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Birational geometry of del Pezzo fibrations with terminal

quotient singularities

Igor Krylov

Abstract

Del Pezzo fibrations appear as minimal models of rationally connected varieties. The

rationality of smooth del Pezzo fibrations is a well studied question but smooth fibrations are

not dense in moduli. Little is known about the rationality of the singular models. We prove

birational rigidity, hence non-rationality, of del Pezzo fibrations with simple non-Gorenstein

singularities satisfying the famous K
2-condition. We then apply this result to study embed-

dings of PSL2(7) into the Cremona group.

1 Introduction

Rationality question is an old problem in algebraic geometry. The question was solved in
dimension 2 by Castelnuovo, who discovered an “if and only if” conditions for a surface to be
rational. In dimension 3 there is no such criterion.

Since rational varieties are rationally connected, we only need to study the rationality of
rationally connected varieties. The minimal models of rationally connected varieties are Mori
fiber spaces with rationally connected base. In dimension 2 these are Hirzebruch surfaces and P2,
which are rational. In dimension 3 these are Fano varieties, conic bundles over rational surfaces,
and del Pezzo fibrations over the projective line. In this paper we study the latter class of varieties.

Theorem 1.1. Let π : X → P1 be a del Pezzo fibration of degree 2 with only 1
2
(1, 1, 1)-singularities

(simplest terminal quotient singularities). Suppose Pic(X) = Z⊕ Z and suppose X satisfies K2-
condition, that is K2

X is not in the interior of the Mori cone NE(X). Suppose also that fibers of
π containing singularities can be embedded into P(1x, 1y, 1z, 2w) as quartic cones q4(x, y, z) = 0.
Then X is birationally rigid, in particular not rational.

1.1 Birational geometry of del Pezzo fibrations

We say that a del Pezzo fibration has degree n if the general fiber is a del Pezzo surface of
degree n. It is well known that all del Pezzo fibrations of degree > 5 are rational. The rationality
of smooth del Pezzo fibrations of lower degree has been studied extensively, as a result a nearly
complete solution to the problem has been obtained. See [5] and [45] for rationality and [24] for
stable rationality of fibrations of degree 4. Rationality for degrees 1, 2, and 3 has been studied in
[42], [21], [22], and [23].

We say that a del Pezzo fibration is birationally rigid if it has only one Mori fiber space
structure in its birational class (Definition 5.1). In particular it means that it is not birational to
conic bundles and Fano varieties and therefore is not rational.
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Theorem 1.2 ([42]). Let π : X → P1 be a smooth del Pezzo fibration of degree 1 or 2. Suppose
Pic(X) = Z ⊕ Z and suppose X satisfies the K2-condition, that is K2

X is not in the interior of
Mori cone NE(X). Then the variety X is birationally rigid, in particular X is not rational.

Unfortunately, Mori fiber spaces do not have to be smooth, in general they have terminal
singularities. However in the case of conic bundles we only need to study smooth conic bundles.
Given a conic bundle one can always find the standard model for it, which is smooth and minimal
[44]. But it is not true for Fano varieties and del Pezzo fibrations. There are families of Fano
threefolds whose minimal models have terminal quotient singularities and are unique, thus cannot
be improved. The famous 95 families of index 1 Fano varieties have this property ([17], [11]), and
more examples have been found recently ([30], [2], [3]).

Del Pezzo fibrations are in-between: there are good models, but they are not necessarily
smooth or even Gorenstein [19]. The good model of del Pezzo fibrations of degree 2 are 2-
Gorenstein. Hence good models may not admit smoothing since the singularities of 2-Gorenstein
varieties are degenerations of the 1

2
(1, 1, 1)-singularity which does not admit smoothing. In par-

ticular it means that smooth del Pezzo fibrations are not dense in moduli. Varieties with only
1
2
(1, 1, 1)-singularities in a family of 2-Gorenstein varieties are the equivalent of smooth varieties

in a family of Gorenstein varieties.
It is expected that del Pezzo fibrations of degree 1 also have models with good singularities,

these models have to be 6-Gorenstein. Therefore for del Pezzo fibrations of degree 1 it is natural
to consider 1

2
(1, 1, 1) and 1

3
(1, 1, 2)-singularities [19]. The following is a well-known and widely

believed conjecture.

Conjecture 1.3. Theorem 1.2 be extended to del Pezzo fibrations of degree 2 with only singularities
of the type 1

2
(1, 1, 1), and to del Pezzo fibrations of degree 1 with only singularities of the type

1
2
(1, 1, 1) and 1

3
(1, 1, 2).

I prove a part of this conjecture in Theorem 1.1. Smooth del Pezzo surfaces of degree 2 can
all be embedded as quartics into P(1x, 1y, 1z, 2w), therefore the requirement of Theorem 1.1 that
bad fibers can be embedded into P(1, 1, 1, 2) is quite natural. The equation of bad fiber is of the
form q4(x, y, z) + wq2(x, y, z) = 0, thus varieties we consider are special. The specialty condition
is there only for technical reasons, there is no conceptual reason for this. The same technique
should work to prove the conjecture.

Example 1.4. Let X be a hypersurface of bidegree (4, l) in P(1x, 1y, 1z, 2w)× P1
u,v. Then X is a

del Pezzo fibration of degree 2. Since −KX is of bidegree (1, 2− l), X satisfies the K2-condition
when l > 2. In particular it is not satisfied for l = 0, that is when X is a direct product. Let the
equation of X be pl(u, v)w

2 = q4,l(x, y, z; u, v), where p and q are generic polynomials of degree
l in u, v and degree 4 in x, y, z. Then the fibers containing singularities are quartic cones and X
satisfies the assumptions of Theorem 1.1.

This example aligns quite well with [16, Corollary 7.4]. This corollary states that a fibrations
with sufficiently many singular birationally nonsmoothable fibers is weakly rigid. Here the fiber
over t ∈ P1 is birationally nonsmoothable if there are no fiberwise maps to a fibration πY : Y → P1

such that a fiber of πY over t is smooth. It is unclear how to verify this condition, but we believe
that X satisfies it for sufficiently big l.

The corollary also states that a del Pezzo fibration is weakly rigid if the K2-condition is
preserved under fiberwise maps. It is not known, how to check this. However there are varieties
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which satisfy this condition trivially: they do not admit fiberwise maps which are not isomorphisms
[29, Theorem 1.1].

We can apply Theorem 1.1 to study finite subgroups of Cremona group of rank three.

1.2 Conjugacy classes of simple subgroups of Cremona group

The Cremona group Crn of rank n is a group of birational transformations of Pn. It is clear
that Cr1 = PGL2(C) and it is classically known that Cr2 = 〈PGL3(C), σ〉, where

σ : (x : y : z) 7→
(1
x
:
1

y
:
1

z

)
.

Unfortunately, there is little hope for finding generators of the Cremona group over PGLn+1(C)
for n > 3. The Cremona group of rank n is a lot more complicated and there are too many
generators over PGLn+1(C) to study them effectively for n > 3 [32].

Recently other ways to study the Cremona group have been considered. The topology of
Crn have been studied in [7]. We could also study subgroups of the Cremona group, for example,
it has been shown that Crn is not a simple group [8].

In this paper we focus on finite subgroups. Finite subgroups of the Cr2 have been classified
up to conjugation in [20]. To acquire the classification one can transfer this algebraic problem to
the geometric language.

Lemma 1.5 ([37, Proposition 1.2]). Let X be a rationally connected variety and let G be a finite
subgroup of BirX. Then there exists a variety Y with a regular G-action and a G-equivariant
birational map ϕ : X 99K Y such that

• Y is terminal and GQ-factorial, that is G-invariant divisors on Y are Q-factorial,

• there is a G-equivariant map π : Y → Z to a variety of lower dimension such that a generic
fiber of Y is a Fano variety and a relative G-invariant Picard rank is ρG(Y/Z) = 1.

Variety Y is called G-Mori fiber space. The classification of subgroups of Crn up to con-
jugation is equivalent to the classification of the rational G-Mori fiber space up to G-equivariant
birational equivalence.

For a while very little was known about finite subgroups of Cremona group of higher rank.
Serre even asked if every group can be embedded into the Cr3 [46, Question 6.0]. However several
striking results have been found recently, among which is the following theorem of Prokhorov
answering the question of Serre.

Theorem 1.6 ([36, Theorem 1.3]). Let G be a finite simple non-abelian group. Then Cr3(C) has
a subgroup isomorphic to G if and only if G is one of the following groups: A5, PSL2(7), A6, A7,
PSL2(8), or PSU4(2).

