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Abstract

The statistical description of fully developed turbulence up to today remains a central
open issue of classical physics. Apart from the fact that turbulence plays a key role
in many natural and engineering environments, the solution of the problem is also
of interest on a conceptual level. Hydrodynamical turbulence may be regarded as a
paradigmatic example for a strongly interacting system with a high number of degrees
of freedom out of equilibrium, for which a comprehensive statistical mechanics is yet to
be formulated.
The statistical formulation of turbulent flows can either be approached from a

phenomenological side or by deriving statistical relations right from the basic equations
of motion. While phenomenological theories often lead to a good description of a variety
of statistical quantities, the amount of physical insights to be possibly gained depends
heavily on the validity of the assumptions made. On the contrary, statistical theories
based on first principles have to face the famous closure problem of turbulence, which
prevents a straightforward solution of the statistical problem.
The present thesis aims at the investigation of a statistical theory of turbulence in

terms of probability density functions (PDFs) based on first principles. To this end
we make use of the statistical framework of the Lundgren-Monin-Novikov hierarchy,
which allows to derive evolution equations for probability density functions right from
the equations of fluid motion. The arising unclosed terms are estimated from highly
resolved direct numerical simulations of fully developed turbulence, which allows to
make a connection between basic dynamical features of turbulence and the observed
statistics.
As a technical prerequisite, a parallel pseudospectral code for the direct numerical

simulation (DNS) of fully developed turbulence has been developed and tested within
this thesis. A number of standard statistical evaluations are presented with the purpose
both to benchmark the numerical results as well as to characterize the statistical features
of turbulence.

Studying the PDF equations, a comprehensive treatment of the single-point velocity
and vorticity statistics is achieved within the current work. By making use of statistical
symmetries present in the case of homogeneous isotropic turbulence, exact expressions
for, e.g., the stationary PDF are derived in terms of correlations between the turbulent
field and various quantities determining the dynamics of the field. The joint numerical
and analytical investigations eventually lead to an explanation of the slightly sub-
Gaussian tails for the velocity statistics and the highly non-Gaussian vorticity statistics
with pronounced tails. To contribute to the characterization of the multi-point statistics
of turbulence, the two-point enstrophy statistics is investigated. The results quantify
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the interaction of different spatial scales and give insights into the spatial structure
of the vorticity field. Along the lines of preceding works in this context the local
conditional structure of the vorticity field and its relation to the multi-point statistics of
the vorticity field is discussed and applied to the two-point enstrophy statistics. Finally,
the closure problem of turbulence is treated on a more conceptual level by pursuing the
question how to establish a model for the two-point PDF which is consistent with the
single-point evolution equation and a number of statistical constraints to be imposed on
probability density functions. A simple analytical model for the joint PDF is developed
and improvements in the context of maximum entropy methods are discussed. Both
models are compared to results from DNS.
Altogether, the results of the current thesis help to establish a connection between

the flow topology, dynamical quantities that determine the temporal evolution of the
turbulent fields and the resulting statistics. Beyond the characterization and explanation
of these statistical quantities this provides new insights for future modeling and closure
strategies.
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Kurzfassung

Die statistische Beschreibung voll entwickelter Turbulenz bleibt bis heute ein zentrales
ungelöstes Problem der klassischen Physik. Neben der Tatsache, dass Turbulenz eine
zentrale Rolle in vielen natürlichen und ingenieurstechnischen Umgebungen spielt, ist
die Lösung des Problems auch auf einer konzeptionellen Ebene von Interesse. So kann
hydrodynamische Turbulenz als ein paradigmatisches Beispiel für ein stark wechselwirk-
endes System mit vielen Freiheitsgraden jenseits des thermodynamischen Gleichgewichts
angesehen werden, für das eine umfassende statistische Beschreibung noch fehlt.
Die statistische Beschreibung turbulenter Strömungen kann einerseits im Rahmen

phänomenologischer Theorien oder durch Ableiten statistischer Relationen direkt aus
den Bewegungsgleichungen für das Fluid erfolgen. Während phänomenologische Theo-
rien oftmals eine adäquate Beschreibung vieler statistischer Größen zulassen, hängt die
Möglichkeit physikalische Einsichten aus ihnen zu gewinnen stark von der Gültigkeit
der zugrundeliegenden phänomenologischen Annahmen ab. Im Gegensatz dazu ste-
hen Theorien, die direkt aus den Grundgleichungen abgeleitet werden, dem bekannten
Schließungsproblem der Turbulenz gegenüber, welches eine einfache Lösung des statis-
tischen Problems verhindert.
Gegenstand der vorliegenden Arbeit ist die Untersuchung einer statistischen Theo-

rie der Turbulenz, die in Form von Wahrscheinlichkeitsdichtefunktionen (PDFs) for-
muliert wird und auf den Grundgleichungen der Hydrodynamik basiert. Dies geschieht
im Rahmen der statistischen Gleichungen der Lundgren-Monin-Novikov Hierarchie,
welche es erlauben, Entwicklungsgleichungen für Wahrscheinlichkeitsdichtefunktionen
direkt aus den Bewegungsgleichungen für ein Fluid abzuleiten. Die dabei auftretenden
ungeschlossenen Terme werden mit Hilfe von hochauflösenden direkten numerischen
Simulationen voll entwickelter Turbulenz bestimmt, wodurch eine direkte Verbindung
zwischen grundlegenden dynamischen Eigenschaften turbulenter Strömungen und der
beobachteten Statistik hergestellt werden kann.

Um die technischen Voraussetzungen für die Durchführung dieser Arbeit zu schaffen, ist
ein paralleler Pseudospektralcode für die direkte numerische Simulation voll entwickelter
Turbulenz entwickelt und getestet worden. In diesem Zusammenhang wird eine Auswahl
gängiger statistischer Größen präsentiert, um sowohl die Simulationsergebnisse zu
validieren, als auch um einen Einblick in die statistischen Eigenschaften voll entwickelter
Turbulenz zu gewähren.

Durch die Untersuchung der PDF-Gleichungen wird im Rahmen der vorliegenden
Arbeit eine umfassende Behandlung der Einpunktstatistik von Geschwindigkeit und
Wirbelstärke erreicht. Die Ausnutzung statistischer Symmetrien, wie sie bei homogen
isotroper Turbulenz vorzufinden sind, erlaubt es, exakte Ausdrücke für beispielsweise die
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stationäre Verteilungsfunktion des jeweils betrachteten turbulenten Feldes herzuleiten.
Dabei wird die Verteilungsfunktion durch verschiedene Korrelationen zwischen dem
turbulenten Feld und Größen, welche die Dynamik dieses Feldes bestimmen, ausgedrückt.
Die Verknüpfung numerischer und analytischer Untersuchungen führt schließlich zu
einer Erklärung für die leicht sub-Gauß’schen Flügel der Geschwindigkeitsverteilung
und der stark nicht-Gauß’schen Wirbelstärkenverteilung mit ausgeprägten Flügeln.
Weiterhin wird die Zweipunktstatistik der Enstrophie untersucht, um zu einer Charak-
terisierung der Mehrpunktstatistik turbulenter Strömungen beizutragen. Die Ergebnisse
verdeutlichen die Interaktion verschiedener räumlicher Skalen und ermöglichen Ein-
blicke in die räumliche Struktur des Wirbelfeldes. Aufbauend auf frühere Arbeiten
wird in diesem Zusammenhang die lokale bedingte Struktur des Wirbelfeldes und ihre
Verbindung zur Mehrpunkverteilung des Wirbelfeldes diskutiert und schließlich auf die
Zweipunkt-Enstrophiestatistik angewendet. Zu guter Letzt wird das Schließungsprob-
lem auf konzeptioneller Ebene behandelt, indem der Frage nachgegangen wird, wie
ein Modell für die Zweipunktverteilung formuliert werden kann, das sowohl in Ein-
klang mit der Entwicklungsgleichung für die Einpunktverteilung steht, als auch weitere
statistische Randbedingungen für Wahrscheinlichkeitsdichteverteilungen erfüllt. Es wird
ein einfaches analytisches Modell für die Verbundwahrscheinlichkeit entworfen, und
Verbesserungen im Rahmen von Maximum-Entropie-Methoden werden diskutiert. Beide
Modelle werden mit Ergebnissen direkter numerischer Simulationen verglichen.
Insgesamt helfen die Ergebnisse der vorliegenden Arbeit, eine Verbindung zwischen

der Topologie der Strömung, dynamischen Größen, welche die zeitliche Entwicklung der
turbulenten Felder bestimmen, und der resultierenden Statistik herzustellen. Über die
Charakterisierung und Erklärung dieser Statistik hinaus vermittelten die Ergebnisse
neue Einsichten für zukünftige Modellierungs- und Schließungsansätze.
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Introduction

When writing a thesis on the topic of turbulence, it is nearly impossible to formulate
some introductory remarks without repeating the views and ideas that have come up
frequently in the literature over the last decades or even centuries. One of the reasons
for this is that the dynamics of flowing fluids is a topic not only accessible to experts, it
is rather a phenomenon which belongs to fundamental everyday experiences of every
human being, such that contemplating about the topic almost inevitably brings up
the common examples. For instance, everybody can recall a vivid picture of a flowing
river or the spreading of a droplet of ink in a glass of water. It is also accessible on
this intuitive level that a fluid driven strongly enough reaches a state of spatial and
temporal disorder known as turbulence. If one tries to describe the properties of, for
example, the rising smoke of a fire or the motion of rapidly moving fluid behind an
obstacle in a few simple words, it is immediately clear that the observed phenomenon
shows signatures of complexity both in space and time.

Although turbulence is something known to everyone, its concise physical description
remains a challenge of classical physics up to today. This is even more astonishing as
the properties of turbulence are not only of academic interest, the turbulent state of
fluid flow is rather found in many natural and engineering environments. The complex
dynamics of the atmosphere, the oceans or different chemical species in a combustion
reaction may serve as the most prominent examples. Beyond its ubiquitous appearance
in nature, turbulence can be seen as a paradigmatic physical system with a number
of interesting features. On this level one can distinguish between features that are
more specific to “real world systems”, which include the influence of specific boundary
conditions or forcing schemes like buoyancy or Coriolis forces on the flow, and the
idealized situation of a fully developed turbulent flow far away from the boundaries. This
“pure” turbulence is especially suited to expose the nonlocal and nonlinear nature of the
governing equations of motion and is characterized by highly fluctuating spatio-temporal
patterns without regular structure and no distinct direction.
It is mainly the latter situation which motivates a description of turbulence with

statistical methods. While the methods of statistical mechanics yield a comprehensive
description of systems in thermodynamic equilibrium and also give insights into the
statistics of weakly interacting systems driven slightly out of equilibrium, these methods
fail in the case of turbulent flows for a number of reasons. First of all, fully developed
turbulence is a system driven far out of equilibrium; in the case of three-dimensional
turbulence the flow is usually generated by a large-scale external forcing. Energy then is
transferred by nonlinear interactions to ever smaller scales until dissipated on the smallest
scales. For the case of stationary turbulence a constant flux of energy is established,
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Introduction

which maintains the statistical properties of the turbulent system. Second, and closely
related to the nonlinear and nonlocal character of the equations of motion, the emergence
of coherent structures in the flow is a typical feature. These structures are especially
noticeable when considering the vorticity field. It turns out that this field is characterized
by a global entangled net of small filamentary vortex structures, which interact in a
nonlinear manner and are advected due to their collectively produced velocity field.
Hence turbulent fields display signatures of order, yet being a rather complicated and
fluctuating one. In this sense turbulence may be regarded as too unstructured to be
described with methods appropriate for systems displaying a pronounced order, but
still is too structured to be described in terms of simple stochastic methods only. All
of these features are the signatures of a strongly interacting nonlinear system, which
basically constitute the challenge in developing a statistical theory of turbulence.
First attempts to derive a comprehensive statistical theory from first principles go

back to the middle of the twentieth century when measurements of even the most
simple fluctuating quantities were a grand challenge and the insights to be gained
from computer simulations were technically out of reach. Still the pioneering works of
Kolmogorov, Batchelor, Hopf, Lundgren, Monin, Yaglom and Novikov (to name only
but a few) paved the way for the whole branch of statistical fluid mechanics. This was
achieved by deriving statistical equations right from the Navier-Stokes equations in a
couple of different approaches. Maybe the most comprehensive one in this respect is to
formulate a statistical equation for the whole velocity field. While this approach pursued
by Hopf indeed allows for a concise formulation of the problem, the resulting equations
for the characteristic functional up to today remain mathematically too complicated to
obtain useful results. Also motivated by experimental measurement techniques, it is
interesting to study the statistics of turbulence not on this comprehensive level, it rather
often suffices to characterize the statistics at a single point or few points in space and
time. When deriving statistical equations for this condensed type of information, one has
to face the central problem of statistical turbulence research, the closure problem. For
example, when deriving evolution equations for statistical averages, so-called moments,
these equations couple to higher-order moments. If one now proceeds to derive the
corresponding evolution equations for these moments, even higher-order moments show
up. Something similar is observed when formulating the problem in terms of probability
density functions. In this case the closure problem becomes manifest by the fact that
for each evolution equation information involving more points in space than currently
taken into account is needed. In both cases one ends up with an infinite hierarchy of
equations. It up to today remains one of the central issues to solve these equations
either exactly or in an approximate manner to obtain physically reasonable results.

The current thesis takes some of these classical theoretical foundations as a starting
point to investigate the statistics of fully developed turbulence in terms of probability
density functions. Apart from a purely analytical treatment of the problem, direct
numerical simulations of fully developed turbulence are used to provide information
on the statistical properties and establish a connection between the basic dynamical
aspects, the flow topology and the resulting statistics. The thesis is subdivided into
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three distinct parts.
The first part is devoted to give an introduction into the basic equations of motion as

well as to provide a first glimpse at the phenomena observed in a fully developed turbulent
flow. Then the conceptual foundations for the statistical description of turbulence are
introduced and exemplified with some classic results. We then turn to a detailed
description of the implementation of the algorithm with which all of the numerical
results in this thesis have been generated.

The second part starts with a detailed presentation of statistical properties of turbu-
lence, where the aim is both to characterize turbulence as well as to benchmark the
numerical results. Additionally, some comparisons to experimentally obtained data are
presented to highlight strengths and shortcomings of numerical simulations. In view of
the fact that the full Navier-Stokes equations are analytically hard to investigate, we
turn to a simplified nonlinear system to study some deterministic aspects. By study-
ing the velocity gradients of the Burgers equations, some mechanisms also found in
incompressible flows are investigated.
The third and central part then deals with a joint analytical and numerical inves-

tigation of the statistics of fully developed turbulence in terms of probability density
functions. After a short introduction including some historical remarks and a review of
the basic techniques necessary to derive the equations, we turn to an investigation of the
single-point statistics of velocity and vorticity. To mention only a single result of this part,
we derive relations that connect the shape and evolution of the single-point probability
density function to the correlations of different dynamical quantities, which then can be
interpreted and discussed on the basis of physical intuition. Furthermore, the results
obtained from DNS can be used to test and validate these relations demonstrating the
consistency of the theoretical framework. Especially the origin of the differing statistics
of the velocity and vorticity field is discussed here. After this rather comprehensive
treatment of the single-point statistics, the remaining two chapters deal with different
aspects of the two-point statistics of vorticity. Starting with an investigation of the
two-point statistics of enstrophy characterizing the spatial structure of the vorticity
field, then the questions is pursued how the closure problem of turbulence is related to
the local conditional structure of the vorticity field. In the last chapter this question
then is extended to the proper modeling of two-point PDFs, which are consistent with
the statistical equations and further statistical constraints. Finally, the conclusions are
drawn and some perspectives on future research are given.
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1. Fundamental Features of Turbulent
Flows

This chapter shall give a brief overview of the governing equations of motion and
the observed phenomena in fully developed turbulence. To this end we will discuss
the Navier-Stokes and related equations, before we present some visualizations from
numerical simulations. To get a better impression of the fine-scale structure of the field,
then some properties of vortex solutions are discussed.

1.1. Basic Equations of Motion

The temporal evolution of the velocity field u(x, t) of an incompressible fluid in three
dimensions with unit density is given by the Navier-Stokes equation

∂

∂t
u(x, t) + u(x, t) · ∇u(x, t) = −∇p(x, t) + ν∆u(x, t) + F (x, t) , (1.1)

where p denotes the pressure field, ν is the kinematic viscosity, and F denotes an
external forcing which drives the fluid. Incompressibility is ensured by the additional
equation

∇ · u(x, t) = 0 , (1.2)

which is nothing else than the continuity equation for a fluid with constant density.
These equations have been formulated by Claude-Luis Navier (in 1822) and George
Gabriel Stokes (in 1845), several decades after the inviscid Euler equations have been
introduced. The equation displays two major mathematical difficulties. The nonlinearity
of the advective term on the left-hand side and additionally the nonlocality of the
pressure term. This nonlocality can be seen by taking the divergence of the equation,
which yields an inhomogeneous Poisson equation for the pressure

∆p(x, t) = −∇ · [u(x, t) · ∇u(x, t)] , (1.3)

which can be solved yielding

p(x, t) =
1

4π

∫
dx′
∇x′ · [u(x′, t) · ∇x′u(x′, t)]

|x− x′| . (1.4)

Here, we have assumed an infinitely extended fluid and a solenoidal external forcing.
This relation indicates that the pressure at a given point in space is determined by the
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1. Fundamental Features of Turbulent Flows

instantaneous velocity at all other points in the domain, weighted by an algebraically slow
decaying integral kernel. This instantaneous dependence comes from the assumption
of incompressibility, which implies an infinite speed of sound. The assumption of
incompressibility is fulfilled in many real-world situations as it holds whenever the
velocity of the fluid is small compared to the speed of sound in the medium. Dropping
the pressure term from equation (1.1) yields the so-called (three-dimensional) Burgers
equation, which will be discussed in chapter 5. By dropping the pressure term, the
fluid becomes perfectly compressible and the solutions of this equation will be very
different from those of the incompressible Navier-Stokes equation as features of highly
compressible flows like shocks will develop.

The velocity field may be decomposed into a scalar and a vector potential according
to

u(x, t) = ∇φ(x, t) +∇×A(x, t) , (1.5)

from which the two Poisson equations

∆φ(x, t) = ∇ · u(x, t) (1.6a)
∆A(x, t) = −∇× u(x, t) (1.6b)

are readily obtained (where we chose ∇ · A(x, t) = 0 due to gauge freedom). It is
clear that φ is related to the sinks and sources and hence compressible components
of the velocity field, whereas A is determined by the rotational part of the fluid. In a
general compressible situation (as, for example, the Burgers equation for non-potential
initial conditions) both potentials will play a role, whereas the incompressible case is
determined by the rotational component only. In fact the vorticity, defined as

ω(x, t) = ∇× u(x, t) , (1.7)

will play a key role in the following. As the curl of the velocity field it indicates
locally swirling regions of the flow. Loosely speaking, a vortex can be regarded as
a localized region of strong vorticity. It turns out that three-dimensional turbulence
shows a complicated structure consisting of thin, elongated vortex tubes, which will
be demonstrated in section 1.2. The incompressible Navier-Stokes equation can be
expressed in terms of the vorticity by taking the curl of equation (1.1). The resulting
so-called vorticity equation reads

∂

∂t
ω(x, t) + u(x, t) · ∇ω(x, t) = ω(x, t) · ∇u(x, t) + ν∆ω(x, t) +∇× F (x, t)

= S(x, t)ω(x, t) + ν∆ω(x, t) +∇× F (x, t) , (1.8)

where the last equality makes use of the fact that the vorticity “feels” only the symmetric
part S(x, t) = 1

2(A + AT ) of the velocity gradient tensor A(x, t) = ∇u(x, t). This formu-
lation makes the interpretation of the vortex-stretching term S(x, t)ω(x, t) particularly
intuitive. As S is a symmetric second-order tensor, it has three real eigenvalues, from
which only two are independent due to solenoidality of the velocity field. Now when
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1.2. A Panopticon of Turbulent Fields

this term is considered in the eigenframe in which S is diagonal, it is obvious that the
vorticity will be stretched or damped due to this tensor. It turns out that stretching is
predominant on the mean, which motivates the nomenclature. By taking the curl of
the Navier-Stokes equation, the pressure gradient has dropped out. The nonlocality is
now transferred to the velocity field, which again is related to the vorticity due to the
Poisson equation

∆u(x, t) = −∇× ω(x, t) , (1.9)

which is solved by Biot-Savart’s law

u(x, t) = − 1
4π

∫
dx′

x− x′
|x− x′|3 × ω(x′, t) . (1.10)

In order to characterize the fine-scale motion of turbulent flows further, sometimes the
evolution equation for the velocity gradient tensor is considered, which takes the form

∂

∂t
Aij + uk

∂

∂xk
Aij = −AikAkj − ∂2

∂xi∂xj
p+ ν

∂2

∂x2
k

Aij , (1.11)

where we have dropped the dependence on space and time. This equation is obtained from
the Navier-Stokes equation by taking derivatives with respect to a spatial coordinate.
Apart from the nonlinear advective term, the quadratic self-amplification term and the
nonlocal pressure Hessian on the right-hand side constitute the main mathematical
difficulties of this equation. When the velocity gradient tensor is decomposed into its
symmetric and antisymmetric parts

S =
1
2

(A + AT ) and W =
1
2

(A−AT ) , (1.12)

two separate equations of motion can be obtained, of which the second is just the
vorticity equation, as the antisymmetric part of the tensor is connected to the vorticity
according to ωi = −εijkWjk.

