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ON THE FARRELL–JONES CONJECTURE FOR

WALDHAUSEN’S A–THEORY

NILS-EDVIN ENKELMANN, WOLFGANG LÜCK, MALTE PIEPER, MARK ULLMANN,
AND CHRISTOPH WINGES

Abstract. We prove the Farrell–Jones Conjecture for (non-connective) A–
theory with coefficients and finite wreath products for hyperbolic groups,
CAT(0)-groups, cocompact lattices in almost connected Lie groups and funda-
mental groups of manifolds of dimension less or equal to three. Moreover, we
prove inheritance properties such as passing to subgroups, colimits of direct
systems of groups, finite direct products and finite free products. These results
hold also for Whitehead spectra and spectra of stable pseudo-isotopies in the
topological, piecewise linear and smooth category.

1. Introduction

In this paper we investigate the Farrell–Jones Conjecture for Waldhausen’s A–
theory. Our main result is

Theorem 1.1 (Main result). Let FJA be the class of groups for which the Farrell–
Jones Conjecture 2.15 for (non-connective) A–theory with coefficients and finite
wreath products holds.

(i) The class FJA contains the following groups:
• Hyperbolic groups
• CAT(0)–groups
• Virtually poly-cyclic groups
• Cocompact lattices in almost connected Lie groups
• Fundamental groups of (not necessarily compact) d–dimensional man-
ifolds (possibly with boundary) for d ≤ 3

(ii) The class FJA has the following inheritance properties:
• If G1 and G2 belong to FJA, then G1 × G2 and G1 ∗ G2 belong to
FJA.
• If H is a subgroup of G and G ∈ FJA, then H ∈ FJA.

• Let 1 → K → G
p
−→ Q → 1 be an extension of groups. Suppose that

K, Q and p−1(C) for every infinite cyclic subgroup C ⊆ Q belong to
FJA. Then G belongs to FJA.
• If H ⊆ G is a subgroup of G with [G : H ] < ∞ and H ∈ FJA, then
G ∈ FJA.
• Let {Gi | i ∈ I} be a directed system of groups (with not necessar-
ily injective structure maps) such that Gi ∈ FJA for i ∈ I. Then
colimi∈I Gi belongs to FJA.

The Farrell–Jones Conjecture for A–theory aims at the computation of the ho-
motopy groups of A(BG) for a group G, where A : SPACES → SPECTRA sends a
space X to the non-connective A–theory spectrum A(X) modeling Waldhausen’s
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A–theory space A(X). More precisely, it predicts the bijectivity of the assembly
map

HG
n (EVCY(G);A

B)
∼=
−→ HG

n (G/G;AB) = πn(A(BG))

induced by the projection of the classifying spaceEVCY(G) for the family of virtually
cyclic subgroups of G to G/G. It essentially reduces the computation of πn(A(BG))
to the computation of the system {πn(A(BV ))}, where V ranges over the virtually
cyclic subgroups V of G. Following the setup of Davis–Lück [12], we give the precise
formulations of the various versions of the Farrell–Jones Conjecture in Section 2.
The equivalent original formulation of the Farrell–Jones Conjecture can be found
in Farrell–Jones [20].

Section 3 relates the Farrell–Jones Conjecture for A–theory to the corresponding
conjectures for other functors. In particular, we discuss the equivalence of the
conjectures for A, WhCAT and PCAT, where the latter denote the non-connective
spectra modeling the Whitehead space and the space of stable pseudo-isotopies,
with CAT being TOP, PL or DIFF.

As an illustration about the impact of the Farrell–Jones Conjecture for A–theory
we discuss applications to the automorphism groups of aspherical closed manifolds
in Section 4.1, where also the proof of the following Theorem 1.3 is given.

Let NA({•}) be the Nil-term occurring in the Bass–Heller–Swan-isomorphisms
for non-connective A–theory, see [29, 30].

(1.2) πn(A(S1)) = πn(A({•}))⊕ πn−1(A({•}))⊕ πn(NA({•}))⊕ πn(NA({•})).

We conclude πn(NA({•})) = {0} for n ≤ 1 and πn(NA({•})) ⊗Z Q = {0} for
n ∈ Z from Theorem 3.7 and [35, Theorem 0.3]. On the other hand, πn(NA({•}))
for n = 2, 3 is an infinite-dimensional F2–vector space. For more information about
πn(NA({•})) we refer to [27, 28]. The next result is already explained in the special
case of closed manifolds with negative sectional curvature in [56, Section 6.3], based
on the work of Farrell and Jones [16, 17, 18, 19, 20], and we can extend it to
torsionfree hyperbolic groups.

Theorem 1.3.

(i) Let G be a torsionfree hyperbolic group. Then we get an equivalence

WhTOP(BG) ≃
∨

C

WhTOP(BC) ≃
∨

C

NA({•}) ∨NA({•}),

where C ranges over the conjugacy classes of maximal infinite cyclic sub-
groups of G.

In particular, WhTOP(BG) is connective.
(ii) Let M be a smoothable aspherical closed manifold of dimension ≥ 10,

whose fundamental group π is hyperbolic.
Then there is a Z/2–action on WhTOP(Bπ) such that we obtain for

1 ≤ n ≤ min{(dimM − 7)/2, (dimM − 4)/3} isomorphisms

πn(TOP(M)) ∼= πn+2

(
EZ/2+ ∧Z/2

(∨

C

WhTOP(BC)
))

and an exact sequence

1→ π2

(
EZ/2+ ∧Z/2

(∨

C

WhTOP(BC)
))
→ π0(TOP(M))→ Out(π)→ 1,

where C ranges over the conjugacy classes of maximal infinite cyclic sub-
groups of π.
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Remark 1.4. The Z/2–action we refer to in Theorem 1.3 is induced by the one
given in [54]. Vogell described in [47] another Z/2–action on Wh(Bπ) which de-
pends on the choice of a spherical fibration over Bπ. It was shown in [30] that for a
certain fibration this action corresponds under the Bass–Heller–Swan decomposition
to switching the Nil-terms via a homeomorphism. If the arguments presented in [30]
carry over to other spherical fibrations and the two actions on WhTOP(Bπ) agree
for a suitably chosen fibration, then the homotopy orbits appearing in Theorem 1.3
can be identified as

EZ/2+ ∧Z/2
(∨

C

WhTOP(BC)
)
≃
∨

C

NA({•}).

These issues will be discussed in [39].

The rest of the paper is devoted to the proof of Theorem 1.1. The main technical
part of this paper concerns the proof for hyperbolic groups and CAT(0)–groups.
It is given in Section 6 and Section 7, and is motivated by the proof of the K–
theoretic Farrell–Jones Conjecture for CAT(0)–groups given in [52] based on the
method of Bartels–Lück [5]. Our approach, which is based on [44], requires us to
define an analog of the transfer on geometric modules which works on Waldhausen
categories of controlled retractive spaces. Virtually poly-cyclic groups have already
been treated by Ullmann–Winges [44].

In conjunction with the inheritance properties in Theorem 1.1 (ii), the case of
a cocompact lattice in an almost connected Lie group or a fundamental group of
a (not necessarily compact) d–dimensional manifold (possibly with boundary) for
d ≤ 3 follows via the argument presented in [4]. The inheritance properties for the
A–theoretic conjecture are taken care of in Section 5.

Remark 1.5 (Solvable groups). If one can show that FJA contains all virtually
solvable groups, then it contains any (not necessarily cocompact) lattice in a second
countable locally compact Hausdorff group with finitely many path components,
the groups GLn(Q) and GLn(F (t)) for F (t) the function field over a finite field
F , and all S–arithmetic groups. The arguments in [31, 43] carry over to show the
prerequisites of Theorem 1.1 and Corollary 6.20, respectively.

Acknowledgments. The idea to use the categories of “cellwise 0-controlled mor-
phisms” in Section 7 is due to Arthur Bartels and Paul Bubenzer. The paper is
financially supported by the Leibniz-Preis of the second author granted by the
DFG, the ERC Advanced Grant “KL2MG-interactions” (no. 662400) of the second
author granted by the European Research Council, the Cluster of Excellence “Haus-
dorff Center for Mathematics” at Bonn, the SFB 647 “Space – Time – Matter” at
Berlin, the SFB 878 “Groups, Geometry & Actions” at Münster, and the Junior
Hausdorff Trimester Program “Topology” at the Hausdorff Research Institute for
Mathematics (HIM).
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2. The Isomorphism Conjecture

In this section we state various versions of the Isomorphism Conjectures we want
to consider. We assume familiarity with the notion of a G-equivariant homology
theory from [12] and the notion of an equivariant homology theory from [33]. As
usual, we use a convenient category of compactly generated spaces.

2.1. The Meta-Isomorphism Conjecture for functors from spaces to spec-
tra. Let S : SPACES→ SPECTRA be a covariant functor. Throughout this section
we will assume that S respects weak equivalences and disjoint unions, i.e., a weak
homotopy equivalence of spaces f : X → Y is sent to a weak homotopy equivalence
of spectra S(f) : S(X) → S(Y ) and for a collection of spaces {Xi | i ∈ I} for an
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arbitrary index set I the canonical map

(2.1)
∨

i∈I

S(Xi)→ S

(∐

i∈I

Xi

)

is a weak homotopy equivalence of spectra. Weak equivalences of spectra are un-
derstood to be the stable equivalences, i.e., the maps which induce isomorphisms
on all stable homotopy groups. We obtain a covariant functor

(2.2) SB : GROUPOIDS→ SPECTRA, G 7→ S(BG),

where BG is the classifying space of the groupoid G which is the geometric realiza-
tion of the simplicial set given by its nerve and denoted by BbarG in [12, page 227].
Let H?

n(−;S
B) be the equivariant homology theory in the sense of [33, Section 1]

which is associated to SB by the construction in [34, Proposition 157 on page 796].
Equivariant homology theory essentially means that we get for every group G a G–
homology theoryHG

n (−;SB) satisfying the disjoint union axiom and for every group
homomorphism α : H → G and H–CW–pair (X,A) we get natural maps compat-
ible with boundary homomorphisms of pairs HH

∗ (X,A;SB) → HG
∗ (α∗(X,A);S

B)
which are bijective if the kernel of α acts freely on X . Moreover, for any group G,
subgroup H ⊆ G and n ∈ Z we have canonical identifications

HG
n (G/H ;SB) ∼= HH

n (H/H ;SB) ∼= πn(S(BH)).

Conjecture 2.3 (Meta-Isomorphism Conjecture for functors from spaces to spec-
tra). Let S : SPACES → SPECTRA be a covariant functor which respects weak
equivalences and disjoint unions. The group G satisfies the Meta-Isomorphism
Conjecture for S with respect to the family F of subgroups of G if the assembly map
induced by the projection pr : EF (G)→ G/G

HG
n (pr;SB) : HG

n (EF (G);S
B)→ HG

n (G/G;SB) ∼= πn(S(BG))

is bijective for all n ∈ Z.

Example 2.4 (The K– and L–theoretic Farrell–Jones Conjecture). Let R be a
ring (with involution). There are covariant functors [34, Theorem 158]

KR : GROUPOIDS → SPECTRA,

L
〈−∞〉
R : GROUPOIDS → SPECTRA,

such that for every group G, which we can consider as a groupoid G with precisely
one object and G as its group of automorphisms, and n ∈ Z we have

Kn(RG) = πn(KR(G)),

L〈−∞〉
n (RG) = πn(L

〈−∞〉
R (G)).

Then the K–theoretic and L–theoretic Farrell–Jones Conjectures, which were orig-
inally formulated in [20, 1.6 on page 257], are equivalent to the statement that
the covariant functors S : SPACES → SPECTRA, given by the composition of KR

andLR, with the functor sending a space to its fundamental groupoid, satisfy the
Meta-Isomorphism Conjecture 2.3 for the family VCY of virtually cyclic subgroups
of G.

Our main example is the following case. Let A : SPACES → SPECTRA be the
functor sending a space X to the spectrum A(X) given by the non-connective
version of Waldhausen’s algebraic K–theory of spaces in the sense of [44].

Lemma 2.5.

(i) The functor A : SPACES→ SPECTRA respects weak equivalences and dis-
joint unions.
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(ii) For any directed systems of spaces {Xi | i ∈ I} indexed over an arbitrary
directed set I the canonical map

hocolimi∈I A(Xi)→ A
(
hocolimi∈I Xi

)

is a weak homotopy equivalence.

Proof. In the connective case, Waldhausen proved in [50, Proposition 2.1.7]) that
A–theory preserves weak equivalences. The other two properties follow upon in-
spection of the explicit model as finite retractive CW–complexes.

Note that the algebraicK–theory functor which sendsX toK(ZΠ(X)) enjoys the
properties claimed forA. Since Vogell showed that the linearization map L : A→ K
induces an isomorphism on all non-positive homotopy groups [46], the general case
follows.

It will be shown in [39] that the non-connective deloopings described by Ullmann–
Winges in [44] and Vogell in [45] are equivalent. �

Conjecture 2.6 (The Farrell–Jones Conjecture for A–theory). A group G satisfies
the Farrell–Jones Conjecture for A–theory if the Meta-Isomorphism Conjecture 2.3
holds for A : SPACES → SPECTRA and the family VCY, i.e., for every n ∈ Z the
projection EVCY(G)→ G/G induces an isomorphism

HG
n (pr;A

B) : HG
n (EVCY(G);A

B)→ HG
n (G/G;AB) = πn(A(BG)).

2.2. The Meta–Isomorphism Conjecture for functors from spaces to spec-
tra with coefficients. Let G be a group and Z be a G–CW–complex. Define a
covariant Or(G)–spectrum

(2.7) SGZ : Or(G)→ SPECTRA, G/H 7→ S(G/H ×G Z),

where G/H ×G Z is the orbit space of the diagonal G–action on G/H × Z. No-

tice that there is an obvious homeomorphism G/H ×G Z
∼=
−→ Z/H . Denote by

HG
n (−;SGZ ) the G–homology theory in the sense of [33, Section 1] which is asso-

ciated to SGZ by the construction of [34, Proposition 156 on page 795] and satis-
fies HG

n (G/H ;SGZ )
∼= πn(S

G
Z (G/H)) = πn(S(Z/H)) for any homogeneous G–space

G/H and n ∈ Z.

Conjecture 2.8 (Meta-Isomorphism Conjecture for functors from spaces to spec-
tra with coefficients). Let S : SPACES → SPECTRA be a covariant functor which
respects weak equivalences and disjoint unions. The group G satisfies the Meta-
Isomorphism Conjecture for S with coefficients with respect to the family F of
subgroups of G if for any free G–CW–complex Z the assembly map

HG
n (pr;S

G
Z ) : H

G
n (EF (G);S

G
Z )→ HG

n (G/G;S
G
Z ) = πn(S(Z/G)),

induced by the projection pr : EF (G)→ G/G, is bijective for all n ∈ Z.

Example 2.9 (Z = EG). If we take Z = EG in Conjecture 2.8, then Conjecture 2.8
reduces to Conjecture 2.3. Namely, for a G–set S let T G(S) be its transport
groupoid whose set of objects is S, the set of morphisms from s1 to s2 is the set
{g ∈ G | s2 = gs1} and composition comes from the multiplication in G. There is a

homotopy equivalence BT G(G/H)
≃
−→ G/H×GEG which is natural in G/H . Hence

we get a weak homotopy equivalence of Or(G)–spectra SB(T G(G/?))
≃
−→ SGEG. It

induces an isomorphism of G–homology theories, see [12, Lemma 4.6]

HG
∗ (−;SB)

∼=
−→ HG

∗ (−;SGEG).

Remark 2.10 (Relation to the original formulation). In [20, Section 1.7 on page 262]
Farrell and Jones formulate a fibered version of their conjectures for a covariant



ON THE FARRELL–JONES CONJECTURE FOR WALDHAUSEN’S A–THEORY 7

functor S : SPACES→ SPECTRA for every (Serre) fibration ξ : Y → X over a con-
nected CW-complexX . In our set-up this corresponds to choosing Z to be the total
space of the fibration obtained from Y → X by pulling back along the universal

covering X̃ → X . This space Z is a free G–CW–complex for G = π1(X). Note
that every free G–CW–complex Z can always be obtained in this fashion from the
fiber bundle EG×G Z → BG up to G–homotopy, compare [20, Corollary 2.2.1 on
page 263].

We sketch the proof of this identification. Let A be a G–CW–complex. Let
f : E(X)→ X be the map obtained by taking the quotient of the G = π1(X)–action

on the G–map A × X̃ → X̃ given by the projection. Denote by p̂ : E(ξ) → E(X)
the pullback of ξ with f . Let q : E(ξ) → A/G be the composite of p̂ with the

map E(X) → A/G induced by the projection A × X̃ → A. This is a stratified
fibration and one can consider the spectrum H(A/G;S(q)) in the sense of Quinn [40,
Section 8]. Put

HG
n (A; ξ) := πn(H(A/G;S(q))).

The projection pr : A→ G/G induces a map

(2.11) a(A) : H(A/G;S(q))→ H(G/G;S(Y → G/G)) = S(Y ),

which is the assembly map in [20, Section 1.7 on page 262] if we take A = EVCY(G).
The construction of HG

n (A; ξ) := H(A/G;S(q)) is very complicated, but, fortu-
nately, for us only two facts are relevant. We obtain a G–homology theoryHG

n (−; ξ)
and for every H ⊆ G we get a natural identification HG

n (G/H ; ξ) = SGZ (G/H).
Hence the functor G-CW-COMPLEXES→ SPECTRA given by A 7→ H(A/G;S(q))
is weakly excisive and its restriction to Or(G) is the functor SGZ . We conclude
from [12, Theorem 6.3] that the map (2.11) can be identified with the map induced
by the projection A→ G/G

HG
n (A;SGZ )→ HG

n (G/G;SGZ ) = πn(S(Z/G)) = πn(S(Y )),

which appears in Meta-Isomorphism Conjecture 2.8 for functors from spaces to
spectra with coefficients.

Remark 2.12 (The condition free is necessary in Conjecture 2.8). The Conjecture 2.8
is only true very rarely if we drop the condition that Z is free. Take for instance
Z = G/G. Then Conjecture 2.8 predicts that the projection EF (G)/G → G/G
induces for all n ∈ Z an isomorphism

Hn(pr;S({•})) : Hn(EF (G)/G;S({•}))→ Hn({•},S({•}))

where H∗(−;S({•})) is the (non-equivariant) homology theory associated to the
spectrum S({•}). This statement is in general wrong, except in extreme cases such
as F = ALL.

Conjecture 2.13 (The Farrell–Jones Conjecture for A–theory with coefficients).
A group G satisfies the Farrell–Jones Conjecture for A–theory with coefficients if
the Meta-Isomorphism Conjecture 2.8 with coefficients holds for A : SPACES →
SPECTRA and the family VCY, i.e., for every n ∈ Z and free G–CW–complex Z
the projection EVCY(G)→ G/G induces an isomorphism

HG
n (pr;AG

Z ) : H
G
n (EVCY(G);A

G
Z )→ HG

n (G/G;A
G
Z ) = πn(A(Z/G)).