The theorem has been proven using the same idea: transfer the problem to geometry and
work with good models of the action. This is of course a lot harder to do in dimension 3 than in
dimension 2. Already the rationality question for 3-fold Mori fiber spaces has several unresolved
aspects.

There is little hope to classify finite subgroups of Cr3, but we should be able to classify finite
simple subgroups up to conjugacy. Good models for actions of A7, PSL2(8), or PSU4(2) have
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already been classified, their models are G-Fano varieties since these groups cannot be embedded
into Cr2. The Fano varieties with group actions is the most studied case so far: [14], [15], [37],
[38], and [39]. For G-conic bundles all we know is that the process of standardizing a conic bundle
can be carried over equivariantly [4]. In this paper we focus on G-del Pezzo fibrations. The groups
which could act on del Pezzo fibrations must be embedded into Cr2, these are: A6, PSL2(7), and
A5. The A6-del Pezzo fibrations have already been classified.

Theorem 1.7 ([15, Appendix B.]). Let X be an A6-del Pezzo fibration over P1, then X ∼= P2×P1.

For PSL2(7) there is a series of families of del Pezzo fibrations and most of them have moduli,
which makes the study and results more exciting compared to the case of A6.

Example 1.8. Let Yn =
(
C6 \Z(I)

)
/(C∗)2, where I = 〈x, y, z, w〉∩〈u, v〉 and the action of (C∗)2

is given by the matrix:



u v x y z w
0 0 1 1 1 2
1 1 0 0 0 −n




The variety Yn is a 4-dimensional toric variety with Cox(Yn) = C[x, y, z, w, u, v], the grading of
this ring is defined by the matrix A. Clearly, Y0 is a direct product P1 × P(1, 1, 1, 2). Let Xn be
the hypersurface of bidegree (4, 0) in Yn given by the equation

a2n(u, v)w
2 = x3y + y3z + z3x,

where a2n is a homogeneous polynomial of degree 2n without multiple roots. The projection

(u : v : x : y : z : w) 7→ (u : v)

defines a structure of a del Pezzo fibration of degree 2 on Xn.
It is easy to see that Xn admits the action of the group PSL2(7) because right-hand side of

the equation of Xn is a polynomial defining the Klein quartic. Variety Xn has 2n points of the
type 1

2
(1, 1, 1) and has no other singularities. Thus Xn is terminal and Q-factorial.

We develop a new technique to prove the following theorem and to reprove Theorem 1.7.

Theorem 1.9 ([1, Conjecture 3.3]). Let X be a PSL2(7)-del Pezzo fibration over P1. Let S2 be
the double cover of P2 branched over the Klein quartic. Then

• the generic fiber is P2 and X ∼= P2 × P1,

• or the generic fiber is S2 and X ∼= Xn.

We also want to know which Xn contribute to the Cremona group, that is which ones are
rational. It is easy to see that X0 and X1 are rational.

Conjecture 1.10 ([1, Conjecture 3.5]). Varieties Xn are not rational for n > 2.

Okada has proven that a very general Xn is not rational for n > 5 using the reduction to
characteristic 2 [31]. Applying Theorem 1.1 to varieties Xn we get a better result.

Corollary 1.11. The varieties Xn are birationally rigid for n > 3, in particular they are not
rational.

The structure of the paper is the following. In section two we recall background knowledge on
singularities and multiplicities of cycles. In section 3 we prove the results related to the Cremona
group: Theorem 1.7, Theorem 1.9, and Corollary 1.11. In section 4 we recall the proof of rigidity
of smooth del Pezzo fibrations of degree 2. Sections 5-7 are devoted to the proof of Theorem 1.1.
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2 Preliminaries

We write ≡ for numerical equivalence of Q-divisors and cycles and ∼ for linear equivalence
of Q-divisors. We denote the symmetric group by Sn and its subgroup of even permutations by
An. All varieties are algebraic, normal and defined over C unless stated otherwise.

Let X be an algebraic variety, possibly non-projective and singular. Let E be a prime
divisor on X. Then there is a discrete valuation νE of C(X) corresponding to E defined as
νE(f) = multE(f).

Definition 2.1 ([41]). Let ϕ : X̃ → X be a projective birational morphism. We say that a triple

(X̃, ϕ, E) is a realization of a discrete valuation ν if E is a prime divisor on X̃ and νE = ν. We
say that ϕ(E) is the center of a valuation νE on X.

Note that if X is projective, then every discrete valuation of the field C(X) has a center on
X which does not depend on a realization.

Definition 2.2. Let D be a divisor on X. We define the multiplicity of a valuation ν at D by
the number

ν(D) = multE ϕ∗(D)

for some realization (X̃, ϕ, E) of ν. That is we can write

ϕ∗(D) = ϕ−1(D) + ν(D)E +
∑

aiEi,

where Ei are the other exceptional divisors of ϕ. Multiplicity does not depend on the realization.

Definition 2.3 ([35, p. 6]). Let D be a Q-divisor on X such that KX + D is Q-Cartier. Let

π : X̃ → X be a birational morphism and let D̃ = π−1(D) be the proper transform of D. Then

KX̃ + D̃ ∼ π∗(KX +D) +
∑

E

a(E,X,D)E,

where E runs through all the distinct exceptional divisors of π on X̃ and a(E,X,D) is a rational
number. The number a(E,X,D)

(
=a(νE , X,D)

)
is called the discrepancy of a divisor E (valuation

νE) with respect to the pair (X,D). Let M be a linear system, not necessarily mobile, on X.
Then we set a(E,X,M) = a(E,X,D) for a generic divisor D ∈ M.

Definition 2.4 ([35, p. 6]). Let M be a linear system, not necessarily mobile, on X. We say that
the pair (X,M) is terminal (resp. canonical, log terminal, log canonical) at the valuation ν with
a center on X if a(E,X,M) > 0 (resp. a(E,X,M) > 0, a(E,X,M) > −1, a(E,X,M) > −1)
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for some realization (X̃, ϕ, E) of ν. We say that the pair is (X,M) terminal (resp. . . . ) at a
subvariety Z if it is terminal (resp. . . . ) at every valuation ν on K(X) such that a center of ν
on X is Z. We say that the pair is (X,M) terminal (resp. . . . ) if it is terminal (resp. . . . ) at
every valuation with a center on X. If M = 0, we simply say that X has only terminal (resp.
canonical, log terminal, log canonical) singularities.

Remark 2.5. Consider the pair (X,M). Let f : Y → X be a projective birational morphism,

let Ei be the exceptional divisors and let M̃ be the proper transform of M on Y . Then the pair

(
Y,M̃ −

∑
a(Ei, X,M)Ei

)

is called the log pullback of the pair (X,M). It follows from the definition that the log pullback
of the pair has the same singularities as the pair.

Lemma 2.6 ([13, Theorem 1.6]). Let M be a mobile linear system on C2. Let C be a curve
passing through the origin. Suppose the pair (C2, 1

n
M− αC) is not terminal at 0 then

mult0D1 ·D2 > 4n2α.

Proposition 2.7 (Corti inequality, [18, Theorem 3.12]). Let F1,. . . ,Fn ∈ C3 be irreducible surfaces
passing through the origin. Let M be a mobile linear system on C3 and let Z = D1 · D2 be the
intersection of general divisors D1, D2 ∈ M. Write Z = Zh +

∑
Zi, where the support of Zi is

contained in Fi and Zh intersects
∑

Fi properly. Let αi > 0 be rational numbers such that the pair
(C3, 1

n
M−

∑
αiFi) is not terminal at 0. Then there are rational numbers 0 < ti 6 1 such that

mult0 Zh +
∑

ti mult0 Zi > 4n2(1 +
∑

αiti mult0 Fi).

Note that decomposition Z = Zh+
∑

Zi may not be unique, but the inequality holds for any
choice of the decomposition. Also note that we do not care if

∑
Fi is a normal crossing divisor,

or if surfaces Fi are smooth or not.

Lemma 2.8 ([28, Lemma 2.2.14]). Let g : Y → X be the blow up of a smooth curve C ⊂ X on
a smooth threefold X. Let E be the exceptional divisor of g, then E is a projectivization of the
normal bundle NC/X . Let f ∈ A2(Y ) be the class of the fiber of the ruled surface E, then the
following equalities hold

(i) E2 = −g∗(C) + deg(NC/X)f ,

(ii) E3 = − deg(NC/X),

(iii) E · f = −1,

(iv) E · g∗(D) = (C ·D)f ,

(v) f · g∗(D) = 0,

(vi) E · g∗(Z) = f · g∗(Z) = 0,

(vii) deg(NC/X) = 2g(C)− 2−KX · C.
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Let Y be the quotient An/〈−In〉. Let P be the image of zero on Y , then we say that P
is a singular point of the type 1

2
(1, . . . , 1), or simply that P is 1

2
(1, . . . , 1). If a singularity Q is

analytically isomorphic to P we also say that Q is 1
2
(1, . . . , 1). We call the singularities of the type

1
2
(1, . . . , 1) half-points. Half-point is the simplest terminal quotient singularity.