1.2. A Panopticon of Turbulent Fields

Most of the results presented in this thesis will be of statistical nature. To better
understand some of the statistical features investigated later on, it is useful to have a
look at the spatial structure of the turbulent fields under consideration. The following
visualizations are the result of direct numerical simulations of fully developed turbulence,
the numerical technique will explained in chapter 3. All volume renderings within this
thesis are produced with VAPOR [CR05, CMNR07], a free visualization tool especially
suited for flow visualization. Before presenting the visualizations, a word of caution
is in order. The features highlighted in a volume rendering depend strongly on the
transfer function used. In that sense, the visualizations are to a certain degree subjective
interpretations of the data. The aim of the presentation is to highlight typical features
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1. Fundamental Features of Turbulent Flows

of the flow, which necessarily means to fade out others. Consequently, this presentation
should be understood as a qualitative panopticon to give a first impression of the
structure of turbulent fields.

The top left picture in figure 1.1 shows events of strong vorticity in a direct numerical
simulation at a Taylor-based Reynolds number (defined in chapter 3) of Rλ = 112
(sim_512). The region shown is the full simulation in height and width and half of the
domain in depths. The vorticity field is organized into small, filamentary vortex tubes
spread all over the domain. However, they do not seem to be distributed homogeneously,
one can rather observe the tendency to form clusters. Within these clusters, the vortices
form an entangled local structure indicating a complicated vorticity dynamics.
Right of this picture the velocity field produced by these vortices is shown. At first

glance, it varies on much larger scales and does not contain clearly identifiable coherent
structures like the vorticity field. The comparably large-scale character of the field
comes due to the fact that the Biot-Savart law (1.10) may be regarded as a kind of
smoothing filter. Although there are regions in which high velocities coincide with strong
vorticity, a clear correlation is absent. This fact will play an important role whenever
the joint statistics of large-scale and small-scale quantities is of interest. And although
showing large-scale correlations, the velocity field exhibits pronounced gradients, which
are related to regions of strong shear or rotation.

The bottom left picture shows the acceleration field. The acceleration field varies on
scales comparable or slightly larger than the vorticity and a strong correlation between
the vorticity and the acceleration is evident. A closer look, however, reveals that the
acceleration takes its highest values near the vortex tubes, but not at the exactly same
place. This will become clear in the following section, when a single vortex tube is
considered.

The bottom right picture shows the field of the rate of energy dissipation highlighting
regions of strong shear. Again strong correlations with the spatial structure of the
vorticity are apparent. This is quite intuitive as the region between two strong vortices
is a region of strong shear. While it is a well-known fact that the spatial average of
squared vorticity (times viscosity) equals the average the rate of energy dissipation, it
is apparent from this figure that these quantities do not coincide locally.
To clarify the Reynolds number dependence of these findings, figure 1.2 shows the

vorticity and velocity field for two additional simulations at Rλ = 76, 225. A striking
feature is that the tendency to form clusters is absent in the case of low Reynolds number
and increases for higher Reynolds numbers. Especially for the high Reynolds number
case it is evident that turbulence cannot be regarded as an ensemble of a small number
of vortices. The velocity field maintains its large-scale correlations with the Reynolds
number, however, an increasing separation between the smallest and the largest scales
in the field is apparent, the field is becoming increasingly rough on the small scales.
This indicates that the gradients of the velocity are becoming steeper with the Reynolds
number, which will play a role when it comes to characterize the small-scale statistical
features of the flow.
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1.2. A Panopticon of Turbulent Fields

Figure 1.1.: Volume rendering of the vorticity (magnitude), velocity (magnitude), acceleration
(magnitude) and dissipation fields (from top left to bottom right) from a direct numerical
simulation at Rλ = 112. Half of the simulation domain is shown (sim_512).
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1. Fundamental Features of Turbulent Flows

Figure 1.2.: Volume rendering of the magnitude of the vorticity and velocity at different
Reynolds numbers (Rλ = 76 for the upper panel, Rλ = 225 for the lower panel) (sim_256,
sim_1024).
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1.3. Coherent Structures and Vortex Solutions

As we have seen in the preceding paragraph, the vorticity tends to organize into thin,
slender vortex tubes in a fully developed turbulent flow. Compared to the velocity field,
the vorticity field in this sense turns out to be more localized, something which could
already been guessed from the fact that vorticity is related to the velocity gradients.
This fact, which has been studied extensively numerically and experimentally (see,
e.g., [SJO90, JWSR93, JW98, MHK03, MHK04]), has motivated a whole branch of
turbulence research for a number of reasons. One of them is that the appearance of
structures indicates that turbulence is not purely random and that conclusions on
statistical properties of the flow might be drawn from the understanding of isolated
structures. And while early direct numerical simulations at low resolution suggested
that turbulence may be described in terms of a few localized structures, results from
higher Reynolds number flows revealed that a low-dimensional description of turbulence
is not feasible [YIU+02] as the number of structures rapidly increases with the Reynolds
number.
Nevertheless, many physical properties of the fine-scale structure of turbulence may

be studied from simple vortex solutions of the Navier-Stokes equation (see, e.g., [Tow51]
for an early account), and various modeling attempts take an ensemble of vortices as a
starting point [HK97, Lun93, WJF08] making use of the fact that some vortex solutions
are analytically known.
To find vortex solutions, one usually starts with considering a two-dimensional flow

with an axisymmetric vorticity field. In this case the vorticity equation takes the form
of the (linear) heat equation and has the famous Lamb-Oseen vortex as a solution
[Saf92], a Gaussian vorticity profile, which produces an azimuthal velocity field. If this
two-dimensional flow now is embedded in three dimensions and subject to a potential
strain field, a three-dimensional solution can be found called the Burgers vortex [Bur48],
a strained vortex solution of the Navier-Stokes equation. This vortex solution shares
some features with the coherent structures observed in fully developed turbulence, but
still is analytically fully accessible; hence we will discuss some of the properties in the
following section. One has to keep in mind, though, that while a single Burgers vortex
is a solution of the Navier-Stokes equation, a random ensemble generally is not, such
that no dynamical information can be deduced from such considerations. Additionally,
due to its axisymmetry, the Burgers vortex does not capture all the details of a vortex
observed in turbulent flow. A more realistic vortex with an inner spiral structure has
been introduced by Lundgren [Lun82], which, however, is beyond the scope of this short
presentation.

1.3.1. Anatomy of a Vortex Tube

We now take a closer look at the Burgers vortex [Bur48], which can be obtained from
the Navier-Stokes equation considering a velocity field which is decomposed into a
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vorticity
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radial pressure gradient
dissipation by tube

Figure 1.3.: Anatomy of a Burgers vortex with Γ = 1, ν = 1 and a = 1. The vorticity field is
localized and decays exponentially fast, whereas the remaining quantities show an algebraic
decay for large distances. It is also noticeable that the maxima of the different quantities do
not coincide. Amplitudes have been adjusted for a better comparison.

two-dimensional rotational and three-dimensional potential velocity

u(x, t) = u2d(x, t) + u3d(x, t) with u2d = (ux, uy, 0) u3d =
(
−a

2
x,−a

2
y, az

)
.

(1.13)
As the rotational part is purely two-dimensional, the vorticity is a scalar quantity
pointing into z-direction, ω = ωez. By introducing cylindrical coordinates it is possible
to express the velocity field as u(x, t) = ur er + uϕ eϕ + uz ez with

ur = −a
2
r + vr(r, ϕ, t) (1.14a)

uϕ = vϕ(r, ϕ, t) (1.14b)
uz = az , (1.14c)

where vr and vϕ are induced by the rotational part of the velocity field only, the
remaining terms stem from the potential field. This simplifies equation (1.8) to

∂ω

∂t
+
(
−a

2
+ vr

) ∂ω
∂r

+
vϕ
r

∂ω

∂ϕ
= aω + ν∆ω . (1.15)

If one now seeks for axisymmetric, time-independent solutions, i.e. ω(r, ϕ, t) = ω(r),
one can, due to Biot-Savart’s law, conclude vr = 0. Altogether the vorticity equation
simplifies further to

− a

2
∂ω

∂r
= aω + ν

1
r

∂

∂r
r
∂

∂r
ω . (1.16)
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The solution of this equation is the famous Burgers vortex with a vorticity field according
to

ω(r) =
Γa
4πν

e−
ar2

4ν . (1.17)

The vorticity displays a stationary Gaussian profile, where the radius rB =
(

4ν
a

) 1
2 is

determined by the ratio of the kinematic viscosity and the strain parameter of the
potential velocity field. The amplitude of the vortex is additionally determined by the
circulation Γ. With this exponential dependence, the vorticity of the Burgers vortex is
strongly localized in space. The azimuthal velocity field, induced by the vortex tube
only, is readily calculated with Biot-Savart’s law yielding

uϕ =
Γ

2πr

(
1− e−

ar2

4ν

)
. (1.18)

For large r we have an algebraic decay ∼ 1
r , indicating the long-range character of the

velocity, which is consistent with the preceding observations.
Another interesting quantity is the acceleration induced by the vortex tube, which

consists of the pressure gradient and the viscous term. These vectors are written in
cylindrical coordinates according to

−∇p = (−∇p)r er + (−∇p)ϕ eϕ + (−∇p)z ez (1.19a)
ν∆u = (ν∆u)r er + (ν∆u)ϕ eϕ + (ν∆u)z ez . (1.19b)

The calculation of these terms is straightforward, but somewhat lengthy. For the pressure
gradient one obtains

(−∇p)r =
a2

4
r − Γ2

4π2r3

(
1− e−

ar2

4ν

)2

(1.20a)

(−∇p)ϕ = 0 (1.20b)

(−∇p)z = a2z . (1.20c)

The terms ∼ a2 originate from the potential flow, whereas the second term of the
negative radial pressure gradient is induced by the vortex tube. With an algebraic decay
∼ r−3 the pressure forces induced by the tube are of also of long-range type, however,
with a faster decay than the velocity field. The viscous terms take the form

(ν∆u)r = 0 (1.21a)

(ν∆u)ϕ = −Γa2r

8πν
e−

ar2

4ν (1.21b)

(ν∆u)z = 0 , (1.21c)

from which it is clear that only azimuthal contributions are induced by the vortex tube,
which decay exponentially. As there is no radial contribution by the diffusive forces, the
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radial acceleration induced by the tube comes from the pressure gradient only. It is also
interesting to calculate the energy dissipation field ε = 2νTr(S2). Due to the different
contributions to the velocity field also the rate-of-strain tensor may be decomposed
into a potential part and a part coming from the vortex tube. Calculating the energy
dissipation field, it turns out that the cross terms vanish, such that we end up with

ε = εpot + εtube

εpot = 3νa2

εtube =
Γ2

16π2νr4
e−

ar2

2ν

[
ar2 + 4ν

(
1− e

ar2

4ν

)]2

. (1.22)

Figure 1.3 shows the vorticity field, the azimuthal velocity field as well as the (negative)
radial acceleration and the energy dissipation field induced by a Burgers vortex. As
discussed before, the vorticity field is strongly localized, whereas the velocity field decays
slowly. Additionally the velocity field vanishes inside the vortex core and peaks at about
5rB (for the presented choice of parameters). Also the acceleration is peaked outside
the vortex core, such that high accelerations may be expected in the vicinity of a vortex
tube, but not inside the vortex. And although we have the equality 〈ε〉 = 〈νω2〉 for
homogeneous turbulence, the two quantities do not coincide locally; while the vorticity
is concentrated inside the vortex tube, the induced dissipation field is not.

To illustrate that this behavior can qualitatively be found in fully developed turbulence,
figure 1.4 shows the close-up of a vortex tube from a direct numerical simulation with
2563 grid points (sim_256). Here, we see a volume rendering of the absolute values of
vorticity, velocity, acceleration (i.e. the sum of pressure gradient and viscous terms)
and the kinetic energy dissipation. In agreement with the above calculations we find
that the vortex tube is strongly localized and is also inducing a strong velocity field
locally. However, the velocity field contains contributions from distant vorticity as well,
such that it displays a more large-scale structure. The acceleration field is also localized
near the vortex core, and one in fact gets the impression that the acceleration does not
peak in the core of the vortex. The kinetic energy dissipation field is also localized near
the core, but also other regions of strong shear, which are not induced by the tube,
are visible. One can conclude that the qualitative structure of these fields is consistent
with the above calculations for an isolated vortex tube. More pronounced differences,
however, become apparent when considering the inner structure of the vortex tube by
inspecting the field lines of the vorticity field. The field lines of the same vortex tube
are shown in figure 1.5 from two different perspectives. They indicate a twisted inner
structure of the vortex tube, which is not taken into account by the simple Burgers
vortex.
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Figure 1.4.: Close-up of a vortex tube in a direct numerical simulation (sim_256). From upper
left to lower right: volume rendering of the absolute values of vorticity, velocity, acceleration and
dissipation. While the vorticity field is strongly localized, the velocity field appears to contain
contributions from distant vorticity. The acceleration is localized near the vortex tube as well
as the dissipation.
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Figure 1.5.: Field lines of the same vortex tube as in figure 1.4 from two different perspectives.
The field lines indicate an inner, non-axisymmetric structure of the vortex tube.
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2. Statistical Hydrodynamics in a
Nutshell

2.1. The Need For a Statistical Description

We have seen in chapter 1 that fluid flows are described by the Navier-Stokes equations.
Unless a probabilistic external forcing is applied, these equations are completely de-
terministic, i.e., the temporal evolution is fully fixed by the initial condition. From a
naïve point of view, there is no need for a statistical description on this level. Taking a
glimpse at a turbulent time series, however, immediately reveals the stochastic nature
of the problem. The strong fluctuations suggest a certain degree of randomness. How
does this randomness enter the phenomenon of turbulence?
The reason for this is that the Navier-Stokes equations represent a set of nonlin-

ear, nonlocal partial differential equations with solutions exhibiting spatio-temporal
complexity as we have seen in chapter 1. The spatial component of this complexity is
evident from the visualizations presented there, which illustrate the (probably) most
fundamental part of the problem; the system is too unstructured to be described by
a small number of degrees of freedom, which makes it intractable to methods from
pattern formation. At the same time the turbulent fields do not appear as purely
random, the coherent structures indicate a certain degree of spatial organization, yet
being a rather complicated one. As a consequence a simple stochastic modeling will be
inappropriate. Together with the chaotic behavior in time the whole system displays a
sensitive dependence on the initial conditions: Small changes in the experimental (or
numerical) environment will eventually cause a completely different time evolution of
the system. We can take data from a parallel simulation of the Navier-Stokes equations
as a peculiar example. Figure 2.1 shows the average rate of kinetic energy dissipation
from a 2563 run of fully developed turbulence. The run was repeated with identical
initial conditions, but because of rounding errors inherent to the parallel implementation
the temporal evolution deviates over time.1 Remarkably, even the average over the
whole field is a fluctuating quantity.

These considerations show that the nature of turbulence is intrinsically stochastic and
therefore requires a statistical description. This, on the one hand, lets hope fade away
that the problem of turbulence may be understood by a careful analysis of the basic

1Though being also subject to numerical rounding errors, a numerical solution of this problem on a
single core is completely deterministic. The fluctuations enter due to the fact that MPI does not define
in which order, e.g., global averages are computed over all cores. Thus two different simulations will
produce different rounding errors, which add up yielding a differing temporal evolution.
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Figure 2.1.: Average rate of energy dissipation as a function of time for two DNS runs with
identical initial conditions. The runs deviate from t ≈ 20T on, exemplifying the sensitivity on
small external fluctuations.

equations of motion only. On the other hand, it may be regarded as a relief: Maybe we
do not have to understand all details to solve the problem. From a practical point of
view, lets say from an engineer, this is quite clear; the precise flow configuration over
an airfoil is rather irrelevant, drag and lift (i.e. mean values) matter.
The remaining part of the chapter is structured as follows. We first will introduce

some basic mathematical prerequisites for a statistical description. Then some comments
on the concept of homogeneous isotropic turbulence are in order, before we will make a
first contact with the closure problem of turbulence. We then turn to a short overview
over phenomenological theories of turbulence, which contrast the efforts to find a theory
from first principle.

2.2. Averages, PDFs etc.

We cannot give a comprehensive introduction into the mathematical formulation of
statistical problems at this point. However, we would like to introduce some of the
quantities that will be of major interest within this thesis. We refer the reader to
[MY71, MY75] for a complete introduction to this subject.

Consider a typical experimental situation, in which a component of velocity u(t) of a
turbulent jet is measured at a single point in space. Assuming that the experimental
conditions maintain a stationary situation, it is possible to estimate the probability
density function (PDF) of velocity by taking the temporal average over the measurement
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interval Tm,

f(v) =
1
Tm

∫ Tm

0
dt δ(u(t)− v) = 〈 δ(u(t)− v) 〉t . (2.1)

Here v denotes the sample space variable, whereas u(t) denotes the actual realization
of this fluctuating quantity. This formula defines a procedure how the histogram f(v)
is generated; consider a fixed (infinitesimal) bin with the value v. The delta function
then increments this bin each time v = u(t) is found. If the measured time series is
“representative” for the system, the estimated PDF will converge to the “true” PDF as
Tm →∞. Unfortunately, at this stage it is by no means clear, what “representative” and
“true” means. By assuming that there is a “true” PDF we actually take the existence
of a well-defined probability measure of turbulence for granted. Although this has not
been rigorously proven, the consistent outcome of many experimental and numerical
experiments suggests this to be a reasonable assumption. By “representative” we mean
the assumption that the velocity will take on all possible values representatively often
during a long enough measurement period, which is closely related to the ergodicity
assumption for this system. Both of these points being unproven (but reasonable)
hypotheses, may be regarded as the axiomatic foundations of the statistical description
of turbulence. We refer the reader to [MY71, Tsi09] for more details on this issue.

In the same manner as the velocity PDF may be estimated from the numerical data,
it is possible to obtain averages according to

〈u(t)n〉t =
1
Tm

∫ Tm

0
dt u(t)n . (2.2)

Under the given circumstances these averages will coincide with the moments of the
PDF

〈vn〉v =
∫

dv vn f(v) . (2.3)

In most literature on probability theory only the last notation is used. This comes due
to the fact that there the discrimination between sample space variable and realization
does not have to be made. With these considerations the situation for an experimentalist
is quite clear, once the above axiomatic assumptions are accepted. If the system is
prepared to yield “representative” results, it is evident how to extract mean values from
the gathered data.
For theoretical purposes it is useful to introduce the concept of ensemble averaging.

Again assuming the existence of a probability measure, 〈·〉 from now on means “average
over all possible realizations of the system”. In this sense, the PDF of the velocity field
can be defined as the ensemble average of a fine-grained PDF f̂

f(v;x, t) = 〈 δ(u(x, t)− v) 〉 =: 〈 f̂(v;x, t) 〉 . (2.4)

Here u(x, t) again denotes a realization of the velocity field, whereas v denotes the
corresponding sample space variable. The notation indicates that f(v;x, t) is a density
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with respect to v and a function with respect to x and t. The interpretation of the
fine-grained PDF is intuitive: unless we choose v exactly identical to the value of the
realization u at point x and time t, we will have a vanishing probability density. In this
sense the fine-grained PDF represents a sharply peaked PDF. Mean values can formally
be obtained via

〈uni (x, t) 〉 =
〈
uni (x, t)

∫
dv δ(u(x, t)− v)

〉
=
〈∫

dv vni δ(u(x, t)− v)
〉

=
∫

dv vni f(v;x, t) = 〈 vni 〉v , (2.5)

where we make use of the identity
∫

dv δ(u(x, t)− v) = 1 and the sifting property of
the delta function. We especially see that mean values coincide with the moments of the
PDF within this ensemble concept. More mathematical properties of the delta function
are summarized in appendix A.1. As we have seen that within a properly established
ensemble 〈. . . 〉v = 〈. . . 〉, we will omit the subscript from now on. Of course, this whole
concept may be generalized to multiple points in space. For example, the PDF for N
points in space may be defined as

fN (v1, . . . ,vN ;x1, . . . ,xN , t) = 〈 δ(u1(x, t)− v1) . . . δ(uN (x, t)− vN ) 〉 , (2.6)

i.e., as the ensemble average of the product of fine-grained PDFs. PDFs defined in this
manner will play a central role of the statistical theory treated in the later chapters
of this thesis. A more detailed presentation of the properties of these functions will be
addressed in chapter 6 and following. More details on these probabilistic concepts are
found in [MY71, Fri95, Pop00].

2.3. The Concept of Stationary Homogeneous Isotropic
Turbulence

When considering the complexity of fully developed turbulent flows, the first thing
apparent is that a statistical description is inevitable. Taking a closer look then reveals
(as, for example, can be guessed from the visualizations in section 1.2) that there is
apparently no distinguished direction in the flow. And although a single field is clearly
not homogeneous, there is no reason why, e.g., a cluster of vortices should form only
in a certain region of an experimental volume when the experiment is repeated often.
This has led to the concept of homogeneous isotropic turbulence, which is inseparably
connected to the history of theoretical turbulence research. The list of textbooks on
homogeneous isotropic turbulence is nearly endless, but one maybe should mention
[Bat53] as one of the most classic ones.
Homogeneity, isotropy and stationarity represent statistical symmetries. Statistical

symmetry means that a single realization in general will not display the assumed
symmetries, but the statistical, ensemble averaged quantities will. Let us exemplify the
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2.3. The Concept of Stationary Homogeneous Isotropic Turbulence

situation with the single-point velocity PDF f(v;x, t). If the statistics is assumed to be
stationary, this PDF should not depend on time. Due to homogeneity, it should not
depend on the spatial position x. And finally, due to isotropy, it should be a function of
the absolute value of velocity v only, as any dependence on a vector would distinguish a
spatial direction. And indeed, as can be seen by a simple calculation, the PDF of the
velocity vector is fully determined by the PDF of the absolute value:

f̃(v) =
∫

dv δ(v − |v|) f(v)

=
∫

dv dϕdϑ v2 sinϑ δ(v − |v|) f(v)

= 4πv2f(v)

⇒ f(v) =
1

4πv2
f̃(v) . (2.7)

The calculation is only possible knowing that f(v) depends on v only. The concept is read-
ily generalized to more complicated situations. For the two-point PDF f2(v1,v2;x1,x2, t)
homogeneity, for example, means that this function may only depend on the distance
vector r = x2 − x1, as the difference vector does not change when the whole configura-
tion is shifted in space. Stationarity for a two-time quantity accordingly means that it
can only depend on the temporal distance τ = t2 − t1.

