist.

t exponents
0 0,−r, 1/2 − r, 1 − r
1 0, 1/2, 1, 3/2
∞ 3/4r, 1/4 + 3/4r, 1/2 + 3/4r, 3/4 + 3/4r

12.3 Simpson extra case of rank 6

The Hauptmodul u5 := (η(5τ )/η(τ ))6 satisfies the equation

A5(u, t) = t(3125u2 + 250u + 1)3 − 1728u = 0,
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whose Newton polygon is a triangle with vertices (0, 1), (4, 1), (0, 1) and slopes −1, 1/5, 0.
Fractional powers of u5(τ ) = (η(5τ )/η(τ ))6 give the rank 6 extra case rigid local system

of Simpson. Explicitly, in terms of x = 1/t(τ ), ur5 satisfies the differential equation

x4(x − 1)2
d6

dx6
+ x3(x − 1)(17x − 10)

d5

dx5

+ x2
(

−3r2 + 2r + 432
5

x2 + 108r2 − 72r − 18377
180

x + 220
9

)
d4

dx4

+ x
(
8r3 − 118r2 + 74r + 3720

25
x2

− 576r3 − 5796r2 + 3528r + 209915
1800

x + 40
3

)
d3

dx3

+
(

−45r4 + 860r3 − 5145r2 + 2950r + 45024
625

x2

− 576r3 − 2676r2 + 1448r + 26135
900

x + 40
81

)
d2

dx2

+
(
24r5 − 415r4 + 2790r3 − 7925r2 + 3846r + 15120

3125
x

− 64r3 − 164r2 + 72r + 315
900

)
d
dx

− r2(r − 1)(r − 2)(r − 3)(r − 4)
3125

.

The exponents of this equation for generic r ∈ Q are
t exponents
0 r,−r/5, 1/5 − r/5, 2/5 − r/5, 3/5 − r/5, 4/5 − r/5
1 0, 1/2, 1, 3/2, 2, 3
∞ 0, 1/3, 2/3, 1, 4/3, 5/3

with multiplicities (4, 2), (2, 2, 2), (1, . . . , 1). This is then a geodesic in the positive compo-
nents Tirr+ of Simpson’s extra case. A special case reduces to a hypergeometric series

u5
t

= 3F2

(
1
2

1
6

5
6

4
5

6
5 1

|t
)6

.

For r = 1, 3, the equation reduces to a hypergeometric equation of order 3, and for
r = 2, 4, 8, 14 it reduces to an equation of order 5 with rigid monodromy of Simpson’s
odd type.

12.4 Hypergeometric

Theorem 5.8 in [2] describes a geodesic in the case of hypergeometric rigid local systems.
This can be made explicit in terms of fractional powers of a fixed algebraic function like
all the previous examples. We have already encountered one case (see the example at the
end of Sect. 12.1). We illustrate this further with an instance of rank 5.
Consider the algebraic equation

u(1 − u)4 − 44

55
t = 0.
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We can solve for u as a function of t by inversion. Let

f (t) = 55

44
u(t)
t

= 1 + t1 + 13
8
t21 + 51

16
t31 + 1771

256
t41 + 4095

256
t51 + O(t61 ), t1 := 55

44
t.

We find that

f (t) = 4F3

(
4
5

6
5

7
5

8
5

3
2

5
4

7
4 2

|t
)
.

We compute the local exponents of f r for r ∈ Q and find

t exponents
0 0,−r, 1/4 − r, 1/2 − r, 3/4 − r
1 1/2, 0, 1, 2, 3
∞ 4/5r, 1/5 + 4/5r, 2/5 + 4/5r, 3/5 + 4/5r, 4/5 + 4/5r

We obtain the following identity between hypergeometric functions

4F3

(
4
5

6
5

7
5

8
5

3
2

5
4

7
4 2

|t
)r

= 5F4

(
4/5r 1/5 + 4/5r 2/5 + 4/5r 3/5 + 4/5r 4/5 + 4/5r
1 + r 3/4 + r 1/2 + r 1/4 + r 1

|t
)
.

12.5 Goursat II

There is another geodesic in the case G-II apart from that in Sect. 12.2 for n = 4. Consider
the modular unit u3(τ ) := (η(3τ )/η(τ ))12. It is a classical fact that u3 is a Hauptmodul
for the modular curve X0(3) and satisfies the algebraic equation A3(36u3, 1728j−1) = 0,
where

A3(u, t) := t(u + 27)(u + 3)3 − 1728u.

The Newton polygon of A3 is a triangle with vertices (0, 1), (4, 1), (0, 1) and slopes
−1, 1/3, 0. The fourth-order differential equation satisfied by ur3 is

x2(x − 1)2
d4

dx4
+ x(x − 1)(7x − 4)

d3

dx3

+
(−6r2 + 3r + 92

9
x2 + 24r2 − 12r − 421

36
x + 20

9

) d2

dx2

+
(8r3 − 33r2 + 13r + 60

27
x − 64r3 − 192r2 + 68r + 345

216

) d
dx

− r2(r − 1)(r − 2)
27

, (13)

when expressed in x = 1/t(τ ) = j(τ )/1728. The exponents of this equation for generic
r ∈ Q are

t exponents
0 0, 1/3, 2/3, 1
1 0, 1/2, 1, 3/2
∞ r,−r/3, 1/3 − r/3, 2/3 − r/3

We have

u3
t

= 2F1

(
7
12

1
4

4
3 1

|t
)4

, t := 1728
j

.

Here is a detailed description of this geodesic. The four exponents at ∞ are

γ1 = 3r, γ2 = −r, γ3 = −r + 1/3, γ4 = −r + 2/3.
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γ1

γ2

γ3

γ4

10

Fig. 2 G-II geodesic γ

10

δ1

δ2

δ3

δ4

δ5

δ6

Fig. 3 G-II geodesic δ

We plot these modulo Z as a function of r (see Fig. 2). The first condition (n1 = 2 in the
notation of (3)) for these parameters for generic r to be in the positive components Tirr+ is
that there are two in each of the indicated horizontal strips. This is visible in the plot.
The second condition for positive definiteness involves the parameters

δ1 = 2r, δ2 = 2r + 2/3, δ3 = 2r + 1/3,

δ4 = −2r + 2/3, δ5 = −2r + 1/3, δ6 = −2r.

For generic r there should be four δ’s in the interval (1/6, 5/6). A plot of these as functions
of r modulo Z is given in Fig. 3 where this condition is visible.
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