Lemma 2.9 ([34, Lemma 4.10]). Let Q ∈ X be a 1
2
(1, 1, 1)-point. Suppose f : Y → X is the blow

up of Q and let E be the exceptional divisor, then

(i) KY ∼ f ∗(KX) +
1
2
E,

(ii) if the local equation of D at Q is xi = 0, then f−1(D) = f ∗(D)− 1
2
E,

(iii) OE(E)|E = OE(−2).

Proposition 2.10 ([25]). Let f : X̃ → X be the blow up of a half-point Q and let E be the
exceptional divisor of f . Then a pair (X,D) is canonical at Q if and only if it is canonical at E,
that is a(E,X,D) < 0.

Corollary 2.11. Suppose a pair (X,D) is canonical at a half-point Q. Then it is canonical at
every curve passing through Q.

Proof. Suppose (X,D) is not canonical at C passing through Q, then m = multC D > 1. Let

f : X̃ → X be the blow up of the point Q and let E be the exceptional divisor of f . Then
νE(D) > m

2
> 1

2
. On the other hand a(E,X, 0) = 1

2
by Lemma 2.9, thus a(E,X,D) < 0 and the

pair is not canonical at Q, contradiction.

Lemma 2.12. Let Q ∈ X be a half-point. Suppose D is a divisor passing through the point
Q. Suppose also that there is a curve C passing through the point Q such that C · D = 1

2
and

C 6⊂ SuppD. Then the pair (X,D) is canonical at Q.

Proof. Let f : X̃ → X be the blow up of the point Q. Let C̃ and D̃ be the proper transforms of
C and D on X̃ respectively. By the projection formula

0 6 D̃ · C̃ = D · C − νE(D)E · C =
1

2
− νE(D),

thus νE(D) 6 1
2
. By Lemma 2.9 and Proposition 2.10 the pair (X,D) is canonical at Q.

The following statements on the behavior of cycles on threefolds are well known.

Lemma 2.13. Let Z be a 1-cycle on a threefold X. Let σ : X̃ → X be the blow up of B and let
E be the exceptional divisor. Then σ∗Z = σ−1Z + ZE, where SuppZE ⊂ E and

• if B is a nonsingular point, then E ∼= P2 and degZE = multB Z.

• if B is a smooth curve then ZE ≡ (C · B)Sf , where f is a class of fiber of ruled surface E
and S is some surface conatining C and B which is smooth at every point of C ∩B.

Lemma 2.14. Let F be a hyperplane in C3. Let L be a curve in F and let C be an irreducible
curve which does not lie in F . Let σ : X → C3 be a blow up of L. Let E be the exceptional divisor
and let f ∈ A2(X) be the class of a fiber of the ruled surface E. Then σ∗C ≡ σ−1C + kf , where
k 6 C · F .
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Proof. By the projection formula and Lemma 2.8

k = E · σ∗C − kE · f = E · σ−1C 6 σ∗F · σ−1C = F · C.

Lemma 2.15. Let D1 and D2 be generic divisors in a linear system M on X and let Z = D1 ·D2.
Let σ : X̃ → X be the blow up of B, let E be the exceptional divisor, and let D̃i be the proper
transform of Di on X̃. Then

D̃1 · D̃2 ≡ σ∗(Z) + ZE ,

where SuppZE ⊂ E.
Suppose also that B is a curve. Let m = νE(M) and let f ∈ A2(X̃) be a fiber of a ruled

surface E. Then

ZE ≡ m2E2 − 2m(D1 · B)f.

Proof. Since σ∗Di = D̃i +mE, by Lemma 2.8

D̃1 · D̃2 ≡ D1 ·D2 +m2E2 − 2mσ∗(D1 · E) ≡ σ∗(Z) +m2E2 − 2m(D1 · B)f.

3 Klein simple group in Cremona group

In this section we reprove Theorem 1.7 and prove Theorem 1.9.

Definition 3.1 ([37]). Suppose a group G acts on X. We say that π : X → Z is a G-Mori fiber
space if it satisfies the following conditions:

• the variety X is terminal and GQ-factorial, that is every G-invariant divisor on X is Q-
Cartier;

• morphism π is flat, G-equivariant and, the invariant relative Picard rank ρG(X/Z) = 1;

• the generic fiber of π is a Fano variety.

Lemma 1.4 implies that there is a rational G-Mori fiber space corresponding to every em-
bedding of G into Crn. By a G-del Pezzo fibration X we mean a three dimensional G-Mori fiber
space over a projective line, in this case the general fiber is a G-del Pezzo surface. Varieties Xn

from the example 1.8 are the examples of PSL2(7)-del Pezzo fibrations.
The group A6 has a unique central extension with a 3-dimensional representation. Thus

there is a unique action of A6 on P2. The group PSL2(7) has two 3-dimensional representations.
The representations are conjugate by the outer automorphism and the representations of central
extensions induce the same action, hence the action of PSL2(7) on P2 is unique. There is also a
unique del Pezzo surface S2 of degree 2 with the action of PSL2(7), it is a double cover r : S2 → P2

branched over the Klein quartic. There are no other del Pezzo surfaces admitting the action of
A6 or PSL2(7).

8



Theorem 3.2 ([6, Theorem 1.4]). Let S be a del Pezzo surface with log terminal singularities.

• Suppose S admits a PSL2(7)-action. Then S is P2 or S2.

• Suppose S admits an A6-action. Then S is P2.

Thus a generic fiber of an A6-del Pezzo fibration is P2 and of a PSL2(7)-del Pezzo fibration
is S2 or P2. To prove Theorem 1.7 we show that an A6-del Pezzo fibration, can be transformed
by an A6-equivariant fiberwise map into P2 × P1. Then we show that P2 × P1 does not have
A6-equivariant fiberwise maps to A6-del Pezzo fibrations other than itself. We prove Theorem 1.9
similarly.

We say a map χ : X 99K Y between fibrations X → B and Y → B is fiberwise if it maps a
fiber over t ∈ B into a fiber over t and it is an isomorphism on a generic fiber. Equivalently χ is
a fiberwise map if it induces an isomorphism of the general fibers X/B and Y/B over C(B).

Lemma 3.3. Let π : X → B and π′ : Y → B be G-del Pezzo fibrations such that G acts trivially
on the base. Suppose that the general fibers X/B and Y/B of π and π′ are isomorphic as surfaces
over C(B) and suppose that surface X/B admits a unique G-action up to isomorphism. Then
there exists a G-equivariant fiberwise map X 99K Y .

Proof. An isomorphism map X/B → Y/B induces the isomorphism of fields χ∗ : C(X) → C(Y ).
Thus birational map corresponding to χ∗ is a fiberwise map by definition. The group G acts
trivially on C(B), hence the G-action on X and Y induces the action on X/B and Y/B. Since
the G-action on X/B is unique, we may choose the isomorphism χB in such a way that it is
G-equivariant. Then χ∗ and the corresponding fiberwise maps are G-equivariant as well.

Given a del Pezzo fibration we can consider its general fiber as a quartic in P(1, 1, 1, 2)C(t).
Algebraic operations we do on the equation of the general fiber correspond to the fiberwise trans-
formations of the del Pezzo fibration.

Example 3.4. Consider, a double cover X of C1 × P2 branched over a central fiber {t = 0}
and a divisor which is a Klein quartic in every fiber. Its general fiber is defined by the equation
w2 = t(x3y + y3z + z3x) in PC(t)(1, 1, 1, 2).

Clearly, X is canonical along preimage of a Klein quartic in the central fiber F . We may
blow up this curve and then we can contract the proper transform of F into a singular point of the
type 1

2
(1, 1, 1). Let X̃ be the variety we acquire after performing these operations. The equation

of its general fiber is t(w′)2 = x3y + y3z + z3x. Here we have made a coordinate change wt = w′,
and have divided both sides of the equation by t.

Lemma 3.5. Let π : X → P1 be a PSL2(7)-del Pezzo fibration of degree 2. Then there is a
fiberwise PSL2(7)-birational map to Xn for some n.

Proof. The general fiber X/B of π is a del Pezzo surface of degree 2 over C(t), that is it is a
double cover of P2

C(t) branched over a quartic q4 ∈ C[x, y, z](t). We can arrange the terms by the
powers of t

q4(x, y, z) =

+∞∑

n=−∞

pi(x, y, z)t
n.