This already gives a hint on how general expressions under these statistical symmetries
can be obtained; one considers the action of mathematical transformations related to the
symmetry on the statistical quantity and requires invariance under this transformation.
Consider some statistical quantity depending on the points x1 . . .xN in space and
times t1 . . . tM in time. Stationarity simply means that the statistical quantity under
investigation will be invariant under a shifting of all time dependencies

ti 7→ ti + τ . (2.8)

In consequence, it will only depend on time differences

t1 = t2 − t1
...

tN−1 = tN − tN−1 . (2.9)

For homogeneity we consider a shifting in space

xi 7→ xi + x̃ . (2.10)

As a consequence, this quantity can only depend on a (not uniquely defined) set of
difference vectors, for example,

r1 = x2 − x1

...
rN−1 = xN − xN−1 . (2.11)
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The examples show that these two statistical symmetries in general reduce the number
of independent variables by one. Isotropy yields even more possibilities for simplification.
In general isotropy is defined as the invariance of the statistical quantity under rotations
and reflections, i.e. under the action of transformations R ∈ O(3). To explain this, let
us start with a scalar function, say a simple one-point PDF (where we have already
taken into account homogeneity and stationarity). Isotropy implies

f(v) = f(Rv) ∀R ∈ O(3) . (2.12)

That means, the scalar function can only depend on invariants (with respect to these
transformations) of v. The only invariant of a vector is its absolute value, such that we
find the above-mentioned result that this PDF can depend on v only. The notion of
invariants comes from tensor calculus and (probably) was introduced into hydrodynamics
in the works of Robertson and Chandrasekhar [Rob40, Cha51]. We again refer the reader
to [Bat53] for more detailed information. Let us take another example, the two-point
PDF f2, which has to fulfill

f2(v1,v2; r) = f2(Rv1,Rv2; Rr) ∀R ∈ O(3) . (2.13)

f2 is a density with respect to six variables and a function with respect to additional
three variables. A complete set of invariants, for example, reads

v1, v2, r, r · v1, r · v2, v1 · v2 (2.14)

as the specification of these quantities suffices to unambiguously determine the full
vectorial configuration of v1, v2 and r. This shows that the number of independent
variables reduces from nine to six, which is still a tremendous amount of information.
When the joint PDF of two components is considered, further information can be
extracted from the relation (2.13). By choosing the proper rotation from O(3), we for
instance directly obtain

f2(v1,x, v2,x) = f2(v1,y, v2,y) . (2.15)

Of course, this concept can be generalized to an arbitrary number of points, for the
N -point PDF isotropy it implies

fN (v1, . . . ,vN ; r1, . . . rN−1) = fN (Rv1, . . . ,RvN ; Rr1, . . .RrN−1) ∀R ∈ O(3) .
(2.16)

So the next task in reducing the complexity of this object would be to find a list of a
possible set of all invariants, which we will not exemplify at this point.

Not only scalar quantities, but also higher-order tensors play an important role in the
statistical description of turbulence.2 We now examine a statistical vectorial quantity
a(r) depending on the spatial distance r. Isotropy now implies that a transforms in
the same manner as r,

Ra(r) = a(Rr) ∀R ∈ O(3) . (2.17)
2We refer the reader to [Dai09] for some more mathematical details.
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This can only be the case if a points into the direction of r. Additionally there is a
scalar function determining the amplitude of the vector, which, just like in the case of
the above scalar functions, may only depend on the invariant r. Thus we have

a(r) = g(r) r̂ . (2.18)

This scalar function is obtained by projecting this expression onto r̂ yielding

g(r) = r̂ · a(r) . (2.19)

The transformation properties of a matrix in the case of isotropic statistics is

B(Rr) = RB(r)RT ∀R ∈ O(3) . (2.20)

As B(r)r̂ is a vectorial function, it has to take the form (2.18),

B(r)r̂ = λ(r)r̂ , (2.21)

obviously demonstrating that r̂ is an eigenvector of B. The corresponding eigenvalue
λ(r) is readily obtained by projection,

λ(r) = r̂ · B(r)r̂ . (2.22)

We now want to consider the special case of symmetric matrices. We then know by
the spectral theorem that the two additional eigenvectors ŝ1 and ŝ2 of B will be
perpendicular to r̂ and will constitute an orthonormal basis of R3. By considering the
rotation RT

r with rotation axis r̂, which transforms ŝ1 into ŝ2, it is easily shown that
the corresponding eigenvalues µ1(r) and µ2(r) coincide,

µ1 = ŝ1 · Bŝ1
isotropy

=
(
RT
r ŝ1

) · B (RT
r ŝ1

)
= ŝ2 · Bŝ2 = µ2 . (2.23)

Thus the general form of a symmetric matrix depending on r under isotropic statistics
is [Bat53, Dai09]

Bij(r) = µ(r) δij + [λ(r)− µ(r)] r̂i r̂j . (2.24)

By this we have reached a stunning reduction of complexity; instead of considering nine
independent scalar functions, only two have to be considered in this case. Of course,
these results also hold when quantities depending on, e.g., sample space variables are
considered. When the statistical quantities depend on more variables, generalizations of
these expressions have to be found. We will make extensive use of statistical symmetries
throughout this thesis. It will turn out that some statistical evaluations of numerical
data only become possible due to these simplifications.

To proceed one step further, we can establish kinematic relations. As an example we
consider the correlation tensor of velocity at two points in space (which coincides with
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the covariance tensor up to the constant factor of one third the mean squared velocity),
which due to homogeneity will depend on the distance vector r only,

Cij(r) =
3
〈u2〉

〈
ui(x1)uj(x2)

〉 (2.24)
= g(r) δij + [f(r)− g(r)] r̂i r̂j . (2.25)

By explicitly choosing r = r e1 we obtain

C11(r) =
3
〈u2〉

〈
u1(x1)u1(x2)

〉
= f(r) (2.26a)

C22(r) =
3
〈u2〉

〈
u2(x1)u2(x2)

〉
= g(r) (2.26b)

showing that f and g are the longitudinal and transversal correlation functions, respec-
tively. One now can make use of incompressibility ∇ · u(x, t) = 0 and the fact that
derivatives commute with averaging which implies

∂

∂x2,j
Cij(r) =

∂

∂rj
Cij(r) = f ′(r) r̂i + 2

f − g
r

r̂i = 0

⇒ g = f +
1
2
rf ′ . (2.27)

That means, the transversal correlation function is fully determined by the longitudinal
correlation function. This kinematic relation finally reduces the number of independent
scalar functions for the correlation tensor to one. This simple example shows how
powerful the concept of homogeneous isotropic turbulence is. We will establish more
kinematic relations for the vorticity covariance tensor as well as for the fourth-order
velocity gradient covariance tensor in section 4.2 and check them with the help of
numerical results.
From a theoretical point of view, the concept of stationary homogeneous isotropic

turbulence yields beautiful simplifications, but its validity is based on empirical facts. It
turns out to be an idealized situation, which is hardly achievable in experiments. Bound-
aries and mean flow will usually have their influence, such that there are anisotropies
in the measured signals and also in numerical simulations. We will discuss this issue
in section 3.4. To what extent anisotropies are expected to occur also depends on the
quantity under consideration. Small-scale quantities like vorticity and velocity gradients
are expected to reach isotropy easier than large-scale quantities like the velocity. How
the length scales of these quantities are related will be discussed in section 4.2 and
numerical examples are also given in section 3.4.

2.4. The Closure Problem of Turbulence

The previous section has shown how statistical symmetries and kinematic relations may
drastically simplify the mathematical structure of statistical quantities. The remaining
task would be to determine these quantities right from the basic equations of motion.
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While the steps in the mathematical formulation of turbulence up to this point raised
hope that this actually is possible, this task until today remains the great unsolved
problem of the subject. In this sense we now approach the heart of the problem. We will
continue discussing it at the example of the covariance tensor of the velocity field. Our aim
is to derive an evolution equation for the covariance tensor 〈ui(x1, t)uj(x2, t)〉 =: 〈uiu′j〉
considering unforced turbulence. The procedure is quite straightforward: Take the
temporal derivative of the velocity product, use the Navier-Stokes equation and finally
take the ensemble average. The result is readily obtained and reads

∂

∂t
〈uiu′j〉+

∂

∂xk
〈uiuku′j〉+

∂

∂xk′
〈uiu′ju′k〉 = − ∂

∂xi
〈u′jp〉 −

∂

∂xj′
〈uip′〉

+ ν
∂2

∂x2
k

〈uiu′j〉+ ν
∂2

∂x2
k′
〈uiu′j〉 . (2.28)

We now have an obvious problem, because new unknown functions enter. Due to the
nonlinear term, the third-order tensor 〈uiuku′j〉 is introduced as well as the velocity-
pressure covariance 〈uip′〉 due to the nonlocal term in the Navier-Stokes equation.
Taking into account homogeneity allows to express the spatial derivatives according to

∂

∂xk
= − ∂

∂rk
,

∂

∂xk′
=

∂

∂rk
. (2.29)

By additionally considering isotropic turbulence, it is quite easy to show that the
pressure contributions vanish in this equation. To this end we note that in this case the
velocity-pressure covariance takes the form

〈uip′〉 = a(r) r̂i . (2.30)

Solenoidality yields an equation for a(r),

a′ +
2
r
a = 0 . (2.31)

This equation has the obvious two solutions a(r) = 0 or a(r) = r2, of which the latter
can be ruled out, as the correlation should vanish for r → ∞. Thus the evolution
equation simplifies to

∂

∂t
〈uiu′j〉+

∂

∂rk

(〈uiu′ju′k〉 − 〈uiuku′j〉) = 2ν
∂2

∂r2
k

〈uiu′j〉 . (2.32)

Although the equation has taken a pretty compact form now, nothing can be done
about the fact that third-order moments appear in this equation. Of course, one now
can derive the evolution equations for these third-order moments as well, however, they
will couple to higher-order moments in the same manner. Additionally, the pressure
contributions in general do not vanish for the higher-order equations. This is exactly the
closure problem of turbulence. Whenever evolution equations for statistical quantities
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are derived, unknown functions enter the equations. When trying to derive evolution
equations for these functions even more unknown functions will appear. We will encounter
the closure problem repeatedly throughout this work and in a sense it is the central
problem in this thesis (like in so many others on turbulence theory). For example, it will
play a key role when evolution equations for probability density functions are considered
in chapter 6.

2.4.1. The Kármán-Howarth Equation

Though it seems that we now have encountered an unsolvable problem, equation (2.32)
is not useless. It actually is the starting point for the derivation of the famous Kármán-
Howarth equation, which may be used to derive the celebrated 4/5-law by Kolmogorov.
The derivation of these relations involves rather lengthy calculations, which exceed the
scope of this presentation. However, we think it is useful to outline the main steps, as
they show how valuable insights can be gained in this difficult situation.

We first will motivate that equation (2.32) may eventually be simplified to a relation
of two scalar functions in view of the symmetries present. To this end a closer inspection
of the tensor Bij,k = 〈uiuju′k〉 is necessary. Proceeding in the same manner as above,
it can be made clear that this tensor is determined by different two-point correlations
involving the different longitudinal and transversal vectorial configurations of the two
velocities at point x1 and one velocity at point x2. However, it turns out that for a
solenoidal field, this tensor is determined by a single scalar function only, which may
be chosen as the longitudinal triple correlation, i.e., for r = r e1 it is determined by
B11,1 := σ3 T (r) with the abbreviation σ =

√
1
3〈u2〉. This is arrived at by an analogous,

but slightly more complicated computation like the one leading to the relation (2.27)
when ∂

∂rk
Bij,k = 0 is considered. We refer the reader to, e.g., [MY75] for further details.

With these simplifications Bij,k may be expressed as

Bij,k = σ3

(
1
2
(
T − rT ′) r̂ir̂j r̂k +

1
4
(
2T + rT ′

) (
r̂iδjk + r̂jδik

)− 1
2
T δij r̂k

)
. (2.33)

Now this result can be inserted into equation (2.32), where additionally Bi,jk(r) =
Bjk,i(−r) is used. As f and g are not independent functions, it suffices to collect the
terms proportional to δij . After a lengthy calculation and making use of equation (2.27),
one eventually arrives at the equation [MY75](

1 +
r

2
∂

∂r

)
∂

∂t
f =

(
1 +

r

2
∂

∂r

)[(
∂

∂r
+

4
r

)
σT + 2ν

(
∂2

∂r2
+

4
r

∂

∂r

)
f

]
. (2.34)

Now demanding regularity in r = 0, this equation is integrated yielding

∂

∂t
f =

(
∂

∂r
+

4
r

)[
σT + 2ν

∂

∂r
f

]
=

σ

r4

∂

∂r
r4T +

2ν
r4

∂

∂r
r4 ∂

∂r
f . (2.35)
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This is the famous Kármán-Howarth equation, which connects the longitudinal velocity
correlation function to the corresponding third-order correlation.

2.4.2. The 4/5-Law

The Kármán-Howarth equation eventually leads to the famous 4/5-law, derived by
Kolmogorov in his seminal paper [Kol41a, Kol91a], where the K41 phenomenology is
introduced, which we will discuss in the next section. To proceed, we introduce the
longitudinal structure functions

Sn(r, t) = 〈 [(u(x+ r, t)− u(x, t)) · r̂]n 〉 . (2.36)

When considered in Fourier space, one may see that S2 is related to the energy distribu-
tion across scales, whereas S3 is related to the flux of energy across scales. Furthermore,
it may be noted that the relations

σ2f = σ2 − 1
2
S2 (2.37a)

σ3T =
1
6
S3 (2.37b)

hold [Pop00], such that equation (2.35) may be expressed as

3r4 ∂

∂t
S2 +

∂

∂r
r4S3 = 6ν

∂

∂r
r4 ∂

∂r
S2 − 4〈ε〉r4 , (2.38)

which may be integrated yielding

3
r4

∫ r

0
s4 ∂

∂t
S2(s, t) ds+ S3 = 6ν

∂

∂r
S2 − 4

5
〈ε〉r . (2.39)

It was now reasoned by Kolmogorov that for locally isotropic turbulence (a notion we
will come to in the next section), the time-dependent term is negligible and the viscous
term should be unimportant within the inertial range. This finally leads to the simple
result

S3(r) = −4
5
〈ε〉r (2.40)

within the inertial range of scales, which is known as the 4/5-law. As S3 is related to
the energy transfer across the scales, this result basically tells us that there is a flux
of energy from large to small scales, something which is known as the direct energy
cascade.

In this sense, the 4/5-law demonstrates how quantitative information can be deduced
right from the basic equations of motion, although the closure problem hinders a
comprehensive solution of the statistical problem.
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Figure 2.2.: Schematic of the energy cascade in three-dimensional turbulence: Energy is
injected at the integral length scale of the flow and is successively transferred to smaller scales,
where it finally is dissipated.

2.4.3. Phenomenological Theories of Turbulence

K41 phenomenology

Of course, it would be desirable to deduce more relations like (2.40) from the Navier-
Stokes equations. However, due to the closure problem the 4/5-law up to today remains
one of the sparse analytical results deduced from first principles. To overcome this
problem, Kolmogorov introduced some phenomenological assumptions to derive further
relations. However, being based on assumptions, the results cannot be taken as laws.
Indeed, it turns out that most of them actually do not hold exactly. However, they
play an important role up to today, and much contemporary research is based on
Kolmogorov’s phenomenology. Hence a short outline of the phenomenological theories
seems useful at this point.

The basic setting invokes the picture of the energy cascade, meaning that when energy
is injected at the large scales of the system, it is successively transferred to smaller
scales, where it finally is dissipated. This is schematically shown in figure 2.2. The
large scale is basically of the order of the correlation length of forcing and is usually
denoted as the integral length scale L. The range in which the energy cascades without
being dissipated is called the inertial range. This inertial range can be shown to extend
with the Reynolds number, such that theoreticians often consider the limit of infinite
Reynolds number to study inertial range physics. Eventually, at smaller scales, viscous
dissipation sets in and kinetic energy is dissipated into heat. This range is called the
dissipative range.
The Kolmogorov phenomenology now makes assumptions about the quantities that
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determine the statistics in the inertial and dissipative range. In this context an important
conceptual notion in Kolmogorov’s work is the so-called locally isotropic turbulence.
To this end he considers the PDFs of velocity differences between N points in a
certain space-time region of limited extents. He now calls this PDF locally isotropic
if it is homogeneous and in addition to that invariant with respect to rotations and
reflections. In some formulations additionally temporal stationarity is added to these
assumptions. In this sense local isotropy assumes the maximum symmetry of the
PDF for a sufficiently small space-time region. Although the following hypotheses
underlying the Kolmogorov phenomenology can be made more precisely, a rather loose
formulation will suffice to introduce the basic notion at this point. We refer the reader
to [Kol41b, Kol41a, Kol91b, Pop00, Fri95] for a concise description. The assumptions
may be termed in the following way:

Hypothesis of local isotropy In any turbulent flow with a sufficiently large Reynolds
number, the turbulence is approximately locally isotropic if the considered space-
time region is sufficiently small.

First similarity hypothesis For locally isotropic turbulence, the N -point PDF is
uniquely determined by the viscosity ν and the mean rate of energy dissipation
〈ε〉.

Second similarity hypothesis In case that the distances between the different points
in space all lie within the inertial range, the dependence of the velocity PDF
reduces to the mean rate of energy dissipation 〈ε〉.

By these hypotheses a powerful tool for analyzing statistical quantities is at hand:
dimensional analysis. For example, it is possible to define time, velocity and length
scales in terms of ν and 〈ε〉

η =
(
ν3

〈ε〉
) 1

4

uη = (ν〈ε〉) 1
4 τη =

(
ν

〈ε〉
) 1

2

(2.41)

which characterize the small scales of the flow, where viscous dissipation is important.
More importantly, dimensional analysis can be used to derive the functional form of
a variety of statistical properties. The derivations are covered in detail in almost all
textbooks on turbulence theory (see, e.g., [MY75, Fri95, Dav04]), such that we only
mention some of the main results. As already indicated in figure 2.2, the energy spectrum
takes the form

E(k) ∼ 〈ε〉 2
3k−

5
3 (2.42)

in the inertial range, something which has been found to be true in good approximation
in many experiments and numerical simulations. Also the scaling properties of the
longitudinal structure functions may be dimensionally analyzed yielding the result

Sn(r) ∼ (〈ε〉r)n3 , (2.43)
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which is in perfect agreement with the 4/5-law and the shape of the energy spectrum.
And while the 4/5-law has been derived by first principles (and neglecting viscous effects),
the prediction for the remaining orders are strongly based on the hypotheses. When
formulated in terms of the PDFs of the longitudinal velocity increments, the prediction
is a self-similar scaling in the inertial range, a beautiful, but false prediction. It turns out
by experimental and numerical investigation that the PDFs do not scale self-similarly
in the inertial range and deviations from the relation (2.43) are found for increasing
orders. This fact is commonly referred to as intermittency and is often related to the
spatial structure of the fields. We will present numerical results on this in section 4.1.

K62 phenomenology

To overcome the shortcomings of the K41 phenomenology, Kolmogorov reconsidered the
basis of his dimensional argument. It showed that the assumption that the mean rate
of energy dissipation determines the shape of the PDFs is by far too strong. Instead,
by introducing the conditional statistics of velocity differences and energy dissipation
averaged over the corresponding interval in space, he reformulated his theory in terms of a
spatially fluctuating quantity [Kol62], an assumption which nowadays is well documented
by experimental and numerical results. It turns out that this generalization maintains
the shape of the Kolmogorov spectrum and the 4/5-law, but allows for deviations at
higher orders of structure functions according to

Sn(r) ∼ (〈ε〉r)ζn with ζn =
1
3
n[1− 1

6
µ(n− 3)] , (2.44)

where µ is called the intermittency parameter. Indeed, in the absence of intermittency
(i.e. for µ = 0) K41-scaling is recovered. While the refined predictions match the data
much better, they turn out to yield unphysical results for very high orders of n, as the
ζn eventually become negative.

Beyond Kolmogorov Phenomenlogy

Since the sixties of the twentieth century a variety of other models dealing with the
velocity increment statistics have been developed. The ideas of K62 have been developed
further within the multifractal model, which assumes a fractal structure of turbulence
(see [Fri95] for a detailed account), to name only a single one. All of these models have
in common that they make strong assumptions on the properties of turbulent flows to
derive predictions. Whether these assumptions are fulfilled then determines the validity
of the predictions made.

Recently, a different phenomenological approach was presented in [FP97], where the
velocity increment statistics was regarded as a stochastic process, for which the Markov
property has been validated experimentally. The strength of this approach is that the
underlying assumptions can be checked experimentally and that predictions of joint
PDFs for different scales can be made.