2.3. The Meta–Isomorphism Conjecture for functors from spaces to spec-
tra with coefficients and finite wreath products. There are also versions with
finite wreath products. Recall that for groups G and F their wreath product G ≀ F
is defined to be the semi-direct product (

∏
F G) ⋊ F , where F acts on

∏
F G by

permuting the factors. Fix a class of groups C which is closed under isomorphisms,
taking subgroups and taking quotients. Examples are the classes FIN and VCY of
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finite and of virtually cyclic groups. For a group G define the family of subgroups
C(G) := {K ⊆ G,K ∈ C}.

Conjecture 2.14 (The Meta-Isomorphism Conjecture for functors from spaces to
spectra with coefficients and finite wreath products). Let S : SPACES→ SPECTRA

be a covariant functor which respects weak equivalences and disjoint unions. The
group G satisfies the Meta-Isomorphism Conjecture with coefficients and finite
wreath products for the functor S : SPACES → SPECTRA with respect to the
class C of groups, if, for any finite group F , the wreath product G ≀ F satisfies the
Meta-Isomorphism Conjecture 2.8 with coefficients for the functor S : SPACES →
SPECTRA with respect to the family C(G ≀ F ) of subgroups of G.

Conjecture 2.15 (The Farrell–Jones Conjecture for A–theory with coefficients
and finite wreath products). A group G satisfies the Farrell–Jones Conjecture for
A–theory with coefficients and finite wreath products if the Meta-Isomorphism
Conjecture 2.14 with coefficients and finite wreath products holds for A : SPACES→
SPECTRA and the class VCY of virtually cyclic groups.

The next two lemmas will be needed later.

Lemma 2.16. Let E be a spectrum such that S : SPACES→ SPECTRA is given by
Y 7→ Y+ ∧E.

(i) Then for any group G, any G–CW–complex X which is contractible (after
forgetting the G–action), and any free G–CW–complex Z the projection
X → G/G induces for all n ∈ Z an isomorphism

HG
n (X ;SGZ )

∼=
−→ HG

n (G/G;S
G
Z ).

(ii) Conjecture 2.3, Conjecture 2.8 and Conjecture 2.14 hold for such an S for
every group G and every family F of subgroups of G.

An S given by Y 7→ Y+ ∧ E is a homology theory, and thus the lemma states
that the conjectures hold for homology theories.

Proof. (i) There are natural isomorphisms of spectra

mapG((G/?), X)+ ∧Or(G)

(
(G/?×G Z)+ ∧E

)

∼=
−→

(
(mapG((G/?), X)×Or(G) G/?)×G Z

)
+
∧E

∼=
−→ (X ×G Z)+ ∧E,

where the second isomorphism comes from the G–homeomorphism

mapG((G/?), X)×Or(G) G/?
∼=
−→ X

of [12, Theorem 7.4 (1)]. Since Z is a free G–CW–complex and X is contractible
(after forgetting the group action), the projection X ×G Z → G/G ×G Z is a
homotopy equivalence and hence induces a weak homotopy equivalence

(X ×G Z)+ ∧E
≃
−→ (G/G×G Z)+ ∧E,

Thus we get a weak homotopy equivalence

mapG((G/?), X)+ ∧Or(G)

(
(G/?×G Z)+ ∧E

)
→ (G/G×G Z)+ ∧E.

Under the identifications coming from the definitions

HG
n (X ;SGZ ) = πn

(
mapG((G/?), X)+ ∧Or(G)

(
(G/?×G Z)+ ∧E

))
,

HG
n (G/G;SGZ ) = πn ((G/G×G Z)+ ∧E) ,

this weak homotopy equivalence induces on homotopy groups the isomorphism
HG
n (X ;SGZ )→ HG

n (G/G;SGZ ).
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(ii) This follows from assertion (i). �

Lemma 2.17. Let S,T,U : SPACES → SPECTRA be covariant functors which
respect weak equivalences and disjoint unions. Let i : S → T and p : T → U be

natural transformations such that for any space Y the sequence of spectra S(Y )
i(Y )
−−−→

T(Y )
p(Y )
−−−→ U(Y ) is up to weak homotopy equivalence a cofiber sequence of spectra.

(i) Then we obtain for every group G and all G–CW–complexes X and Z a
natural long exact sequence

· · · → HG
n (X ;SGZ )→ HG

n (X ;TG
Z )→ HG

n (X ;UG
Z )

→ HG
n−1(X ;SGZ )→ HG

n−1(X ;TG
Z )→ HG

n−1(X ;UG
Z )→ · · · .

(ii) Let G be a group and F be a family of subgroups of G. Then Meta-
Isomorphism Conjecture 2.3 for functors from spaces to spectra holds for
all three functors S, T and U for (G,F) if it holds for two of the functors
S, T and U for (G,F).

The analogous statement is true for the Meta-Isomorphism Conjec-
ture 2.8 for functors from spaces to spectra with coefficients and for the
Meta-Isomorphism Conjecture 2.14 for functors from spaces to spectra with
coefficients and finite wreath products.

Proof. (i) The version for spectra of [12, Theorem 3.11] implies that we obtain, up
to weak homotopy equivalence, a cofiber sequence of spectra

mapG(G/?, X)+ ∧Or(G) S(G/?×G Z)→ mapG(G/?, X)+ ∧Or(G) T(G/?×G Z)

→ mapG(G/?, X)+ ∧Or(G) U(G/?×G Z).

and passing to its associated long exact sequence of homotopy groups yields the
result. (ii) This follows from assertion (i) and the Five-Lemma. �

3. Relations between the conjectures for various theories

There are other prominent covariant functors SPACES → SPECTRA which re-
spect weak homotopy equivalences and disjoint unions. Notice in the sequel that we
are always considering the non-connective versions. We are thinking of the stable
pseudo-isotopy spectrum PCAT and the Whitehead spectrum WhCAT, where CAT
can be the topological category TOP, the PL–category PL or the smooth category
DIFF. For the definition of PCAT we refer to [13, 39, 54].

Usually, the Whitehead spectrum is defined as a connective spectrum, see [51],
and see [55, Section 2.2] for a definition of the classical assembly map. We make
the obvious generalization.

Definition 3.1. Let CAT be TOP or PL. The topological or piecewise-linear non-
connective Whitehead spectrum WhCAT(X) is the homotopy cofiber of the classical
assembly map in non-connective A–theory:

X+ ∧A({•})→ A(X)→WhCAT(X).

Further, we define the smooth non-connective Whitehead spectrum WhDIFF(X) as
the homotopy cofiber of the sequence

Σ∞X+ → A(X)→WhDIFF(X)

where Σ∞X+ → A(X) factors as the unit map Σ∞X+ = X+ ∧ S → X+ ∧A({•})
and assembly.

Theorem 3.2 (Relations between the various functors).
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(i) There is a zigzag of natural equivalences,

PCAT ≃
←→ Ω2WhCAT,

where CAT can be taken to be TOP, PL, or DIFF.
(ii) The canonical map

PPL ≃
−→ PTOP

is a natural equivalence.

Proof. The connective, objectwise case of (i) follows from the equivalence P(M) ≃
Ω2WhPL(M), which was originally stated in [49] and fully proved in [51, Theo-
rem 0.2].

There are some issues concerning the full functoriality of pseudo-isotopy, which
will be clarified in [13] and [39]. The full statement will be established in [39].

The objectwise version of (ii) has been shown in [11]. An argument for the full
statement will be given in [13].

�

Lemma 3.3. If the Meta-Isomorphism Conjecture 2.3 for functors from spaces to
spectra holds for the group G and the family F for one of the functors A, WhTOP,
WhPL, WhDIFF, PTOP, PPL, and PDIFF, then it holds for all of them.

The analogous statement holds for the Meta-Isomorphism Conjecture 2.8 for
functors from spaces to spectra with coefficients and for the Meta-Isomorphism Con-
jecture 2.14 for functors from spaces to spectra with coefficients and finite wreath
products.

Proof. This follows from Lemma 2.16 and Lemma 2.17. �

Remark 3.4 (The non-connective spectrum of stable h–cobordisms). There is also
the non-connective stable h–cobordism spectrum HCAT(M) of a compact manifold
(possibly with boundary) M . Note that h–cobordisms are (usually) only defined
as a functor in codimension zero embeddings. As such, they are related to the
previous functors. For every compact manifold M (possibly with boundary) there
are natural weak homotopy equivalences

HCAT(M)
≃
−→ ΩWhCAT(M)

and
PCAT(M)

≃
−→ ΩHCAT(M).

For the proof and more information we refer to [51].

Finally, we explain the relationship between A–theory and algebraic K–theory
of integral group rings.

For a space X denote its fundamental groupoid by Π(X). There is a so called
linearization map, natural in X ,

L(X) : A(X) → K(ZΠ1(X))(3.5)

The next result follows combining [46, Section 4] and [49, Proposition 2.2 and
Proposition 2.3].

Theorem 3.6 (Connectivity of the linearization map). Let X be a CW–complex.
Then:

(i) The linearization map L(X) of (3.5) is 2–connected, i.e., the map

Ln(X) := πn(L(X)) : An(X)→ Kn(ZΠ(X))

is bijective for n ≤ 1 and surjective for n = 2.
(ii) The map Ln is rationally bijective for all n ∈ Z, provided that each com-

ponent of X is aspherical.



ON THE FARRELL–JONES CONJECTURE FOR WALDHAUSEN’S A–THEORY 11

This implies that the K–theoretic Farrell–Jones Conjecture for ZG and the A–
theoretic Farrell–Jones Conjecture for A(BG) are equivalent in degree ≤ 1 and
rationally equivalent in all degrees. More precisely, we have

Theorem 3.7 (Relating A-theory to algebraic K–theory). Consider a group G
and a family F of subgroups of G. The linearization map (3.5) and the projection
EF (G)→ G/G yield a commutative diagram

HG
n (EF (G);A

B) //

��

HG
n (G/G;A

B) = An(BG)

��

HG
n (EF (G);KZ) // HG

n (G/G;KZ) = Kn(ZG)

where KZ : GROUPOIDS→ SPECTRA has been recalled in Example 2.4. The ver-
tical arrows are bijective for n ≤ 1 and surjective for n = 2. They are rationally
bijective for all n ∈ Z.

4. Some applications to automorphism groups of aspherical closed
manifolds

Before we begin with the proof of Theorem 1.1, we want to illustrate the impact
of the Farrell–Jones Conjecture by discussing automorphism groups of aspherical
closed manifolds. For rational computations the Farrell–Jones Conjecture for K–
theory and L–theory suffices. For potential integral computations one needs the
Farrell–Jones Conjecture for A–theory and for L–theory. More details about auto-
morphism groups of closed manifolds can be found in [56].

4.1. Topological automorphism groups of aspherical closed manifolds. Let
TOP(M) be the topological group of self-homeomorphisms of the closed manifold
M . Denote by G(M) the monoid of self homotopy equivalences M → M . Let

T̃OP(M) and G̃(M) be the block versions, see [56, p. 168] for a survey and further
references. There are natural maps making the diagram

TOP(M)

��

// T̃OP(M)

��

G(M) // G̃(M)

commute.
Define T̃OP(M)/TOP(M), G̃(M)/TOP(M) and G(M)/TOP(M) to be the

homotopy fibers of the maps BTOP(M) → BT̃OP(M), BTOP(M) → BG̃(M)
and BTOP(M) → BG(M). We obtain a commutative diagram with horizontal
fiber sequences

T̃OP(M)/TOP(M) //

��

BTOP(M) //

id

��

BT̃OP(M)

��

G̃(M)/TOP(M) // BTOP(M) // BG̃(M)

G(M)/TOP(M) //

OO

BTOP(M) //

id

OO

BG(M).

OO

According to [41, Theorem 5.8], there is no real difference between self homotopy
equivalences and their block version.
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Lemma 4.1. The map G(M) → G̃(M) and hence the map BG(M) → BG̃(M)
are weak homotopy equivalences.

The relative homotopy groups of the map T̃OP(M) → G̃(M) can be identified
with the groups Ss(M × Dn, ∂) as explained in [14, page 285]. The next lemma
follows in combination with [5, Proposition 0.3]. Recall that a space X is aspherical
if πi(X) = 0 for i 6= 1.

Lemma 4.2. Suppose that M is an aspherical closed manifold of dimension ≥ 5
and both the K– and L–theoretic Farrell–Jones Conjecture hold for Zπ1(M).

Then Ss(M ×Dn, ∂) is trivial for n ≥ 0 and the map

T̃OP(M)→ G̃(M)

is a weak homotopy equivalence.

For aspherical spaces X , the homotopy groups of G(X) can be computed from
the long exact sequence of homotopy groups associated to the evaluation map

G(X)
evx0−−−→ X for some basepoint x0 ∈ X :

Lemma 4.3. Let X be an aspherical CW–complex. Then

πn(G(X)) ∼=





Out(π1(X)) n = 0,

center(π1(X)) n = 1,

0 n ≥ 2.

We conclude from Lemma 4.1, Lemma 4.2 and Lemma 4.3:

Corollary 4.4. IfM is an aspherical closed manifold of dimension ≥ 5 with funda-
mental group π, and both the K–theoretic and L–theoretic Farrell–Jones Conjecture
hold for Zπ, then there are natural zig-zags of homotopy equivalences

T̃OP(M) ≃ G(M)

and

BT̃OP(M) ≃ BG(M)

and we get

πn(T̃OP(M)) ∼=





Out(π) n = 0,

center(π) n = 1,

0 n ≥ 2.

Theorem 4.5. There is a map

T̃OP(M)/TOP(M)→ Ω∞
(
EZ/2+ ∧Z/2 ΩWhsTOP(M)

)

which is (k + 1)–connected if k is in the topological concordance stable range for
M . Here WhsTOP(M) denotes the connective cover of the Whitehead spectrum
WhTOP(M).

Proof. It suffices to show that the spectrum denoted by WhTOP(M) in [54] is
a model for the homotopy cofiber of the assembly map, see Definition 3.1. This
follows from combining [54, Theorem A], the equivalence PTOP (M) ≃ ΩHTOP (M)
and [51, Theorem 0.2]. �

We conclude from Theorem 3.2 (ii), Corollary 4.4, Theorem 4.5 and the lower
bound on the topological concordance stable range given in [51, Corollary 1.4.2]:
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Theorem 4.6. Let M be a smoothable aspherical closed manifold of dimension
≥ 10 with fundamental group π. Suppose that the Farrell–Jones Conjecture for
A–theory for Bπ and the Farrell–Jones Conjecture for L–theory for Zπ hold.

Then we obtain for 2 ≤ n ≤ min{(dimM − 7)/2, (dimM − 4)/3} isomorphisms

πn(TOP(M))
∼=
−→ πn+2

(
EZ/2+ ∧Z/2 WhTOP(Bπ)

)
),

and an exact sequence

1→ π3
(
EZ/2+ ∧Z/2 WhTOP(Bπ)

)
)→ π1(TOP(M))→ center(π)

→ π2
(
EZ/2+ ∧Z/2 WhTOP(Bπ)

)
)→ π0(TOP(M))→ Out(π)→ 1.

Next we give the proof of Theorem 1.3.

Proof of Theorem 1.3. Let G be a torsionfree hyperbolic group. Then the Farrell–
Jones Conjecture for A–theory for BG and the Farrell–Jones Conjectures for alge-
braic K–theory and for L–theory for ZG hold by Theorem 1.1 and [5, 6].

Since G is torsionfree, we have K−i(ZG) = 0 for all i ≥ 1 and K̃0(ZG) = 0, and
thus the spectra under consideration are connective by Theorem 3.6 (i). It follows
from Lemma 3.3 that there is a weak homotopy equivalence

HG(EVCY(G); (WhTOP)B)
≃
−→WhTOP(BG).

The arguments in [35, Section 10] based on [36, Corollary 2.8 and Example 3.6] for
algebraicK–theory carry over to WhTOP and imply that there is a weak homotopy
equivalence induced by the various inclusions C → G of representatives of the
conjugacy classes of maximal cyclic subgroups of G

∨

C

WhTOP(BC)
≃
−→WhTOP(BG).

From the Bass–Heller–Swan decomposition (1.2) we obtain a weak homotopy equiv-
alence

NA({•}) ∨NA({•})
≃
−→WhTOP(BC).

This proves part (i) of Theorem 1.3.
Part (ii) follows from part (i) and Theorem 4.6 together with the fact that the

center of a hyperbolic group which is torsionfree and not cyclic is trivial. �

Theorem 3.7 and Theorem 4.6 imply

Theorem 4.7 (Rational homotopy groups of TOP(M) for an aspherical closed
manifold). Let M be a smoothable aspherical closed manifold of dimension ≥ 10
with fundamental group π. Suppose that the Farrell–Jones Conjecture for K–theory
and for L–theory for Zπ hold.

Then for 1 ≤ n ≤ min{(dimM − 7)/2, (dimM − 4)/3} we have

πn(TOP(M))⊗Z Q =

{
center(π)⊗Z Q if n = 1,

{0} if n ≥ 2.

4.2. Smooth automorphism groups of aspherical closed smooth mani-
folds. Taking the computation of Ki(Z) ⊗Z Q of Borel [10] into account, we get
from Theorem 3.2, Theorem 3.7 and [35, Theorem 0.3]

Theorem 4.8. Let M be an aspherical closed smooth manifold of dimension ≥ 10
with fundamental group π. Suppose that the Farrell–Jones Conjecture for K–theory
and for L–theory for Zπ hold.
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Then we get for all n ∈ Z

πn(WhDIFF(M))⊗Z Q ∼=

∞⊕

k=1

Hn−4k−1(M ;Q),

πn(P
DIFF(M))⊗Z Q ∼=

∞⊕

k=1

Hn−4k+1(M ;Q).

For the proof of the next result, which does involve the involutions on higher
algebraic K–theory, we refer to [14, Lecture 5], [15], or [18, Section 2].

Theorem 4.9 (Rational homotopy groups of DIFF(M) for an aspherical closed
smooth manifold). Let M be an aspherical closed smooth manifold of dimension
≥ 10 with fundamental group π. Suppose that the Farrell–Jones Conjecture for
K–theory and for L–theory for Zπ hold.

Then for 1 ≤ n ≤ min{(dimM − 7)/2, (dimM − 4)/3} we have

πn(DIFF(M))⊗Z Q =





center(π)⊗Z Q if n = 1,⊕∞
j=1H(n+1)−4j(M ;Q) if n ≥ 2, dimM odd,

{0} if n ≥ 2, dimMeven.