9



Since X and hence q4 are PSL2(7)-invariant, all quartics pi are also PSL2(7)-invariant, therefore
each pi is a multiple of Klein quartic. Thus q4(x, y, z) = s(t)(x3y + y3z + z3x), for some s ∈ C(t)
and X/B is a quartic in PC(t)(1, 1, 1, 2) defined by the equation

w2 = s(t)(x3y + y3z + z3x).

Let s = q
r
, where q, r ∈ C[t], then r

q
w2 = x3y + y3z + z3x. Let us change the coordinate

w = qw̄, then r(t)q(t)w̄2 = x3y + y3z + z3x. We may also assume that rq does not have multiple
roots, since we can change w̄ again to get rid of them. Let n be an integer such that deg rq = 2n
or deg(rq) = 2n− 1. Consider a variety Xn defined by the equation

v2nr
(u
v

)
q
(u
v

)
w̄2 = x3y + y3z + z3x.

Since the generic fibers have the same equations there is fiberwise PSL2(7)-equivariant map from
X to Xn by Lemma 3.3.

We generalize [10, Theorem 1.5] for our purposes.

Theorem 3.6. Let π : V → Z be a G-Fano fibration over a curve Z. Suppose the pair (V, 1
n
M) is

canonical at any subset of a fiber F for any G-equivariant mobile linear system M ⊂
∣∣−nKV +lF

∣∣.
Suppose ϕ : V 99K V̄ is a G-equivariant birational map to a G-Fano fibration π̄ : V̄ → Z such that

V
ϕ

//❴❴❴

π
��

V̄

π̄
��

Z
g

Z

is commutative. Suppose ϕ is an isomorphism outside F , then ϕ is an isomorphism.

Proof. Let D be a very ample G-invariant divisor on Z such that −KV +π∗(D) and −KV̄ + π̄∗(D)
are ample. Put

Λ =
∣∣− nKV + π∗(nD)

∣∣, Γ =
∣∣− nKV̄ + π̄∗(nD)

∣∣, Λ̄ = ϕ(Λ), Γ̄ = ϕ−1(Γ),

where n is a natural number such that Λ and Γ have no base points. Put

MV =
2ε

n
Λ +

1− ε

n
Γ, MV̄ =

2ε

n
Λ̄ +

1− ε

n
Γ,

where ε is a positive rational number. Note that these systems are G-invariant and for ε small
enough the linear systems

∣∣KV +MV

∣∣ and
∣∣KV̄ +MV̄

∣∣ are ample. If the singularities of both log
pairs (V,MV ) and (V,MV̄ ) are canonical, then ϕ is an isomorphism by the uniqueness of canonical
model [9, Theorem 1.3.20].

The linear system Γ does not have base points, therefore for small enough ε the pair (V̄ ,MV̄ )
is canonical. By the assumption of the theorem the pair (V, 1

n
Γ̄) is canonical, thus (V, 1−ε

n
Γ̄) is

canonical. Therefore (V,MV ) is also canonical since Λ has no base points.

Lemma 3.7 ([33, Lemma 4]). Suppose G acts freely on a variety X and P is a G-invariant point.
Then G acts faithfully on TPX.

Corollary 3.8. The following assertions hold.
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(i) Suppose A6 acts on a surface S and let Σ be an orbit of a nonsingular point, then
∣∣Σ

∣∣ > 10.

(ii) Let Σ be a PSL2(7)-orbit on P2, then
∣∣Σ

∣∣ > 14.

Proof. Let H be the stabilizer of P ∈ Σ. Then by Lemma 3.7 there is an induced irreducible
representation of H on TPS ∼= C2. The subgroups of A6 of index < 10 are isomorphic to A5

[GAP] but A5 does not have irreducible 2-dimensional representations, thus (i) holds.
The subgroups of PSL2(7) of index < 14 are F21 and S4 ([GAP]). The group F21 does not

have irreducible 2-dimensional representations. On the other hand, the induced action of S4 on
P2 is irreducible ([GAP]). Thus S4 cannot be a stabilizer and (ii) holds.

Lemma 3.9. Let r be a rational number.

(i) Suppose C ∈
∣∣− rKP2

∣∣ is an A6-invariant curve on P2, then r > 2.

(ii) Suppose C ∈
∣∣− rKP2

∣∣ is a PSL2(7)-invariant curve on P2, then r > 4
3
.

(iii) Suppose C ∈
∣∣− rKS2

∣∣ is a PSL2(7)-invariant curve on S2, then r > 2.

(iv) Let S ∈ P(1x, 1y, 1z, 2w) be a surface given by the equation x3y + y3z + z3x = 0. Suppose
C ∈

∣∣− rKS

∣∣ is a PSL2(7)-invariant curve on S, then r > 2.

Proof. The action of G on P2 is induced by a 3-dimensional representation of a central extension
G of G. This representation induces representation of G on polynomials of degree k as Symk(C3).
Therefore every G-invariant curve of degree k corresponds to a 1-dimensional G-invariant subspace
of Symk(C3). The minimal k such that Symk(C3) has 1-dimensional G-invariant representations
is 6 for A6 and 4 for PSL2(7) [GAP], this proves (i) and (ii)

Suppose C ∈
∣∣ − rKS2

∣∣ is a PSL2(7)-invariant curve on S2. Without loss of generality we
may assume that C is PSL2(7)-irreducible. Consider the double cover π : S2 → P2 branched over
Klein quartic C4. Since π is a canonical morphism, it is PSL2(7)-equivariant. Invariant Picard
group PicG(S) = Z, therefore C is a pullback of a curve from P2 or C is a ramification divisor.
In the first case r > 4, since −KS2 is a pullback of a line and the PSL2(7)-invariant curve of the
lowest degree is a quartic. Clearly, in the latter case r = 2.

There is a G-invariant curve C0 ∈
∣∣− 2KS

∣∣ given by the equation w = 0, note that C0 does
not pass through a singular point and C0 is isomorphic to the Klein quartic. Suppose C 6= C0,
then C ∩ C0 is a union of orbits on C0. Let Σ ⊂ C ∩ C0 be an orbit and let H ⊂ PSL2(7) be
a stabilizer of Σ. Then by Lemma 3.7 the group H is cyclic. The cyclic subgroup of PSL2(7) of
maximal size has 7 elements [GAP], therefore

∣∣Σ
∣∣ > 24. On the other hand

∣∣C∩C0

∣∣ 6 C ·C0 = 4r,
thus 4r > 24. Hence r > 6 unless C = C0, in which case r = 2.

Lemma 3.10. Let M ⊂
∣∣ − rKP2

∣∣ be a G-invariant linear system on P2. Suppose G is A6 or
PSL2(7) then the pair (P2, 1

r
M) is log canonical.

Proof. Let M = F +M′, where F ∈
∣∣− r1KP2

∣∣ is a fixed part and M′ ⊂
∣∣− r2KP2

∣∣ is a mobile
linear system. If both (X, 1

r1
F ) and (X, 1

r2
M′) are log canonical, then (P2, 1

r
M) is log canonical.

Suppose the pair (P2, 1
r2
M′) is not log canonical. It is log canonical at curves since it is

mobile, hence it is not log canonical at some point P . Then it is not log canonical at the orbit Σ
of P . Consider generic divisors D1, D2 ∈ M′, clearly multΣ Di > r2. By Corollary 3.8

10r22 6 r22
∣∣Σ

∣∣ < D1 ·D2 = 9r22,

contradiction.
The pair (X, 1

r1
F ) is log canonical by Lemma 3.9.

11



Lemma 3.11. Let S be a del Pezzo surface of degree 2 with a PSL2(7)-action. Let M ⊂
∣∣− rKS

∣∣
be a PSL2(7)-invariant linear system on S. Then the pair (P2, 1

r
M) is log canonical.

Proof. The proof is analogous to the proof of Lemma 3.10.

Lemma 3.12. Let S ⊂ P(1x, 1y, 1z, 2w) be a surface given by the equation x3y + y3z + z3x = 0.
Let M ⊂

∣∣ − rKS

∣∣ be a PSL2(7)-invariant linear system on S. Then the pair (P2, 1
r
M) is log

canonical outside of the singular point of S.

Proof. The pair is log canonical at curves by Lemma 3.9. Suppose it is not log canonical at a point
P . Let L be the curve from the ruling of the cone passing through the point P , then L·(−KS) =

1
2
.

There is a number k > 0 such that M|S = kL + M′, where M′ does not contain L. Since the
pair is log canonical at curves k 6 r. Consider a generic divisor D ∈ M′. The pair (S, 1

r
D + k

r
L)

is not log canonical at P , therefore by [12, Theorem 7]

r < (D · L)P 6 D · L = r −
k

2
.