28



2.4. The Closure Problem of Turbulence

Again, the purpose of this short excursion on phenomenological approaches is to
contrast this work. In this thesis, we will follow an entirely different approach: Based on
works by Lundgren, Monin and Novikov, we will formulate a statistical theory starting
from the basic equations of motion and will then apply numerical results to investigate
the unclosed terms. In this sense it will not be possible to make predictive statements
like the scaling of structure functions, however, we will find useful insights into the
statistical structure of turbulence. This theory will be outlined in chapter 6 and then
be applied to the statistics of velocity and vorticity in the following chapters. Once
the local structure of turbulence is examined in this way, models for more complicated
statistical properties can be deduced. This will be discussed in detail in chapters 9 and
10.
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3. Direct Numerical Simulation of
Turbulent Flows

The entire experience with the subject indicates
that the purely analytical approach is beset with
difficulties, which at this moment are still
prohibitive. . . Under these conditions there might be
some hope to ’break the deadlock’ by extensive, but
well-planned, computational efforts. . .

(John von Neumann, 1949)

The Direct Numerical Simulation (DNS) of turbulent flows has a long tradition in
turbulence research. Ever since the pioneering works of Orszag and Patterson and
Rogallo [PO71, OP72, Rog77, Rog81] it has become an indispensable tool for the field.
While numerical simulations allow engineers to consider complex situations, which
are analytically intractable, the purpose of DNS is (at least) two-fold for theoretical
physicists. On the one hand, it may serve as a benchmarking tool for theoretical ideas,
and the history of turbulence research is full of examples, where theoretical ideas had to
fall because of experimental or numerical evidence. On the other hand, numerical input
often has given rise to new ideas. For example, the existence of coherent structures has
first been extensively studied with the help of DNS data [Sig81, SJO90, JWSR93, JW98].

For theoreticians the idealized case of fully developed stationary homogeneous isotropic
turbulence is a scenario to develop and test new ideas. Luckily, the algorithms to generate
this situation numerically are quite performant and comparably easy to implement.
Consequently, the rough code design is well-established for a couple of decades and each
new generation of supercomputers is used to give insights into turbulence at even higher
Reynolds number. (It has to be mentioned, though, that the highest Reynolds numbers
reached in experimental or real-world situations are way out of reach.)
For the work presented in this thesis DNS plays a major role and much effort has

been spent to write a parallel code for simulating fully developed turbulence. Hence
the present chapter shall give an overview of the most important numerical tool of this
work. Its structure is as follows. First, we will outline the basic algorithmic details, i.e.
the time stepping scheme and the pseudospectral method for the spatial discretization.
Stability criteria, the different forcing schemes and the interpolation of Lagrangian
particle paths will also be discussed here. In the following sections the code design as
well as parallelization strategies will be presented. Also the scaling performance of the
code will be presented there.
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These sections will be followed by an overview of the simulations that have been
conducted for the scientific results of this thesis. The chapter will be closed by a
discussion to what extent numerical simulations are capable of producing the idealized
situation of stationary homogeneous isotropic turbulence.

3.1. Algorithm

3.1.1. Some Words on Pseudospectral Methods

Pseudospectral methods have proven to be useful for hydrodynamical problems on
periodic domains. Their main advantages are efficiency, accuracy and ease of implemen-
tation. The method makes use of Fourier transforms, which for a 2π-periodic scalar
field may be defined as

f̃k =
1

(2π)
3
2

∫
dx f(x) exp(−ik · x) k ∈ Z (3.1a)

f(x) =
1

(2π)
3
2

∑
k∈Z

f̃k exp(ik · x) x ∈ [0, 2π]3 . (3.1b)

For the numerical implementation the considered fields have, of course, to be discretized
on a grid with N3 grid points

x ∈
{

(i, j, k)
2π
N

∣∣∣∣1 ≤ i, j, k ≤ N} , (3.2)

which effectively determines the minimal scale of structures resolved by the grid. Due
to the imposed periodic boundary conditions the possible wave vectors form a discrete
set in Fourier space, and this set becomes finite because of the spatial discretization,

k ∈
{

(i, j, k)
2π
N

∣∣∣∣− N

2
+ 1 ≤ i, j, k ≤ N

2

}
. (3.3)

As a consequence, we have a finite number of Fourier coefficients in the numerical
implementation.
The basic concept now is to evaluate differential operators in Fourier space, where

they take an especially simple form. Consider, for example, the differentiation of a scalar
field,

∂

∂x
f(x) F−→ i kx f̃k , (3.4)

i.e., differentiation reduces to a multiplication with the imaginary unit and the corre-
sponding wave vector component in Fourier space. Once the partial differential equation
is given in Fourier space, all linear terms involving differentiation can be treated in this
way. Besides the ease of this method, one should pronounce that the obtained results are
also very accurate as this kind of differentiation is exact within the numerical accuracy
of the Fourier transform and the floating point precision.
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Figure 3.1.: On aliasing. The red curve is hardly resolved with six points. The squared signal
(blue curve) is obviously under-resolved and may be misinterpreted with a signal with half
frequency (gray curve).

When treating nonlinear terms, however, one is faced with the problem that multipli-
cations in real space become convolutions in Fourier space, for example,

f(x)2 F−→ F [f̃k] ∗ F [f̃k] . (3.5)

Evaluating such an expression on a discretized grid involves O(N2·3) operations. Thanks
to the fast Fourier transform algorithm, a numerical Fourier transform is possible with
O(N3 logN3) operations, so that nonlinear terms are multiplied in real space and then
transformed back to Fourier space for further computations, e.g., differentiation.

Nonlinear terms give rise to another problem known as aliasing. Consider, e.g., a sinu-
soidal signal sin(kx) on a line. If this signal is squared, we find sin(x)2 = 1

2 [1− cos(2x)],
the spatial frequency has doubled. Now if the original signal was resolved hardly by
the grid, the squared signal will be under-resolved. This under-resolution results in a
misinterpretation (aliasing) of the squared signal, which is demonstrated in figure 3.1. To
circumvent this problem, the signals entering the nonlinearity may only contain spatial
frequencies, that are resolved after the nonlinearity has been evaluated. For phenomena
like turbulence, where a broad wave number band is excited, dealising techniques are
used to reduce aliasing errors.

The time stepping can be done either in real space for the discretized field or for the
Fourier coefficients in wave number space. For a complete account on pseudospectral
methods we refer the reader to [CHQZ87] and [Boy01].

3.1.2. Eulerian Fields

We now come to the details of the numerical implementation of the simulation code.
The code solves the Navier-Stokes equation in the vorticity formulation, which may be
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formulated as

∂

∂t
ω(x, t) = ∇× [u(x, t)× ω(x, t)] + ν∆ω(x, t) + F (x, t) . (3.6)

Writing the vorticity equation this way proves to be especially efficient for the numerical
implementation.1 The boundary conditions are triply periodic on a simulation domain
of box length 2π. The whole equation is solved in Fourier space, where the equation
takes the form

∂

∂t
ω̃k(t) = ik ×Fk [u(x, t)× ω(x, t)]− νk2ω̃k(t) + F̃ k(t)

= Ñk[ω̃]− νk2ω̃k(t) . (3.7)

The Laplacian is treated by an integrating factor technique [CHQZ87], allowing for an
accurate treatment. By introducing the transformation

ω̂k = ω̃k exp(νk2t) (3.8)

equation (3.7) turns into

∂

∂t
ω̂k(t) = Ñk[ω̂ exp(−νk2t)] exp(νk2t) =: N̂k[ω̂ exp(−νk2t)] . (3.9)

The numerical implementation can now be split up into two separate problems, the
time integration and the computation of the right-hand side, which is illustrated now.

Time Stepping Scheme

Equation (3.9) is integrated with a memory-saving third-order Runge-Kutta method.
The details of this scheme are provided in [SO88]. The temporal discretization takes
the form [Hom06]

ω̂1 = ω̂0 + ∆t N̂ [ω̂0] (3.10a)

ω̂2 =
3
4
ω̂0 +

1
4
ω̂1 +

1
4

∆t N̂ [ω̂1] (3.10b)

ω̂3 =
1
3
ω̂0 +

2
3
ω̂2 +

2
3

∆t N̂ [ω̂2] . (3.10c)

ω̂0 denotes the field at time t, whereas ω̂3 denotes the field at time t+ ∆t, after the
time step has been carried out. Note that the computation of ω̂3 does not involve ω̂1,

1One should note that we have denoted the forcing term here as F instead of ∇× F as in the first
chapter, where the forcing was introduced on the level of the Navier-Stokes equation. Whenever a
direct comparison of the Navier-Stokes and the vorticity equation will be made, we will discriminate
these two cases. For the technical implementation described in this chapter the loose notation allows
for a clearer presentation.
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so that effectively only two additional fields have to be stored. Transforming back to ω̃
yields [Hom06]

ω̃1,k = ω̃0,k e−νk
2∆t + ∆t Ñk[ω̃0] e−νk

2∆t (3.11a)

ω̃2,k =
3
4
ω̃0,k e−νk

2 ∆t
2 +

1
4
ω̃1,k eνk

2 ∆t
2 +

1
4

∆t Ñk[ω̃1] eνk
2 ∆t

2 (3.11b)

ω̃3,k =
1
3
ω̃0,k e−νk

2∆t +
2
3
ω̃2,k e−νk

2 ∆t
2 +

2
3

∆t Ñk[ω̃2] e−νk
2 ∆t

2 . (3.11c)

Time Step Control

Controlling the time step size is comparably easy for partial differential equations
with advection and diffusion as the Courant-Friedrichs-Lewy criterion is at hand. This
criterion basically states that any information (think, e.g., of a passive tracer particle)
may not travel more than the distance of the grid spacing per time step in order to
maintain a stable simulation. Apart from being very intuitive restriction, it can be
proven rigorously for linear partial differential equations, see [Boy01] for further details.
Let ∆x = 2π

N denote the grid spacing of the simulation domain with box length 2π.
For the advective term we consider the global maximum of the absolute value of the
velocity components

umax = max{|ux|, |uy|, |uz|} . (3.12)

The maximum distance travelled by a fictive particle per time step is ∆x = umax∆t,
which yields the upper bound

∆tadv =
∆x
umax

=
2π

umaxN
. (3.13)

The second restriction comes from the diffusive term of the equation. According to the
mean square displacement of a diffusion process in three dimensions with the diffusion
constant ν we have

∆x2 = 6ν∆t , (3.14)

which yields the second restriction

∆tdiff =
∆x2

6ν
=

2π2

3νN2
. (3.15)

The overall timestep is then chosen as

∆t = λmin{∆tadv,∆tadv} , (3.16)

where λ < 1 is the Courant number. For the simulations usually λ ≈ 0.5 is chosen. Note
that in the case of the employed integrating factor technique the diffusive restriction be-
comes redundant. In the turbulent regime, where the advective nonlinearity is dominant
over viscous diffusion, however, the advective restriction determines the time step.
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Evaluation of the Right-Hand Side

As explained, the diffusive term of the right-hand side of equation (3.7) is treated
within the time stepping scheme. The different forcing schemes also act implicitly on
the vorticity field and will be explained in the next section. For the evaluation of the
right-hand side it remains to explain the treatment of the nonlinear term. The procedure
now is to

• compute the velocity field from the vorticity field in Fourier space,

• transform both the vorticity field and the velocity field to real space,

• compute the nonlinearity u(x, t)× ω(x, t),

• transform the nonlinearity back to Fourier space,

• dealias the nonlinearity and

• finally take the curl ik ×F [u(x, t)× ω(x, t)].

To compute the velocity field, one starts with the relation

ω(x, t) = ∇× u(x, t) . (3.17)

Taking the curl of this expression yields

∇× ω(x, t) = ∇×∇× u(x, t) = ∇(∇ · u(x, t)︸ ︷︷ ︸
=0

)−∆u(x, t) = −∆u(x, t) . (3.18)

In Fourier space this expression simply reads

ik × ω̃k = k2ũk , (3.19)

which is easily inverted to

ũk =

{
ik×ω̃k
k2 if k2 6= 0

0 else .
(3.20)

Choosing ũ0 = 0 corresponds to considering turbulence without mean flow.

Forcing Schemes

Several forcing schemes are implemented within the code. Originally the “frozen mode”
scheme was the only implemented forcing scheme. Regarding the isotropy of long-range
correlated fields like the velocity, this scheme yielded poor results. Within a diploma
thesis by Anton Daitche, several other forcing schemes have been adopted and tested.
For the sake of completeness these forcing schemes are presented here. We refer the
reader to [Dai09] for further details and tests.

36



3.1. Algorithm

All forcing schemes act implicitly in Fourier space, i.e., we do not have an additive
term like indicated in equation (3.7), the vorticity field rather is manipulated after
each evaluation of the right-hand side. All of the implemented forcing schemes are
deterministic and may be described in the following way. Consider a set of wave vectors
B in Fourier space

B =
{
k
∣∣kmin < k < kmax

}
. (3.21)

The forcing schemes act exclusively in this so-called forcing band via the functional
Φ[ω̃b, ω̃a],

ω̃k 7→
{

Φk[ω̃b, ω̃a] k ∈ B
ω̃k k /∈ B .

(3.22)

Here, ω̃b denotes the field in Fourier space before each evaluation of the right-hand
side, whereas ω̃a denotes the field afterwards. If one wants to express the forcing as an
additive term, this term is formally given as

F̃ k =

{
lim∆t→0

Φk[ω̃b,ω̃a]−ω̃k,a

∆t k ∈ B
0 k /∈ B .

(3.23)

Now the different types of forcing correspond to a differing choice of Φ.

Frozen Mode Forcing The frozen mode forcing is specified by

Φk = ω̃k,b , (3.24)

i.e., after each evaluation of the right-hand side the Fourier coefficients are set to
the old value within the forcing band. As the forcing usually is chosen to act in a
low wave number band, the large scale modes of the flow do not evolve in time.
It is immediately clear that this type of forcing cannot yield large-scale isotropy
if the initial condition displays anisotropies. However, small-scale statistics are
unaffected by this problem and the implementation is very easy.

Frozen Amplitude Forcing To allow for large-scale dynamics of the flow field, the
frozen mode forcing has been generalized. Now the amplitude of each each Fourier
mode

‖ω̃k‖ =
√
ω̃∗k · ω̃k (3.25)

is kept constant, whereas the phases may evolve freely. The corresponding forcing
function is defined as

Φk =
‖ω̃k,b‖
‖ω̃k,a‖ ω̃k,a . (3.26)

The large-scale isotropy is significantly improved by this forcing scheme.

Energy-Conserving Forcing In addition it might be desirable to keep the simulation
at a fixed energy. This is why an energy-conserving forcing scheme has been
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developed in [Dai09]. The idea is to amplify the amplitudes in the forcing band,
such that the kinetic energy dissipated within the whole range of wave numbers is
counterbalanced. The kinetic energy is obtained by

Ekin =
1
2

∑
k

‖ũk‖2 =
1
2

∑
k

‖ω̃k‖2
k2

=: EBkin + ERkin , (3.27)

i.e., as the sum of the kinetic energy in the forcing band and the kinetic energy
contained in the remaining wave numbers. To counterbalance the loss of energy,
we have to determine the factor α in

Ekin,a = α2EBkin,a + ERkin,a
!= Ekin,b . (3.28)

This equation obviously holds for

α2 =
Ekin,b − ERkin,a

EBkin,a

. (3.29)

Hereby the forcing functional is defined as

Φk =

{
α ω̃k,a if α2 ≥ 0
ω̃k,a else .

(3.30)

From a physical point of view it is clear that Ekin,b − ERkin,a > Ekin,b − Ekin,a > 0
as the rate of kinetic energy dissipation is strictly positive, such that α2 > 0.
The numerical tests in [Dai09] indicate that this type of forcing delivers very
satisfying results regarding the obtained statistical symmetries. Large-scale isotropy
is obtained on shorter time scales than with the frozen amplitude forcing. A
modification of this forcing scheme, which only conserves the energy contained in
the forcing band, has also been implemented.

Componentwise Energy-Conserving Forcing To improve the performance regard-
ing statistical symmetries even more, a modification of the energy-conserving
forcing scheme has been developed. In this scheme the “energy” contained in each
component of the vorticity field is (approximately) held constant and identical for
each component. The aim is to reduce anisotropies by driving the system toward
a more isotropic state. To this end we define the componentwise “energy”

Ekin,i =
∑
k

|ω̃k,i|2
k2

. (3.31)

Maintaining a constant reference energy Ekin now requires

Ekin,a =
3∑
i=1

α2
iE

B
kin,i,a + ERkin,i,a

!= Ekin . (3.32)
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A possible solution of this equation, for example, reads

α2
i =

Ekin/3− ERkin,i,a

EBkin,i,a

. (3.33)

By construction this factor introduces more energy to a component which deviates
from the isotropic state (for which Ekin,i = Ekin

3 ). Thus this type of forcing
is expected to yield even better results regarding isotropy. However, if each
component is treated individually, the resulting vorticity field cannot be expected
to be solenoidal anymore, which requires k ·ω̃k=0. Now let P denote the projection
operator

Pij = δij − kikj
k2

(3.34)

and A the diagonal matrix with αi as entries. The forcing functional is then
defined as

Φk =

{
PA ω̃k,a if α2

i ≥ 0 ∀i
ω̃k,a else .

(3.35)

Due to the projection operator it is not clear if this forcing scheme actually
maintains constant energy. It was tested numerically, however, that this holds.
The results in [Dai09] show that this type of forcing performs slightly better than
the ordinary energy-conserving forcing. However, the ordinary energy-conserving
forcing appears to be less artificial and is numerically easier to implement.

Dealiasing

The aliasing problem discussed in the introductory part may be reduced by dealiasing
techniques. For quadratic nonlinearities like encountered in the Navier-Stokes equation
several dealiasing techniques have been developed. From a purely mathematical point of
view the famous 2/3-rule can be shown to eliminate aliasing errors from the simulations
[Ors71]. The 2/3-rule simply reads

ω̃k 7→
{
ω̃k if k2 <

(
2
3kmax

)2 =
(
N
3

)2
0 else .

(3.36)

This rule, however, has two major drawbacks. First, as a sharp filter in Fourier space, it
has the tendency to produce Gibbs oscillations in the dealiased fields, which introduces
numerical errors to the fields on small scales. Second, for three-dimensional simulations
only

(
2
3

)3 = 8
27 of the simulated modes are dynamically active, which seems pretty

uneconomical. One way to overcome this situation is to allow for aliasing errors. For
example, it was suggested in [Hom06] to extend the range of allowed modes and maintain
a sharp filter. Recently, a different type of dealiasing filter has been suggested in [HL07],
which makes use of a smooth Fourier filter, where the dealiased Fourier modes are given
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Figure 3.2.: On dealiasing. 2/3-rule (red curve) vs. the smooth Fourier filter suggested in
[HL07] (blue curve).

by

ω̃k 7→ ω̃k exp

[
−α

(
k

kmax

)β]
. (3.37)

The numerical parameters have been chosen as α = 36 and β = 36. To test the
performance, the filter has been used in simulations of the one-dimensional Burgers
equation and the results have been shown to converge better to the true solution than
the results of a simulation using the 2/3-rule. It then was suggested in [HL07] to use this
kind of dealising filter for computing solutions of the Euler equation with pseudospectral
methods.
All of the presented dealising filters have been implemented. The smooth Fourier

filter then has been used for all production runs.

3.1.3. Lagrangian Particles

The simulation code optionally allows to follow Lagrangian tracer particles. This part
of the code has also been developed by Anton Daitche as part of a diploma thesis
and is described in [Dai09]. The code design is such that the Lagrangian part is held
independent from the Eulerian part; this part can be included at compile time with a
compiler flag. Again, for the sake of completeness the algorithmic details are presented
here as well.
The position X(t,y) of a Lagrangian particle starting from y obeys the differential

equation
Ẋ(t,y) = [u(x, t)]x=X(t,y) =: U(t,y) . (3.38)
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(i+1, j+1, k+1)
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(i, j+1, k+1)

(i, j, k)

Figure 3.3.: Particle (red) in a grid cell.

The argument y will be omitted when no confusion has to be expected. To solve this
equation numerically, it is required to interpolate the velocity field at a given position
and to implement a time stepping scheme for the tracer particles. Additionally it is of
interest to determine other quantities like, e.g., the vorticity along Lagrangian particle
paths, which has also been implemented.

Interpolation of Eulerian Fields

As the tracer particles move between the Eulerian grid points, it is necessary to
interpolate the Eulerian field. We have chosen a tricubic interpolation scheme, which
yields a good balance between accuracy and performance.

For the following, consider the function f which is known on the Eulerian grid points.
The aim is to interpolate this function between these grid points. We introduce the
local coordinates

t =
x− xi

∆x
u =

y − yi
∆x

v =
z − zi
∆x

, (3.39)

which specify the particle position relative to the lower left corner of the cube defined by
the surrounding Eulerian grid points. Figure 3.3 exemplifies the situation. In the case of
a tricubic scheme we have to specify the coefficients cijk of the third-order polynomial

f (t, u, v) =
3∑
i=0

3∑
j=0

3∑
k=0

cijk t
iujvk . (3.40)

To determine the 64 coefficients, eight equations have to be specified on each of the
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eight cell corners, which involve the function f and its derivatives,

fαβγ =
3∑
i=0

3∑
j=0

3∑
k=0

cijk α
iβjγk (3.41a)

f
(t)
αβγ =

3∑
i=0

3∑
j=0

3∑
k=0

i cijk α
i−1βjγk (3.41b)

f
(u)
αβγ =

3∑
i=0

3∑
j=0

3∑
k=0

j cijk α
iβj−1γk (3.41c)

f
(v)
αβγ =

3∑
i=0

3∑
j=0

3∑
k=0

k cijk α
iβjγk−1 (3.41d)

f
(tu)
αβγ =

3∑
i=0

3∑
j=0

3∑
k=0

ij cijk α
i−1βj−1γk (3.41e)

f
(tv)
αβγ =

3∑
i=0

3∑
j=0

3∑
k=0

ik cijk α
i−1βjγk−1 (3.41f)

f
(uv)
αβγ =

3∑
i=0

3∑
j=0

3∑
k=0

jk cijk α
iβj−1γk−1 (3.41g)

f
(tuv)
αβγ =

3∑
i=0

3∑
j=0

3∑
k=0

ijk cijk α
i−1βj−1γk−1 (3.41h)

α, β, γ ∈{0, 1} .