Remark 4.10 (Surfaces and simply connected manifolds). There are very inter-
esting computations of the cohomology of BDIFF(M) in a range and under stabi-
lization with taking the connected sum with Sn × Sn for 2–dimensional manifolds
or simply connected high-dimensional manifolds by Berglund, Galatius, Madsen,
Randal-Williams, Weiss and others, see for instance [8, 9, 22, 23, 24, 25, 26, 37, 38].
The methods used in these papers are quite different. Notice that taking the con-
nected sum with Sn×Sn will destroy asphericity except for n = 1, so that it is not
clear what stabilization could mean in the context of aspherical manifolds in high
dimensions.

5. Inheritance properties of the Isomorphism Conjectures

The main result of this section is

Theorem 5.1 (Inheritance properties of the Meta-Conjecture with coefficients).
Let S : SPACES → SPECTRA be a covariant functor which respects weak equiva-
lences and disjoint unions. Let C be a class of groups which is closed under isomor-
phisms, taking subgroups and taking quotients.

(i) Suppose that the Meta-Isomorphism Conjecture 2.8 with coefficients holds
for (G, C(G)), i.e., it holds for G with respect to the family of subgroups
C(G) = {H ⊆ G | H ∈ C} of G. Let H ⊆ G be a subgroup.

Then Conjecture 2.8 holds for (H, C(H)).

(ii) Let 1 → K → G
p
−→ Q → 1 be an extension of groups. Suppose that

(Q, C(Q)) and (p−1(H), C(p−1(H)) for every H ∈ C(Q) satisfy Conjecture 2.8.
Then (G, C(G)) satisfies Conjecture 2.8.

(iii) Suppose that Conjecture 2.8 is true for (H1 × H2, C(H1 ×H2)) for every
H1, H2 ∈ C.

Then for two groups G1 and G2 Conjecture 2.8 is true for the direct
product G1 × G2 and the family C(G1 × G2), if and only if is true for
(Gk, C(Gk)) for k = 1, 2.

(iv) Suppose that for any directed systems of spaces {Xi | i ∈ I} indexed over
an arbitrary directed set I the canonical map

hocolimi∈I S(Xi)→ S
(
hocolimi∈I Xi

)
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is a weak homotopy equivalence. Let {Gi | i ∈ I} be a directed system
of groups over a directed set I (with arbitrary structure maps). Put G =
colimi∈I Gi. Suppose that Conjecture 2.8 holds for (Gi, C(Gi)) for every
i ∈ I. Then Conjecture 2.8 holds for (G, C(G)).

(v) The analogs of assertions (i), (ii), (iii), and (iv) hold for the Meta-Isomorphism
Conjecture 2.14 with coefficients and finite wreath products.

Moreover, if G is a group and H ⊆ G is a subgroup of finite index, then
Conjecture 2.14 holds for (G, C(G)), if and only if Conjecture 2.14 holds
for (H, C(H)).

Let us remark that the case of free products is missing in Theorem 5.1. It will
be treated in Section 5.6 below.

5.1. The Fibered Meta-Isomorphism Conjecture for equivariant homol-
ogy theories. Next we introduce the Meta-Conjecture and its fibered version in
terms of G–homology theories. In this setting the analog of Theorem 5.1 has al-
ready been proved and we want to reduce the case coming from a functor from
spaces to spectra to this situation.

Conjecture 5.2 (Meta-Isomorphism Conjecture). The group G satisfies the Meta-
Isomorphism Conjecture with respect to the G–homology theory HG∗ and the family
F of subgroups of G if the assembly map

HGn (pr) : H
G
n (EF (G))→ H

G
n (G/G)

induced by the projection pr : EF (G)→ G/G is bijective for all n ∈ Z.

Let X be a G–CW–complex. Let α : H → G be a group homomorphism. Denote
by α∗X the H–CW–complex obtained from X by restriction with α. Given an H–
CW–complex Y , we denote the G–CW–complex given by induction by α∗Y .

Fix a group Γ. An equivariant homology theory H?
∗ over Γ in the sense of [2,

Definition 2.3] assigns to a group (G,ψ) over Γ, i.e., a group G together with a
homomorphism ψ : G → Γ, a G–homology theory HG,ψ

n , sometimes denoted just
by HG

∗ . For two groups (G,ψ) and (G′, ψ′) over Γ and a morphism ϕ between
them, i.e., a group homomorphism ϕ : G → G′ with ψ′ ◦ α = ψ, one obtains
homomorphisms indα : H

G
∗ (X,A) → HG′

∗ (α∗(X,A)) for every G–CW–pair (X,A),
which are bijective, if the kernel of α acts freely on (X,A), and compatible with
the boundary homomorphisms associated to pairs. If Γ is trivial, this is just an
equivariant homology theory.

Conjecture 5.3 (Fibered Meta-Isomorphism Conjecture). A group (G,ψ) over
Γ satisfies the Fibered Meta-Isomorphism Conjecture with respect to H?

∗ and the
family F of subgroups of G if for each group homomorphism ϕ : K → G the group
K satisfies the Meta-Isomorphism Conjecture 5.2 with respect to the K–homology

theory HK,ψ◦ϕ∗ and the family ϕ∗F = {H ⊆ G | ϕ(H) ∈ F} of subgroups of K.

Lemma 5.4. Let (G,ψ) be a group over Γ and ϕ : K → G be a group homomor-
phism. If (G,ψ) satisfies the Fibered Meta-Isomorphism Conjecture 5.3 with respect
to the family F of subgroups of G, then the group (K,ψ ◦ ϕ) over Γ satisfies the
Fibered Meta-Isomorphism Conjecture 5.3 with respect to the family ϕ∗F .

Proof. If ϑ : L→ K is a group homomorphism, then ϑ∗(ϕ∗F) = (ϕ ◦ ϑ)∗F . �

5.2. Some adjunctions. Let S : SPACES → SPECTRA be a covariant functor.
Throughout this section we will assume that it respects weak equivalences and
disjoint unions.

Lemma 5.5. Let ψ : K1 → K2 be a group homomorphism.
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(i) If Z is a K1–CW–complex and X is a K2–CW–complex, then there is a
natural isomorphism

HK1
n (ψ∗X ;SK1

Z )
∼=
−→ HK2

n (X ;SK2

ψ∗Z
).

(ii) If Z is a K2–CW–complex and X is a K1–CW–complex, then there is a
natural isomorphism

HK1
n (X ;SK1

ψ∗Z)
∼=
−→ HK2

n (ψ∗X ;SK2

Z ).

Proof. (i) The fourth isomorphism appearing in [12, Lemma 1.9] together with [12,
Lemma 4.6] applied levelwise implies that it suffices to construct a natural weak
homotopy equivalence of Or(K2)–spectra

u(ψ,Z) : ψ∗S
K1

Z
≃
−→ SK2

ψ∗Z
,

where ψ∗S
K1

Z is the Or(K2)–spectrum obtained by induction in the sense of [12,
Definition 1.8] with the functor Or(ψ) : Or(K1)→ Or(K2), K1/H1 7→ ψ∗(K1/H1)

applied to the Or(K1)–spectrum SK1

Z . For a homogeneous space K2/H we define
u(ψ,Z)(K2/H) to be the composite

ψ∗S
K1

Z (K2/H) = mapK2
(ψ∗(K1/?),K2/H)+ ∧Or(K1) S (K1/?×K1 Z)

∼=
−→ mapK1

((K1/?), ψ
∗(K2/H))+ ∧Or(K1) S(K1/?×K1 Z)

≃
−→ S(ψ∗(K2/H)×K1 Z)
∼=
−→ S(K2/H ×K2 ψ∗Z)

=: SK2

ψ∗Z
(K2/H).

Here the first map comes from the adjunction isomorphism

mapK2
(ψ∗(K1/?),K2/H)

∼=
−→ mapK1

(K1/?), ψ
∗(K2/H)),

and the third map comes from the canonical homeomorphism

ψ∗(K2/H)×K1 Z
∼=
−→ K2/H ×K2 ψ∗Z.

The second map is the special case T = ψ∗K2/? of the natural weak homotopy
equivalence defined for any K1–set T

κ(T ) : mapK1
((K1/?), T )+ ∧Or(K1) S (K1/?×K1 Z)

≃
−→ S(T ×K1 Z),

which is given by (u : K1/? → T ) × s 7→ S(u ×K1 idZ)(s). If T is a transitive
K1–set, then κ(T ) is even an isomorphism by the Yoneda Lemma. The left-hand
side is compatible with disjoint unions in T , the right-hand side is compatible with
disjoint unions in T up to homotopy, where we use that S respects disjoint unions.
As every K1–set is the disjoint union of homogeneous K1–sets, κ(T ) is a weak ho-
motopy equivalence for every K1–set T .

(ii) The third isomorphism appearing in [12, Lemma 1.9] together with [12, Lemma 4.6]
implies that it suffices to construct a natural weak homotopy equivalence ofOr(K1)–
spectra

v(ψ,Z) : ψ∗SK2

Z
≃
−→ SK1

ψ∗Z ,

where ψ∗SK2

Z is the Or(K1)–spectrum obtained by restriction in the sense of [12,
Definition 1.8] with the functor Or(ψ) : Or(K1) → Or(K2), K1/H 7→ ψ∗(K1/H)

applied to the Or(K2)–spectrum SK2

Z . Actually, we obtain even an isomorphism
v(ψ,Z) using the adjunction

ψ∗(K1/H)×K2 Z
∼= K1/H ×K1 ψ

∗Z

for any subgroup H ⊆ K1. �
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5.3. The FiberedMeta–Isomorphism Conjecture with coefficients for func-
tors from spaces to spectra. Notice that for a homomorphism ϕ : H → G the
restriction ϕ∗Z of a free G–CW–complex Z is free again if and only if ϕ is injec-
tive. We have already explained in Remark 2.12 that the assumption that Z is free
is needed in Conjecture 2.8. In the Fibered Meta-Isomorphism Conjecture 5.3 it
is crucial not to require that ϕ : H → G is injective since we want to have good
inheritance properties. Therefore we have to blow up Z everywhere by passing to
EG× Z as explained below.

Let G be a group and Z be a G–CW–complex. Recall that G denotes the
groupoid with precisely one object which has G as its automorphism group. Let
GROUPOIDS ↓ G be the category of groupoids over G. Objects are groupoids G
together with a functor P : G → G. A morphism from P : G → G to P ′ : G′ → G
is a covariant functor F : G → G′ satisfying P ′ ◦ F = P . Given a groupoid G, we
obtain a contravariant functor E(? ↓ G) : G → SPACES by sending an object x to
the classifying space of the category x ↓ G of objects in G under x. We get from
Z, by restriction along P , a covariant functor P ∗Z : G → SPACES where we think
of the left G–space Z as a covariant functor G → SPACES. The tensor product
over G, see [12, Section 1], yields a space E(? ↓ G) ×G P

∗Z(?). Thus we obtain a
covariant functor
(5.6)

S↓G
Z : GROUPOIDS ↓ G→ SPECTRA, P : (G → G) 7→ S(E(? ↓ G)×G P

∗Z(?)).

It yields an equivariant homology theory H?
n(−;S

↓G
Z ) over G, see [2, Lemma 7.1].

Given a homomorphism ψ : K → G we get an identification ofK–homology theories

(5.7) HK,ψ
∗ (−;S↓G

Z ) ∼= HK
∗ (−;SKEK×ψ∗Z),

which is induced by a homotopy equivalence, natural in K/H ,

E(? ↓ T K(K/H))×T K(K/H) ψ
∗Z(?)

≃
−→ K/H ×K (EK × ψ∗Z)

and [12, Lemma 4.6], where T denotes the transport groupoid from Example 2.9
and ψ also denotes its induced map T K(K/H) → G. For any group ψ : K → G
over G, inclusion i : H → K of a subgroup H of K, and n ∈ Z we have canonical
identifications

HK,ψ
n (K/H ;S↓G

Z ))
∼=
−→ HH,ψ◦i

n (H/H ;S↓G
Z )) ∼= πn(S(EH ×H (ψ ◦ i)∗Z)).

Lemma 5.8. Let ϕ : H → K and ψ : K → G be group homomorphisms.

(i) Let X be a G–CW–complex and let Z be a K–CW–complex. Then we
obtain a natural isomorphism

HH,ϕ
n (ϕ∗ψ∗X ;S↓K

Z )
∼=
−→ HG

n (X ;SG(ψ◦ϕ)∗(EH×ϕ∗Z)).

(ii) Let X be an H–CW–complex and let Z be a G–CW–complex. Then we
obtain a natural isomorphism

HH,ϕ
n (X ;S↓K

ψ∗Z)
∼=
−→ HH,ψ◦ϕ

n

(
X ;S↓G

Z

)
.

Proof. (i) We get from (5.7)

HH,ϕ
n (ϕ∗ψ∗X ;S↓K

Z ) := HH
n (ϕ∗ψ∗X ;SHEH×ϕ∗Z).

Now apply Lemma 5.5 (i).

(ii) We get from (5.7)

HH,ϕ
n (X ;S↓K

ψ∗Z) := HH
n (X ;SHEH×ϕ∗ψ∗Z)

= HH
n (X ;SHEH×(ψ◦ϕ)∗Z) =: HH,ψ◦ϕ

n

(
X ;S↓G

Z

)
.

�
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Conjecture 5.9 (Fibered Meta-Isomorphism Conjecture for a functor from spaces
to spectra with coefficients). Let S : SPACES → SPECTRA, as before, respect
weak equivalences and disjoint unions. We say that S satisfies the Fibered Meta-
Isomorphism Conjecture for a functor from spaces to spectra with coefficients for
the group G and the family of subgroups F of G if the following holds: For any

G–CW–complex Z the equivariant homology theory H?
∗(−;S

↓G
Z ) over G satisfies the

Fibered Meta-Isomorphism Conjecture 5.3 for the group (G, idG) over G and the
family F .

Note that Conjecture 2.8 deals with theG–homology theoryHG
∗ (−;SG), whereas

Conjecture 5.9 deals with the the equivariant homology theory H?
∗(−;S

↓G) over
G. Moreover, Conjecture 5.9 is unchanged if we would additionally require that
the G–CW–complex Z is free. Namely, for any G–CW–complex Z the G–CW–
complex EG× Z is free and the projection EG× Z → Z induces an isomorphism

H?
∗(−;S

↓G
EG×Z)

∼=
−→ H?

∗(−;S
↓G
Z ) of equivariant homology theories over G because

of (5.7) and [12, Lemma 4.6].
For the rest of this section, we abbreviate the different conjectures as follows:

• C2.8 is the Meta-Isomorphism Conjecture 2.8 for functors from spaces to
spectra with coefficients. This is the conjecture we want to know about in
the end.
• MIC5.2 and FMIC5.3 denote the Meta-Isomorphism Conjecture 5.2, and
the Fibered Meta-Isomophism Conjecture 5.3. These are statements about
a (G-)equivariant homology theory.
• S5.9 denotes the Fibered Meta-Isomorphism Conjecture 5.9 for a functor
from spaces to spectra with coefficients. This takes as input a functor S
and is the most general version of a conjecture we are interested it.

Lemma 5.10. Let ψ : K → G be a group homomorphism.

(i) Suppose that C2.8 holds for the group G and the family F . Then S5.9
holds for the group K and the family ψ∗F .

(ii) If S5.9 holds for the group G and the family F , then C2.8 holds for the
group G and the family F .

(iii) Suppose that S5.9 holds for the group K and the family F . Then for ev-
ery G–CW–complex Z FMIC5.3 holds for the equivariant homology theory

Hn(−;S
↓G
Z ) over G for the group (K,ψ) over G and the family F of sub-

groups of K.

Proof. (i) This follows from Lemma 5.8 (i), since in the notation used there we
have ϕ∗ψ∗EF (G) = ϕ∗Eψ∗F (K) and ϕ∗ψ∗G/G = H/H , and (ψ ◦ ϕ)∗(EH × ϕ∗Z)
is a free G–CW–complex.

(ii) This follows from applying Conjecture 5.9 to the special case ψ = idG and the
fact that for a free G–CW–complex Z the projection EG×Z → Z is a G–homotopy
equivalence and hence we get from (5.7) and [12, Lemma 4.6] natural isomorphisms

HG,idG
n (X ;S↓G

Z ) ∼= HG
n (X ;SGEG×Z)

∼= HG
n (X ;SGZ )

for every G–CW–complex X and n ∈ Z.

(iii) This follows from Lemma 5.8 (ii). �

5.4. Strongly continuous equivariant homology theories over a group. Fix
a group Γ and an equivariant homology theory H?

∗ over Γ.
Let X be a G–CW–complex and let α : H → G be a group homomorphism. The

functors α∗ : H−CW ⇄ G−CW : α∗ are adjoint to one another. In particular, the
adjoint of the identity on α∗X is a natural G–map

(5.11) f(X,α) : α∗α
∗X → X, (g, x) 7→ gx.
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Consider a map α : (H, ξ)→ (G,µ) of groups over Γ. Define the Λ–map

an = an(X,α) : HHn (α∗X)
indα−−−→ HGn (α∗α

∗X)
HG

n (f(X,α))
−−−−−−−−→ HGn (X).

If β : (G,µ) → (K, ν) is another morphism of groups over Γ, then by the ax-

ioms of an induction structure, see [33], the composite HHn (α∗β∗X)
an(β

∗X,α)
−−−−−−−→

HGn (β
∗X)

an(X,β)
−−−−−→ HKn (X) agrees with an(X, β ◦ α) : HHn (α∗β∗X) = HHn ((β ◦

α)∗X)→ HKn (X) for a K–CW–complex X .
Consider a directed system of groups {Gi | i ∈ I} with G = colimi∈I Gi and

structure maps ψi : Gi → G for i ∈ I and ϕi,j : Gi → Gj for i, j ∈ I, i ≤ j.
We obtain for every G–CW–complex X a system an(ψ

∗
jX,ϕi,j) : H

Gi(ψ∗
iX) →

HGj (ψ∗
jX). We get a map

(5.12) tGn (X) := colimi∈I an(X,ψi) : colimi∈I H
Gi
n (ψ∗

i (X)) → HGn (X).

The next definition is taken from [2, Definition 3.3].

Definition 5.13 (Strongly continuous equivariant homology theory over a group).
An equivariant homology theory H?

∗ over the group Γ is called strongly continuous
if for every group (G, ξ) over Γ and every directed system of groups {Gi | i ∈ I}
with G = colimi∈I Gi and structure maps ψi : Gi → G for i ∈ I the map

tGn ({•}) : colimi∈I H
Gi
n ({•})→ HGn ({•})

is an isomorphism for every n ∈ Z.

Lemma 5.14. Suppose that for any directed system of spaces {Xi | i ∈ I} indexed
over an arbitrary directed set I the canonical map

hocolimi∈I S(Xi)→ S
(
hocolimi∈I Xi

)

is a weak homotopy equivalence.
Then for every group Γ and Γ–CW–complex Z the equivariant homology theory

over Γ given by H?
∗(−;S

↓Γ
Z ) is strongly continuous.

Proof. We only treat the case Γ = G and ψ = idG, the general case of a group
ψ : G → Γ over Γ is completely analogous. Consider a directed system of groups
{Gi | i ∈ I} with G = colimi∈I Gi. Let ψi : Gi → G be the structure map for i ∈ I.