Proposition 3.13. Suppose π : X → P1 is a G-del Pezzo fibration. Suppose f is a G-equivariant
fiberwise birational map to a G-del Pezzo fibration.

(i) If G is A6 and X is P2 × P1 then f is an isomorphism.

(ii) If G is PSL2(7) and X is P2 × P1 or Xn, then f is an isomorphism.

Proof. Suppose the map f is not an isomorphism. Then by Theorem 3.6 there is a G-invariant
linear system M ⊂

∣∣−nKX + lF
∣∣ such that the pair (X, 1

n
M) is not canonical at B ⊂ F . Lemma

2.12 implies that B cannot be a singular point of the type 1
2
(1, 1, 1) since curves from the ruling

of the cone F intersect divisors in M by n
2
. Thus B is a nonsingular point of X or a curve. Then

by Inversion of Adjunction ([26, Theorem 17.7]) the pair (F,M|F ) is not log canonical at B which
contradicts Lemma 3.10, Lemma 3.11, or Lemma 3.12.

Proof of Theorem 1.7. Suppose π : X → P1 is an A6-del Pezzo fibration, then the general fiber
X/P1 of π is P2

C(t) by Theorem 3.2. By Lemma 3.3 there exists an A6-equivariant fiberwise map

from X to P2×P1. By Proposition 3.13 this map must be an isomorphism, thus X ∼= P2×P1.

Proof of Theorem 1.9 is analogous.

Lemma 3.14. Varieties Xn satisfy K2-condition, that is K2
Xn

6∈ NE
◦
(Xn), if and only if n > 3.

Proof. Let EY be a unique effective divisor of bidegree (2,−n), that is EY is given by the equation
w = 0 on Yn. Let FY be a divisor of bidegree (0, 1), then FY is a fiber of a P(1, 1, 1, 2)-fibration
πY : Yn → P1. Let SY be a surface of bidegree (1, 0), that is S is given by an equation x = 0.
Clearly E = EY |Xn

and F = FY |Xn
generate the cone of effective divisors on Xn. Set SY |Xn

= S.
Let f be a line in a fiber and let s = S · E, clearly s is a bisection of π = πY |Xn

. It is easy to see
that s and f generate the cone of effective curves of Xn.

Since KYn
is a divisor of bidegree (−5, n − 2) by adjunction KXn

is a divisor of bidegree
(−1, n− 2), thus

KXn
∼ −S + (n− 2)F.

12



On the other hand, equivalence S ∼ 1
2
E + n

2
F implies

KXn
∼ −

1

2
E + (

n

2
− 2)F.

The variety Xn is a del Pezzo fibration of degree 2, hence S · F ≡ 2f . Therefore we compute

K2
Xn

=
(
−

1

2
E + (

n

2
− 2)F

)
·
(
− S + (n− 2)F

)
≡

s

2
+ (8− 3n)f.

Clearly, K2
Xn

is not in the interior of the Mori cone if and only if n > 3.

Thus Theorem 1.1 is applicable and Corollary 1.11 holds.

4 Rigidity of del Pezzo fibrations

In this section we recall the proof of rigidity of smooth del Pezzo fibrations of degree 2 and
see what is the difficulty in the singular case.

Definition 4.1 ([43], Definition 1). Let π : V → P1 be a del Pezzo fibration. We say that V is
birationally rigid if for any birational map f : V 99K V ′ to a Mori fiber space π′ : V ′ → S the base
S is P1, there is a commutative diagram

V
f

//❴❴❴

π
��

V ′

π′

��

P1 P1,

and the general fibers of π and π′ are isomorphic.

Theorem 4.2 (Noether-Fano inequality, [42]). Suppose π : X → P1 is a del Pezzo fibration.
Suppose it satisfies K2-condition, that is K2

X 6∈ NE
◦
(X). Suppose g : X 99K Y is a birational

map which is not a morphism, then there exists a linear system M and a positive rational number
λ such that λM+KX ∼ γF and the pair (X, λM) is not canonical.

To prove birational rigidity we would like to show that there are no such systems. But there
are fiberwise maps and hence there are systems with non canonical singularities(Theorem 3.6).
The method of supermaximal singularities was developed in [42] to deal with this difficulty.

Proposition 4.3 ([42]). Let π : X → P1 be a del Pezzo fibration satisfying K2-condition. Let
g : X → V be a birational map to a Mori fiber space π̄ : V → Z. Suppose also that a map g is
not fiberwise if π̄ : V → Z is a del Pezzo fibration. Let M = f−1

∣∣π̄∗H
∣∣, where H is a very ample

divisor on Z. Then there are numbers n > 0, γ > 0 such that M ⊂
∣∣− nKX + γnF

∣∣ and one of
the following holds.

(i) There is a valuation ν of the field K(X) such that its center on X is a curve and the pair(
X, 1

n
M

)
is not canonical at ν;

(ii) There are finitely many valuations νi of K(X) such that
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• the centers Pi of νi are the points which all lie in different fibers,

• the pair
(
X, 1

n
M

)
is not canonical at every νi,

• and the following inequality holds

−
∑ a(νi, X, 1

n
M)

νi(Fi)
> γ.

Now suppose that X is a del Pezzo fibration of degree 2 with only 1
2
(1, 1, 1)-singularities.

Suppose also that every fiber containing singularity is given by the equation q4(x, y, z) = 0 in
P(1x, 1y, 1z, 2w).

Proposition 4.4. Let C be a curve on X which is not a section of π and let Q be a half-point.
Then pair (X, 1

n
M) is canonical at C and Q.

Proof. It has been shown in [42] that the pair (X, 1
n
M) is canonical at C if it is not a section and

does not lie in a fiber containing a half-point.
Let F be a fiber containing the half-point Q, then F is a quartic cone by assumption. The

curves from the ruling of F intersect −KX by 1
2
, therefore the pair (X, 1

n
M) is canonical at half-

points by Lemma 2.12. Thus by Corollary 2.11 the pair is also canonical at every curve passing
through the half-point.

Suppose that a curve C does not pass through Q. Let L be a curve from the ruling of F
such that L 6⊂ SuppC. Then the intersection C ·L > 1 since it is a positive integer. On the other
hand C ≡ rL for some r and

C · L = rL2 =
r

8
> 1.

Suppose the pair is not canonical at C. Then for a generic D ∈ M there is the decomposition
D|F = kC +D′, where k > 1 and D′ is an effective divisor on F which does not contain L. It is
impossible since

D|F ≡ −KF ≡ 4L.

Proposition 4.5 ([42, Section 3]). Let C be a section of π. Then either the pair (X, 1
n
M) is

canonical at C or there exists a birational involution χC such that

• the following diagram is commutative

X
χC

//❴❴❴

π
��

X

π
��

P1 P1,

• there are numbers n′ < n and γ′ such that χC(M) ⊂
∣∣− n′KX + n′γ′

∣∣, and

• the pair
(
X, 1

n′
χC(M)

)
is canonical at C.

The maps χC are the kind which we allow in the definition of rigid varieties. We prove that
every map to a Mori fiber space is a composition of χC and fiberwise maps. Using Proposition
4.5 we can untwist the curve C, that is we replace the map f with f ◦ χC and gain less singular
linear system. Thus we only have to deal with nonsingular points, they are the real difficulty.
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4.1 Supermaximal singularities

Suppose we are in the case (ii) of Proposition 4.3. By Proposition 4.4 we may assume that
X is smooth at the points, where the pair (X, 1

n
M) is not canonical. Let D1, D2 ∈ M be generic

divisors and let Z = D1 ·D2. For some point P we bound multP Z from above using the degrees
and from below using Corti inequality. We show in this section that these bounds contradict if
the fiber containing P does not pass through half-points.

Let C ⊂ X be the irreducible curve. We say that C is horizontal if π(C) = P1 and that it
is vertical if π(C) is a point. We say that a cycle C is vertical (horizontal) if every curve in C is
vertical (horizontal). We decompose Z into the vertical and the horizontal components

Z =
∑

Zv
t + Zh,

where the support of Zv
t is in the fiber Ft = π−1(t), t ∈ P1. Define the degree of a vertical 1-cycle

Cv by the number degCv = Cv · (−KX) and degree of a horizontal 1-cycle Ch be the number
degCh = Ch · F .

Lemma 4.6 ([42]). Let C be an irreducible curve on X and let P ∈ X be a nonsingular point
such that P ∈ C. Then

(i) if C is horizontal then multP C 6 degC,

(ii) if C lies in a fiber F , which does not contain a half-point then multP C 6 2 degC.

Lemma 4.7 ([42]). The following holds for the degrees of Zh and Zv

degZh = 2n2 and
∑

t∈P1

degZv
t 6 4n2γ.