Here the superscripts indicate differentiation with respect to the different variables, and
the subscript denotes the different corners of the cube. Since the function f is known
on the Eulerian grid, its derivatives are computed via centered finite differences. To
evaluate the derivatives, f has to be known on the 64 grid points{

xi+l,j+m,k+n

∣∣∣l,m, n ∈ {−1, 0, 1, 2}
}

. (3.42)

The derivatives are then given by

f
(t)
αβγ =

fα+1,β,γ − fα−1,β,γ

2
(3.43a)

f
(tu)
αβγ =

f
(t)
α,β+1,γ − f (t)

α,β−1,γ

2
(3.43b)

...
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The whole set of equations specifying the function f and its derivatives on the cell
corners is a linear system of equations, which can be seen introducing the notation

f
(λ)
αβγ =

3∑
i=0

3∑
j=0

3∑
k=0

A[λ,αβγ],[ijk]cijk (3.44)

α, β, γ ∈ {0, 1} λ ∈ {∅, t, u, v, tu, tv, uv, tuv}

with

A[λ,αβγ],[ijk] =



αiβjγk λ = ∅
i αi−1βjγk λ = t

j αiβj−1γk λ = u

k αiβjγk−1 λ = v

ij αi−1βj−1γk λ = tu

ik αi−1βjγk−1 λ = tv

jk αiβj−1γk−1 λ = uv

ijk αi−1βj−1γk−1 λ = tuv

(3.45)

α, β, γ ∈ {0, 1} i, j, k ∈ {0, 1, 2, 3} .

By a renaming of indices
(i, j, k)→ l = 16i+ 4j + k (3.46)

it is clear that A is a 64 × 64 matrix, which can be inverted. This determines the
interpolation coefficients

cijk =
∑

λ,α,β,γ

A−1
[ijk],[λ,αβγ]f

(λ)
αβγ . (3.47)

The explicit inversion of A has to be done once as it does not depend on f or its
derivatives. This was achieved with the computer algebra system Maple, which allows
to export the output in Fortran form.

Lagrangian Time Stepping Scheme

The parallelization of the Lagrangian part of the code is technically intricate as we will
describe later on. It turns out that a time stepping scheme is desirable, which has to be
evaluated only once each time step of the Eulerian part of the simulation. That is why a
third-order Adams-Bashforth-Moulton predictor-corrector scheme has been chosen. For
a detailed description of the algorithmic details we refer the reader to [Gea71, Dai09].
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This multistep method can be written down according to

X ′n,0 = Xn−1 +
∆t
2

(3Un−1 −Un−2) (3.48a)

X ′n,m = Xn−1 +
∆t
12
(
5u
[
X ′n,m−1, tn

]
+ 8Un−1 −Un−2

)
m ≤ mmax (3.48b)

Xn = X ′n,mmax
. (3.48c)

This notation requires some explanation. Primed variable indicate that their values are
only used within the time stepping scheme and will not be stored. Unprimed variables
in equations (3.48a) and (3.48b) correspond to values actually obtained in the past. For
example, Xn−1 and Un−1 denote the position and velocity of a Lagrangian particle at
time step tn−1, respectively. u[X ′n,m−1, tn] indicates that here an extra interpolation of
the velocity field is necessary within the scheme to obtain the value at the positions
X ′n,m−1. The first step (3.48a) is the so-called predictor step, here performed with a
second-order Adams-Bashforth scheme. Then mmax corrector steps follow according to
equation (3.48b), allowing for an increasingly precise estimate of the actual position of
the particle. In the simulation code we choose mmax = 2. The result of the last corrector
step then is taken as the value of the Lagrangian particle Xn, indicated in (3.48c). The
introduced error of this method is of O(∆t4).

This method can additionally be transformed from a multistep method to a multivalue
method, in this case the set of equation has been transformed to the so-called Nordsieck
form. This transformation basically allows to interpret part of the arising expressions in
terms of the coefficients of a Taylor expansion,

X(tn + ∆t) = Xn + ∆tUn +
1
2

∆t2An +O(∆t3) , (3.49)

where An denotes the Lagrangian acceleration. The main advantage is that adaptive
step size control is easily achievable within this formulation by adjusting the prefactors of
the Taylor expansion. A second (minor) advantage is that the Lagrangian acceleration is
automatically computed within this scheme. For starting up the particle integration, not
all necessary information for evaluating (3.48b) is available, that is why a second-order
Adams-Bashforth scheme (more precisely: the Nordsieck form of the Heun scheme)
is used in this situation. In addition to this third-order scheme, the corresponding
fourth-order scheme has been implemented. However, delivering satisfactory results, the
third-order scheme is used by default.

3.2. Parallelization, Code Design and Performance

3.2.1. The Need For a Parallel Implementation

The numerical simulation of turbulent flows longs for high resolutions for several reasons.
When inertial range statistics is studied, a broad inertial range is of interest, i.e.,
the forcing scale and the dissipative scale of the fluid should be well separated. This
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separation increases with the Reynolds number, that is why one seeks for high Reynolds
number simulations. For simulations with fixed box length (which basically limits the
integral length scale) increasing the inertial range means to decrease dissipative scale,
i.e., the size of the smallest structures. This obviously calls for a higher resolution. The
concept of the inertial range has already been introduced in section 2.4.3 (see figure
2.2) and some spectra from simulations are shown in figure 3.4. This whole issue can be
made more quantitative. The Kolmogorov length scale can be related to the Reynolds
number

η ∼
(
uL

ν

)−3/4

L = Re−3/4L . (3.50)

Here L, u and denote the integral length scale and a typical velocity, respectively. As
this scale should be adequately resolved, we demand ∆x ∼ η. For a box length of 2π
this gives an estimate how the number of grid points needed for simulation increases
with the Reynolds number

Nx =
(

2π
∆x

)3

∼
(

2π
L

)
Re9/4 . (3.51)

It is clear from the Courant-Friedrichs-Lewy conditions that also the time step has to
decrease with increasing grid resolution, which also has to be taken into account when
estimating the computational costs. The number of time steps to resolve a large-eddy
turnover time T increases according to

Nt =
T

∆t
∼ T

∆x/u
∼ T

L/u
Re3/4 . (3.52)

The overall computational costs roughly increase with the product of both

NxNt ∼
(

T

L/u

)(
2π
L

)3

Re3 , (3.53)

ending up with a cubic dependence on the Reynolds number. This immediately shows
why a parallel implementation is necessary.

3.2.2. Parallelization of the Eulerian Part

The simulation code is written as a MPI parallel version for the use on distributed
memory architectures. The parallelization scheme of the Eulerian part of the code
depends strongly on the type of fast Fourier transform employed. For the current
simulation code, the MPI parallel version of the FFTW 2.1.5 (downloadable from [fft], see
also [FJ05] for details) is used. This fast Fourier transform makes use of a slab domain
decomposition, i.e., the simulation domain is cut into slices, which is shown in figure
3.5. Consequently, each core holds only subarrays of the whole Eulerian fields needed
to compute the temporal evolution. As the Fourier transform is a nonlocal operation,
information from these subarrays has to be exchanged between all cores. This, however,
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Figure 3.4.: Energy spectra from different numerical simulations in a double logarithmic plot,
varying in grid resolution from 256 to 1024 grid points. The Taylor-based Reynolds numbers
are Rλ = 76, 112, 225. An inertial range is hardly detectable, however it is clear to see that the
range of wave number with approximate algebraic behavior extends with increasing Reynolds
number. The plots have been shifted vertically.
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Figure 3.5.: Slab domain decomposition.
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is managed by the implementation of the FFTW and does not have to be programmed
from scratch. While the FFTW routines are written in C, the rest of the simulation code
is written in Fortran 90.
One of the intricate tasks is to take into account the correct ordering of the Fourier

coefficients. This may be exemplified by the ordering of the corresponding wave vec-
tors. Once this array is specified correctly, all differentiation operations correspond to
componentwise multiplications with this array.

To keep the following considerations simple, we consider a N ×N ×N grid with box
length 2π. Additionally we assume that N is divisible by the number of cores Ncore. We
adopt Fortran notation in the following. For the non-parallelized case the array k is a
real

(
N
2 + 1

)×N ×N array (as we are considering real-to-complex transformations),
which takes the values

k[i, j, k] = [α, β, γ] with {i, j, k} ∈
[
1,
N

2
+ 1
]
× [1, N ]× [1, N ] , (3.54)

where

α = i− 1 (3.55a)

β =

{
j − 1 if 1 ≤ j ≤ N

2 + 1
j −N − 1 if N

2 + 2 ≤ j ≤ N (3.55b)

γ =

{
k − 1 if 1 ≤ k ≤ N

2 + 1
k −N − 1 if N

2 + 2 ≤ k ≤ N .
(3.55c)

In the case of a parallel version running on Ncore cores, a local subarray km[i, j, k] (with
m ∈ {0, . . . , Ncore − 1}) is allocated on each of the cores. With Nlocal = N

Ncore
each of

these arrays has the size
(
N
2 + 1

)×N ×Nlocal. The corresponding local offset is

kmoffset = m ·Nlocal . (3.56)

Consequently, the subarrays take the form

km[i, j, k] = [α, β, γ] with {i, j, k} ∈
[
1,
N

2
+ 1
]
× [1, N ]× [1, Nlocal] , (3.57)

with

α = i− 1 (3.58a)

β =

{
j − 1 if 1 ≤ j ≤ N

2 + 1
j −N − 1 if N

2 + 2 ≤ j ≤ N (3.58b)

γ =

{
k + kmoffset − 1 if 1 ≤ k + kmoffset ≤ N

2 + 1
k + kmoffset −N − 1 if N

2 + 2 ≤ k + kmoffset ≤ N .
(3.58c)
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The internal computation of the fast Fourier transform involves a number of transposi-
tions of the global array. As an operation involving global communication, this is rather
time-consuming. The FFTW allows to spare the final transposition, leaving the last two
dimensions in transposed order. This can be taken into account by exchanging the last
two dimensions of the wave vector array,

kmtransposed[i, j, k] = [α, γ, β] {i, j, k} ∈
[
1,
N

2
+ 1
]
× [1, N ]× [1, Nlocal] . (3.59)

The performance gain is up to 30% per computed Fourier transform. We refer the reader
to the online documentation of FFTW for more detailed information.
Apart from the array handling, a number of global communication operations arise

throughout the code. For example, the CFL restriction necessitates to determine the
maximal velocity component for the whole velocity field. Elsewhere in the code mean
values like the kinetic energy or enstrophy are evaluated as averages over the whole
field. These quantities are evaluated using global reduction operations implemented in
the MPI library.
Input and output of the Eulerian field is done with MPI I/O, which allows to write

the local arrays to a single file, which holds the global arrays. This is especially useful
when the checkpointing capabilities of the code are used and a simulation is continued
with a differing number of cores.

3.2.3. Parallelization of the Lagrangian Part

Several technical aspects have to be taken into account for the parallelization of this
part of the code. First, the particles move freely through the whole simulation domain
passing through several slices of the decomposed domain. For the typical scenario of fully
developed homogeneous isotropic turbulence the tracer particles may be assumed to
be uniformly distributed over the whole simulation domain. To achieve load balancing,
each core performs the computations for the Lagrangian particles residing in its slice.
As the domain is decomposed in z-direction, the core the tracer particle belongs to is
determined by

z(t+ ∆t) 7→

[[
z(t+∆t)

∆x

]]
mod N

N/Ncore

 . (3.60)

In this mapping, the nominator determines the nearest (rounded to the next integer)
local grid point, division by the denominator and rounding then maps this value to the
actual number of the core. z(t+ ∆t) is approximated by the predictor step of the time
stepping scheme. More details on this can be found in [Dai09].
Second, for a Lagrangian tracer particle near the edge of a slice, the interpolation

requires data from neighboring grid points. This requires an exchange of Eulerian data
each time step. In the numerical implementation halo slices of two grid points width are
exchanged each time step for each quantity, that is interpolated. This is especially easy
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Figure 3.6.: Scaling results of a 10243 run with and without ten million tracer particles. The
gray line indicates ideal scaling. The inset display the time needed for a single simulation step.

to implement and turned out to be rather performant; this part of the communication
consumes about 2%–12% of the time spent for the Lagrangian part of the code [Dai09].
Finally, input and output of Lagrangian data is also implemented using MPI I/O. It

turns out that disk access is a performance bottleneck, that is why the Lagrangian data
is buffered, such that I/O is only necessary every several hundreds of time steps. To
achieve the required ordering of the particles, each particle carries an id and is sent to
its “home core” prior to output.

3.2.4. Scaling Performance

The production runs presented in this thesis were conducted within the grand challenge
project h0963 at the LRZ Munich. The machine is a SGI Altix 4700, a Linux based
cluster with 9728 cores based on Intel Itanium2 Montecito Dual Core processors.
For the scaling tests we chose a typical simulation scenario with a grid resolution of 10243

and optionally ten millions of Lagrangian tracer particles. The tests were performed on
the low density partitions of the HLRB II, the results are shown in figure 3.6. Both the
simulations with and without particles perform very good. Slight performance penalties
arise when using two partitions. As the calculation of the time evolution of the flow
fields relies heavily on the use of Fourier transforms, the performance and scalability
of this part of the code mirrors the effective implementation of the FFTW. But also the
parallel performance of the Lagrangian part of the code is quite satisfactory. The code
scales just as well as without particles and the overall computational costs increase by
15–20%.
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3.3. Overview of Conducted Simulations

3.3.1. Typical Runs

A typical simulation basically consists of two stages. First, a proper initial condition
has to be obtained. To this end an artificial large-scale initial condition decays for some
large-eddy turnover times. During this time a turbulent flow develops. Then the forcing
is applied, and the system approaches statistical stationarity after some large-eddy
turnover times. This simulation stage is performed with adaptive time stepping. To
save computational costs, the initial conditions for highly resolved simulations can be
obtained from lower resolved simulations by up-sampling in Fourier space. The duration
of the thermalization stage of the up-sampled field is shorter than for a random large-
scale initial condition. It turns out that this thermalization stage of the simulation is
rather costly, making up a considerable amount of the computational resources needed.

After the preparation of proper initial conditions the actual simulation is performed.
Here, the flow field is advanced in the statistically stationary state. During this pe-
riod fields (velocity, vorticity, velocity gradients etc.) are stored with a sampling rate
sufficient to form a statistical ensemble. The statistical analysis is performed during
the postprocessing stage. Optionally tracer particles are advected with the flow and
stored frequently. A typical 10243 run requires several tens of thousands of cpu hours
for the preparation of initial conditions and the actual simulation. An Eulerian field
here requires 12 GB of disk space, and the Lagrangian data produced per time step is
of the order 100 MB. In total, such a run easily produces a terabyte of data. Within the
grand challenge project runs with resolutions between 2563 and 10243 grid points with
Taylor-based Reynolds numbers ranging from about 75 to 250 have been performed,
giving insight into the Reynolds number dependence of the statistical quantities under
consideration as well as resolution issues.

3.3.2. Characterizing Quantities

For comparison with other simulations or experiments introducing a number of charac-
terizing quantities is useful. These quantities are determined for each simulation either
as an average over the full simulation or as an instantaneous average for a fixed time
step. The latter then allows to judge, e.g., the stationarity of the simulation. Some of
the quantities have already been introduces earlier in this thesis, for a better overview,
however, we repeat them here.
Maybe the most fundamental quantity is the Reynolds number defined as

Re =
urmsL

ν
. (3.61)

Here urms =
√

1
3〈u2〉 =

√
2
3Ekin denotes the root mean square of the velocity of a single
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component, ν denotes the kinematic viscosity. The integral length scale, estimated as2

L ≈ u3
rms

〈ε〉 , (3.62)

involves the average rate of energy dissipation

〈ε〉 =
ν

2

〈
3∑

i,j=1

(
∂ui
∂xj

+
∂uj
∂xi

)2
〉

. (3.63)

Another number quantifying the large scales of the flow is the integral time scale

T =
L

urms
. (3.64)

The Taylor-based Reynolds number can be estimated from the Reynolds number by
[Dav04, Pop00, Fri95]

Rλ =
√

15Re . (3.65)

Apart from the rate of energy dissipation, the small scales of the flow are characterized
by the Kolmogorov scales, which are defined as

η =
(
ν3

〈ε〉
)1/4

(3.66a)

τη =
(
ν

〈ε〉
)1/2

(3.66b)

uη = (ν〈ε〉)1/4 . (3.66c)

The Kolmogorov length scale helps to quantify the spatial resolution of a simulation.
As a rule of thumb, a simulation is considered as well-resolved if

qr = γ kmax η & 1.5 , (3.67)

where γ is a factor determined by the dealiasing technique. For the smooth Fourier filter,
this factor can be estimated as γ = 0.8 as the filter is approximately constant for the first
80% of wave numbers, see figure 3.2. As the smallest structure of the fields are of about
10η of size, this rule basically suggests to resolve these structures. Figure 3.7 shows
energy spectra for different values of qr, demonstrating the effect of under-resolution.

The parameters and characterizing quantities for the production runs performed for
the statistical evaluations in this thesis are summarized in table 3.3.2.

2This estimate usually involves an additional constant of the order one. We here, however, adapt the
estimate frequently used in the literature involving experiments or numerical simulations. Note that
changes in this estimate directly affect the numerical value of the Reynolds number.
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sim_256 sim_512 sim_1024 sim_1024_ext
N 256 512 1024 1024
Re 389 841 3386 3373
Rλ 76 112 225 225
urms 0.26 0.54 0.81 0.81
ν 0.001 0.001 0.0004 0.0004
L 1.49 1.55 1.67 1.67
T 5.69 2.86 2.07 2.06

duration (in T ) 181.0 78.7 5.8 13.6
η 0.017 0.010 0.004 0.004
τη 0.289 0.098 0.0356 0.0355
uη 0.059 0.101 0.106 0.106
Ekin 0.102 0.442 0.98 0.98
〈ε〉 0.012 0.103 0.316 0.317
qr 1.74 2.03 1.55 1.54
λ 0.5 0.5 < 0.5 < 0.5

Table 3.1.: Parameters and characterizing quantities for the different simulations.
sim_1024_ext is an extended version of sim_1024 for a better convergence to isotropic statistics.
All runs have been conducted with the energy-conserving forcing scheme
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Figure 3.7.: Energy spectra for three different values of qr from a simulation with 2563 grid
points. The under-resolved simulation displays strong spectral blocking for high wave numbers.
The small-scale statistics of this simulation is supposed to be affected by this artifact. Lowering
the effective resolution further will eventually cause a numerical instability.
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3.4. DNS and Statistical Symmetries

As discussed in chapter 2, statistical hydrodynamics is based on defining suitable
averages. Within theoretical considerations the averages are usually ensemble averages
over a large number of realizations. For highly resolved numerical simulations, however,
this is computationally out of reach. In the case of numerical results the ensemble
average is usually replaced by a temporal average in the case of stationary turbulence
and a spatial average in the case of homogeneous turbulence. Isotropy additionally
allows to treat different spatial direction equivalently and helps to simplify statistical
quantities as we have motivated in chapter 2.

Whether it is possible to define a statistical ensemble in this manner can be doubted
on different levels. On a very fundamental level, it is not clear if turbulence is ergodic.
If not, the above replacement of averages is forbidden. A deeper discussion on this point
is presented in [Tsi09]. Based on the results presented there and in the corresponding
references, we take the assumption of ergodicity for granted, at least to the extent that
averaging over single realizations of the flow is assumed to yield statistically robust
results. Even if one accepts these points, however, several technical aspects have to be
taken into account.
In order to make up a proper ensemble under temporal averaging, the fields from

the numerical simulations should be widely separated in time, such that no temporal
correlations exist any more. This obviously necessitates long runs. That is why it might
be useful, at least for some statistical analyzes, to go for a rather long simulation instead
of choosing a higher grid resolution and consequently Reynolds number.
Comparable problems arise, when spatial averaging is considered. As the Reynolds

number increases with the integral length scale L, increasing this quantity is desirable.
At the same time, when L becomes comparable to the length of the simulation domain,
finite size effects induced by the periodic boundary conditions may play a role. This
issue is discussed in [Dav04], where it is estimated that simulations, in which L is twenty
times smaller than the box length, should reduce the problem. This, however, results in
ridiculously low Reynolds numbers and is therefore usually not practiced.
The issue of isotropy has already been indicated in combination with the forcing

schemes. A temporal evolution of the forcing scales has been identified as a necessary
condition to obtain isotropic statistics on the large scales.

This brings us to another important point. The capability of a numerical simulation
to fulfill these statistical symmetries varies strongly with the type of quantity under
consideration. It was shown in the introductory part of this thesis that, e.g., the vorticity
appears to be shorter correlated than the velocity. In the same manner one can expect
that the vorticity varies on a much shorter time scale, probably comparable to τη, whereas
the velocity varies on a time scale comparable to T . Thus data from a short numerical
simulation may make up a good statistical ensemble when small-scale quantities are
considered, while it may yield poor results in terms of long-range correlated quantities.
This point shall be made clear with a couple of numerical examples now. Figures 3.8
and 3.9 show PDFs and longitudinal correlation functions of velocity and vorticity for
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an increasing number of fields, over which the average is taken. The fields are taken
from the simulation sim_256 and are approximately separated by 1.8T in time. Besides
the increasing statistical quality, it is clear to see that the quantities converge to an
isotropic state with increasing number of field realizations. The velocity takes more field
realizations to show approximately isotropic statistics.