As I is directed, the canonical map

(5.15) hocolimi∈I S(EGi ×Gi
ψ∗
i Z)→ S

(
hocolimi∈I(EGi ×Gi

ψ∗
i Z)

)

is by assumption a weak homotopy equivalence. We have the homeomorphisms

EGi ×Gi
ψ∗
i Z

∼=
−→ (ψi)∗EGi ×G Z,

(
hocolimi∈I(ψi)∗EGi

)
×G Z

∼=
−→ hocolimi∈I

(
(ψi)∗EGi ×G Z

)
.

They induce a homeomorphism

(5.16) S(hocolimi∈I(EGi ×Gi
ψ∗
i Z)

) ∼=
−→ S

(
(hocolimi∈I(ψi)∗EGi)×G Z

)
.

The canonical map
hocolimi∈I(ψi)∗EGi → EG

is aG–homotopy equivalence. The proof of this fact is a special case of the argument
appearing in the proof of [36, Theorem 4.3 on page 516]. It induces a weak homotopy
equivalence

(5.17) S
(
(hocolimi∈I(ψi)∗EGi)×G Z)→ S(EG×G Z).

Hence we get by taking the composite of the maps (5.15), (5.16) and (5.17) a weak
homotopy equivalence

hocolimi∈I S(EGi ×Gi
ψ∗
i Z)→ S(EG×G Z).



20 N. ENKELMANN, W. LÜCK, M. PIEPER, M. ULLMANN, AND C. WINGES

As I is directed, it induces after taking homotopy groups for every n ∈ Z an
isomorphism

colimi∈I πn
(
S(EGi ×Gi

ψ∗
i Z)

)
→ πn

(
S(EG ×G Z)

)
,

which can be identified using (5.7) with the canonical map

tGn ({•}) : colimi∈I H
Gi
n ({•};S↓G

Z )→ HG
n ({•};S

↓G
Z ).

This finishes the proof of Lemma 5.14. �

5.5. Proof of Theorem 5.1. In this section we give the proof of Theorem 5.1.
We use the notation from there.

Proof. (i) Consider a freeH–CW–complex Z. Let i : H → G be the inclusion. Then
i∗Z is a free G–CW–complex, i∗EC(G)(G) is a model for EC(H)(H) and i∗G/G =
H/H . From Lemma 5.5 (i), we obtain a commutative diagram with isomorphisms
as vertical maps

HH
n (EC(H)(H);SHZ ) //

∼=

��

HH
n (H/H ;SGZ )

∼=

��

HG
n (EC(G)(G);S

G
i∗Z

) // HG
n (G/G;S

G
i∗Z

)

where the horizontal maps are induced by the projections. The lower map is bijec-
tive by assumption. Hence the upper map is bijective as well.

(ii) As C2.8 holds for (Q,Q), by Lemma 5.10(i), S5.9 holds for (G, p∗C(Q)). By
the same Lemma 5.10(i), for every H ∈ C(Q), C2.8 holds for (p−1(H), C(p−1(H))).
Naturally, p−1(H) ⊆ G is a group over G for which by Lemma 5.10(iii) FMIC5.3

holds for H?
n(−;S

↓G
Z ) for any G-CW complex Z and the family C(p−1(H)) =

C(G)|p−1(H). Let L ∈ p
∗C(Q). Then, using Lemma 5.4 for the map L→ p−1(p(L)),

FMIC5.3 holds for (L, C|L) and H?
n(−;S

↓G
Z ). As FMIC5.3 holds for (G, p∗C(Q))

and for every L ∈ p∗C(Q) for (L, C|L), the Transitivity Principle, see [2, Theo-
rem 4.3], implies that FMIC5.3 holds for (G, C). By Lemma Lemma 5.10(ii), then
also C2.8 holds for (G, C).

(iii) If C2.8 holds for (G1 × G2, C(G1 × G2)), it holds for Gk and the family
C(Gk) = C(G1 ×G2)|Gk

for k = 1, 2 by assertion (i).
Suppose that C2.8 holds for (Gk, C(Gk)) for k = 1, 2. By assertion (ii) ap-

plied to the split exact sequence 1 → H2 → G1 × H2 → G1 → 1, C2.8 holds for
(G1 ×H2, C(G1 ×H2)) for every H2 ∈ C(G2). By assertion (ii) applied to the split
exact sequence 1→ G1 → G1×G2 → G2 → 1 C2.8 holds for (G1×G2, C(G1×G2)).

(iv) Since the C2.8 holds for Gi and C(Gi) for every i ∈ I by assumption, we con-
clude from Lemma 5.10 (i) that S5.9 holds for the group Gi and the family C(Gi)
for every i ∈ I. Lemma 5.10 (iii) implies that for every i ∈ I and G–CW–complex

Z FMIC5.3 holds for the equivariant homology theory Hn(−;S
↓G
Z ) over G for the

group ψi : Gi → G over G and the family C(Gi). We conclude from [2, Theo-
rem 5.2] and Lemma 5.14 that for every G–CW–complex Z FMIC5.3 holds for the

equivariant homology theory H?
∗(−;S

↓G
Z ) over G for the group (G, idG) over G and

the family C(G). In other words, S5.9 holds for the group G and the family C(G).
Lemma 5.10 (ii) implies that C2.8 holds for the group G and the family C(G).

(v) The analogs of (i), (ii), (iii), and (iv) hold for the Meta-Isomorphism Conjec-
ture 2.14 with coefficients and finite wreath products by [32, Lemma 3.2, 3.15, 3.16,
Satz 3.5].

For a group G and two finite groups F1 and F2 we have (H ≀ F1) ≀ F2 ⊆ H ≀ (F1 ≀
F2) and F1 ≀ F2 is finite. In particular, if G satisfies Conjecture 2.14 with wreath
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products, then the same is true for any wreath product G≀F with F finite. IfH ⊆ G
is a subgroup of finite index, then G can be embedded in H ≀F for some finite group
F , see [53, Proof of Proposition 2.17]. Hence Meta-Isomorphism Conjecture 2.14
with coefficients passes to supergroups of finite index. This finishes the proof of
Theorem 5.1. �

5.6. Proof of assertion (ii) of Theorem 1.1. By Lemma 2.5, the functor A
satisfies all assumptions of Theorem 5.1. The claim of the inheritance properties
appearing in item (ii) of Theorem 1.1 follows immediately from Theorem 5.1 except
for the statements about extensions, direct products and free products. For exten-
sions, it follows from the inheritance under finite index supergroups. For direct
products, note that the product of two virtually cyclic groups is virtually abelian,
hence by [44] it satisfies the conjecture.

For free products, note that due to the inheritance under filtered colimits, we
can assume our groups are finitely generated, in particular countable. For G1,
G2 ∈ FJA consider the canonical map p : G1 ∗ G2 → G1 × G2. We already know
that G1 ×G2 ∈ FJA and hence that it suffices to prove p−1(C) ∈ FJA, where C is
the trivial or any infinite cyclic subgroup of G1 ×G2. By [42, Lemma 5.2] all such
p−1(C) are free and hence hyperbolic, as G1 ×G2 is countable.

6. Proof of the Farrell–Jones Conjecture for hyperbolic and
CAT(0)–groups

Thanks to the framework established in [44], we can proceed similarly to the
linear case as in [52] and reduce the proof to the construction of a transfer map.
This reduction is carried out in this section, while the construction of the transfer
occupies Section 7.

6.1. Homotopy coherent actions and homotopy transfer reducibility. The
geometric criterion we use to prove the conjecture relies on the notion of a homotopy
coherent diagram, which goes back to Vogt [48]. For applications to the Farrell–
Jones conjecture, it is enough to consider the case of a homotopy coherent diagram
of shape G, regarding G as a one-object groupoid. In this special case, Vogt’s
definition was rediscovered by Wegner [52, Definition 2.1], who called it “strong
homotopy action”.

Definition 6.1. A homotopy coherent G–action of a group G on a topological
space X is a continuous map

Γ :

∞∐

j=0

((G× [0, 1])j ×G×X)→ X

with the following properties:

Γ(γk, tk, . . . , γ1, t1, γ0, x) =





Γ(. . . , γj ,Γ(γj−1, . . . , x)) tj = 0

Γ(. . . , γjγj−1, . . . , x) tj = 1

Γ(γk, . . . , γ2, t2, γ1, x) γ0 = e, 0 < k

Γ(γk, . . . , tj+1tj , . . . , γ0, x) γj = e, 1 ≤ j < k

Γ(γk−1, tk−1, . . . , t1, γ0, x) γk = e, 0 < k

x γ0 = e, k = 0

The following definition is adapted from the conditions given in [1, Theorem B],
which does not use coherence conditions. We explain some notation below.
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Definition 6.2. Let G be a discrete group. Let F be a family of subgroups of G.
Then G is homotopy transfer reducible over F if there exists a finite, symmetric

generating set S ⊆ G of G which contains the trivial element, as well as N ∈ N
such that there are for every n ∈ N

(i) a compact, contractible metric space (X, dX) such that for every ε > 0
there is an ε–controlled domination of X by an at most N–dimensional,
finite simplicial complex.

(ii) a homotopy coherent G–action Γ on X .
(iii) a G–simplicial complex Σ of dimension at most N whose isotropy is con-

tained in F .
(iv) a continuous map f : X → Σ which is (S, n)–equivariant in the sense that

• for all x ∈ X and s ∈ Sn,

dℓ
1

(f(Γ(s, x)), s · f(x)) ≤
1

n
.

• for all x ∈ X and s0, . . . , sn ∈ S
n,

diam{f(Γ(sn, tn, . . . , s0, x)) | (t1, . . . , tn) ∈ [0, 1]n} ≤
2

n
.

Notation 6.3. Let us briefly recall some notation used in Definition 6.2.

(i) Recall from [5, Definition 1.5] that an ε–controlled domination of a metric
space (X, d) by a finite simplicial complex K consists of maps i : X → K,
p : K → X together with a homotopy H from p ◦ i to idX such that for
every x ∈ X the diameter of {H(x, t) | t ∈ [0, 1]} is at most ε.

(ii) The ℓ1–metric dℓ
1

on a simplicial complex is defined in [6, 4.2].
(iii) If S is a finite generating set ofG, we denote by Sn ⊆ G the set {s1s2 . . . sn ∈

G | si ∈ S}. We always equip G with the word metric dG with respect to
S. Equivalently, Sn is the n–ball around the trivial element with respect
to dG.

We will show in Section 6.7 that a group satisfying Definition 6.2 satisfies the
Farrell-Jones Conjecture with coefficients in A–theory with respect to the fam-
ily F , and we show in Section 6.10 that hyperbolic and CAT(0)–groups satisfy
Definition 6.2, thus proving Theorem 1.1(i).

6.2. Controlled CW–complexes. Let G be a discrete group and let F be a
family of subgroups of G. In [44] it was shown that Theorem 6.14 holds for G if
and only if a certain spectrum F(G,W,EF (G)) is weakly contractible for every free
G–CW–complex W . The spectrum F(G,W,EF (G)) is the algebraic K–theory of
a Waldhausen category of controlled retractive G–CW–complexes, similar in spirit
to the obstruction category for the Isomorphism Conjecture in algebraic K–theory,
cf. [3], [6, Section 3]. Let us recall the relevant definitions from [44] in this and the
next section.

A coarse structure is a triple Z = (Z,C,S) such that Z is a Hausdorff G–space,
C is a collection of reflexive, symmetric and G–invariant relations on Z which is
closed under taking finite unions and compositions, see [44, Definition 2.1], and S

is a collection of G–invariant subsets of Z which is closed under taking finite unions.
See [44, Definition 3.23] for the notion of a morphism of coarse structures.

Fix a coarse structure Z.
A labeled G–CW–complex relative W, see [44, Definition 2.3], is a pair (Y, κ),

where Y is a free G–CW–complex relative W together with a G–equivariant func-
tion κ : ⋄ Y → Z. Here, ⋄Y denotes the (discrete) set of relative cells of Y .
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A Z–controlled map f : (Y1, κ1) → (Y2, κ2) is a G–equivariant, cellular map
f : Y1 → Y2 relative W such that for all k ∈ N there is some C ∈ C for which

(κ2, κ1)({(e2, e1) | e1 ∈ ⋄ kY1, e2 ∈ ⋄ Y2, 〈f(e1)〉 ∩ e2 6= ∅}) ⊆ C

holds, where 〈f(e1)〉 denotes the smallest non-equivariant subcomplex of Y2 which
contains f(e1).

A Z–controlled G–CW–complex relative W is a labeled G–CW–complex (Y, κ)
relative W , such that the identity is a Z–controlled map and for all k ∈ N there is
some S ∈ S such that

κ(⋄kY ) ⊆ S.

A Z–controlled retractive space relative W is a Z–controlled G–CW–complex
(Y, κ) relative W together with a G–equivariant retraction r : Y → W , i.e., a left
inverse to the structural inclusion W →֒ Y . The Z–controlled retractive spaces
relative W form a category RG(W,Z) in which morphisms are Z–controlled maps
which additionally respect the chosen retractions.

The category of controlled G–CW–complexes (relative W ) and controlled maps
admits a notion of controlled homotopies, see [44, Definition 2.5] via the objects
(Y ⋋ [0, 1], κ ◦ prY ), where Y ⋋ [0, 1] denotes the reduced product which identifies
W × [0, 1] ⊆ Y × [0, 1] to a single copy of W and prY : ⋄ (Y ⋋ [0, 1]) → ⋄Y is
the canonical projection. In particular, we obtain a notion of controlled homotopy
equivalence (or h–equivalence).

A Z–controlled retractive space (Y, κ) is called finite if it is finite-dimensional,
the image of Y \W under the retraction meets the orbits of only finitely many path
components of W and for each z ∈ Z there is some open neighborhood U of z such
that κ−1(U) is finite, see [44, Definition 3.3].

A Z–controlled retractive space (Y, κ) is called finitely dominated, if there are a
finite Z–controlled, retractive space D, a morphism p : D → Y and a Z–controlled
map i : Y → D such that p ◦ i is controlled homotopic to idY .

The finite, respectively finitely dominated, Z–controlled retractive spaces form
full subcategories RGf (W,Z) ⊆ R

G
fd(W,Z) ⊆ R

G(W,Z). All three of these cate-
gories support a Waldhausen category structure in which inclusions of G–invariant
subcomplexes up to isomorphism are the cofibrations and controlled homotopy
equivalences are the weak equivalences, see [44, Corollary 3.22]. We denote this
class of weak equivalences by h.

Note that a controlled homotopy equivalence is a morphism, but only admits a
controlled homotopy inverse map, which does not need to be compatible with the
retractions to W . This is similar to the classical situation [50, Section 2.1].

6.3. The obstruction category. Let M be a metric space with free, isometric
G–action. Define the bounded morphism control condition on M , Cbdd(M), to be
the collection of all subsets C ⊆M ×M which are of the form

C = {(m,m′) ∈M ×M | d(m,m′) ≤ α}

for some α ≥ 0.
Let X be a G–CW–complex. Define further the G–continuous control condition

CGcc(X) to be the collection of all C ⊆ (X × [1,∞[) × (X × [1,∞[) which satisfy
the following:

(i) For every x ∈ X and every Gx–invariant open neighborhood U of (x,∞)
in X × [1,∞], there exists a Gx–invariant open neighborhood V ⊆ U of
(x,∞) such that (((X × [1,∞[)r U)× V ) ∩ C = ∅.

(ii) Let p[1,∞[ : X × [1,∞[→ [1,∞[ be the projection map. Equip [1,∞[ with
the Euclidean metric. Then there exists some B ∈ Cbdd([1,∞[) such that
C ⊆ p−1

[1,∞[(B).
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(iii) C is symmetric, G–invariant and contains the diagonal.

We can combine the two morphims control conditions into one set of conditions on
M ×X × [1,∞[: Let pM : M ×X × [1,∞[→ M and pX×[1,∞[ : M ×X × [1,∞[→
X×[1,∞[ denote the projection maps. Then C(M,X) is the collection of all subsets
C ⊆ (M ×X × [1,∞[)2 which are of the form

C = p−1
M (B) ∩ p−1

X×[1,∞[(C
′)

for some B ∈ Cbdd(M) and C′ ∈ CGcc(X).
Finally, define S(M,X) to be the collection of all subsets S ⊆ M ×X × [1,∞[

which are of the form S = K × [1,∞[ for some G–compact subset K ⊆ M × X .
Recall that EF (G) denotes the classifying space of G with respect to F . We also
consider G as a metric space with the word metric induced by a generating set S.

Definition 6.4. With the above definitions we obtain a coarse structure

J(M,X) := (M ×X × [1,∞[,C(M,X),S(M,X)).

Define the “obstruction category” as the category of finite controlled CW-complexes
relative W , i.e., as

RGf (W, J(G,EF (G))), h),

cf. [44, Example 2.2 and Definition 6.1]. The spectrum F(G,W,EF (G)) alluded
to before is the non-connective K–theory spectrum of RGf (W, J(G,EF (G))) with

respect to the h–equivalences, cf. [44, Section 5] and Definition 6.13 below. If
M = G, we often abbreviate J(G,X) as J(X).

By [44, Corollary 6.11], a group G satisfies the Farrell-Jones Conjecture 2.13
with coefficients in A–theory with respect to F if and only if F(G,W,EF (G)) is
weakly contractible for every free G–CW–complex W .

6.4. The target of the transfer. Suppose that G is homotopy transfer reducible
in the sense of Definition 6.2. The key step in proving the weak contractibility of
F(G,W,EF (G)) will be the construction of a “transfer map”. We need a general-
ization of the coarse structure J(M,X) to define the target of the transfer.

Suppose that (Mn)n is a sequence of metric spaces with a free, isometric G–
action. Let X be a G–CW–complex. Following [44, Section 7], define the coarse
structure

J((Mn)n, X) :=
(∐

n

Mn ×X × [1,∞[,C((Mn)n, X),S((Mn)n, X)
)

as follows: Members of C((Mn)n, X) are of the form C =
∐
n Cn with Cn ∈

C(Mn, X), and we additionally require that C satisfies the uniform metric con-
trol conditon: There is some α > 0, independent of n, such that for all ((m,x, t),
(m′, x′, t′)) ∈ C we have d(m,m′) < α. Members of S((Mn)n, X) are sets of the
form S =

∐
n Sn with Sn ∈ S(Mn, X). The resulting categoryRG(W, J((Mn)n, X))

has a canonical faithful functor into the product category
∏
nR

G(W, J(Mn, X)).
Fix a symmetric, finite generating set S of G. Let dG denote the word metric on

G with respect to S. Since G is homotopy transfer reducible by assumption, there
exists a natural number N ∈ N such that we can choose for each n ∈ N

(i) a compact, contractible metric space (Xn, dXn
) such that for every ε > 0

there is an ε–controlled domination of Xn by an at most N–dimensional,
finite simplicial complex;

(ii) a homotopy coherent G–action Γn on Xn;
(iii) a G–simplicial complex Σn of dimension at most N whose isotropy is

contained in F ;
(iv) a map fn : X → Σn which is (S, n)–equivariant, i.e.,
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(a) for all x ∈ Xn and s ∈ Sn,

(6.5) dℓ
1

(f(Γn(s, x)), s · fn(x)) ≤
1

n
;

(b) for all x ∈ Xn and s0, . . . , sn ∈ Sn,

(6.6) diam{fn(Γn(sn, tn, . . . , s0, x)) | (t1, . . . , tn) ∈ [0, 1]n} ≤
2

n
.