Now we need to find which pair and which point do we apply Corti inequality to. Let Fi be
the fibers containing the centers Pi of νi. Let Zv

i be the part of vertical cycle which is contained
in Fi.

Lemma 4.8. There are numbers γi such that the pair (X, 1
n
M−

∑
γiFi) is strictly canonical at

each νi and
∑

γi > γ.

Proof. Set γi = −
a(νi,X, 1

n
M)

νi(Fi)
, these numbers satisfy the inequality by the Proposition 4.3. The pair

is obviously strictly canonical at every νi.

Corollary 4.9. There is an index i such that

degZv
i < 4n2γi.

Proof. By Lemma 4.7 and Lemma 4.8 we have
∑

degZv
i 6 4n2γ < 4n2

∑
γi.

If inequality holds for the sums, then it must hold for at least one i.

We say that νi a supermaximal singularity if degZv
i < 4n2γi. Fix a supermaximal singularity

νi. To simplify the notations, from now on denote Fi as F , γi as γ, Pi as P , Zv
i as Zv, Z

h as Zh

and νi as ν.
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Proposition 4.10 ([42]). Suppose a fiber F does not contain a singular point of the type 1
2
(1, 1, 1),

then there are no supermaximal singularities with a center on F .

Proof. The pair (X, 1
n
M − γF ) is strictly canonical at the point P . Hence by Corti inequality

there is a number 0 < t 6 1 such that

multP Zh + tmultZv > 4n2(1 + γtmultP F ) > 4(1 + γt)n2.

On the other hand Lemma 4.7 implies

multP Zh + tmultZv < 2n2 + 4tγn2,

contradiction.

Corollary 4.11 ([42]). Let X be a smooth del Pezzo fibration of degree 2. Suppose X satisfies
K2-condition. Then X is birationally rigid.

Remark 4.12. Note that there are difficulties when F contains the half-point. There will be
“half-line”: curves of degree 1

2
. Thus the bound on multiplicity becomes multP Zv 6 8γn2 and it

no longer contradicts Corti inequality. In the next sections we work on a way around this problem.

5 Construction of the ladder

Let X(0) be a threefold and let F (0) be a smooth surface on it. Suppose L0 ⊂ F (0) is a
smooth rational curve. Let us associate the following construction to L0 which we call the ladder.

Let σi : X
(i) → X(i−1) be the blow up of Li−1 and let E(i) be its exceptional divisor. Clearly

E(i) ∼= Fm for some m, suppose m > 0 for every i. Let Li be the exceptional section of E(i).
Denote the proper transform of E(i) on X(j), as E(i,j) and the proper transform of F (0) on X(j) as
F (j).

Theorem 5.1. Suppose L0 is a smooth rational curve and suppose X(0) is smooth in the neigh-
borhood of L0. Also assume that L0 ·KX(0) = 0 and L0 · F

(0) = −2. Then the following assertions
are true for the ladder associated to L0 for all i > 0:

(i) E(i) ∼= F2,

(ii) σ∗
i (Li−1) ≡ Li,

(iii) νE(i)(F (0)) = i,

(iv) E(i,i+1)|E(i+1) is disjoint from Li+1, in particular the graph associated to the ladder is a simple
chain.

Lemma 5.2. Let σ : X̃ → X be the blow up of a smooth rational curve L and let E be the
exceptional divisor of σ. Suppose X is smooth in the neighborhood of L and suppose L ·KX = 0.
Suppose also that there is a smooth surface F such that L · F = −2, then E ∼= F2.
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Proof. By Lemma 2.8

degNL/X = 2g(L)− 2−KX · L = −2. (1)

The equality F · L = −2 implies

NF/X |L = OL(−2). (2)

There is an exact sequence of normal sheaves

0 → NL/F → NL/X → (NF/X)
∣∣
L
→ 0.

Clearly NL/X = OL(a)⊕OL(b) for some a and b, and (i) implies that a+ b = −2. Without loss of
generality we may assume that a 6 b. The inequality a 6 −2 follows from (2). On the other hand
(1), (2), and the exact sequence imply NL/F = OL, therefore b > 0. Hence a = −2 and b = 0.
Thus E = Proj

(
OL(−2)⊕OL

)
∼= F2.

Lemma 5.3. Let fi, si ∈ A2(X(i)) be the classes of a fiber and of the exceptional section of a ruled
surface E(i) respectively. Suppose that E(i) ∼= F2, KX(i−1) ·Li−1 = 0, and F (i−1) ·Li−1 = −2. Then:

(i) E(i+1) ∼= F2,

(ii) σ∗
i (Li−1) ≡ Li,

(iii) KX(i) · Li = 0,

(iv) F (i) · Li = −2.

Proof. Lemma 5.2 implies (i).
By Lemma 2.8

0 = E(i) · σ∗

i (Li−1) = E(i)|E(i) · σ∗

i (Li−1) =
(
σ∗

i (Li−1)− 2fi
)
· σ∗

i (Li−1).

Thus σ∗
i (Li−1)

2 = −2f · σ∗
i (Li−1). Clearly σ∗

i (Li−1) must be a section. Indeed, by Lemma 2.8

2 =
(
E(i)

)3
=

(
(σ∗

i (Li−1)− 2fi

)2

= 2fi · σ
∗

i (Li−1),

therefore fi ·σ
∗
i (Li−1) = 1, that is σ∗

i (Li−1) is a section. Since σ∗
i (Li−1)

2 = −2, as computed above,
it is the exceptional section Li.

It follows from (ii), that Li · E
(i) = 0. Thus

KX(i) · Li = KX(i−1) · Li−1 + E(i) · Li = 0.

Similarly

F (i) · Li = F (i−1) · Li−1 + E(i) · Li = F (i−1) · Li−1 = −2.

17



Proof of Theorem 5.1. Lemma 5.2 and Lemma 5.3 imply (i) and (ii).
Clearly νE(1)(F (0)) = 1. On the other hand LM−1 ⊂ F (M−1) since LM−1 · F

(M−1) < 0. Hence
νE(M)(F (0)) = νE(M−1)(F (0)) + 1 and (iii) holds.

By Lemma 2.8 and (i)

E(i−1,i)|E(i) =
(
Li−1 · E

(i−1)
)
f −E(i)|E(i) = si + 2fi.

Therefore E(i−1,i)|E(i) · Li = 0 and (iv) holds.

Suppose π : X → P1 is a del Pezzo fibration of degree 2. Suppose Q ∈ X is a 1
2
(1, 1, 1) point

and F is a fiber containing Q. Suppose that the fiber F can be embedded into P(1x, 1y, 1z, 2w) as
a cone q4(x, y, z) = 0. Let σQ : X(0) → X be the blow up of X at Q and let EQ be the exceptional
divisor of σQ.

Let L ⊂ F be a “half-line”, that is a curve L such that L · (−KF ) =
1
2
. Note that every curve

in a ruling of F is a half-line and that every half-line is such. Denote the proper transforms of L
and F on X(0) as L0 and F (0) respectively . Since F is a cone, its blow up F (0) is a ruled surface
over a curve of genus 3. Cleary the curve is a plane quartic q4(x, y, z) = 0. The curve is smooth,
since X has only 1

2
(1, 1, 1)-singularities. We can construct the ladder associated to L0. We also

say that the ladder is associated to the half-line L. Now we show that X(0), F (0), and L0 satisfy
the assumptions of the Theorem 5.1.

Lemma 5.4. The following equalities hold

(i) L0 · EQ = 1,

(ii) L0 · F
(0) = −2,

(iii) KX(0) · L0 = 0.

Proof. Since L0 ⊂ F (0) we have L0 · EQ = L0 · EQ|F (0). Let P = P(1, 1, 1, 2), and consider
the embedding of F into P. We can describe L ⊂ F in P as an intersection H1 · H2, for some
Hi ∈

∣∣OP(1)
∣∣. Let σP : P̃ → P be the blow up of the point Q and let EP be its exceptional divisor.

Clearly σP : σ−1
P
(F ) → F is the blow up of Q thus without any confusion we may identify σ−1

P
(F )

with F (0) and σ−1
P
(L) with L0. Let H̃i be the proper transform of Hi on P̃, then L0 = H̃1 · H̃2.

Denote the exceptional divisor of σP as EP, then

L0 · EQ|F (0) = L0 · EP|F (0) = L0 · EP = H̃1 · H̃2 · EP = H̃1|H̃2
· EP|H̃2

.

Clearly H2 is isomorphic to P(1, 1, 2) and σP|H̃2
is the blow up of a singular point. Thus H̃2

∼= F2,

EP|H̃2
is the exceptional section, and H̃1|H̃2

is a fiber of H̃2. Hence

1 = H̃1|H̃2
· EP|H̃2

= L0 ·EQ.