Consequently, the statement of this short paragraph is that a single snapshot from a
numerical simulation cannot be expected to fulfill statistical homogeneity and isotropy.
If, however, a well-suited external forcing allows to perform a stationary simulation over
a long duration, the gathered data is able to constitute an ensemble which approximately
fulfills the idealized concept of stationary, homogeneous and isotropic turbulence.
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Figure 3.8.: PDFs of the components of velocity (left) and vorticity (right). From upper to
lower panel: average taken over 1, 5, 10, 101 field(s), respectively. Nearly isotropic statistics are
obtained with an increasing number of samples. The vorticity PDFs converge earlier to an
isotropic state.
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Figure 3.9.: Longitudinal correlation functions of the components of velocity and vorticity.
From upper to lower panel: average taken over 1, 5, 10, 101 field(s), respectively. Nearly isotropic
statistics are obtained with an increasing number of samples.
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Dynamics and Statistics of
Three-Dimensional Turbulence





4. Statistical Characterization of Fully
Developed Turbulence Obtained by
DNS

In this chapter we will present a collection of statistical quantities of fully developed
turbulence obtained by the direct numerical simulation code described in the last
chapter. Therefore the purpose of this chapter is two-fold. On the one hand, it will
further elucidate the statistical nature of fully developed turbulence, on the other hand
it serves as a benchmark presentation to characterize the numerical results of the thesis.

This chapter is structured as follows. After presenting PDFs of the velocity, vorticity
and velocity gradient tensor to characterize the intermittent nature of the small scales
in turbulence, we will turn to two-point statistics characterizing the direct energy
cascade. We then establish a number of new theoretical kinematic relations on two-point
correlations of different turbulent observables, which then will be checked with our
numerical simulations. To give a more detailed characterization of the fine-scale structure
of turbulence, we compare the properties of turbulent fields to those of random fields
in the following section. The chapter is closed with a comparison of DNS results and
experimental data of a free jet and a cylinder wake in order to highlight the advantages
and disadvantages of DNS over experiments.

4.1. PDFs and Structure Functions

4.1.1. Single-Point Statistics

We start with a presentation of single-point statistics of the basic dynamical quantities.
Figure 4.1 shows the PDF of the velocity components and its magnitude. As can be
seen from the PDFs of the components, the statistics is nearly isotropic with some
deviations for large values of velocity. The PDFs are nearly Gaussian, but display
systematic deviations toward sub-Gaussian tails. This becomes especially clear, when
the magnitude of velocity is considered and compared to an angle-integrated Gaussian.
This observation is consistent with earlier numerical and experimental investigations
[Bat53, VM91, GFN02, NWL+97], but due to the nearly Gaussian behavior remains an
often-discussed issue up to today. We will present a theoretical framework explaining
the deviations from Gaussianity in chapter 7.

In figure 4.2 the single-point statistics of the vorticity is presented. In contrast to the
velocity field, the vorticity exhibits strongly non-Gaussian PDFs with slowly decaying
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Figure 4.1.: PDFs of the components of the velocity (upper figure) and the magnitude of
velocity (lower figure). The PDFs display nearly Gaussian behavior with a tendency to sub-
Gaussian tails (sim_512).
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Figure 4.3.: PDFs of the components of the velocity gradient tensor. The PDFs of the diagonal
components of the tensor are skewed and heavy-tailed. The the off-diagonal components display
even stronger tails, but are non-skewed (sim_512).

tails, i.e., the occurrence of strong vorticity events is orders of magnitudes more likely
than for a Gaussian field. The collapse of the different components indicates that the
vorticity statistics shows less anisotropies, as expected from a quantity fluctuating on
small scales. The investigation of the vorticity statistics and its relation to dynamical
effects like enstrophy production and dissipation will be at the center of the theoretical
results presented in chapter 8.
We finally turn to a related quantity, the velocity gradient tensor. The single-point

PDFs of all nine components are shown in figure 4.3. One can observe that the diagonal
components show a different statistics than the off-diagonal elements. While the diagonal
components are skewed, the off-diagonal components are not. On the other hand, the
off-diagonal entries display a greater flatness as will become more clear, when the
cumulants of the velocity increments will be considered in one of the following sections.
Instead of considering the nine components of the velocity gradient tensor independently,
one often focuses of the statistics of the invariants, here defined as the prefactors of the
characteristic polynomial of this tensor,

χA(X) = X3 +Q′X +R′ . (4.1)

Here we have already taken into account solenoidality of the velocity field, which implies
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Figure 4.4.: Joint PDF of the velocity gradient tensor invariants (sim_512). The bulk of the
PDF is located in the swirling regions of the flow and is elongated along the right branch of the
Viellefosse line.
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TrA = 0. In this case the invariants take the form

Q′ = −1
2

TrA2 (4.2a)

R′ = −1
3

TrA3 = −detA . (4.2b)

Regarding the eigenvalues of A, a special role here is played by the so-called Viellefosse
line, which is the discrimant of the characteristic polynomial of A,

D =
27
4
R′2 +Q′3 (4.3)

as this line separates regions with purely real eigenvalues (D < 0) from regions with
complex eigenvalues (D > 0). In this sense D = 0 separates regions with locally
predominant strain from regions with locally predominant swirl (see, e.g., [Dav04] for
a detailed discussion). Not only because of this simple interpretation the invariants
of the velocity gradient tensor are a well-studied object and are the starting point for
various modeling approaches [CPC90, Can92, MDV98, CPS99, CM06]. The joint PDF
of Q∗ = Q′

〈TrS2〉 and R
∗ = R′

〈TrS2〉
3
2
is shown in figure 4.4. It displays a peculiar teardrop

shape, where the bulk of the PDF is located in the swirling regions of the R′-Q′-plane.
Furthermore, one can observe a pronounced asymmetry, the PDF is elongated along
the right branch of the Viellefosse line. As this asymmetry is absent in the case of
Gaussian velocity statistics, it can be regarded as a typical signature of three-dimensional
turbulence.

The dynamics of the invariants can be studied with the help of the equation of motion
of the velocity gradient tensor (1.11). In the case of the Burgers equation the pressure
Hessian, one of the main mathematical difficulties is absent, but an additional invariant,
the divergence of the velocity field, comes into play. This will be studied analytically in
the case of the n-dimensional Burgers equation in chapter 5.

4.1.2. Two-Point Statistics

Velocity Increment PDFs

A very common way to characterize the two-point statistics of the velocity field is the
investigation of velocity increments, i.e. velocity differences separated by a distance
vector r. The longitudinal velocity increment is defined as

δv(r) = [u(x+ r)− u(x)] · r̂ . (4.4)

One can choose two additional transversal directions, such that

r̂⊥ ŝ⊥ t̂ . (4.5)
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Figure 4.5.: Longitudinal velocity increment PDFs as a function of scale for
r ∈ {1.2, 2.5, 4.9, 9.9, 19.8, 39.6, 79.1, 158.3, 316.6 } η (straight lines, from top to bottom).
The dashed line corresponds to the PDF of a diagonal component of A (sim_512).
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Figure 4.6.: Transversal velocity increment PDFs as a function of scale for
r ∈ {1.2, 2.5, 4.9, 9.9, 19.8, 39.6, 79.1, 158.3, 316.6} η (straight lines, from top to bottom).
The dashed line corresponds to the PDF of an off-diagonal component of A (sim_512).
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Figure 4.7.: Longitudinal velocity increment PDFs as a function of scale for
r ∈ {1.6, 3.3, 6.5, 13.0, 26.0, 52.0, 104.1, 208.2, 416.3, 823.6 } η (from top to bottom,
sim_1024).

With this one can define the two transversal velocity increments

δvs(r) = [u(x+ r)− u(x+ r)] · ŝ and (4.6a)

δvt(r) = [u(x+ r)− u(x+ r)] · t̂ , (4.6b)

which, however, exhibit the identical statistics due to isotropy. The PDFs of the longitu-
dinal and transversal velocity increments are shown in figures 4.5 and 4.6. The PDFs
evolve non-self-similar in scale, i.e., a continuous shape deformation over scale is observed.
The PDFs are highly non-Gaussian with pronounced tails for small separations and
tend to more Gaussian behavior for increasing separations. As the velocity increment is
proportional to the velocity gradient for small separations, the statistics on the smallest
scales almost coincides with the corresponding velocity gradient tensor PDFs, which
are also shown for reference. The absence of a self-similar range is usually referred to
as intermittency and shows that the simple reasoning of the K41 phenomenology is
insufficient to characterize the statistics of fully developed turbulence. At second sight
one can note that the longitudinal PDFs are strongly skewed, whereas the transversal
PDFs are not. This skewness is related to the energy transfer in scale and will be
discussed below. The longitudinal velocity increments for a higher Reynolds number
(Rλ = 225 compared to Rλ = 112) are shown in figure 4.7. While the qualitative shape
is comparable to the simulation at lower Reynolds number, the PDFs at small scales
deviate even stronger from Gaussianity, indicating that the occurrence of extreme events
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Figure 4.8.: Compensated third-order structure functions (sim_256, sim_512, sim_1024_ext).

becomes more probable for increasing Reynolds numbers. This observation will be made
more precise in the following sections, when the fourth-order cumulants are studied.

The Direct Energy Cascade

Instead of considering the increment PDFs, one can also study their moments as a
function of scale. These moments are the structure functions, which have already played
a central role in the Kolmogorov phenomenology in chapter 2.4.3. The third-order
structure function, which is related to the energy transfer in scale, is of considerable
interest in this context, as the 4/5-law (2.40) is derived rigorously from the Navier-Stokes
equation and makes a prediction on its functional shape within the inertial range of
scales. The third-order structure function has been evaluated from the direct numerical
simulations for three different Reynolds numbers and is shown in figure 4.8. It has been
compensated with the 4/5-law, such that a plateau would indicate the inertial range. As
can be seen, deviations occur, which decrease with increasing Reynolds number. The
simulation with Reynolds number Rλ = 225 displays the slight onset of a scaling range,
indicating that simulations at higher Reynolds numbers are needed to study inertial
range statistics. These results are consistent with the findings presented in [GFN02],
where we refer the reader to for an extended study of the Reynolds number dependence
of the velocity statistics.
According to the K41 phenomenology, the energy spectrum is expected to display a

k−
5
3 scaling range within the inertial range. It is shown in figure 4.9 for three different

Reynolds numbers. No clear scaling range is found also here, consistent with the behavior
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Figure 4.9.: Kinetic energy spectra (sim_256, sim_512, sim_1024). The inset shows the
spectra compensated with the Kolmogorov prediction E(k) ∼ 〈ε〉 23 k− 5

3 .

of the third-order structure function. It can be noted, though, that the wave vector
band of excited modes increases with Reynolds numbers, so that the emergence of a
clear scaling range may be expected for higher Reynolds numbers.

The simulations performed for this thesis are comparably well-resolved, as the statisti-
cal theory developed from chapter 6 on needs the investigation of derivatives of velocity
and vorticity, which necessitates a good resolution of the fields. This can especially be
seen from the energy spectra, which do not exhibit a strong spectral blocking for the
high wave vectors. Simulations aimed at studying inertial range properties are usually
under-resolved on the smallest scales, which make them inappropriate for our purposes.
As studying inertial range properties of turbulence is not at the focus of this thesis, the
absence of a clear inertial range scaling is unimportant for our investigations.

Structure Functions and Cumulants

After the last remarks it cannot be expected that the remaining structure functions
exhibit a clear scaling range. Still a presentation is useful as a benchmark. Figure 4.10
shows the even longitudinal structure functions up to order eight. Beyond the dissipative
range a clear change of the functional shape with an approximate scaling region can
be seen. The scaling exponents have been estimated by compensating the structure
functions and are plotted for reference. They clearly deviate from the K41 prediction
Sn(r) ∼ (〈ε〉r)n/3, indicating intermittency. The same observation can be made in the
case of the transversal structure functions, which are displayed in figure 4.11. Here,
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Figure 4.10.: Longitudinal velocity structure functions. The approximate scaling region
clearly deviates from the K41 prediction. The structure functions have been shifted verti-
cally (sim_1024_ext).

even stronger deviations from a self-similar behavior occur. Both the values for the
longitudinal and transversal scaling exponent are in good agreement with the results
reported in [GFN02].

Figure 4.12 shows the longitudinal structure function for the vorticity. Although these
do not have the same physical meaning as the velocity structure function, a direct
comparison with figure 4.10 reveals that they saturate quickly, which indicates that
the correlations of the vorticity field decay faster than those of the velocity field. This
is why the vorticity field is often referred to as a (comparably) short-range correlated
quantity. The second-order correlations of velocity and vorticity will be focused on in
the following section.
When it comes to characterizing the deformation of the PDFs across scales, it is

convenient to investigate the skewness and the kurtosis of the increment PDFs. For
instance, for the longitudinal velocity increments these quantities are defined as

K3(r) =
〈δv3〉
〈δv2〉 3

2

(4.7a)

K4(r) =
〈δv4〉
〈δv2〉2 − 3 , (4.7b)

where we have already made use of the fact that the mean velocity increment vanishes.
In the case of a Gaussian distribution one finds K3(r) = 0 and K4(r) = 0, such
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Figure 4.11.: Transversal velocity structure functions. The structure function have been shifted
vertically (sim_1024_ext).
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Figure 4.12.: Longitudinal vorticity structure functions. The structure functions saturate
quickly, indicating that the vorticity is short-range correlated compared to the velocity
(sim_1024).
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that these quantities are particularly good measures for quantifying deviations from
Gaussianity. The compensated cumulants are shown in figure 4.13 for three Reynolds
numbers Rλ ∈ {76, 112, 225}. As already could be seen from figures 4.5 and 4.7, the
velocity increment statistics is negatively skewed. The skewness seems to coincide for the
smallest possible distances and tends to zero as the integral length scale is approached.
The vanishing skewness for large length scales basically indicates that the single-point
velocity PDF is symmetric. This interpretation is possible, as for large separations, where
the two-point PDF of velocity becomes statistically independent, the increment PDF is
the convolution of the single-point PDF. Turning to the kurtosis or flatness, this quantity
decreases rapidly for small separations from highly non-Gaussian values, something
which is often referred to as small-scale intermittency. The kurtosis increases as a
function of Reynolds number, showing that deviations from Gaussianity increase with
the Reynolds number. For integral separations the kurtosis drops below zero, indicating
that the single-point velocity PDF will exhibit sub-Gaussian tails. Interestingly, this
feature can already be observed in the measurements by Townsend presented in [Bat53],
but up to today is subject to intense discussions.
Skewness and kurtosis are also evaluated for the transversal velocity increments in

figure 4.14. As already indicated in figure 4.6 the skewness of this quantity vanishes. The
kurtosis, however, takes higher values than in the case of the longitudinal increments, i.e.,
deviations from Gaussianity are stronger. As for the longitudinal velocity increments,
these deviations increase with Reynolds number.

Finally, we present K3 and K4 for the longitudinal vorticity increments in figure 4.15.
Here, also the skewness vanishes, as the vorticity increment PDFs are symmetric. The
kurtosis decays rapidly from large values to an approximately constant behavior, which
already has been highlighted in the discussion of the structure functions.

4.2. Eulerian Two-Point Correlations: Kinematic Relations
and DNS Results

In this section we want to take a closer look at Eulerian two-point correlation functions.
It turns out that relations for correlation functions of the velocity, vorticity and the
velocity gradient tensor can be derived making use of the kinematics of solenoidal fields.
We have already seen in chapter 2.3 how homogeneous isotropic turbulence allows
to establish kinematic relations. It was shown that the longitudinal and transversal
correlation functions of the two-point covariance tensor

Ruij(r) = 〈ui(x1)uj(x2)〉 =
〈u2〉

3

[
gu δij + (fu − gu)

rirj
r2

]
(4.8)

obey the simple relation

gu(r) = fu(r) +
1
2
rf ′u(r) , (4.9)

which can be shown by exploiting solenoidality of Ruij . The longitudinal and transversal
correlation functions can be used to define the corresponding integral length scales, e.g.,
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Figure 4.13.: Third and fourth cumulants for the longitudinal velocity increment at three
different Reynolds numbers (sim_256, sim_512, sim_1024_ext).
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different Reynolds numbers (sim_256, sim_512, sim_1024_ext).
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Figure 4.15.: Third and fourth cumulants for the longitudinal vorticity increment at three
different Reynolds numbers (sim_256, sim_512, sim_1024).

the longitudinal integral length scale of the velocity is given by

Lu,l =
∫ ∞

0
dr fu(r) . (4.10)

Because of equation (4.9) the transversal integral length scale is not independent,
however, by integration by parts we find the simple relationship

Lu,t =
∫ ∞

0
dr gu(r) =

∫ ∞
0

dr
(
fu(r) +

1
2
rf ′u(r)

)
=

1
2
Lu,l . (4.11)

We now want to establish further kinematic relations for the vorticity. To this end we
first consider the two-point vorticity covariance tensor

Rωij(r) = 〈ωi(x1)ωj(x2)〉 =
〈ω2〉

3

[
gω δij + (fω − gω)

rirj
r2

]
. (4.12)

As also the vorticity field is solenoidal, we of course find the two correlation functions
to be related according to

gω(r) = fω(r) +
1
2
rf ′ω(r) (4.13)

like in the case of the velocity covariance tensor. Furthermore, it is possible to establish
a relation between the velocity correlations and the vorticity correlations as the vorticity
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covariance tensor can be obtained from the velocity covariance tensor by taking the
curl,

Rωij(r) = εikl εjmn
∂

∂x1,k

∂

∂x2,m
〈ul(x1)un(x2)〉

= −εikl εjmn ∂

∂rk

∂

∂rm
Ruln(r)

= −δij∆Rull(r) +
∂2

∂ri∂rj
Rull(r) + ∆Ruij , (4.14)

a result, which has already been presented in [Bat53]. By explicitly evaluating the
differentiation of the covariance tensor, this relation can be used to relate the correlation
functions fu and fω. And although these calculations likely have been carried out in
the past, the author is not aware of any reference with the resulting relations. The
calculation is straightforward and mainly involves book keeping and using the relation
(4.9). The result reads

fω(r) =
〈u2〉
〈ω2〉

[
−4
r
f ′u(r)− f ′′u (r)

]
(4.15a)

gω(r) =
〈u2〉
〈ω2〉

[
−2
r
f ′u(r)− 3f ′′u (r)− 1

2
rf ′′′u (r)

]
, (4.15b)

showing that the full vorticity covariance tensor can be written as a function of the
longitudinal velocity autocorrelation function only. It is readily checked that these
relations also fulfill equation (4.13). It is furthermore evident that the integral length
scales of the vorticity can be determined from the longitudinal velocity correlation
function.
We now put this reasoning one step further and consider the two-point correlation

tensor of the velocity gradients

RA
ijkl(r) = 〈Aik(x1)Ajl(x2)〉 . (4.16)

Being a fourth-order tensor, its general structure will be of the form

RA
ijkl(r) = a1 δikδjl + a2 δijδkl + a3 δilδjk + a4 δik

rjrl
r2

+ a5 δjl
rirk
r2

+ a6 δij
rkrl
r2

+ a7 δkl
rirj
r2

+ a8 δil
rjrk
r2

+ a9 δjk
rirl
r2

+ a10
rirjrkrl
r4

, (4.17)

where the prefactors ai(r) depend all on the absolute value of the distance vector.
Because of solenoidality not all of the scalar functions are independent. We have the
relations

RA
ikjk(r) =

(
3a1 + a2 + a3 + a4

)
δij +

(
3a5 + a6 + a7 + a8 + a9 + a10

) rirj
r2

= 0

RA
kikj(r) =

(
3a1 + a2 + a3 + a5

)
δij +

(
3a4 + a6 + a7 + a8 + a9 + a10

) rirj
r2

= 0 ,

(4.18)
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which implies that all of the brackets have to vanish independently. Now choosing
r = re1 (i.e., the index 1 corresponds to the longitudinal direction, whereas the indices
2 and 3 denote the two transversal directions) allows to determine which correlations
contribute to the prefactors ai. One obtains

a1 = RA
2323 (4.19a)

a2 = RA
2233 (4.19b)

a3 = RA
2222 −RA

2323 −RA
2233 (4.19c)

a4 = RA
2121 −RA

2323 (4.19d)

a5 = RA
1212 −RA

2323 (4.19e)

a6 = RA
2211 −RA

2233 (4.19f)

a7 = RA
1122 −RA

2233 (4.19g)

a8 = RA
2112 −RA

2222 +RA
2323 +RA

2233 (4.19h)

a9 = RA
1221 −RA

2222 +RA
2323 +RA

2233 (4.19i)

a10 = RA
1111 +RA

2222 −RA
2121 −RA

1212 −RA
2211 −RA

1122 −RA
1221 −RA

2112 . (4.19j)

Following the same steps as in the case of the vorticity, this whole tensor is now expressed
in terms of the longitudinal velocity autocorrelation function. To this end we evaluate

RA
ijkl(r) =

∂

∂x1,k

∂

∂x2,l
〈ui(x1)uj(x2)〉

= − ∂

∂rk

∂

∂rl
Ruij(r) (4.20)

and make use of the relation (4.9). After collecting all terms we arrive at

a1 = a3 =
〈u2〉

6

[
f ′u
r

]
(4.21a)

a2 =
〈u2〉

6

[
−3

f ′u
r
− f ′′u

]
(4.21b)

a4 = a5 = a7 = a8 = a9 =
〈u2〉

6

[
−f
′
u

r
+ f ′′u

]
(4.21c)

a6 =
〈u2〉

6

[
3
f ′u
r
− 3f ′′u − rf ′′′u

]
(4.21d)

a10 =
〈u2〉

6

[
3
f ′u
r
− 3f ′′u + rf ′′′u

]
. (4.21e)

Combining the relations (4.19) and (4.21) now allows to obtain the expressions for
arbitrary components of RA

ijkl and for the corresponding normalized correlation functions.
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For example, one easily obtains

fA,1111(r) =
RA

1111(r)
RA

1111(0)
= −5

〈u2〉
〈ω2〉f

′′
u (4.22a)

fA,2323(r) =
RA

2323(r)
RA

2323(0)
= −5

〈u2〉
〈ω2〉

f ′u
r

(4.22b)

fA,2233(r) =
RA

2233(r)
RA

2233(0)
=

5
4
〈u2〉
〈ω2〉

[
−3

f ′u
r
− f ′′u

]
, (4.22c)

to explicitly evaluate only a few ones. Although the calculations of these results are
straightforward but somewhat exhaustive, the author here also is unaware of any
reference in the literature. Apart from the fact that these considerations allow for a very
simple characterization of the two-point correlations of the velocity gradients, further
interesting results can be obtained. For example, we obtain for the integral length scale
of RA

1111

LA,1111 =
∫ ∞

0
dr fA,1111(r) = −5

〈u2〉
〈ω2〉

[
f ′u(r)

]0
∞ = 0 , (4.23)

which, as this correlation should be non-vanishing pointwise, allows to conclude that
this correlation will exhibit a zero-crossing.
All of these kinematic relations can now be checked numerically. To this end we

compute the correlation functions of the velocity, vorticity and velocity gradient directly
from the data obtained by DNS and compare them to the kinematic relations by
numerically differentiating the longitudinal velocity autocorrelation function. Some
of the results are shown in figure 4.16. The longitudinal velocity correlation function
decays slowly as a function of distance, the transversal correlation function shows the
characteristic zero-crossing, which has been repeatedly reported (see, e.g., [MY75]).
Compared to that, the correlation functions of the vorticity and velocity gradient
tensor decay more rapidly, indicating that these quantities vary on much shorter scales.
Regarding the kinematic relations for the small-scale quantities, i.e., the vorticity and
the velocity gradient tensor, a perfect agreement is found with the correlation function
obtained directly by DNS. The correlation function fA,1111(r) displays the predicted zero-
crossing at about 12η. The kinematic relation for the transversal velocity shows slight
deviations at large scales, which may be accounted for slight large-scale anisotropies of
the simulation sim_512. We close this section with the remark that similar relations can
be obtained for Lagrangian correlation tensors. While in the case of Eulerian correlations
we may interchange spatial derivatives with ensemble averages, in the case of Lagrangian
correlations temporal derivatives commute with ensemble averaging.