Definition 6.7. We equip Σn ×G with the metric n · dℓ
1

(x, y) + dG(g, h).

Recall that an extended metric satisfies the usual axioms of a metric, but it is
allowed to take the value ∞. The following definition will be used to produce a
metric on Xn ×G for each n ∈ N.

Definition 6.8. Let (X, dX) be a metric space, Γ a homotopy coherent G–action
on X , and S ⊆ G a finite subset containing the trivial element. Let k ∈ N and
Λ > 0. Define on X ×G the extended metric

dS,k,Λ((x, g), (y, h)) ∈ [0,∞]

to be the infimum over the numbers

l+

l∑

i=0

Λ · dX(xi, zi),

where the infimum is taken over all l ∈ N, x0, . . . , xl, z0, . . . , zl ∈ X and a1, . . . , al,
b1, . . . , bl ∈ S such that

(i) x0 = x and zl = y;
(ii) ga−1

1 b1 . . . a
−1
l bl = h;

(iii) for each 1 ≤ i ≤ l there are elements r0, . . . , rk, s0, . . . , sk ∈ S such that
ai = rk . . . r0, bi = sk . . . s0 and Γ(rk, tk, . . . , r0, zi−1) = Γ(sk, uk, . . . , s0, xi)
for some t1, . . . , tk, u1, . . . , uk ∈ [0, 1].

If no such data exist, take the infimum to be ∞.

This definition is analogous to [5, Definition 3.4] and [52, Definition 2.3]. Since
we only consider the coherent G–action Γn on Xn, we drop Γn from the notation of
[52]. The proof of the next lemma is analogous to the one given in [5, Lemma 3.5].

Lemma 6.9. Let k ∈ N.

(i) For all Λ > 0, the function dS,k,Λ is an extended metric on X×G which is
G–invariant if we let G act on X ×G by γ · (x, g) = (x, γg). It is a metric
if and only if S generates G.

(ii) We have dS,k,Λ((x, g), (y, h)) < 1 if and only if g = h and Λ · dX(x, y) <
1 holds, in which case we have dS,k,Λ((x, g), (y, h)) = Λ · dX(x, y). In
particular, the topology induced by dS,k,Λ is the product topology. �

6.5. The actual target of the transfer. We now specialize the construction of
Section 6.4 to our needs. Assume that G is homotopy transfer reducible, i.e., it
satisfies Definition 6.2. That definition provides us for every n with a metric space
Xn, as well as Γn, fn and Σn. From Definition 6.8 and Lemma 6.9 we obtain for
any sequence (Λn)n a sequence of metric spaces (Xn×G, dSn,n,Λn

)n. Although we
do not need to restrict to a specific choice of (Λn)n until a little later, we wish to
avoid spreading our choices throughout the whole proof. Therefore, we will now fix
a specific sequence (Λn)n.

Since each Xn is compact, fn is uniformly continuous. Hence, there exists for
each n ∈ N some δn > 0 such that for all x, y ∈ Xn with dX(x, y) < δn we have

dℓ
1

(fn(x), fn(y)) <
1
n .
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Definition 6.10. Choose such δn for all n and set

Λn :=
n+ 1

δn
.

Define a metric dn on Xn ×G by

dn((x, g), (y, h)) := dSn,n,Λn
((x, g), (y, h)) + dG(g, h).

Then Xn ×G carries a free and isometric G–action if we let G act on the right
factor. If we make no explicit mention of a metric, we will view Xn×G as a metric
space with respect to dn in what follows. Similarly, Σn ×G carries a diagonal G–
action and will always be understood as a metric space with respect to the metric

n · dℓ
1

+ dG from Definition 6.7. Abbreviate E := EF (G).
The category RG(W, J((Xn × G)n, E)) will be the target of the “transfer”.

However, we need to equip it with another class of weak equivalences. These
hfin–equivalences were introduced in the proof of [44, Theorem 10.1]. Basically,
they ignore the behavior of an object on finitely many factors and behave like
h–equivalences otherwise.

Definition 6.11. Let (Mn)n be a sequence of metric spaces with free, isometric
G–action (e.g. Mn = Xn ×G).

Let (Yn)n be an object of RG(W, J((Mn)n, E)). For ν ∈ N, we denote by (−)n>ν
the endofunctor which sends (Yn)n to the sequence (Ỹn)n with Ỹn = ∗ for n ≤ ν

and Ỹn = Yn for n > ν.
A morphism (fn)n : (Yn)n → (Y ′

n)n is an hfin–equivalence if there is some ν ∈ N,
such that (fn)n>ν : (Yn)n>ν → (Y ′

n)n>ν is an h–equivalence.

Lemma 6.12. Let (Mn)n, (Nn)n be sequences of metric spaces with free, isometric
G-action. Let (gn)n : (Mn)n → (Nn)n be a uniformly expanding sequence of G–
equivariant maps, i.e., for every α > 0 there is some β > 0 such that for all n ∈ N
and x, y ∈Mn we have d(gn(x), gn(y)) < β whenever d(x, y) < α.

Then (gn)n induces a map RG(W, J((Mn)n, E)) → RG(W, J((Nn)n, E)) which
also respects h– and hfin–equivalences, as well as finiteness conditions.

Proof. As (gn)n induces a map on J((Mn)n, E) which respects the control condi-
tions, it also respects the h–equivalences. As it maps Mn to Nn, it also respects
the hfin–equivalences. �

We will discuss the difference between the h– and the hfin–equivalences in
Section 6.8.

6.6. Non-connective algebraic K–theory of controlled CW–complexes.
Before we turn to the main theorem, we need to briefly recall the definition of
algebraic K–theory in our setting. Let Z = (Z,C,S) be a coarse structure. Then
RGf (W,Z) and its variants are Waldhausen categories, hence their algebraic K–

theory is defined by [50]. However, we need the non-connective delooping from [44,
Section 5], which we briefly recall for completeness.

Definition 6.13. Let Z = (Z,C,S) be a coarse structure. For n ∈ N define the
coarse structure Z(n) = (Rn ×Z,C(n),S(n)) as follows: A set C ⊆ (Rn ×Z)2 is in
C(n) if and only if:

(i) C is symmetric, G–invariant and contains the diagonal.
(ii) C ⊆ p−1

n (C′) for some C′ ∈ Cbdd(R
n), where pn : R

n × Z → Rn is the
projection map.

(iii) For all K ⊆ Rn compact, there is a C′ ∈ C such that

C ∩ ((K × Z)× (K × Z)) ⊆ p−1
Z (C′),

where pZ : R
n × Z → Z is the projection map.
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Let S(n) be the collection of all S ⊆ Rn × Z such that S = p−1
Z (S′) for some

S′ ∈ S(Z).

Consider for all n also the restricted coarse structures

Z(n+ 1)+ := Z(n+ 1) ∩ (Rn × R≥0 × Z),

Z(n+ 1)− := Z(n+ 1) ∩ (Rn × R≤0 × Z).

Note that Z(n + 1) ∩ (Rn × {0} × Z) = Z(n). The inclusion maps give rise to a
commutative square

hS•RGf (W,Z(n)) hS•RGf (W,Z(n+ 1)+)

hS•RGf (W,Z(n+ 1)−) hS•RGf (W,Z(n+ 1)).

By an Eilenberg swindle, the top right and bottom left corners of this square are
contractible. This provides us with structure maps for a spectrum

K−∞(RGf (W,Z), h)n := K(RGf (W,Z(n)), h)

which we call the non-connective algebraic K–theory spectrum of RGf (W,Z). The
construction is functorial in Z.

Non-connective algebraic K–theory is a functor on coarse structures and mor-
phisms of coarse structures by [44, Section 5]. All the arguments which will follow
do not interact with a possible Rn–coordinate, hence can also be carried out for
n > 0, similar to [44, Section 9]. From the next section onwards, our proofs will
only treat the case n = 0.

6.7. The main theorem. In this part we show the following result.

Theorem 6.14. Let G be a discrete group and let F be a family of subgroups of
G. If G is homotopy transfer reducible over F , then G satisfies the Farrell-Jones
Conjecture 2.13 with coefficients in A–theory with respect to F .

Theorem 1.1 (i) follows from Theorem 6.14 in conjunction with the inheritance
properties established in Section 5, cf. the introduction. We derive the validity of
Theorem 1.1 (i) for hyperbolic and CAT(0)–groups in Corollary 6.20 below.

We follow the strategy of [52, Section 5]. We construct a commutative diagram
of Waldhausen categories and exact functors

(RGfd(W, J((Xn ×G)n, E)), hfin) (RGfd(W, J((Σn ×G)n, E)), hfin)

(RGfd(W, J((G)n, E)), hfin)

(RGf (W, J(E)), h) (RGfd(W, J(E)), h).

F

pXn×G→G

∆

pΣn×G→G

incl

trans

We define the maps trans, ∆ and F below and show the following.

Proposition 6.15.

(i) The arrow trans exists after applying non-connective algebraic K–theory.
It will be induced by a map of spectra whose domain is weakly equivalent
to K−∞(RGf (W, J(E)), h). The square formed by pXn×G→G ◦ trans and
∆ ◦ incl commutes up to levelwise weak equivalence of spectra.
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(ii) The functor F , defined below, is well-defined.
(iii) The algebraic K–theory of RGfd(W, J((Σn ×G)n, E), hfin) vanishes.

(iv) The map ∆◦ incl is injective on non-connective algebraic K–theory groups.

Given all of this, the proof can be finished as in [52, Section 5]. It is a diagram
chase on the level of homotopy groups.

Before proving Proposition 6.15, let us define the maps of the diagram. The maps
p are induced by the indicated projections on control spaces, “incl” is the inclusion of
the finite into the finitely dominated objects. The functor ∆ is induced by the diag-
onal map into

∏
nR

G
fd(W, J(Gn, X)), which factors over (RGfd(W, J((G)n, E)), hfin)

because its image consists of uniformly controlled objects and maps. Also note that
every h–equivalence is an hfin–equivalence.

The functor F is defined using the maps fn from Section 6.4. It is induced by
the maps Fn : Xn×G→ Σn×G, (x, g) 7→ (gfn(x), g). We show in Section 6.8 that
with our choices these are uniformly bounded. The map “trans” is constructed in
Section 7.

6.8. Squeezing. All claims made in Proposition 6.15 except part (i) admit fairly
short proofs which we give in this section. Part (i) will be shown in Section 7.10

Proposition 6.15 (iii) follows from the “Squeezing Theorem” [44, Theorem 10.1]
and the fact that non-connective K–theory does not distinguish between finite and
finitely dominated objects [44, Remark 5.5]. Indeed, in the proof of Theorem 10.1
of [44], in equation (21), a homotopy fiber sequence

(6.16) K−∞

(
colimn

n∏

k=1

RGf (W, J(Mk, E)), h

)
−→

K−∞(RGf (W, J((Mn)n, E)), h) −→ K−∞(RGf (W, J((Mn)n, E)), hfin)

is established for any sequence of metric spaces (Mn)n. Then it is shown there
that under the assumptions from Section 6.4 on (Σn×G)n, the first map is a weak
equivalence by proving that the last object is weakly contractible.

Let us discuss Proposition 6.15 (ii) next. It suffices to show the following.

Lemma 6.17. The map (Fn)n : J((Xn×G)n, E)→ J((Σn×G)n, E) is a morphism
of coarse structures.

Proof. By Lemma 6.12, it suffices to check that (Fn)n is a uniformly expanding
sequence. Since the the proof is fairly lengthy (though still straightforward), we
give the details.

Let us recall the definitions. The metric dn onXn×Gwas defined in Definition 6.10,

the metric n · dℓ
1

+ dG on Σn ×G was chosen in Definition 6.7. Let α > 0.
Let n ∈ N and (x, g), (y, h) ∈ Xn × G. Suppose that dn((x, g), (y, h)) < α. To

prove that Fn is uniformly expanding we have to show that n ·dℓ
1

(gfn(x), hfn(y))+
dG(g, h) ≤ β for some β > 0 which is independent of n.

In fact, it suffices to show this for n ≥ α. Then we have by Definition 6.10

α

Λn
=

αδn
n+ 1

≤
nδn
n+ 1

< δn.

By definition of dn, we have dG(g, h) < α and dSn,n,Λn
((x, g), (y, h)) < α. Hence,

there exist

• l ∈ N
• x0, . . . , xl, z0, . . . , zl ∈ Xn

• a1, . . . , al, b1, . . . , bl ∈ Sn

such that
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(i) x0 = x, zl = y
(ii) ga−1

1 b1 . . . a
−1
l bl = h

(iii) for each 1 ≤ i ≤ l there are elements r0, . . . , rn, s0, . . . , sn ∈ Sn such that
ai = rn . . . r0, bi = sn . . . s0 and, for some t1, . . . , tn, u1, . . . , un ∈ [0, 1],
Γn(rn, tn, . . . , t0, zi−1) = Γn(sn, un, . . . , s0, xi) holds

(iv) l+
∑l
i=0 Λn · dXn

(xi, zi) < α

This implies l < α, dXn
(xi, zi) <

α
Λn

< δn. By Definition 6.10 of δn, this implies

dℓ
1

(fn(xi), fn(zi)) <
1
n .

We proceed by induction on l. For l = 0, we have g = h and dℓ
1

(fn(x), fn(y)) <
1
n . For the induction step, with a1 = rn . . . r0 and b1 = sn . . . s0 we have

dℓ
1

(gfn(x), hfn(y)) = dℓ
1

(gfn(x), ga
−1
1 b1 . . . a

−1
l blfn(y))

= dℓ
1

(fn(x), a
−1
1 b1 . . . a

−1
l blfn(y))

≤ dℓ
1

(fn(x0), fn(z0))

+ dℓ
1

(fn(z0), a
−1
1 fn(Γn(rn, 1, . . . , 1, r0, z0)))

+ dℓ
1

(fn(Γn(rn, 1, . . . , 1, r0, z0)), fn(Γn(rn, tn, . . . , t1, r0, z0)))

+ dℓ
1

(fn(Γn(sn, un, . . . , u1, s0, x1)), fn(Γn(sn, 1, . . . , 1, s0, x1)))

+ dℓ
1

(fn(Γn(sn, 1, . . . , 1, s0, x1)), b1fn(x1))

+ dℓ
1

(fn(x1), fn(z1))

+ dℓ
1

(fn(z1), a
−1
2 b2 . . . a

−1
l blfn(y))

We give an estimate for each summand. We already know

dℓ
1

(fn(x0), fn(z0)) <
1

n
, dℓ

1

(fn(x1), fn(z1)) <
1

n
.

For the second summand, we have by Equation (6.5)

dℓ
1

(fn(z0), a
−1
1 fn(Γn(rn, 1, . . . , 1, r0, z0))) = dℓ

1

(a1 · fn(z0), fn(Γn(a1, z0))) ≤
1

n
,

similarly for dℓ
1

(f(Γn(sn, 1, . . . , 1, s0, x1)), b1f(x1)). Furthermore, we have

dℓ
1

(fn(Γn(rn, 1, . . . , 1, r0, z0)), fn(Γn(rn, tn, . . . , t1, r0, z0))) ≤
2

n

dℓ
1

(fn(Γn(sn, un, . . . , u1, s0, x1)), fn(Γn(sn, 1, . . . , 1, s0, x1))) ≤
2

n

by Equation (6.6). Finally, we choose the induction hypothesis to be

dℓ
1

(fn(z1), a
−1
2 b2 . . . a

−1
l blfn(y)) <

8(l − 1) + 1

n
.

Thus we obtain

dℓ
1

(gfn(x), hfn(y)) <
8l + 1

n
.

Since we also have dG(g, h) < α, we conclude that

n · dℓ
1

(gfn(x), hfn(y)) + dG(g, h) < 9α+ 1. �

6.9. Injectivity of the ∆-map. Now we show Proposition 6.15 (iv). Namely, we
have to show that ∆ induces an injective map on algebraicK–theory. Our argument
is a straightforward adaptation of the argument used in [52, Section 5]. As usual,
we abbreviate πm(K−∞(. . . )) by Km(. . . ).
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Lemma 6.18. The map

Km(∆) ◦Km(incl) : Km(R
G
f (W, J(E)), h)→ Km(R

G
fd(W, J((G)n, E)), hfin)

is injective for each m ≥ 0.

Proof. The map Km(incl) : Km(R
G
f (W, J(E)), h) → Km(RGfd(W, J(E)), h) is an

isomorphism by [44, Remark 5.5]. Hence, we only have to show that Km(∆) is
injective. To increase readability, we shorten RGfd(W, ...) to R(...) in the following
commutative diagram:

Km(R(J(E)), h)

Km(
∏finR(J(E)), h) Km(R(J((G)n, E)), h) Km(R(J((G)n, E)), hfin)

⊕
n∈N

Km(R(J(E)), h)
∏
n∈N

Km(R(J(E)), h)

∆∗

∆∗

∼=
∏
n∈N

pn

id∗

incl

incl

The middle row is exact due to the homotopy fiber sequence (6.16), where we

abbreviated colimn

∏n
k=1 as

∏fin
. The left vertical map is an isomorphism, because

algebraic K–theory commutes with directed colimits and is compatible with finite
products. The map is defined using the projections onto the factors of the product.
Note that after projection on any n, the middle column is the identity. A diagram
chase finishes the proof. �

6.10. Homotopy transfer reducible follows from strongly transfer reducible.
We can now prove Theorem 1.1 (i) for hyperbolic and CAT(0)–groups.

In [52, Definition 3.1], Wegner defined when a group G is strongly transfer re-
ducible over a family F . As we will not need the precise definition here, we refer
to loc. cit. for the definition. We will use the definitions from Section 6.1.

Theorem 6.19. Let G be strongly transfer reducible over F . Then G is homotopy
transfer reducible over F and the Farrell-Jones Conjecture 2.13 for A–theory with
coefficients holds for G relative to F .

Proof. Assume that G is strongly transfer reducible. We show it is homotopy
transfer reducible and apply Theorem 6.14.