Consider the affine open subset U ∈ P given by the w 6= 0. Clearly U = C3/〈−I3〉 and the
local equation of F at Q on U is q4(x, y, z) = 0. Thus Lemma 2.9 implies F (0) = σ∗

P
(F ) − 2EQ

and we find the intersection

L0 · F
(0) = −2L0 · EQ = −2.

The equality (iii) follows from (i) and Lemma 2.9

KX(0) · L0 = (σ∗

QKX +
1

2
EQ) · L0 = KX · L+

1

2
EQ · L0 = 0.

18



6 Multiplicities on the ladder

The plan is to associate a ladder to a half-line, to apply Corti inequality upstairs, and to
derive a contradiction. Thus we need to find bounds on multiplicities of the cycles upstairs.

Let A be a cycle, a divisor or a linear system on X. We denote its proper transform on X(i)

as A(i). For divisors and cycles on X(j) we add upper index. For example, E(1,3) is the proper
transform of E(1) on X(3). By σ∗ we mean the appropriate composition of σ∗

i . For example,
E(1,3) = σ∗(E(1))− E(2,3) − E(3), here σ∗ = σ∗

2 ◦ σ
∗
1 .

Proposition 6.1 ([42]). Let X(0) be a threefold and let F (0) be a surface in it. Suppose L0 is a
smooth rational curve in F (0). Let σi : X

(i) → X(i−1) be the associated ladder. Let ν be a discrete
valuation of K(X(0)) and suppose that a center of ν on X(0) is a point on L0. Then there is a
number M such that for every i < M the center of ν on X(i) is a point on the exceptional section
Li and the center of ν on X(M) is

A) a fiber of a ruled surface E(M),

B) a point not on LM and not on E(M−1,M), or

C) a point on E(M) ∩ E(M−1,M).

Suppose the linear system M ⊂
∣∣ − nKX + lF

∣∣ has a supermaximal singularity ν at a
nonsingular point P ∈ X. Let F be a fiber containing P and suppose F contains half-point.
Recall the notations of Subsection 4.1. Let Z = D1 ·D2 for generic divisors D1, D2 ∈ M. Let Zh

be the horizontal part of Z and let Zv be the part of Z which lies in F . Let γ be the number such
that the pair (X, 1

n
M− γF ) is strictly canonical at ν.

Let L be a unique curve from the ruling of F passing through P . The cycle Zv can be
decomposed as Zv = kL+ C, where k > 0 and C does not contain L.

Lemma 6.2. The inequality C · L 6 γn2 holds.

Proof. Note that
(
DivF/ ≡

)
= Z. Thus it is easy to see that −KF ≡ 4L and that C ≡ rL for

some r. By Corollary 4.9 there is a bound deg(kL+ C) 6 4γn2, therefore r 6 8γn2 − k. Hence

C · L = rL2 =
r

8
6 γn2 −

k

8
6 γn2.

Lemma 6.3. Let νQ be the valuation corresponding to the exceptional divisor EQ of a blow up of
a half-point Q. Then for a generic D ∈ M

D(i) · Li =
n

2
− νQ(D).

Proof. Since σ∗
iLi−1 = Li the equality D(0) · L0 = D(i) · Li holds for all i. Theorem 6.1 implies

D(0) · L0 = σ∗

Q(D) · L0 − νQ(D)EQ · L0 = σ∗

Q(D) · L0 − νQ(D).

On the other hand, by Lemma 2.8

σ∗

Q(D) · L0 = D · L = −nKX · L =
n

2
.

Combining the equalities we get the statement of the lemma.
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Denote Zi = D
(i)
1 ·D

(i)
2 , then by Lemma 2.13 there is the decomposition

Z0 = Z(0)
v + Z

(0)
h + ZQ,

where ZQ is the part of the cycle which lives on the exceptional divisor. We disregard the part

Z
(i)
Q in further computations since it is away from from the center of ν.

For every i > 0 there is a part Ci of the cycle Z(i) which lives on E(i). Recall that E(i) is a
ruled surface F2 and σi|E(i) is the P1-fibration. We say that a curve B on E(i) is vertical if σi(B) is
a point and horizontal otherwise. The cycle Ci can be decomposed into the sum of the exceptional
section with multiplicity, the rest of the horizontal part, and the vertical part:

Ci = kiLi + C
(i)
h + C(i)

v .

Note that σ∗C(i−1,i) = C(i−1,i+k) for any k > 0, i > 1 since E(i−1,i) is disjoint from Li. Thus there
are the decompositions

Z0 = Z
(0)
h + Z(0)

v = Z
(0)
h + C(0) + k0L0,

Z1 = Z
(1)
h + C(1) + C

(1)
h + C(1)

v + k1L1,

Z2 = Z
(2)
h + C(2) + C

(1,2)
h + C(1,2)

v + C
(2)
h + C(2)

v + k2L2,

Zi = Z
(i)
h + C(i) + σ∗C

(1,2)
h + σ∗C(1,2)

v + · · ·+ C
(i−1,i)
h + C(i−1,i)

v + C
(i)
h + C(i)

v + kiLi.

Let λi = multLi−1
M(i−1) and recall that fi, si ∈ A2(X(i)) are the classes of a fiber and of the

exceptional section of E(i) respectively. Thus C
(i)
v ≡ d

(i)
v fi and C

(i)
h ≡ d

(i)
h si + βifi for some d

(i)
v ,

d
(i)
h , and βi. Also 2d

(i)
h 6 βi because C

(i)
h does not contain the exceptional section.

Lemma 6.4. The following relations for the proper transforms and the pullbacks of the cycles
hold

C
(i,i+1)
h ≡ d

(i)
h si + βifi − (βi − 2d

(i)
h )fi+1,

C(i,i+1)
v ≡ d(i)v (fi − fi+1),

Z
(i+1)
h ≡ Z

(i)
h − αi+1fi+1,

C(i+1) ≡ σ∗C(i) − (C(0) · L0)F (0)fi+1,

where αi 6 2n2.

Proof. The equalities follow from Lemma 2.13 and computations of intersections

(C
(i)
h · Li)E(i) = βi − 2d

(i)
h ,

(C(i)
v · Li)E(i) = d(i)v ,

(C(i) · Li)F (i) = (C(0) · L0)F (0).

The bound on αi follows from Lemma 2.14 and the equality Z
(i)
h · σ∗(F ) = 2n2.

Lemma 6.5. Vertical degrees βi and d
(i)
v satisfy the following relations. For i = 1

β1 + d(1)v = α1 + (C(0) · L0)− λ1

(
n− 2νQ(D)

)
− 2λ2

1,

and for i > 2

βi + d(i)v = αi + (C(0) · L0)− λi

(
n− 2νQ(D)

)
− 2λ2

i + d(i−1)
v +

(
βi−1 − 2d

(i−1)
h

)
.
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Proof. By Lemma 2.15 and Lemma 6.3

z1 ≡ σ∗

1(z0) + λ2
1

(
E(1)

)2
− 2λ1(D

(0)
1 · L0)f ≡ σ∗

1(z0)− λ2
1σ

∗

1(L0)−
(
λ1

(
n− 2νQ(D)

)
+ 2λ2

1

)
f1.

On the other hand the decomposition of Z1 and Lemma 6.4 imply

Z1 = Z
(1)
h + C(1) + C

(1)
h + C(1)

v + k1L1 ≡ σ∗

1

(
Z

(0)
h + C(0) + k1L0

)
+ C

(1)
h + C(1)

v − (α1 + C(0) · L0)f1.

Combining these equivalences we find that the following holds modulo pullback of a cycle

(β1 + d(1)v )f1 ≡ C
(1)
h + C(1)

v ≡ −
(
λ1

(
n− 2νQ(D)

)
+ 2λ2

1

)
f1 +

(
α1 + C(0) · L0

)
f1.

Similarly by Lemma 2.15 and Lemma 6.3

zi ≡ σ∗

i

(
Z(i−1)

)
+ λ2

i

(
E(i)

)2
− 2λi

(
D

(i−1)
1 · Li−1

)
f ≡

≡ σ∗

i

(
Z(i−1)

)
− λ2

iσ
∗(si−1)−

(
λi

(
n− 2νQ(D)

)
− 2λ2

i

)
fi.

Once again from the decomposition of Z(i) and Lemma 6.4 we see that

Z(i) = Z
(i)
h + C(i) + σ∗C

(1,2)
h + σ∗C(1,2)

v + · · ·+ C
(i−1,i)
h + C(i−1,i)

v + C
(i)
h + C(i)

v + kiLi ≡

≡ σ∗(. . . ) + C
(i)
h + C(i)

v −
(
αi + C(0) · L0 +

(
βi−1 − 2d

(i−1)
h

)
+ d(i−1)

v

)
fi.