4.3. A Comparison of Turbulent and Random Fields

Up to now we have presented a collection of quantities typically used to characterize
the statistical properties of fully developed turbulence. To highlight the typical features

76



4.3. A Comparison of Turbulent and Random Fields

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

co
rr

el
at

io
n

r/L

fu
gu
fω
gω

fA,1111

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60

co
rr

el
at

io
n

r/η

fu
gu
fω
gω

fA,1111

Figure 4.16.: Comparison of kinematic relations (points) with directly obtained DNS results
(straight lines). The correlation functions for the vorticity and the velocity gradient tensor
collapse perfectly with the correlation functions computed from the longitudinal velocity
correlation function. Slight deviations are visible for the transversal velocity autocorrelation
function, which may be accounted to large-scale anisotropies. The lower figure shows a zoom to
clarify the behavior for small separations (sim_512).
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Figure 4.17.: Volume rendering of a randomized vorticity (left) and velocity field (right). The
fields are the randomized versions of the fields presented in the upper panel of figure 1.1. The
coherent structures of the vorticity field have vanished completely. However, it is still evident
that the vorticity field varies on smaller scales than the velocity field.

of turbulence, it is useful to compare the results to the statistics of random fields, which
are no solution of the Navier-Stokes equation. To this end we randomize a subensemble
of the vorticity obtained in the simulation run sim_512.

4.3.1. Randomization Procedure

The randomization procedure makes use of the Fourier representation of the vorticity
field

ω(x, t) =
1

(2π)
3
2

∑
k

ω̃k(t) eik·x . (4.24)

The vorticity field is real, which implies ω̃−k = ω̃∗k, and solenoidal, which means
ik · ω̃k = 0. The randomization now is achieved by adding statistically independent,
uniformly distributed random phases ϕk to each Fourier mode

ωr(x, t) =
1

(2π)
3
2

∑
k

ω̃k(t) ei(k·x+ϕk) . (4.25)

As the resulting field should be real, we have to impose ϕk = −ϕ−k. Solenoidality
is preserved by this transformation. The interesting property of this randomization
procedure now is that it destroys all phase correlations in the field, which implies that in
real space the coherent structures are destroyed. However, phase-independent quantities,
like, e.g., the energy spectrum are conserved.
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Figure 4.18.: Vorticity PDFs of turbulent and randomized fields. The randomized vorticity
tends to a Gaussian distribution (sim_512).

To study velocity and velocity gradient statistics, the randomized velocity is obtained
from the randomized vorticity by Biot-Savart’s law

ur(x, t) = − 1
4π

∫
dx′

x− x′
|x− x′|3 × ω

r(x′, t) , (4.26)

and the velocity gradient tensor is obtained by subsequent differentiation, Ar = ∇ur. It
is now possible to study the statistics of typical turbulent properties in the case of the
randomized fields.

4.3.2. DNS Results

Before turning to the statistical evaluation of the randomized fields, a visualization of
the vorticity and velocity fields is shown in figure 4.17. The fields display the randomized
version of the corresponding fields shown in chapter 1 in figure 1.1. A comparison of the
vorticity field reveals that any signature of coherent structures is lost, no filamentary
structures are visible in the randomized field. The field consists of fine blobs, where
high and low values of vorticity are homogeneously distributed in space. The same
goes for the velocity field, which, however, exhibits much slower decaying correlations.
This comes due to the fact that the randomization procedure preserves the correlation
tensors. The randomized velocity field is comparably similar to the turbulent velocity
field shown in chapter 1, however, one can see that the fine-scale structure related to
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Figure 4.19.: Velocity PDFs of turbulent and randomized fields. In the randomized case the
PDF is almost perfectly Gaussian, the sub-Gaussian behavior, as observed for the turbulent
fields, vanishes (sim_512).

the gradients of the velocity is different. Gradients appear to be steeper in the turbulent
fields, a sign for the intermittency found in turbulence.
Coming to the single point PDFs, the randomization procedure produces an almost

perfect Gaussian vorticity PDF as can be seen in figure 4.18. The highly non-Gaussian
behavior with the pronounced tail has completely vanished. In this sense, the vanishing
of the coherent structures goes along with a more Gaussian behavior of the statistics.

The velocity PDFs of the turbulent and random fields compare quite well, as can be
seen in figure 4.19. The randomized case is almost perfectly Gaussian, slight deviations
can be accounted to limited statistical quality. The sub-Gaussianity has completely
vanished and therefore can be seen as a typical signature of fully developed turbulence.

The PDFs of the different components of the velocity gradient tensor are presented in
figure 4.20. While the diagonal and off-diagonal components exhibit different variances,
they are perfectly Gaussian. The skewed and strongly non-Gaussian behavior of the
tails is absent an therefore can be seen as a signature of turbulence as well. Turning
to the joint PDF of the invariants of the velocity gradient tensor shown in figure 4.21,
some striking similarities to the turbulent case shown in figure 4.4 can be observed.
First, the bulk of the PDF lies in the upper half-plane and has a characteristic oval
shape. Second, the Viellefosse line is also related to kinks in the isolines of the PDF in
the lower half-plane. However, the joint PDF has much more rapidly decaying tails as
compared to the turbulent case. Furthermore, any asymmetries regarding a reflection
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Figure 4.20.: PDFs of the velocity gradient tensor in randomized fields. As in the turbulent
case, the diagonal components display a differing variance than the off-diagonal components.
However, they become perfectly Gaussian (sim_512).

R∗ 7→ −R∗, distinctly present in the case of turbulent fields, vanish in the statistics of
the randomized fields. Hence, the conclusion here is that while the gross features of the
PDF survive for a randomized field, the asymmetry and pronounced tails are features
typical for turbulent flows.
Our statistical analysis is completed by an investigation of the longitudinal velocity

increment PDFs. As the velocity gradient is found to be Gaussian on the small scales
and also the single-point velocity PDF exhibits a Gaussian shape, it is not surprising
that also the velocity increment PDFs are found to be Gaussian and evolve perfectly
self-similar in scale, as can be seen from figure 4.22. Hence the randomization procedure
has destroyed any signature of intermittency. This diagnosis is also supported by figure
4.23, where the skewness and kurtosis are shown for both turbulent and randomized
fields. As can be expected from the velocity increment PDFs, the randomized fields
yield Gaussian values for the skewness and kurtosis across the scales.

4.3.3. Discussion

In conclusion, we have obtained Gaussian fields by randomizing the vorticity field.
Gaussianity can be motivated from the fact that, for a fixed spatial position x, equation
(4.25) represents a sum of independent random variables with finite variances, such
that the central limit theorem applies. By destroying all phase correlations in Fourier
space, any sign of coherence is lost in real space, the filamentary vortex structures
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Figure 4.21.: Joint PDF of the velocity gradient tensor invariants for randomized fields. As
for turbulent fields, the round shape in the upper half-plane is preserved and the bulk of the
PDF lies in swirling regions in the flow. The isolines of the PDF also display kinks at the
crossing with the Viellefosse line. However, the PDF displays much less pronounced tails and
asymmetries have vanished (sim_512).

82



4.3. A Comparison of Turbulent and Random Fields

10-4

10-2

100

102

104

106

108

-8 -6 -4 -2  0  2  4  6  8

fσ

δv/σ

Figure 4.22.: Longitudinal velocity increment PDFs for randomized fields as a function of scale
for r ∈ {1.2, 2.5, 4.9, 9.9, 19.8, 39.6, 79.1, 158.3, 316.6 } η (straight lines, from top to bottom).
The dashed line corresponds to the PDF of a diagonal component of A. The PDFs evolve
self-similar in scale (sim_512).
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Figure 4.23.: Third and fourth cumulant for the longitudinal velocity increment in the case of
turbulent and randomized fields. The cumulants of the randomized fields indicate a self-similar
evolution in scale, any sign for intermittency present in turbulent fields, has vanished (sim_512).
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vanish. In this sense this approach shows that non-Gaussian, non-self-similar statistics
are related to the presence of the coherent structures. More precisely, it is evident that
localized structures, which correspond to locally steep gradients are responsible for
highly non-Gaussian values of, e.g., the flatness.
Admittedly, the presented approach may seem rather naïve and the results pretty

obvious. Still, we think that the comparison is quite instructive as it helps to distinguish
features that are typical for turbulent fields from features that are not. The investigation
of the invariants of the velocity gradient tensor serves as a particularly suited example.
Its investigation in randomized fields shows some remarkable similarities to real turbulent
fields, such that it can be concluded that the typical features of turbulence are mirrored
by the pronounced tails of the PDF and the strong asymmetries present.

4.4. DNS vs. Experiments

We close this chapter with a comparison of turbulence data sets obtained by experiments
and numerics. The aim is to provide some benchmark results to convince that the
statistical properties observed in direct numerical simulations to a good extent resemble
the properties found in “real” experiments. We start with a discussions of the advantages
and shortcomings of experiments and numerical simulations.

4.4.1. Pros and Cons for Experiments and DNS

Probably the most important argument in favor of turbulence experiments, of course, is
that they undoubtedly represent “real” turbulence. For example, on the most fundamental
level one can ascertain that experiments do not rely on the validity of the Navier-Stokes
equation, which sometimes is discussed as these equations are derived assuming a number
of material properties. And since some fundamental mathematical properties of this
nonlinear, nonlocal equation remain to be understood, it is undoubtedly an advantage to
compare to experimental results independent of this. Moreover, experiments are usually
equipped with “natural” boundary conditions; the flow is usually limited by walls and
turbulence is generated, e.g., by a mean flow passing a grid. This, of course, is at the
same time a limitation to experiments, when trying to prepare the idealized case of
homogeneous isotropic turbulence.

As we have seen in chapter 3, the Reynolds number achievable in numerical simulations
is severely limited by the computational power available. The Reynolds numbers reached
in turbulence experiments is usually much higher compared to that. While it is no
fundamental problem to create a high Reynolds number flow in the laboratory, the
Reynolds number accessible in experiments is still limited. This comes due to limitations
of the sensors used, which have a finite spatial and temporal resolution and only yield
reliable results in a certain range of velocities. This will become more clear in the following
section. And although non-intrusive measurement techniques are available, measuring
turbulent flow by placing a hot-wire anemometer in the flow remains the predominant
Eulerian measurement technique for a number of technical reasons. This, however,
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instantly brings up the problem that the flow will be disturbed by the sensor. While this
is no problem for setups with a single sensor, it constrains the possibility to perform
true two-point measurements. Furthermore, the sensors have to be calibrated carefully
in order to measure the true velocity signal in the flow. For two-point measurements
one usually relies on Taylor’s frozen eddy hypothesis, which is only valid at comparably
low turbulence intensities. Apart from the challenging technical demands on the sensors,
data acquisition may restrict the measurements as both the length of the recorded time
series as well as its sampling rate are limited by the hardware used.
Coming to direct numerical simulations of turbulence, one main advantage is that

the “experimental” conditions are almost perfectly controllable and the numerical
experiments performed are to a good extent reproducible. Maybe even more important,
any quantity that can be calculated from the velocity field is available, such that
observables inaccessible in experiments can be obtained by direct numerical simulations.
Furthermore, as the full spatio-temporal record of the flow is available, any measurement
configuration involving multiple points in space or time is accessible without disturbing
the flow. At the same time the data sets obtained in simulations are usually much larger
than the ones obtained in experiments allowing for an increased statistical quality. This,
for example, allows for an investigation of the rare events that govern the tails of the
PDFs.
On the other side, numerical simulations rely on the validity of the Navier-Stokes

equations, as already mentioned above. A maybe more severe disadvantage is that the
boundary conditions are usually unrealistic. The results presented in this thesis make
use of periodic boundary conditions, something which is not met in reality. However,
when the simulations are performed with care, the influence of the boundary conditions
is well-controlled. Furthermore, to drive the flow into a statistically steady state, a
forcing term has to be added to the Navier-Stokes equation as discussed in chapter 3.
There it was made clear that these forcing methods are rather artificial, not resembling
something like, for example, a grid generating the turbulence. This is why results are
sometimes doubted and believed to be spoilt by the forcing techniques. By implementing
and testing various different forcing methods, however, the influence of the forcing
methods is characterizable.
As already stated, the Reynolds numbers accessible in DNS usually are lower than

in experiments. And while numerics is far away from reaching the Reynolds numbers
of real world flows, an overlap with laboratory experiments is available for a couple of
decades now, allowing for a quantitative comparison of results.

In conclusion, experiments and direct numerical simulations should not be seen as op-
posing rivals, but rather as complementary approaches with complementary advantages
and disadvantages.

85



4. Statistical Characterization of Fully Developed Turbulence Obtained by DNS

-5

 0

 5

 10

 15

 20

 25

 30

 0  0.05  0.1  0.15  0.2

 0  1  2  3  4  5
ve

lo
ci

ty
 [m

/s
]

time [s]

distance [m]

cylinder longitudinal
cylinder transversal

Figure 4.24.: Snapshot from an experimental longitudinal and transversal velocity time series
from a cylinder wake. The longitudinal velocity component displays a pronounced mean flow
and a slightly increased standard deviation. The lower x-axis indicates the actual temporal
measurement, whereas the upper x-axis indicates the corresponding distance according to the
Taylor frozen eddy hypothesis.

4.4.2. Some Words on Experimental Measurement Techniques

This being a theoretical work, we surely do not seek for a comprehensive characterization
of the measurement techniques used in turbulence experiments. However, we would
like to give a short overview how the experimental data sets presented in the following
sections are obtained. We refer the reader to [Lüc01, RPF01, Ren02] for a detailed
characterization of the measurements and to [TYF07] for a comprehensive account on
various measurement techniques.

Both data sets were measured using hot-wire anemometry, which provides a good
spatial and temporal resolution of the measured flow fields. The basic setup is a heated
wire which is exposed to the flow. Due to the flow the wire is cooled altering its resistance,
which can be measured using a Wheatstone bridge. As this resistance, or equivalently a
voltage, can be shown to be directly related to the flow velocity (see, e.g., [Lüc01]), one
effectively measures the desired velocity of the flow. It is clear that careful calibration
measurements have to be performed, so that the measured voltage represents the velocity.
Furthermore, it is evident that the smallest structures resolved by this technique depend
on the size of the wire and the processing speed of the instrumentation, which limits
the accessible Reynolds number. When a single wire is exposed to the flow, one mainly
measures the downstream component of the flow. When also transversal directions shall
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Re Rλ L [mm] λ [mm] η [mm] umean [m
s ] urms [m

s ] s [Hz]
free jet 27000 190 67 6.6 0.25 2.26 0.38 8000
cylinder – 338 – 3.8 0.10 25.37 1.36 84746

Table 4.1.: Major experimental parameters. Reynolds number Re, Reynolds number based on
the Taylor micro scale Rλ, integral length scale L, Taylor micro scale λ, Kolmogorov length
scale η, mean flow velocity umean, longitudinal root mean square velocity urms, sampling rate s.

be measured, more complicated setups with crossed wires (X-wire anemometry) have to
be used. This, of course, increases the experimental complexity as for example mutual
disturbances have to be avoided.

With this instrumentation it is possible to measure a time series of velocity at a single
point in space. To obtain spatially resolved statistics, Taylor’s frozen eddy hypothesis
has to be used. This hypothesis is supposed to work in the case of low turbulence
intensity, which is defined as

I =
urms

umean
, (4.27)

where urms denotes the root mean square of the turbulent velocity fluctuations and
umean is the velocity of the mean flow. For low turbulence intensities the root mean
square fluctuations of the turbulent velocity are small compared to the velocity of the
mean flow. In that sense the actual flow pattern can be regarded as “frozen” when being
advected past the probe. Let ume(x0, t) denote the measured velocity signal of a single
probe at the spatial position x0. The reconstructed spatial velocity profile ure(x, t) of
this component then can be calculated with Taylor’s hypothesis according to

ure(x, t) = ume(x0 + umean t, t) . (4.28)

As this relation only holds for low to moderate turbulence intensities, this is another
experimental restriction on the accessible Reynolds number.

4.4.3. Reference Data Sets

Two experimental data sets have been provided by the group of Joachim Peinke at the
University of Oldenburg, each consisting 1.25 · 107 data points. The first data set was
measured by Christoph Renner in a free jet experiment at the University in Oldenburg.
The experiment has been performed with air being released through the nozzle from a
high pressure reservoir. A hot-wire anemometer has been placed in a distance of 125D
behind the nozzle, where D = 8mm is the diameter of the nozzle. The spatial resolution
of the anemometer has been 1.25mm at a maximal temporal resolution of 30kHz. Further
downstream a grid relaminizes the flow in order to suppress flow-wall interactions. A
detailed description of this experimental setup is found in [RPF01, Ren02]. The main
experimental parameters are summed up in table 4.1.
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The second data set has been obtained by Stephan Lück during a stay at the University
of Erlangen. The experimental flow is a turbulent wake behind a cylinder in a wind tunnel.
For this measurement a X-wire anemometer was placed 100D behind the cylinder with
diameter D = 2cm, allowing for a measurement of both longitudinal and transversal
velocity components. The anemometer used displays a spatial resolution of 0.5mm.
Compared to the first data set, the mean flow is more than an order of magnitude larger
and the Reynolds number is much larger making a higher sampling rate necessary in
order to maintain a fine spatial resolution. Again, the main experimental parameters
are summarized in table 4.1, and a detailed description of the experimental setting can
be found in [Lüc01]. A snapshot from this data set is shown in figure 4.24, where the
longitudinal and transversal velocity component of the velocity signal is shown. The
longitudinal component displays an offset due to the mean flow of this experiment.
Additionally this component has a slightly increased standard deviation, indicating that
this flow is not perfectly isotropic. The lower x-axis is labelled with the actual time span
of the measured signal, whereas the upper x-axis is labelled with the corresponding
distance, which is calculated by application of Taylor’s hypothesis. The longitudinal
component of the velocity seems to be sweeping in time, which might be related to
vortex structures created behind the cylinder. This comparably slow sweeping is absent
for the transversal component.

One should note that the Reynolds numbers characterizing these experiments cannot
directly be compared to the Reynolds numbers given for our numerical simulations.
The reason for that is that the precise definitions differ. For instance, in experiments
the integral length scale L usually is given by the geometrical extents of the particular
experiments rather than by the relation (3.62). Furthermore, for the present experiments
the Taylor-based Reynolds number has been obtained by explicitly determining the
Taylor length scale rather than using the relation (3.65).