According to [52, Proposition 3.6], there exists N ∈ N such that there are for
every n ∈ N

(i) a compact, contractible metric space (X, dX) such that for every ε > 0
there is an ε–controlled domination of X by an at most N–dimensional,
finite simplicial complex;

(ii) a homotopy coherent G–action Γ on X ;
(iii) a G–simplicial complex Σ of dimension at most N whose isotropy is con-

tained in F ;
(iv) a positive real number Λ;
(v) a G–equivariant map ϕ : G×X → Σ such that

n · dℓ
1

(ϕ(g, x), ϕ(h, y)) ≤ dSn,n,Λ((g, x), (h, y))

holds for all (g, x), (h, y) ∈ G×X , where G acts on the G–factor.
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Fix n ∈ N and choose X , Γ, Σ, Λ and ϕ as above. Define f := ϕ|{e}×X : X → Σ.
Then we have for all x ∈ X and s ∈ Sn

n · dℓ
1

(f(Γ(s, x)), s · f(x)) = n · dℓ
1

(ϕ(e,Γ(s, x)), ϕ(s, x))

≤ dSn,n,Λ((e,Γ(s, x)), (s, x))

≤ 1.

Similarly, we find for all x ∈ X , s0, . . . , sn ∈ Sn and t1, . . . , tn, u1, . . . , un ∈ In

n · dℓ
1

(f(Γ(sn, tn, . . . , s0, x)), f(Γ(sn, un, . . . , s0, x)))

= n · dℓ
1

(ϕ(e,Γ(sn, tn, . . . , s0, x)), ϕ(e,Γ(sn, un, . . . , s0, x)))

≤ dSn,n,Λ((e,Γ(sn, tn, . . . , s0, x)), (e,Γ(sn, un, . . . , s0, x)))

≤ 2.

Hence, G is homotopy transfer reducible over F and we can apply Theorem 6.14.
�

Corollary 6.20. The Farrell-Jones Conjecture 2.15 for A–theory with coefficients
and finite wreath products is true for hyperbolic and CAT(0)–groups.

Proof. By [52, Example 3.2 and Theorem 3.4], finitely generated hyperbolic groups
as well as CAT(0)–groups are strongly transfer reducible with respect to the family
of virtually cyclic subgroups. Thus these groups are homotopy transfer reducible
over the same family by Theorem 6.19. If a group is homotopy transfer reducible
with respect to F , then the wreath product G ≀F with a finite group F is homotopy
transfer reducible over F ≀ F . This follows as in [7, Section 5]; basically, one takes
the F–fold product of X and Σ and uses e.g. [44, Lemma 11.14] for the estimate.
As the A–theoretic Farrell–Jones Conjecture with coefficients holds for virtually
finitely generated abelian groups [44, Proposition 11.9], the A–theoretic Farrell–
Jones Conjecture with coefficients and finite wreath products holds for hyperbolic
and CAT(0)–groups by the Transitivity Principle, [44, Proposition 11.2]. �

7. The transfer: Final part of the proof

We turn now to the construction of the transfer map whose existence was claimed
in the first part of Proposition 6.15 (i). This map will be induced by a “transfer”
construction on controlled retractive spaces. Here we employ an analog of the
classical construction of the transfer, see [5], [6] and [52], on each cell and glue
these together according to the CW–structure. Unfortunately, this construction
is not fully functorial on RGf (W, J(E)). To avoid this problem, we restrict our

attention to subcategories of “cellwise 0–controlled morphisms” (defined below) as
a domain for the transfer. The idea to use these categories is due to Arthur Bartels
and Paul Bubenzer.

The transfer is defined using the ideas of the linear counterpart. However, they
only work well for one cell at a time. To extend, we need to refine the idea of crossing
a controlled CW-complex with the singular complex of a metric space, by allowing
different, but compatible singular complexes for each cell. While this provides us
with a transfer on objects, only “cellwise 0-controlled morphisms” behave well with
respect to this construction. We could also transfer any map, but then the target
gets a more lax control condition, and this makes the construction non-functorial.

We show that transferring only “cellwise 0-controlled morphisms” is enough to
construct the transfer, but transferring the other morphisms is needed to show that
it preserves weak equivalences.



32 N. ENKELMANN, W. LÜCK, M. PIEPER, M. ULLMANN, AND C. WINGES

7.1. The domain of the transfer. We now define the appropriate subcategories
of cellwise 0–controlled morphisms, which will serve as the source of the transfer.

Let M be a metric space with a free, isometric G–action, and consider the
category RG(W, J(M,E)). For (Y, κ) ∈ RG(W, J(M,E)), let κM denote the com-
position of the control map κ with the projection map M × E × [1,∞[→M .

Definition 7.1. Let f : (Y1, κ1) → (Y2, κ2) be a morphism in RGf (W, J(M,E)).
We say that f is regular, if the image of each open cell in Y1 is either equal to an
open cell in Y2 or completely contained in W . That is, either f(int e) = int e′ or
f(int e) ⊆W .

We say that f is cellwise 0–controlled over M if f is regular and satisfies the
property that κ1,M (e) = κ2,M (f(e)) for all cells e ∈ ⋄ Y1.

The composition of two morphisms which are cellwise 0–controlled over M is
again cellwise 0–controlled over M , so we can consider the subcategory

RGf (W, J(M,E))0 ⊆ R
G
f (W, J(M,E))

which has the same objects as RGf (W, J(M,E)), but contains only those morphisms

which are cellwise 0–controlled over M . The category RGf (W, J(M,E))0 inherits

cofibrations and weak equivalences from RGf (W, J(M,E)). It is a Waldhausen sub-

category of RGf (W, J(M,E)).
For α > 0, we may further restrict to the full subcategory

RGf (W, J(M,E))α ⊆ R
G
f (W, J(M,E))0

consisting only of those objects which are α–controlled over M , i.e., those (Y, κ)
such that κM (⋄ 〈e〉) ⊆ Bα(κM (e)) for every cell e ∈ ⋄ Y . (Recall that 〈e〉 denotes
the smallest subcomplex of Y containing e.) The category RGf (W, J(M,E))α also
inherits the structure of a Waldhausen category, as the pushout of α–controlled
complexes along cellwise 0–controlled morphisms is again α–controlled.

Finally, we can filter RGf (W, J(M,E))α by

RGf (W, J(M,E))α,0 ⊆ R
G
f (W, J(M,E))α,1 ⊆ . . . ⊆ R

G
f (W, J(M,E))α,

where RGf (W, J(M,E))α,d denotes the full subcategory of RGf (W, J(M,E))α con-
taining those objects whose dimension is at most d. Note that

RGf (W, J(M,E))α = colimdR
G
f (W, J(M,E))α,d,

as each object in RGf (W, J(M,E)) is finite-dimensional.

Proposition 7.2. There is a natural weak equivalence

hocolimα,dK(RGf (W, J(M,E))α,d)
∼
−→ K(RGf (W, J(M,E))).

Proof. We have RGf (W, J(M,E))0 = colimα,dRGf (W, J(M,E))α,d. Since K–theory
commutes with directed colimits, we obtain a natural weak equivalence

hocolimα,dK(RGf (W, J(M,E))α,d)
∼
−→ K(RGf (W, J(M,E))0).

Now consider the inclusion functorRGf (W, J(M,E))0 →֒ RGf (W, J(M,E)). We show

that Waldhausen’s Approximation Theorem [50, Theorem 1.6.7] applies.
The cylinder functor on RGf (W, J(M,E)) constructed in [44, Lemma 3.14] re-

stricts to a cylinder functor on RGf (W, J(M,E))0, in particular the inclusion of the
source is always cellwise 0-controlled. By definition, the inclusion functor satisfies
the first part of the approximation property. To verify the second part of the ap-
proximation property, let f : Y1 → Y2 be an arbitrary morphism inRGf (W, J(M,E)).

Then the factorization of f via the cylinder functor Y1 Mf
∼
−→ Y2 decomposes f
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into a cellwise 0–controlled morphism and a weak equivalence. So the Approxima-
tion Theorem implies that the inclusion functor induces an equivalence on algebraic
K–theory. �

Remark 7.3. The upshot of Proposition 7.2 is that we do not have to define a
“global” transfer functor on RGf (W, J(E)). Instead, it suffices to define a trans-

fer functor transα,d : RGf (W, J(E))α,d → (RGfd(W, J((Xn × G)n, E)), hfin) on each
subcategory, such that the induced diagrams on K–theory

K(RGf (W, J(E))α,d, h) K(RGfd(W, J((Xn ×G)n, E)), hfin)

K(RGf (W, J(E))α+1,d+1, h)

K(transα,d)

K(transα+1,d+1)

are homotopy commutative.

7.2. Balanced products of CW–complexes. We introduce a slight generaliza-
tion of the balanced products discussed in [12] as a means to define the transfer in
Section 7.5.

Let W be a topological space and C a small category. A C–CW–complex relative
W is a functor Y from C to topological spaces such that Y (c) is a CW–complex
relative W and the morphisms in C are mapped to cellular maps relative W . A
(relative) free C–n–cell based at c, c ∈ C, is a pair (η, ∂η) of C–CW–complexes
relative W , where η = C(c,−)×Dn ∐W , ∂η = C(c,−)× Sn−1 ∐W . Attaching a
free C–cell η to Y means taking the pushout along a map ∂η → Y . Note that W
itself defines a (constant) covariant C–CW–complex relative W .

We say that Y is a free C–CW–complex relative W if it comes equipped with
a filtration W = sk−1(Y ) ⊆ sk0(Y ) ⊆ sk1(Y ) ⊆ . . . such that Y = colimn skn(Y )
and for every n ≥ 0 there exists a pushout in the category of C–CW–complexes
relative W

(∐
i∈In
C(ci,−)× Sn−1

)
∐W skn−1(Y )(−)

(∐
i∈In
C(ci,−)×Dn

)
∐W skn(Y )(−).

Hence, a free C–CW–complex arises by attaching free C–cells. The set of free C–
n–cells is in bijection with In. Note that the attaching map of a C–n–cell based at
c is the same as a map Sn−1 → skn−1(Y )(c), hence we can consider η as a map
Dn → Y (c).

Let Y be a covariant C–CW–complex relativeW andX : Cop → CW-COMPLEXES

be a contravariant C–CW–complex. Define the reduced balanced product X⋌C Y as
the pushout

X ×C W X ×C Y

∗ ×C W ∼=W X ⋌C Y.
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Proposition 7.4. Let X be a contravariant C–space, Y a covariant C–CW–complex
relative W and Z a space relative W . There is a natural homeomorphism

homW (X ⋌C Y, Z) ∼= homW
C (Y, hom(X,Z)).

Here, hom(X,Z) is a covariant C–space relative W via the inclusion that sends

a point w ∈ W (c) to the constant map X(c) → {w} ⊆ Z, homW
C denotes the

natural transformations which are relative W , and homW denotes just the set of
maps relative W .

Proof. By definition, a map X ⋌C Y → Z is the same as three compatible maps
from W ← X ×C W → X ×C Y to Z. Using that hom(X ×C Y, Z) is isomorphic to
homC(Y, hom(X,Z)), the result is easy to deduce. �

It follows, that X ⋌C Y commutes with colimits in the “Y ”-variable. We can
therefore determine the cell structure of X⋌C Y . The attachment of a free C–n–cell
η to Y gives a pushout X ⋌C η(−) ∪X⋌C∂η Y . Now

X ⋌C η ∼= ((X ×C C(c,−))×D
n)∐W ∼= (X(c)×Dn) ∐W

and similarly for ∂η. First, this gives a filtration on X ⋌C Y , namely

(7.5) . . . ⊆ X ⋌C skn−1(Y ) ⊆ X ⋌C skn(Y ) ⊆ . . .

Second, as X(c) is a CW–complex, we can now read off the cell structure of X⋌CY :

Proposition 7.6 (cf. [12, Lemma 3.19(2)]). Let Y be a free covariant C–CW–
complex relative W and X a contravariant C–CW–complex.

Then X⋌CY is a CW–complex relative W , and there is a canonical identification

⋄ (X ⋌C Y ) ∼= {(ξ, η) | η is a free C–cell based at c, ξ ∈ ⋄X(c)}.

Let (ξ, η) ∈ ⋄ (X ⋌C Y ). If Φ: Dp → X(c) and Ψ: C(c,−) × Dq → Y (−) are
characteristic maps for ξ and η, respectively, then

Dp ×Dq → X ⋌C Y, (a, b) 7→ [Φ(a),Ψ(idc, b)]

is a characteristic map for (ξ, η).
Let (ξ, η), (ξ′, η′) ∈ ⋄ (X ⋌C Y ) be two cells, with η based at c and η′ based at c′.

Then (ξ, η) ⊆ 〈(ξ′, η′)〉 if and only if there exists a morphism γ : c → c′ such that
γ∗η ⊆ 〈η

′〉 ⊆ Y (c′) and ξ ⊆ 〈γ∗ξ′〉 ⊆ X(c).

In greater generality, (7.5) gives a filtration for an inclusion Y1 →֒ Y2 of C–spaces
in which Y2 is obtained from Y1 by the attachment of free C–cells. This observation
allows us to translate the constructions for geometric modules to CW–complexes.

Let us conclude this section with a short remark about functoriality of the bal-
anced product construction. In addition to the obvious functoriality properties, we
have the following: Let X be a contravariant and Y be a covariant C–space. Let
F : D → C be a functor. Then there is an induced map

ιF : F ∗X ×D F ∗Y → X ×C Y, [d, x, y] 7→ [F (d), x, y].

This map is functorial in the sense that ιF2ιF1 = ιF2F1 for any two composable

functors F1, F2. In particular, if F : C
∼=
−→ C is an automorphism of the indexing

category, then ιF is an isomorphism.
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7.3. Conventions. For the following sections, fix the following data:

(i) natural numbers α, d ∈ N and a natural number n > max{d+ 1, α}
(ii) a natural number N ∈ N
(iii) a compact and contractible metric space (X, dX) such that for every ε > 0

there is an ε–controlled domination of X by an at most N–dimensional,
finite simplicial complex

(iv) a homotopy coherent G–action Γ on X
(v) a positive real number Λ

As before, we consider X ×G equipped with the metric dSn,n,Λ + dG.

7.4. Y as a ⋄+Y –CW–complex and a (⋄+Y )op–CW–complex from X. Let
(Y, κ) ∈ RGf (W, J(E))α,d. If c ∈ ⋄ Y is a cell of Y , we will frequently need to refer

to the G–component of κ(c); we denote this by κG(c).
Define a relation ≤ on the set of cells ⋄ Y by saying that c ≤ c′ if and only

if c ⊆ 〈c′〉. Then ⋄ Y forms a poset under the relation ≤. We define ⋄+ Y as
the category given by this poset where we add an additional initial object (which
corresponds to W ). The complex Y itself gives rise to a covariant ⋄+ Y –CW–
complex (relative W ) CY by setting

CY (c) := 〈c〉

and sending a morphism c ≤ c′ to the obvious inclusion 〈c〉 →֒ 〈c′〉. Observe that
CY is a free ⋄+ Y –CW–complex; the set of free ⋄+ Y –cells of CY is in canonical
bijection with the cells of Y . Note that a cellwise 0-controlled map Y → Y ′ gives
rise to a functor ⋄+ Y → ⋄+ Y ′. Last, each cell in ⋄+ Y has a dimension |c|, where
we assign the initial object the dimension −1.

The metric space X gives rise to a contravariant ⋄+ Y –CW–complex, but the
construction is more involved. We mimic the construction used in [52], but do
not pass to the cellular chain complex. Instead, we simply stick with the space of
controlled simplices.

In the first step, we pass from the homotopy coherent G–action Γ on X to an
honest G–action on a closely related space. This is accomplished by strictifying the
homotopy coherent diagram Γ, see [48, proof of Proposition 5.4]. Define MΓ to be
the space

MΓ :=


∐

k≥0

Gk+1 × [0, 1]k ×X


/ ∼,

where ∼ is the equivalence relation generated by

(γk+1, tk, γk, . . . , γ1, x) ∼





(γk+1, tk, . . . , γ2, x) γ1 = e

(γk+1, . . . , titi−1, . . . , γ1, x) γi = e, 2 ≤ i ≤ k

(γk+1, . . . , γi+1γi, . . . , γ1, x) ti = 1, 1 ≤ i ≤ k

(γk+1, . . . , γi+1,Γ(γi, . . . , γ1, x)) ti = 0, 1 ≤ i ≤ k.

Then G acts on MΓ by

g · [γ, tk, γk, . . . , γ1, x] := [gγ, tk, γk, . . . , γ1, x].

We have a map X → MΓ via x 7→ [e, x]. Let R : MΓ → X be the retraction
induced by Γ; explicitly, R([γ, tk, γk, . . . , γ1, x]) = Γ(γ, tk, γk, . . . , γ1, x). Using the
axioms of a homotopy action from Definition 6.1, one checks this is a well-defined
map. The homotopy

(7.7) H : MΓ× [0, 1]→MΓ, ([γ, tk, γk, . . . , γ1, x], u) 7→ [e, u, γ, tk, γk, . . . , γ1, x]

then shows that X is a strong deformation retract of MΓ.
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The space MΓ comes with a filtration by subspaces MΓl,r, where we set

MΓl,r := {[e, tk, γk, . . . , γ1, x] ∈MΓ | k ≤ l, γi ∈ Br(e)}.

For δ > 0, define Sδ•(MΓl,r) to be the subsimplicial set of the singular simplicial
set S•(MΓl,r) containing those singular simplices σ : ∆|σ| →MΓl,r which fulfill

diamX×G((R ◦ σ)(∆
|σ|)× {e}) ≤ δ,

where diameters in X ×G are taken with respect to the metric dSn,n,Λ. Note that
we could replace e by any other group element without changing the diameter, as
the metric is G-invariant.

Finally, we can define the contravariant ⋄+ Y –CW–complex Sα,dX,Y : Let δdk :=

4(d+ 1 − k) and ldk := d+ 1 − k. Typically, we will omit d from the notation. On
objects, we set

Sα,dX,Y (c) := ‖S
δ|c|
• (MΓl|c|,α)‖,

where |c| denotes the dimension of the cell c and ‖−‖ is fat geometric realization, i.e.,
the realization after forgetting the degeneracies. Note that we have the canonical

inclusion ιc′ of S
α,d
X,Y (c

′) into ‖S•(MΓl)‖. The latter has an honest G–action. For

a morphism c′ → c = c ≤ c′ in (⋄+ Y )op define Sα,dX,Y (c
′ → c) as the factorization of

Sα,dX,Y (c
′ → c) := κG(c)

−1κG(c
′) · ιc′(−)

over ιc. We have to check that it is well-defined, i.e., that it actually factors. We
require the following observation.

Lemma 7.8. Let [e, tb, . . . , γ1, x] ∈ MΓl,α. Suppose that l < n and α ≤ n. Let
h ∈ Bα(e). Then

dSn,n,Λ(R([h, tb, . . . , γ1, x], g), (R([e, tb, . . . , γ1, x]), gh)) ≤ 2

for all g ∈ G.