Combining these equivalences and considering them modulo pullbacks of the cycles we conclude
that

d(i)v + βi =
(
αi + C(0) · L0 +

(
βi − 2d

(i)
h

)
+ d(i−1)

v

)
−

(
λi

(
n− 2νQ(D)

)
+ 2λ2

i

)
.

Corollary 6.6. The vertical degrees are bounded as follows

βi + d(i)v <

i∑

j=1

(
2n2 − 2λ2

i + n2γ
)

Proof. The inequality n > 2νQ(D) holds since the pair (X, 1
n
M) is canonical at Q. By Lemma

6.5 for i = 1

β1 + d(1)v = α1 + (C(0) · L0)− λ1

(
n− 2νQ(D)

)
− 2λ2

1.

Combining it with the bounds α1 6 2n2 and C(0) · L0 6 C · L 6 γn2 we get

β1 + d(1)v < 2n2 + γn2 − 2λ2
1.

Now suppose the inequality holds for i− 1. Then using the same bounds we get

βi + d(i)v = αi + C(0) · L0 + d(i−1)
v +

(
βi−1 − 2d

(i−1)
h

)
−

− λi

(
n− 2νQ(D)

)
− 2λ2

i 6 (2n2 + γn2 − 2λ2
i ) + (d(i−1)

v + βi−1).
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Corollary 6.7. (i) Let B be a fiber of a ruled surface E(i) then

multB Z(i) = multB C(i)
v 6

i∑

j=1

(
2n2 − 2λ2

i + n2γ
)

(ii) Let B be a point on E(i) then

multB(C
(i)
v + C

(i)
h ) 6

i∑

j=1

(
2n2 − 2λ2

i + n2γ
)
.

Proof. Clearly multB C
(i)
v is bounded by a vertical degree d

(i)
v whether B is a point or a curve.

Thus the inequality holds if B is a curve.
Similarly, multB C

(i)
h 6 d

(i)
h , hence multB(C

(i)
v +C

(i)
h ) 6 d

(i)
v +d

(i)
h . Since C

(i)
h does not contain

the exceptional section d
(i)
h 6 βi. Therefore by Corollary 6.6 the inequalities hold.

7 Supermaximal singularities upstairs

In previous section we found an upper bound on the multiplicity of components of Z(M) at
the center of ν on X(M). In this section we show that it contradicts Corti inequality.

Lemma 7.1. The pair
(
X(M),

1

n
M(M) −

(
1−

λ1

n

)
E(1,M) − · · · −

(
M −

∑ λi

n
+Mγ

)
E(M) − γF (M)

)

is strictly canonical at ν.

Proof. Since the dual graph of E(i) is a simple chain by Theorem 5.1

KX(M) −
M∑

i=1

iE(i) −
1

2
EQ ∼ σ∗(KX).

We disregard EQ in equivalences since EQ is away from the center of ν. For a generic divisor
D ∈ M

D(M) +
M∑

i=1

( i∑

j=1

λj

)
E(i) = σ∗(D)

and by Theorem 5.1

F (M) +
M∑

i=1

iE(i) = σ∗(F ).

Thus the pair in the statement of the lemma is a log pullback of the pair
(
X, 1

n
M− γF

)
. Hence

by Remark 2.5 the pair is strictly canonical at ν.

Clearly ν and X(0) satisfy the requirements of Proposition 6.1, that is the center of ν on
X(M) is not a point on the exceptional section of E(M). We consider the three possibilities for the
center of ν.
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7.1 Case A

Suppose the center B of ν on X(M) is a fiber of E(M). Then the only divisor in the boundary
which contains B is E(M). Thus the pair

(
X(M),

1

n
M(M) −

(
M −

∑ λi

n
+Mγ

)
E(M)

)

is strictly canonical at ν. By Lemma 2.6

multB Z(M)
> 4n2Mn−

∑
λi

n
+ 4n2Mγ.

Combining this inequality with Corollary 6.7 we get

2Mn2 +Mn2γ − 2

M∑

i=1

λ2
i > 4

(
Mn2 − n

∑
λi +Mn2γ

)

or, equivalently,

0 > 3Mn2γ + 2

M∑

i=1

(
n2 − 2nλi + λ2

i

)
,

contradiction.

7.2 Case B

Suppose the center B of ν on X(M) is a point which is not on E(M−1). Then the only divisor
in the boundary containing B is E(M). Thus the pair

(
X(M),

1

n
M(M) −

(
M −

∑ λi

n
+Mγ

)
E(M)

)

is strictly canonical at ν. The components of Z(M) which may pass through B are Z
(M)
h , C

(M)
v ,

and C
(M)
h . By Corti inequality there is a number 0 < t 6 1 such that

multB Z
(M)
h + tmultB

(
C(M)

v + C
(M)
h

)
> 4n2

(
1 + t

Mn −
∑

λi

n
+Mtn2γ

)
=

=4n2 + 4tMn2 + 4tMn2γ − 4tn
∑

λi.

On the other hand multB Z
(M)
h 6 Zh · F = 2n2 and we have a bound on multB(C

(M)
h + C

(M)
v ) by

Corollary 6.7. Combining the bounds we get

2n2 + 2tMn2 + tMn2γ − 2t
M∑

i=1

λ2
i > 4n2 + 4tMn2 + 4tMn2γ − 4tn

M∑

i=1

λi.

Rearranging the terms we find an equivalent inequality:

0 > 2n2 + 3tMn2γ + 2t
M∑

i=1

(n− λi)
2,

contradiction.
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7.3 Case C

Suppose the center B of ν on X(M) is a point on the intersection E(M) ∩ E(M−1). Clearly
these are the only divisors of the boundary containing B. Let M− = M − 1 for the compactness
of formulas. Then the pair

(
X(M),

1

n
M(M)−

(
M −

∑ λi

n
+Mγ

)
E(M) −

(
M− −

∑ λi

n
+M−γ

)
E(M−)

)

is strictly canonical at ν. Hence, compared to the last case there are 2 more cycles which may

contain B: C
(M−,M
h and C

(M−,M)
v . By Corti inequality there are numbers 0 < t, t− 6 1 such that

multB Z
(M)
h + tmultB

(
C(M)

v + C
(M)
h

)
+ t− multB

(
C(M−,M)

v + C
(M−,M)
h

)
>

>4n2 + 4tMn2 + 4tMn2γ − 4tn
M∑

i=1

λi + 4t−M−n2 + 4t−M−n2γ − 4t−n
M−∑

i=1

λi.

On the other hand we have the bounds on multiplicities from Corollary 6.7. After combining the
inequalities and rearranging the terms we get

0 > 2n2 + 3tMn2γ + 3t−M−n2γ + 2t

M∑

i=1

(n− λi)
2 + 2t−

M−∑

i=1

(n− λi)
2,

contradiction.

7.4 Epilogue

Proof of Theorem 1.1. Suppose X is not birationally rigid, that is there is a birational map g to
a Mori fiber space which does not satisfy requirements of Definition 4.1. Then by Proposition 4.3
there is a system M ⊂

∣∣− nKX + γnF
∣∣ such that one of the conditions (i) and (ii) holds.

Suppose the pair (X, 1
n
M) is not canonical at a curve C. By Proposition 4.4 the curve C is

a section. Then by Proposition 4.5 there is a birational involution χC such that g ◦ χC does not
satisfy conditions of Definition 4.1. Now we consider the map g ◦ χC instead of g and the linear
system

χC(M) ⊂
∣∣− n′KX + n′γ′

∣∣

instead of M. We repeat this process until either n′ = 0, that is the new map g′ = g◦χC1 ◦· · ·◦χCk

is fiberwise (contradiction), or until the pair, corresponding to g′ is canonical at all curves.
Now we are in the situation (ii) of Proposition 4.3. Hence by Corollary 4.9 there is a

supermaximal singularity. By Proposition 4.10 and Proposition 4.4 its center is a nonsingular
point in the fiber containing half-point. There is a unique half-line passing through the center
of ν. Let us consider the associated ladder σi : X

(i) → X(i−1). Let D
(i)
1 and D

(i)
2 be the proper

transforms on X(i−1) of generic divisors D1, D2 ∈ M and let Zi = D(i) · D(i). Then as we have
shown in section 6, there are bounds on multiplicities on components of the cycle Zi. In section
7 we have proven that these bounds contradict Corti inequality. Thus there are no supermaximal
singularities and X is birationally rigid.
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