Proof. Note that b < n. We use the definition of the metric. Let x0 = z0 =
Γ(h, tb, γb, . . . , γ1, x), x1 = z1 = x and x2 = z2 = Γ(e, tb, γb, . . . , γ1, x). Further-
more, we set a1 = e, b1 = hγb . . . γ1, a2 = γb . . . γ1 and b2 = e. Now we can
estimate

dSn,n,Λ

(
(Γ(h, tb, γb, . . . , γ1, x), g), (Γ(e, tb, γb, . . . , γ1, x), gh)

)

≤ 2 + Λ · dX(Γ(h, tb, γb, . . . , γ1, x),Γ(h, tb, γb, . . . , γ1, x))

+ Λ · dX(x, x) + Λ · dX(Γ(e, tb, γb, . . . , γ1, x),Γ(e, tb, γb, . . . , γ1, x))

= 2.

�

Corollary 7.9. Assume α ≤ n and d+1 < n. Then the functor Sα,dX,Y : (⋄+ Y )op →
CW is well-defined.

Proof. Since MΓ carries an honest G–action, functoriality is clear as soon as we

have convinced ourselves that Sα,dX,Y is well-defined on morphisms. Let c′ → c be

a morphism in (⋄ Y )op, and let σ ∈ S
δ|c′|
• (MΓl|c′|,α). We only need to check non-

identity morphisms. Hence we assume |c| ≥ |c′| + 1. Let [e, tb, γb, . . . , γ1, x] be a
point in the image of σ. By definition, we have b ≤ l|c′| and γi ∈ Bα(e) for all i.

Set γc,c′ := κG(c)
−1κG(c

′). Note that γc,c′ ∈ Bα(e) since Y is α–controlled over G.
Then we obtain

γc,c′·[e, tb, γb, . . . , γ1, x]

= [γc,c′ , tb, γb, . . . , γ1, x]

= [e, 1, γc,c′, tb, γb, . . . , γ1, x] ∈MΓl|c′|+1,α ⊆MΓl|c|,α.
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Hence, γc,c′ · σ is a singular simplex in MΓl|c|,α.
Let [e, t′b′ , γ

′
b′ , . . . , γ

′
1, x

′] be another point in the image of σ. Then

R(γc,c′ · [e, tb, γb, . . . , γ1, x]) = Γ(γc,c′ , tb, γb, . . . , γ1, x),

and similarly for [e, t′b′ , γ
′
b′ , . . . , γ

′
1, x

′]. We calculate

dSn,n,Λ

(
(Γ(γc,c′ , tb, γb, . . . , γ1, x), κG(c)), (Γ(γc,c′ , t

′
b′ , γ

′
b′ , . . . , γ

′
1, x

′), κG(c))
)

≤ dSn,n,Λ

(
(Γ(γc,c′ , tb, γb, . . . , γ1, x), κG(c)), (Γ(e, tb, γb, . . . , γ1, x), κG(c

′))
)

+ dSn,n,Λ

(
(Γ(e, tb, γb, . . . , γ1, x), κG(c

′)), (Γ(e, t′b′ , γ
′
b′ , . . . , γ

′
1, x

′), κG(c
′))
)

+ dSn,n,Λ

(
(Γ(e, t′b′ , γ

′
b′ , . . . , γ

′
1, x

′), κG(c
′)), (Γ(γc,c′ , t

′
b′ , γ

′
b′ , . . . , γ

′
1, x

′), κG(c))
)

≤ 2 + δ|c′| + 2

= 4(d+ 1− (|c′| − 1))

≤ 4(d+ 1− |c|) = δ|c|,

where we used Lemma 7.8 for the second inequality. This shows that multiplication
by γc,c′ indeed defines a map

γc,c′ · − : S
δ|c′|
• (MΓl|c′|,α)→ S

δ|c|
• (MΓl|c|,α).

So the functor Sα,dX,Y is well-defined. �

7.5. The transfer on objects. Recall that by our assumptions in Section 7.3 we
have α < n, d+ 1 < n.

Definition 7.10. The transfer transα,dX (Y ) of Y with respect to X is defined to be

transα,dX (Y ) := Sα,dX,Y ⋌⋄+ Y CY .

If α, d or both of them are understood, we abbreviate transα,dX (Y ) to transdX(Y ),
transαX(Y ) or transX(Y ), respectively.

Since CY is a free ⋄+ Y –CW–complex, the space transX(Y ) is a CW–complex rel-

ative W by Proposition 7.6. The natural transformation Sα,dX,Y → ∗ to the constant

functor with value the one-point space induces a map Sα,dX,Y ⋌⋄+ Y CY → ∗⋌⋄+ Y CY ∼=

Y of CW–complexes relative W . We regard Sα,dX,Y ⋌⋄+ Y CY as a retractive space
via this map.

We equip transX(Y ) with a G–action as follows. Observe that G acts on the
indexing category ⋄ Y ; let µg : ⋄ Y → ⋄ Y denote the functor induced by the action

of g ∈ G. The action of g on Y induces a natural isomorphism CY
∼=
−→ CY ◦ µg, and

hence a cellular homeomorphism

τg : S
α,d
X,Y ⋌⋄+ Y CY

∼=
−→ Sα,dX,Y ⋌⋄+ Y (CY ◦ µg).

Observing that Sα,dX,Y ◦ µg = Sα,dX,Y , we obtain from the functoriality of ⋌⋄+ Y in
Section 7.2 a cellular homeomorphism

ιµg
: Sα,dX,Y ⋌⋄+ Y (CY ◦ µg) = (Sα,dX,Y ◦ µg)⋌⋄+ Y (CY ◦ µg)

∼=
−→ Sα,dX,Y ⋌⋄+ Y CY .

Define the action map of g ∈ G as the composition

g · − := ιµg
◦ τg : transX(Y )

∼=
−→ transX(Y ).

Explicitly, this map is given by g · [c, x, y] 7→ [gc, x, gy], and defines a group action
by cellular homeomorphisms.

Again by Proposition 7.6, we have a canonical identification

⋄ transX(Y ) ∼= {(σ, c) | c ∈ ⋄ Y, σ ∈ S
δ|c|
• (MΓl|c|,α)},
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which translates the G–action on the set of cells of transX(Y ) to g · (σ, c) = (σ, gc).
Hence, transX(Y ) is a free G–CW–complex.

Continuing to use the above identification of ⋄ transX(Y ), we define a control
map for transX(Y ): Let βp denote the barycenter of the standard p–simplex. Then
set

transX(κ) : ⋄ transX(Y )→ X ×G× E × [1,∞[, (σ, c) 7→ ((R ◦ σ)(β|σ|), κ(c)).

Lemma 7.11. The pair (transX(Y ), transX(κ)) is an object in RG(W, J(X×G,E))
which is (α + δ0 + 2)–controlled over X ×G.

Proof. By construction, the labeled G–CW–complex (transX(Y ), transX(κ)) satis-
fies the G–continuous control condition. It also has the correct support, since X
is compact. So it is only necessary to check that it satisfies bounded control over
X×G. Let (σ, c) and (σ′, c′) be cells such that (σ, c) ⊆ 〈(σ′, c′)〉. By Proposition 7.6,

this is equivalent to the conditions c ⊆ 〈c′〉 and σ ⊆ 〈κG(c)−1κG(c
′)σ′〉 ⊆ ‖S

δ|c|
• (MΓl|c|,α)‖.

Set γc,c′ := κG(c)
−1κG(c

′). Then we have

dSn,n,Λ((transX(κ)(σ, c), transX(κ)(σ′, c′))

= dSn,n,Λ

(
((R ◦ σ)(β|σ|), κG(c)), ((R ◦ σ

′)(β|σ′|), κG(c
′))
)

≤ dSn,n,Λ

(
((R ◦ σ)(β|σ|), κG(c)), (R ◦ γc,c′σ

′)(β|σ′|), κG(c))
)

+ dSn,n,Λ

(
(R ◦ γc,c′σ

′)(β|σ′|), κG(c)), ((R ◦ σ
′)(β|σ′|), κG(c

′))
)

≤ δ|c| + 2 ≤ δ0 + 2,

where the last inequality follows from our assumption and Lemma 7.8. Using
dG(κG(c), κG(c

′)) ≤ α, we conclude that (transX(Y ), transX(κ)) is (α + δ0 + 2)–
controlled over X ×G. �

7.6. The transfer on cellwise 0-controlled morphisms. In the next step, we
extend the assignment (Y, κ) 7→ (transX(Y ), transX(κ)) to a functorRGf (W, J(E))α,d →

RG(W, J(X×G,E)). Let f : (Y1, κ1)→ (Y2, κ2) be a morphism in RGf (W, J(E))α,d.
Since f is a regular map, we have an induced functor ⋄+ f : ⋄+ Y1 → ⋄+ Y2, which
is compatible with the G–actions. (G acts trivially on the initial object.) Define a
natural transformation Cf : CY1 → CY2 ◦ ⋄+ f by

Cf,c : CY1(c) = 〈c〉
f
−→ f(〈c〉) = 〈f(c)〉 = (CY2 ◦ ⋄+ f)(c).

Define a natural transformation Sf : S
α,d
X,Y1

→ Sα,dX,Y2
◦ ⋄+ f by

Sf,c : ‖S
δ|c|(MΓl|c|,α)‖ ⊆ ‖S

δ|f(c)|
• (MΓl|f(c)| ,α)‖.

Then transX(f) is defined as the composition

Sα,dX,Y1
⋌⋄+ Y1CY1

Sf⋌⋄+ Y1Cf

−−−−−−−−→ (Sα,dX,Y2
◦(⋄+ f))⋌⋄+ Y1CY2◦(⋄+ f))

ι(⋄+ f)

−−−−→ Sα,dX,Y2
⋌⋄+ Y2CY2 .

Lemma 7.12. This defines a functor

transX : RGf (W, J(E))α,d →R
G(W, J(X ×G,E))0.

Proof. To see that the construction of transX(f) is functorial, it is best to translate
the above formalism again into an explicit mapping rule. Concretely, transX(f) is
given by [c, x, y] 7→ [f(c), x, f(y)], and functoriality becomes obvious.

We also need to check that transX(f) is a controlled map. It suffices to consider
bounded control over X × G. Note that transX(f) is regular as f and Sf,c are
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regular. Hence it is enough to compute for (σ, c) ∈ ⋄ transX(Y1)

dSn,n,Λ(transX(κ1)(σ, c), transX(κ2)(transX(f)(σ, c))) + dG(κ1,G(c), κ2,G(f(c)))

= dSn,n,Λ

(
((R ◦ σ)(β|σ|), κ1,G(c)), ((R ◦ σ)(β|σ|), κ2,G(f(c)))

)
+ 0

= 0.

So transX(f) is in fact cellwise 0–controlled over X ×G. Hence, we have defined a
functor transX : RGf (W, J(E))α,d →R

G(W, J(X ×G,E))0. �

Remark 7.13. One can adapt the constructions presented in this paper to chain
complexes over geometric modules to obtain a linear transfer. The linearization
map, which assigns to a CW–complex its cellular chain complex, translates our
transfer functor into its linear counterpart.

Moreover, the natural inclusion of geometric modules into chain complexes makes
these constructions compatible with the transfers defined in [5], [6] and [52]. Thus,
the transfer for geometric Z[G]–modules corresponds to our construction restricted
to 0–dimensional CW–complexes.

7.7. Transferring cofibrations. Our next aim is to show that the transfer is a
functor of categories with cofibrations. Since the cofibrations under consideration
are essentially inclusions of CW–subcomplexes it comes as no surprise that this
result relies on an analysis of the CW–structure of transX(Y ).

Let (Y, κ) ∈ RGf (W, J(E)) as before. It defines a ⋄+ Y –CW–complex CY relative

W . Let B ⊆ Y be a subcomplex. We get a ⋄+ Y –CW–complex CBY relative W by
setting CBY (c) := 〈c〉 ∩B. As before, colim⋄+ Y C

B
Y
∼= B.

Let A ⊆ B ⊆ Y be subcomplexes. Assume that B arises from A by attaching
cells ηi, i ∈ I. From Section 7.2 we get a pushout diagram

∐W
i∈I ∂ηi CAY

∐W
i∈I ηi CBY

in ⋄+ Y –CW–complexes relative W . This becomes a pushout diagram in retractive
spaces, if we equip everything with the retractions into W arising from Y . Now,

Sα,dX,Y ⋌⋄+ Y (−) commutes with pushouts, so we get the following result.

Lemma 7.14. There is a pushout diagram

Sα,dX,Y ⋌⋄+ Y

(∐W
i∈I ∂ηi

)
Sα,dX,Y ⋌⋄+ Y C

A
Y

Sα,dX,Y ⋌⋄+ Y

(∐W
i∈I ηi

)
Sα,dX,Y ⋌⋄+ Y C

B
Y

in RG(W, J(X × G,E)). Here the coproducts on the left are disjoint unions over
W . As these are cells, the space on the lower left is isomorphic to

∐

i∈I

(
‖S

δd|ci|
• (MΓl

d
|ci|

,α)‖ ×D|ci|
)
∐W,

when ηi is a cell based at ci, and similarly for the upper left. �
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This enables us to do inductive arguments over the cells in Y . Note that if
A ⊆ Y is a subcomplex, we can interpret A as a ⋄+A–CW–complex, or as ⋄+ Y –
CW–complex. We can define the transfer also for A as a ⋄+ Y –CW–complex, and
it is canonically isomorphic to Definition 7.10.

Lemma 7.15. The functor transX preserves the zero object, cofibrations and ad-
missible pushout diagrams, i.e., it is a functor of categories with cofibrations.

Proof. Let f : (Y1, κ1)  (Y2, κ2) be a cofibration in RGf (W, J(E))α,d. Without loss
of generality, we can assume that Y2 is obtained from Y1 by attaching free G–cells,
and that f is the inclusion of the subcomplex Y1 into Y2. Then it follows from
Lemma 7.14 and interpreting Y1 as a ⋄+ Y2–CW–complex that transX(f) is also a
cofibration. For the same reason, transX preserves all relevant pushout squares.
Last, it maps the zero object W to W . �

7.8. The transfer on general morphisms and weak equivalences. Next, we
construct natural transformations between our transfer functors for various indices.
Once we have shown that they are weak equivalences, it follows that the diagram
in Remark 7.3 is homotopy commutative. In addition, these enter the proof that
transα,d preserves weak equivalences.

Definition 7.16. Let α′ > α and d′ > d satisfying n > max{d′ + 1, α′}. Then

both Sα,dX,Y and Sα
′,d′

X,Y are defined and give rise to transfer functors transα,dX and

transα
′,d′

X . For every (Y, κ) ∈ RGf (W, J(E))α,d, there is a natural transformation

Sα,dX,Y → S
α′,d′

X,Y which is given at c ∈ ⋄+ Y by the obvious inclusion

‖S
δd|c|
• (MΓl

d
|c|,α)‖ ⊆ ‖S

δd
′

|c|
• (MΓl

d′

|c|,α
′

)‖.

Hence, we obtain an induced natural morphism

ρα,α
′,d,d′

Y : transα,dX (Y )→ transα
′,d′

X (Y ).

Lemma 7.17. Let δ > 0. Consider X as a subspace of MΓl,s via the embedding
x 7→ [e, x]. There exists a δ–controlled strong deformation retraction

H : ‖Sδ•(MΓl,s)‖ × [0, 1]→ ‖Sδ•(MΓl,s)‖

onto ‖Sδ•(X)‖.

Proof. There is a (topological) inclusion

i : ‖Sδ•(MΓl,s)‖ × [0, 1]→ ‖Sδ•(MΓl,s × [0, 1])‖

which maps each prism ∆p× [0, 1] to its canonical triangulation. The strong defor-
mation retraction from Equation (7.7) restricts to a strong deformation retraction

H ′ : MΓl,s × [0, 1]→MΓl,s

of MΓl,s onto X , it is given by

H ′([e, tk, γk, . . . , γ1, x], u) := [e, u · tk, γk, . . . , γ1, x].

It has the property that R ◦H ′(m,u) = R(m), so

diamX×G{(R ◦H
′(m,u), g) | u ∈ [0, 1]} = 0

for all m ∈MΓl,s and g ∈ G. Hence, H ′ induces a map

H ′
∗ : ‖S

δ
•(MΓl,s × [0, 1])‖ → ‖Sδ•(MΓl,s)‖.

Then H := H ′
∗ ◦ i is a strong deformation retraction onto ‖Sδ•(X)‖. As the target

is δ-controlled, H is δ-controlled. �
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Corollary 7.18. Let δ > 0, l ≤ l′ and s ≤ s′. Then the canonical inclusion
map ‖Sδ•(MΓl,s)‖ →֒ ‖Sδ•(MΓl

′,s′)‖ is a 2δ–controlled homotopy equivalence (with
respect to dSn,n,Λ).

Proof. The corollary above yields homotopy equivalences ‖Sδ•(X)‖ →֒ ‖Sδ•(MΓl,s)‖

and ‖Sδ•(X)‖ →֒ ‖Sδ•(MΓl
′,s′)‖ which are δ–controlled. Since the triangle

‖Sδ•(X)‖ ‖Sδ•(MΓl,s)‖

‖Sδ•(MΓl
′,s′)‖

commutes, the result follows. �

Proposition 7.19. The morphisms ρα,α
′,d,d′

Y are weak equivalences.

Proof. We prove that ρα,α
′,d,d′

Y is a weak equivalence for all Y ∈ RGf (W, J(E))α,d
by induction over the dimension of Y . For (−1)–dimensional objects, which is
the start of the induction, the claim is trivial. For the induction step, we apply
Lemma 7.14 to see that the inclusion of the p–skeleton into the (p + 1)–skeleton
induces a pushout

Sα,dX,Y ⋌⋄+ Y

(∐W
c∈⋄ p+1Y

∂c
)

Sα,dX,Y ⋌⋄+ Y skp(CY )

Sα,dX,Y ⋌⋄+ Y

(∐W
c∈⋄ p+1Y

c
)

Sα,dX,Y ⋌⋄+ Y skp+1(CY )

in RGf (W, J(X ×G,E))0. The lower left corner is, again by Lemma 7.14, identified
as ∐

c∈⋄ p+1Y

(
‖S

δd|c|
• (MΓl

d
|c|,α)‖ ×D|c|

)
∐W,

and similarly for the the upper corner, with D|c| replaced with ∂D|c|. There is
an analogous pushout square with α and d replaced by α′ and d′, respectively.

Moreover, the former square maps to the latter via the transformation ρα,α
′,d,d′

Y .
On the left-hand sides this is identified with the canonical inclusion maps. This
transformation is a weak equivalence on the top right corner of the diagram by
induction hypothesis, and it is a 2δp+1–controlled homotopy equivalence on the
top left and bottom left corners combining Corollary 7.18 and Lemma 7.21 below.
Hence, the gluing lemma implies that it is also a weak equivalence on the bottom
right corner. This finishes the induction step and finite dimensionality of Y proves
the claim. �

In order to show exactness, we will need that the transfer maps h–equivalences
to hfin–equivalences later. The following lemma implies this.

Proposition 7.20. Let f be a weak equivalence in RGf (W, J(E))α,d which is an

α′–controlled homotopy equivalence over G. Suppose that n > max{d+ 2, α, α′}.
Then transX(f) is a controlled homotopy equivalence.

Proof. To show the proposition, we exploit the fact that maps which are not cellwise
0–controlled over G can also be transferred, but in a less functorial fashion. Let
(Y1, κ1) and (Y2, κ2) be objects of RGf (W, J(E))α,d, and f : Y1 → Y2 be an arbitrary
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map in RGf (W, J(E)). Choose α′ > 0 such that f is α′–controlled over G. We
construct an induced map

transα,α′(f) : transα,dX (Y1)→ trans
max{α,α′},d+1
X (Y2).

To define transα,α′(f), consider for the beginning a single cell c ∈ ⋄+ Y1, denote by
ηc the corresponding ⋄+ Y1–n–cell of CY2 . We define the function

tc : ‖S
δ|c|
• (MΓl|c|,α)‖⋌⋄+ Y1 ηc → S

max{α,α′},d+1
X,Y2

⋌⋄+ Y2 CY2

(x, y) 7→ [supp(f(y)), γcy · x, f(y)],

where supp(f(y)) denotes the support of f(y), i.e., the unique open cell supp(f(y))
of Y2 such that f(y) ∈ supp(f(y)), and γcy := κ2,G(supp(f(y)))

−1κ1,G(c). We will
glue the different tc together to get the transfer for f .

Let us check that the target space is large enough such that tc(x, y) is con-
tained in it: Recall that γcy ·x is defined via the G–action which ‖S•(MΓ)‖ inherits
from MΓ. Since f is α′–controlled, we have γcy ∈ Bα′(e). Therefore, we can re-

gard multiplication with γcy as a map MΓl|c|,α → MΓl|c|+1,max{α,α′}. In addition,

MΓl|c|+1,max{α,α′} is contained in MΓl|supp(f(y))|+1,max{α,α′}, so [supp(f(y)), γcy ·
x, f(y)] defines a point in the target space.

We need to check that tc is continuous. It suffices to show continuity on finite
subcomplexes. These are metrizable, so it is enough to show that tc is sequentially

continuous. Let (xl, yl)l be a convergent sequence in ‖S
δ|c|
• (MΓl|c|,α)‖ × ηc with

limit point (x, y). As f is continuous, f(yl) converges against f(y). Hence S :=
{supp(f(yl)) | l ∈ N} is a finite set, and we can assume that for each s ∈ S there
are infinitely many l such that supp(f(yl)) = s. We treat the s individually and
restrict to the corresponding subsequence. If s happens to be equal to supp(f(y)),
γcy = γcyl and continuity follows. Otherwise, f(y) must still lie in the closure of the
cell s, i.e., supp(f(y)) ⊆ 〈s〉. Hence,

[supp(f(y)),γcy · x, f(y)]

= [supp(f(y)), κ2,G(supp(f(y)))
−1κ2,G(s)κ2,G(s)

−1κ1,G(c)x, f(y)]

= [s, κ2,G(s)
−1κ1,G(c)x, f(y)],

and continuity becomes obvious.

Suppose now that c ≤ c′ in ⋄ Y1. For y ∈ 〈c〉 and x ∈ ‖S
δ|c′|
• (MΓl|c′|,α)‖ we

obtain

tc′(x, y) = [supp(f(y)), γc
′

y x, f(y)]

= [supp(f(y)), κ2,G(supp(f(y)))
−1κ1,G(c)κ1,G(c)

−1κ1,G(c
′)x, f(y)]

= tc(κ1,G(c)
−1κ1,G(c

′)x, y).

Therefore, the collection {tc}c∈⋄Y1 induces a continuous, cellular map relative W

transα,α′(f) : transα,dX (Y1)→ trans
max{α,α′},d+1
X (Y2).

Using Lemma 7.8 and Lemma 7.11, it is not hard to show that transα,α′(f) is
(max{α, α′} + α′ + δ0 + 4)–controlled over X × G, as n > α′. Note that for
cellwise 0–controlled maps, transα,α′(f) agrees with the previous defined transfer
from Section 7.6. The only reason we increased d is the argument which follows, it
was not needed in the construction so far.

Suppose now that f : (Y1, κ1)→ (Y2, κ2) is a weak equivalence inR
G
f (W, J(E))α,d

which is α′–controlled over G as a homotopy equivalence, i.e., its inverses and the
homotopies are α′–controlled over G. Then there exists some α′–controlled map
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f : (Y2, κ2) → (Y1, κ1) such that ff and ff are α′–controlled homotopic to the
identity. Consider the diagram

transα,dX (Y1) transα,dX (Y2)

trans
max{α,α′},d+1
X (Y1) trans

max{α,α′},d+1
X (Y2)

transα,dX (f)

trans
max{α,α′},d+1
X (f)

ρ
α,max{α,α′},d,d+1
Y1

ρ
α,max{α,α′},d,d+1
Y2

transα,α′(f)

in which the outer square commutes. The vertical maps ρ
α,max{α,α′},d,d+1
Yi

, i = 1, 2,
are weak equivalences by Proposition 7.19. We claim that the two triangles involv-
ing the dashed diagonal map transα,α′(f) commute up to controlled homotopy. If

this is true, it follows that transα,dX (f) is a weak equivalence.

Let h : Y1⋋ [0, 1]→ Y1 be an α′–controlled homotopy from ff to idY1 . Note that

transα,α′(f) ◦ transα,dX (f) = transα,α′(ff). Since n > d + 2, we can apply transα,dX
also to Y1 ⋋ [0, 1] and consider the controlled map

transα,α′(h) : transα,dX (Y1 ⋋ [0, 1])→ trans
max{α,α′},d+1
X (Y1).

The domain of this map is not equal to transα,dX (Y1)⋋ [0, 1], but it is contained in

transα,dX (Y1) ⋋ [0, 1] as a controlled strong deformation retract. This follows by an
induction argument similar to Proposition 7.19. Essentially, we can construct both
objects as the balanced products over ⋄+ (Y1 ⋋ [0, 1]) and use that the inclusion

‖S
δ|c|
• (MΓl|c|,α)‖ → ‖S

δ|c|+1
• (MΓl|c|+1,α)‖ is a controlled deformation retraction by

Corollary 7.18 and Lemma 7.21. The retraction induces the required controlled
homotopy.

The argument for the second triangle is analogous. �

7.9. Restricting the target category. Now we show that the transfer functor
factors over the full subcategory of finitely dominated objects. The following result
was already used in the previous chapter.

Lemma 7.21. Let (M,d) be a metric space.

(i) Let δ > 0. The natural inclusion map ‖Sδ•(M)‖ → ‖S•(M)‖ is a homotopy
equivalence.

(ii) Let 0 < δ ≤ δ′. Then the inclusion map ‖Sδ•(M)‖ → ‖Sδ
′

• (M)‖ is a δ′–
controlled homotopy equivalence (with respect to the metric on M , labelling
simplices by the image of their barycenter).

(iii) Suppose |K| is the realization of an ordered (abstract) simplicial complex
K and suppose that p : |K| → M is a continuous map. Let κ : ⋄ K → M
be the labelling sending a cell (=simplex) to the image of its barycenter
under p. Let δ > 0. Let Sδ•(|K|, p) denote the (semi)simplicial set of all
singular simplices σ in |K| such that the diameter of p ◦ σ is at most δ.

If the characteristic maps of all simplices of K lie in Sδ•(|K|, p), then the
canonical map |K| → ‖Sδ•(|K|, p)‖ is a δ–controlled homotopy equivalence
(measuring control in M via p).

Proof. The proof proceeds in analogy to [6, Lemma 6.7]. The first part follows
directly from an appropriate formulation of excision, e.g. [21, Theorem 4.6.9].

For the second part, let A be the poset of closed subsets of X , considered as a
category. Then the A–CW–complex SδA given by

SδA(A) := ‖S
δ
•(A)‖
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is a free A–CW–complex, whose free cells are of the form homA(σ(∆
|σ|),−)×D|σ|

since ⋄ ‖Sδ•(A)‖
∼=
∐
σ∈Sδ

•(X) homA(σ(∆
|σ|), A). Since both ‖Sδ•(A)‖ →֒ ‖S•(A)‖

and ‖Sδ
′

• (A)‖ →֒ ‖S•(A)‖ are homotopy equivalences for every A ∈ A, so is the

inclusion ‖Sδ•(A)‖ →֒ ‖S
δ′

• (A)‖. Hence, the natural transformation SδA → S
δ′

A is a
homotopy equivalence of (free) A–CW–complexes by [12, Corollary 3.5]. This in
particular means that there is an inverse map, compatible with the structure map,
as well as compatible homotopies. It is easy to check that such a map has the right
control.

The third claim follows by similar reasoning, substituting the poset of subcom-
plexes for the poset of closed subsets. �

Lemma 7.22. Suppose that (X, dX) admits a finite ε–domination. Then ‖Sδ•(MΓl,α)‖
is 4δ + 6Λε-dominated over X ×G (with respect to the metric dSn,n,Λ).

Proof. By Lemma 7.17, the complex ‖Sδ•(X)‖ is a δ–controlled strong deformation
retract of ‖Sδ•(MΓl,α)‖. Choose an appropriate controlled retraction r.

Pick an ε–domination of X by a finite simplicial complex |K|, i.e., a sequence of

maps X
ι
−→ |K|

π
−→ X together with a homotopy h : π ◦ ι ≃ idX , and such that the

diameter, measured with respect to the original metric dX on X , of h(x, [0, 1]) is
at most ε for every x ∈ X . Then the given domination induces maps

‖Sδ•(X)‖
ι∗−→ ‖Sδ+2Λε

• (|K|, π)‖
π∗−→ ‖Sδ+2Λε

• (X)‖,

where similarly to Section 7.4 we measure distances of points in |K| via π. These
are maps of labeled complexes over X×G: Pick an arbitrary group element g ∈ G.
Then we label simplices σ in Sδ•(X) or Sδ+2Λε

• (X) by (σ(β|σ|), g) and simplices σ

in Sδ+2Λε
• (|K|, π) by (π(σ(β|σ|)), g) (cf. Lemma 7.17 and Corollary 7.18).

Choose an iterated barycentric subdivision K ′ of K such that the character-
istic map of each simplex of K ′ is a simplex in Sδ+2Λε

• (|K|, π); note that K ′ is
ordered if we subdivide at least once. Since |K ′| is then naturally a subcomplex of
Sδ+2Λε
• (|K|, π), we endow it with the induced control map. The canonical inclusion
i : |K ′| → ‖Sδ+2Λε

• (|K|, π)‖ is a (δ + 2Λε)–controlled homotopy equivalence over
X ×G by Lemma 7.21. Choose an appropriate controlled homotopy inverse p.

Finally, the inclusion ‖Sδ•(X)‖ →֒ ‖Sδ+2Λε
• (X)‖ is a (δ + 2Λε)–controlled ho-

motopy equivalence by Lemma 7.21; let f be an appropriate controlled homotopy
inverse.

Then

‖Sδ•(MΓl,α)‖
r
−→ ‖Sδ•(X)‖

ι∗−→ ‖Sδ+2Λε
• (|K|, π)‖

p
−→ |K ′|

and

|K ′|
i
−→ ‖Sδ+2Λε

• (|K|, π)‖
π∗−→ ‖Sδ+2Λε

• (X)‖
f
−→ ‖Sδ•(X)‖ →֒ ‖Sδ•(MΓl,α)‖

yield the desired domination of ‖Sδ•(X)‖; from the previous control estimates we
see that there is a (4δ+6Λε)–controlled homotopy between the composition of these
two maps and the identity on ‖Sδ•(MΓl,α)‖. �

Proposition 7.23. Suppose that (X, dX) admits a finite ε–domination for every
ε. Let (Y, κ) ∈ RGf (W, J(E))α,d.

Then transX(Y, κ) is controlled finitely dominated, i.e., it defines an object in
RGfd(W, J(X ×G,E)). We can choose the control estimate to be independent of the
constants Λ and n from the metric.

Proof. We prove the claim by induction on the dimension of Y . The case of a
(−1)–dimensional object is trivial and provides the start of the induction.
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For the induction step, we use Lemma 7.14 to obtain a pushout square

∐
c∈⋄ p+1Y

(
‖S

δdp+1
• (MΓl

d
p+1,α)‖ × ∂D|c|

)
∐W Sα,dX,Y ⋌⋄+ Y skp(CY )

∐
c∈⋄ p+1Y

(
‖S

δdp+1
• (MΓl

d
p+1,α)‖ ×D|c|

)
∐W Sα,dX,Y ⋌⋄+ Y skp+1(CY )

in RG(W, J(X×G,E)). By induction hypothesis, the object at the top right corner
of this square is finitely dominated. So we only need to find a controlled finite

domination for ‖S
δp+1
• (MΓlp+1,α)‖, as Y itself is (locally) finite. By Lemma 7.22,

such a domination indeed exists.
Note that the same bound works if we increase n, and we can choose ε to be 1

Λ .
Then the estimate of the metric does not depend on n and Λ, which finishes the
proof. �

Finally, we show that, after forgetting the labelling in X , the transfer does not
alter the homotopy type of a given object.

Proposition 7.24. Let P : RGfd(W, J(X×G,E))→RGfd(W, J(E)) denote the func-

tor induced by the projection map X ×G→ G. Let (Y, κ) ∈ RGf (W, J(E))α,d.
Then there is an α–controlled natural weak equivalence

P (transX(Y ))
∼
−→ Y.

Proof. The relevant map is induced by the projection map MΓ → ∗. As in the
proofs of Proposition 7.20 and Proposition 7.23, the claim follows by another in-
duction along the skeleta of Y , using Lemma 7.14 and Lemma 7.21 together with
the fact that the projection map ‖S•(X)‖ → ∗ is a homotopy equivalence. Since
the bounded control is only over (G, dG), it is not hard to check that the weak
equivalence is α–controlled. �

7.10. The transfer map. We combine all of the results established so far to show
Proposition 6.15 (i).

Let N ∈ N. Suppose that we have chosen for every n ∈ N

(i) a compact, contractible metric space (Xn, dXn
) such that for every ε > 0

there is an ε–controlled domination of Xn by an at most N–dimensional,
finite simplicial complex;

(ii) a homotopy coherent G–action Γn on Xn;
(iii) a positive real number Λn.

We equip Xn ×G with the metric dSn,n,Λn
+ dG. As in Section 7.3, we set

δk := 4(d+ 1− k), lk := d+ 1− k.

Proposition 7.25. Let α, d ∈ N. The assignment

(Y, κ) 7→ transα,d(Y, κ) :=
(
transα,dXn

(Y, κ)
)
n>max{d+1,α}

f 7→
(
transα,dXn

(f)
)
n>max{d+1,α}

defines an exact functor

transα,d : (RGf (W, J(E)), h)α,d → (RGfd(W, J((Xn ×G)n, E)), hfin).

Proof. According to Lemma 7.11, Lemma 7.12 and Lemma 7.15 the assignment
yields a functor of categories with cofibrations

transα,d : RGf (W, J(E))α,d →
∏

n∈N

RGfd(W, J(Xn ×G,E)).



46 N. ENKELMANN, W. LÜCK, M. PIEPER, M. ULLMANN, AND C. WINGES

We have to show that it factors over the subcategory RGfd(W, J((Xn ×G)n, E)).

This is the case if all objects and morphisms in the image of transα,d are uniformly
boundedly controlled over Xn × G. Essentially, we have to see that all of the
necessary control estimates are independent of n ∈ N.

For this, recall that the map

RGfd(W, J((Xn ×G)n, E))→
∏

n∈N

RGfd(W, J(Xn ×G,E))

works as follows. Essentially, an object in the source is a CW–complex relative W ,
where we have a partition of its cells into N–many sets and no boundary and no
map is allowed to hit a cell which is in a different set. Hence, we can write the
object as the coproduct (overW ), indexed by N, of CW–complexes relativeW . The
collection of summands defines an element in the target. If the transfer satisfies a
uniform metric control condition, it factors over this map. Hence we need to check
that the previous results of this section give uniform bounds for all n.

Since transα,dXn
(Y, κ) is (α + δ0 + 2)–controlled over Xn × G for every n by

Lemma 7.11 and transα,dXn
(f) is cellwise 0-controlled by Lemma 7.12, all objects

and morphisms are uniformly bounded, as desired. Proposition 7.23 shows that
each component transα,d(Y, κ) is finitely dominated, but we need it uniformly. For
this, note that the proof of Proposition 7.23 can actually be done with (Xn)n re-
placing X . Roughly, we would get an extra coproduct over N everywhere, and
everything else would need to get an extra index, which is why Proposition 7.23
is not stated that way. However, the control estimations come from applications
of the gluing lemma and an induction over the cells of Y . But the gluing lemma
preserves the property of everything being uniformly controlled, and we start the
induction with uniform control arising from f and the δk, so we can do the same
induction.

Proposition 7.20 tells us that transα,dXn
sends h–equivalences to hfin–equivalences

since it applies for sufficiently large n. Again, the proof can be done for (Xn)n
instead of X , and the control estimates come from an induction over the cells of Y
and the gluing lemma, so they will be uniform. �

Proposition 7.26. Let α, d ∈ N and iα,d : RGf (W, J(E))α,d →֒ RGf (W, J(E))α+1,d+1

be the obvious inclusion functor. Then there is a natural hfin–equivalence

transα,d
∼
−→ transα+1,d+1 ◦iα,d.

Proof. There is a natural transformation transα,d → transα+1,d+1 ◦iα,d given by
the sequence (ρα,α+1,d,d+1)n>max{d+2,α+1} from Definition 7.16. These are homo-
topy equivalences by Proposition 7.19, and the control estimates in the proof of
Proposition 7.19 show that they are also uniformly boundedly controlled homotopy
equivalences. �

To obtain the transfer map whose existence was claimed in Proposition 6.15,
we proceed as follows. Let k ∈ N. Consider the inclusion jk : RGf (W, J(E))k,k →֒

RGf (W, J(E))k+1,k+1. By Proposition 7.26, there is a natural weak equivalence

ρk : transk,k
∼
−→ transk+1,k+1 ◦jk.

Hence, we obtain an induced homotopy

K(transk,k) ≃ K(transk+1,k+1) ◦K(jk).

Thinking of hocolimkK(RGf (W, J(E))k,k, h) as the mapping telescope of

K(RGf (W, J(E))1,1, h)
K(j1)
−−−−→ K(RGf (W, J(E))2,2, h)

K(j2)
−−−−→ . . . ,
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these homotopies serve to define a map

trans: hocolimkK(RGf (W, J(E))k,k, h)→ K(RGfd(W, J((Xn ×G)n, E)), hfin).

Proposition 7.27. The map trans satisfies Proposition 6.15 (i).

Proof. That trans is the required map and that the diagram commutes up to ho-
motopy is immediate from Proposition 7.2 and Proposition 7.24, noting again that
the latter proof can be done uniformly. �
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