4.4.4. Comparison of Statistical Results

Coming to the statistical quantities obtained from these data sets, figure 4.25 shows
the single-point velocity PDFs. While all PDFs are close to a Gaussian probability
density, they differ in details. The PDF from the free jet data set exhibits a pronounced
asymmetry, which may be related to anisotropies caused by the mean flow. Compared
to that, the PDFs from the cylinder experiment are more symmetric, however, the
longitudinal PDF has a slightly different shape than the transversal PDF. While the
longitudinal PDF exhibits sub-Gaussian tails, the transversal PDF is closer to a Gaussian.
This shows that the two directions are statistically not fully equivalent and can be
regarded as a signature of anisotropy.
The correlation functions of these signals are shown in figure 4.26. They all show

qualitatively the behavior already observed in figure 4.16. All correlation functions
originate with zero slope in r = 0 as theoretically expected. For increasing separations
the longitudinal velocity components show a region with an approximately exponential
decay. Compared to that, the transversal component from the cylinder experiment
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Figure 4.25.: Velocity PDFs from a free jet and a cylinder wake experiment. In the case of
the free jet, the velocity PDF is asymmetric. The longitudinal component of the cylinder wake
is slightly sub-Gaussian, whereas the transversal component has a more Gaussian shape.
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Figure 4.26.: Longitudinal and transversal velocity correlation functions from experimental
data sets. The correlation functions behave similarly to the DNS results (see figure 4.16),
the transversal components exhibits the characteristic zero-crossing. The inset highlights the
behavior near zero.
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Figure 4.27.: Longitudinal and transversal velocity increment PDFs from the cylinder wake
experiment as a function of scale for r ∈ {1.4, 2.8, 5.5, 10.4, 20.8, 41.6, 83.2, 166.5, 333.0 } η
(straight lines, from top to bottom). The dashed red line corresponds to the PDF of the velocity
gradient obtained by differentiation. The dashed gray lines correspond to the numerically
obtained PDFs shown in figures 4.5 and 4.6 from the simulation sim_512. The PDFs correspond
to approximately the same distances in scale, however, at a different Reynolds number.
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Figure 4.28.: Third and fourth longitudinal velocity cumulants for the jet and cylinder wake
experiments. The dashed lines correspond to numerically obtained results from the simulations
sim_512 and sim_1024_ext.

exhibits the characteristic zero-crossing. However, the autocorrelations functions do not
fulfill the relation (4.9), and it can be seen from the figure that also the integral length
scales do not obey the simple relation (4.11), which is a hint on anisotropies of the flow.
The differences in the statistical behavior could already be observed in the time series
in figure 4.24 and in the velocity statistics in figure 4.25.
The velocity increment statistics of the cylinder experiment is shown in figure 4.27.

The PDFs show the characteristic intermittent shape deformation from small scales
to larger scales with the longitudinal component having a pronounced skewness. The
numerically obtained velocity increment statistics at approximately the same spatial
distances (in units of Kolmogorov length scales) already presented in figures 4.5 and
4.6 is drawn for comparison. It has to be stressed that the numerical simulation and
the presented experimental result were obtained at very different Reynolds number
in very different experimental settings, hence a collapse of the curves is not expected.
Still, the PDFs show a remarkable similarity with the main features being robust. It
appears especially from the transversal components that the PDFs from the numerical
results have more slowly decaying tails, which is surprising in view of the lower Reynolds
number. However, the statistical quality of the experimental data set does not allow
for definite conclusions here. As it is quite easy to obtain large data sets with direct
numerical simulations, the statistical quality here is more appropriate to study the far
tails of the PDFs.
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In order to draw further comparisons of the statistical evolution in scale, figure 4.28
shows the third- and fourth-order cumulants for the longitudinal velocities of the two
experiments and two numerical simulations. The qualitative statistical features coincide;
for example, all cumulants show a clear change beyond the dissipative range, where the
slope strongly flattens. Being conducted, however, at very different Reynolds numbers in
very different settings, the evolution in scale measured in multiples of the Kolmogorov
length naturally differs. For example, the numerical simulations at low Reynolds numbers
relax particularly fast to the stationary statistics as a clear separation of the smallest
and largest scales in the flow is absent. Another interesting feature is that the behavior
of the third-order cumulant does not differ as much over the different data sets as the
fourth-order cumulant. It seems that the energy transfer mechanism between scales is
more robust than the precise numerical values characterizing the flatness of the PDFs.
To conclude, the present section aimed at highlighting strengths and drawbacks

of numerical and experimental investigations and to demonstrate the consistency of
the statistical properties observed. Comparing data sets obtained in very different
settings, the qualitative features like deviations from Gaussianity, spatial correlations
and intermittency are found to be robust. It would be very interesting to perform joint
experimental and numerical experiments with the goal to prepare more identical settings.
For example, an experiment at moderate Reynolds number focussing on creating an
isotropic flow could be compared in a more quantitative manner to numerical results.
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5. Deterministic Aspects: the Burgers
Equation

Apart from a few analytical solutions like the Lamb-Oseen or Burgers vortex, the
Navier-Stokes equation is hardly accessible for a purely analytical treatment. Therefore
it is of interest studying simplified models that maintain some features of the problem
to a certain extent. One such model equation was introduced by Burgers [Bur39, Bur74],
which up to today remains a well-studied equation in theoretical turbulence research. In
this chapter we will study the n-dimensional inviscid Burgers equation taking focus on
the velocity gradient evolution along Lagrangian trajectories. Although Burgers flows
turn out to be very different from flows governed by the Navier-Stokes equation, we
still think that the analytically obtained results are of interest when it comes to discuss
the dynamics of incompressible flows.

5.1. The One-Dimensional Burgers Equation

The one-dimensional Burgers equation describes the evolution of a velocity field u(x, t)
on a line. The equation takes the form

∂

∂t
u+ u

∂

∂x
u = ν

∂2

∂x2
u , (5.1)

showing a remarkable similarity to the Navier-Stokes equation (1.1); the velocity field is
nonlinearly advected, and dissipation enters with the Laplacian of the velocity field. A
huge difference, however, is the absence of the pressure gradient term, which for Navier-
Stokes flows maintains the incompressibility according to equation (1.2). Thereby the
nonlocality, which is the main mathematical difficulty in the case of the Navier-Stokes
equation, is lacking. Apart from this being a strong simplification, one should note
that studying incompressible flows on a line is somewhat boring. The Burgers equation
models a perfectly compressible fluid, where any pressure-induced repulsive forces are
absent. Typical compressible phenomena like the emergence of shocks hence can be
observed in the dynamics of the Burgers equation.
An interesting property of the Burgers equation is that by introducing the transfor-

mation (found by Hopf and Cole in 1950 and 1951, respectively [Hop50, Col51])

u(x, t) = −2ν
∂

∂x
lnϕ(x, t) (5.2)
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it is mapped onto the heat equation

∂

∂t
ϕ = ν

∂2

∂x2
ϕ , (5.3)

which, of course, can be solved analytically. Due to the nonlinear differential transfor-
mation, the solution for arbitrary initial conditions in general cannot be discussed easily.
Still, having found a transformation onto a linear equation shows that the solutions
of the Burgers equation are lacking any signature of chaoticity, something which is
an important feature of the solutions of the Navier-Stokes equation. One can already
conclude at this stage that the quadratic nonlinearity is not solely responsible for the
complex dynamical behavior of turbulence, but nonlocal pressure contributions play an
important role.

Solutions of the Burgers equation can also be discussed in the Lagrangian frame, for
which the governing equations read

d
dt
X(t, y) = [u(x, t)]x=X(t,y) (5.4a)

d
dt
U(t, y) =

[
ν
∂2u

∂x2
(x, t)

]
x=X(t,y)

. (5.4b)

These equations, which describe the evolution of the field along a Lagrangian tracer par-
ticle, basically state that the particle moves with the velocity at its current position and
is accelerated by viscous forces only. The pressure gradient, which strongly contributes
to the Lagrangian particle acceleration in the case of incompressible flows, is absent.

5.2. Anomalies, Shocks and Singularities

Due to the viscous term on the right-hand side, kinetic energy is being dissipated in
the course of the time. Multiplying equation (5.1) by u and averaging instantly yields
the evolution of the kinetic energy Ekin = 〈12u2〉. Assuming homogeneous statistics we
obtain

Ėkin(t) = −〈ε(t)〉 = −ν
〈(

∂u

∂x

)2

(x, t)

〉
, (5.5)

from which it is apparent that the rate of energy dissipation depends on the viscosity
and the average of the squared velocity gradients. A case often studied in turbulence
research is the limit of infinite Reynolds number, which is achieved by taking the limit
ν → 0. If the velocity gradients remain finite in this limit, the kinetic energy will be
a conserved quantity. However, we will see in the following that they diverge, which
eventually causes a finite dissipation also in the case of vanishing viscosity. This fact,
known as dissipation anomaly, is also often discussed in the case the of the Navier-Stokes
equation at infinite Reynolds number.
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Figure 5.1.: Single shock solution (5.6) of the Burgers equation for x0 = 0 and u0 = 1 at
t = 0. The slope of the shocks steepens with decreasing viscosity indicating a discontinuity of
the velocity field in the limit of vanishing viscosity.

In the case of the Burgers equation the dissipation anomaly may be exemplified by
considering the analytical solution

u(x, t) = u0

[
1− tanh

(
u0(x− x0 − u0t)

2ν

)]
, (5.6)

which represents a travelling shock initially localized at x0 travelling at the speed u0. The
slope of the shock depends besides the velocity on the viscosity as illustrated in figure
5.1, with decreasing viscosity the shock steepens. In the limit of vanishing viscosity the
velocity field will eventually become discontinuous, and the velocity gradient diverges.
If such a discontinuity develops from smooth initial conditions, this behavior is often
referred to as a finite-time singularity. For finite viscosity we can calculate the dissipation
field of the solution (5.6) obtaining

ε(x, t) = ν

(
∂u

∂x

)2

(x, t) = u4
0

[
4ν cosh

(
u0(x− x0 − u0t)

2ν

)4
]−1

. (5.7)

The cumulative rate of energy dissipation of the whole field becomes independent both
of time and viscosity,

ε̄ =
∫ ∞
−∞

dx ε(x, t) =
2
3
u3

0 , (5.8)

demonstrating a finite rate of energy dissipation in the limit of vanishing viscosity.
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Now having seen that the Burgers equation has an analytical shock solution, it is
interesting to investigate its tendency to develop shock solutions from smooth initial
conditions. To this end we consider the velocity gradient tensor evolution equation,
which can be obtained from equation (5.1) by taking the spatial derivative. Defining
the velocity derivative as A = ∂u

∂x we obtain

∂

∂t
A+ u

∂

∂x
A = −A2 + ν

∂2

∂x2
A . (5.9)

Apart from viscous diffusion and advection this equation explicitly reveals the self-
amplification/depletion of the velocity gradient on the right-hand side of the equation.
Now taking the limit of vanishing viscosity, we first notice that according to the equations
(5.4) the Lagrangian acceleration along the trajectory of a fluid particle is zero, which
allows to integrate the ordinary differential for the Lagrangian particle path yielding

X(t, y) = y + U(0, y) t . (5.10)

This so-called naïve Lagrangian map [BK07] shows that in smooth regions of the velocity
field Lagrangian particle paths are straight lines. Studying the velocity gradient along
these lines yields the ODE

Ȧ(t, y) = −A2(t, y) , (5.11)

which is solved by differentiating 1/A. The solution is

A(t, y) =
1

1
A(0,y) + t

=
A(0, y)

1 +A(0, y)t
(5.12)

and has a number of interesting properties. First of all, one can note that if A(0) > 0
the velocity gradient will decay over time, i.e., positives slopes will be depleted. If,
however, A(0) < 0, the solution develops a singularity in finite time, negative velocity
gradients will steepen and eventually diverge. Since the velocity gradient corresponds to
the divergence of the velocity field, sources of the velocity field will decay over time while
the sinks will be amplified and eventually diverge. The time the singularity develops is
given by

t∗(y) = − 1
A(0, y)

, (5.13)

determining the moment of birth of a shock. Considering the whole field, the time

T ∗ = min{t∗(x) |x ∈ R} = min
{
− 1
A(0, x)

∣∣∣∣x ∈ R
}

(5.14)

indicates the time the first shock is born in the field. Steepening of the velocity gradients
basically means that two “neighboring” fluid particles with differing velocities become
closer and closer. The singularity happens when the two particle positions coincide.
Consequently, the birth of a shock corresponds to the breakdown of the naïve Lagrangian
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map (5.4). When two particle paths cross, this map becomes non-invertible. It can be
shown, but also motivated from the analytical solution (5.6), that the shock speed is
given by a Rankine-Hugoniot condition, i.e., given by the arithmetic mean of the field
taken infinitesimally left and right of the shock. This furthermore shows that in the
moment the shock develops an acceleration acts on the fluid particle, giving further
evidence for the breakdown of the naïve Lagrangian map. Being related to the change
of velocity along the fluid particles, one can see that shocks are related to dissipative
events in the field.

Studying the velocity increment PDFs of fully developed three-dimensional turbulence,
we have observed skewed velocity increment statistics in figures 4.5 and 4.7. In this
context the one-dimensional Burgers equation may give a simple explanation of this
observation: The different behavior of the velocity gradient depending on the sign of
the initial value gives a dynamical picture how self-amplification or depletion of velocity
gradients may cause skewed or more generally asymmetric velocity gradient and velocity
increment statistics.

5.3. The Multi-Dimensional Burgers Equation

The Burgers equation can easily be generalized to higher dimensions, where it takes the
form

∂

∂t
u+ u · ∇u = ν∆u . (5.15)

The velocity field now is an n-dimensional vector. If the velocity field is potential,
u = ∇ϕ, the problem can again be treated with the Hopf-Cole transformation, which is
generalized to

u(x, t) = −2ν∇ lnϕ(x, t) , (5.16)

which now, of course, leads to the heat equation in n dimensions

∂

∂t
ϕ = ν∆ϕ . (5.17)

For non-potential (i.e. rotational) initial conditions no closed general solution of the
Burgers equation can be formulated. However, the qualitative behavior still can be
discussed within the Lagrangian frame governed by

d
dt
X(t,y) = [u(x, t)]x=X(t,y) (5.18a)

d
dt
U(t,y) = [ν∆u(x, t)]x=X(t,y) (5.18b)

describing the evolution of tracer particles in n dimensions. In the inviscid case the
solution of these equations reads

X(t,y) = y +U(0,y)t (5.19)
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as in the one-dimensional case. Of course, this equation only holds, as long as the
naïve Lagrangian map is valid. Whether the individual particle is overrun by a shock,
depends on the initial configuration of the whole field and cannot be determined by
this local consideration. Finding straight lines as Lagrangian particle paths outside
the shocks shows that the dynamics is very different from incompressible flows. For
two- and three-dimensional Navier-Stokes flows the presence of vorticity will induce
spiraling motion to nearby trajectories. From the solution of the Lagrangian equations
of motion it is clear that this behavior is not expected for compressible Burgers flows.
The reason for this is that in the case of Navier-Stokes dynamics the vorticity fully
determines the velocity field according to the Poisson equations (1.6) together with
equation (1.5). In the case of the Burgers equation one additionally has to consider
the temporal evolution of the divergence of the velocity field for a full specification.
With the definition P (x, t) = ∇ · u(x, t) we obtain its evolution equation by taking the
divergence of equation (5.15). We find

∂

∂t
P + u · ∇P = −P 2 + ν∆P , (5.20)

which has the same structure as the evolution of the velocity gradient for the one-
dimensional Burgers equation (5.9). The presence of the self-amplification/depletion
term on the right hand side is related to the emergence of shocks, as we will see in the
following.

5.4. Lagrangian Velocity Gradient Evolution

After these introductory remarks into the phenomena encountered in a perfectly com-
pressible flow, we now want to study the temporal evolution along Lagrangian tracer
particles for the inviscid Burgers equation. As we have seen for the one-dimensional
equation, taking the limit ν → 0 goes along with the emergence of finite-time sin-
gularities due to undamped steepening of velocity gradients. Although we will only
obtain analytical solutions in the case of the inviscid limit, it can be expected from the
considerations in the one-dimensional case that viscosity smoothens out the singularity
and that the qualitative behavior of the inviscid case carries over to the viscid case.

5.4.1. Formal Solution and Breakdown of the Naïve Lagrangian Map

The consideration of the one-dimensional velocity gradient governed by the ODE (5.11)
can be generalized to the multi-dimensional case in a straightforward manner. In this
case the matrix-valued ordinary differential equation

d
dt

A(t,y) = −A(t,y)2 (5.21)

has to be solved. The solution involves the inverse of A. Without loss of generality we
can assume the existence of A−1, because if A is not invertible, we have det A = 0. As
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we will see in the following sections, this corresponds to the case that the dynamics is
restricted to a lower dimensionality. Hence we can always find A−1 by considering a
lower-dimensional problem. As in the one-dimensional case, differentiating A−1 yields

d
dt

A−1 = −A−2 d
dt

A = E , (5.22)

where E denotes the unit matrix. This is easily integrated yielding

A−1(t,y) = A−1(0,y) + E t , (5.23)

which by inversion yields the desired result

A(t,y) = (A−1(0,y) + E t)−1 . (5.24)

That means, the problem of solving equation (5.21) reduces to the inversion of matrix on
the right-hand side of equation (5.24). While this may become a tedious task in arbitrary
dimensions, we will present an alternative approach by examining the invariants of
A later on. Of course, now the question has to be posed, whether A−1(y, 0) + E t is
invertible at all. This is not possible if

det(A−1(0,y) + E t) = 0 . (5.25)

Introducing λ = −t this equation is obviously related to the characteristic equation of
A−1. As a consequence, the negative real eigenvalue λ̃min(y) of A−1 with the smallest
absolute value defines the time at which the invertibility of A−1(y, 0) + E t breaks down.
This is exactly the time at which a shock is born. Taking the global minimum

λmin = min
x

{
λ̃min(x)

∣∣x ∈ Rn
}

(5.26)

identifies the global breakdown time of the naïve Lagrangian map. As the eigenvalues
of A are the inverse eigenvalues of A−1, the negative real eigenvalue of A with the
largest absolute value determines this time. This is the extension to the one-dimensional
observation, where the steepest slope of the velocity field (which simply is the only
eigenvalue of the velocity gradient tensor in one dimension) determines the global
breakdown time.

At this stage one should note that an extension beyond this time makes it necessary
to replace the naïve Lagrangian map with the proper Lagrangian map for which we refer
the reader to, e.g., [BK07] for further details. However, we will restrict our investigation
in the following to the time before the first singularity appears.
In what follows, we will study the invariants of A, which we define in this context

as the prefactors of the characteristic polynomial. As we have motivated in chapter
4.1, these objects are often studied in the case of the three-dimensional Navier-Stokes
equation. Before investigating the ordinary differential equations for all the invariants,
it is useful to consider the determinant of A as its evolution is closely related to the
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above considerations. First of all, we define the characteristic polynomial of the matrix
A according to

ΠA(λ) = det(λE−A) . (5.27)

Additionally, the characteristic polynomial of a matrix is related to the characteristic
polynomial of its inverse according to

ΠA−1(λ) =
(−λ)n

det A
ΠA

(
1
λ

)
. (5.28)

Taking the determinant of equation (5.24), this relation yields after some manipulation
the temporal evolution of the determinant of A in terms of its characteristic polynomial,

det A(t) =
[

(−t)n
det A(0)

ΠA

(
−1
t

)]−1

. (5.29)

That means, we can quantify the temporal evolution of the determinant by knowledge of
the characteristic polynomial and the initial conditions. As the characteristic polynomial
involves all the invariants of the matrix, the temporal evolution of the determinant
depends on the initial conditions of all of these quantities.

5.4.2. Evolution of the Velocity Gradient Tensor Invariants

For the physical discussion it is particularly useful to study the relevant cases of two
and three dimensions first before we proceed to the general n-dimensional case.

Two-Dimensional Flows

We start with considering the two-dimensional case, for which the invariants are defined
according to

P = TrA (5.30a)

Q =
1
2
(
(TrA)2 − TrA2

)
= det A . (5.30b)

As already indicated above, P corresponds to the divergence of the velocity field, where
sinks are related to regions of developing shocks and sources correspond to regions from
which fluid particles stream away. By decomposing the velocity gradient tensor into its
symmetric and antisymmetric part, A = S + W, the invariant Q can be expressed as
Q = σ1σ2 + 1

4ω
2, where σ1 and σ2 are the real eigenvalues of S and ω is the vorticity. In

incompressible flows, where we always have σ1σ2 < 0, an investigation of the sign of Q
allows to discriminate strain dominated regions from regions of strong vorticity. In the
case of compressible flows such a simple discrimination is unfortunately not possible.
With these definitions the characteristic polynomial of A takes the form

λ2 − Pλ+Q = 0 . (5.31)
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We now want to study the dynamics of the velocity gradient tensor invariants. Due to
the quadratic nonlinearity of the velocity gradient tensor evolution, third powers of the
velocity gradient tensor appear in these calculations. These powers can be reduced with
the help of Caley-Hamilton’s theorem according to

A2 = PA−QE . (5.32)

We now differentiate the definitions (5.30) with respect to time and exploit equation
(5.32), finally obtaining a nonlinear system of ordinary differential equations

Ṗ = 2Q− P 2 (5.33a)

Q̇ = −PQ . (5.33b)

One can already see from these ordinary differential equations that if Q(0) = 0 the
equations reduce to the one-dimensional case of (5.21), in which the 1 × 1 velocity
gradient tensor is itself the only invariant. That means, a fluid particle starting in the
Q(0) = 0–plane is confined to this plane forever. For non-vanishing Q a particle starting
in the P (0) = 0–plane leaves this plane, indicating the compressible character of the
Burgers dynamics.
Beyond this qualitative discussion one can find a general solution of this system by

exploiting the relation (5.29) or differentiating 1/Q twice. The solution reads

P (t) =
2t+ a

t2 + at+ b
(5.34a)

Q(t) =
1

t2 + at+ b
(5.34b)

with a = P (0)/Q(0) and b = 1/Q(0) being fixed by the initial conditions. As in the one-
dimensional case, we find rational functions as solutions, however, with a higher degree
as we are considering the two-dimensional case. Correspondingly, we can investigate the
emergence of possible singularities by examining the zeros of the denominator (i.e., the
poles of equation (5.34)) given by

t1,2 =
−P (0)±√P (0)2 − 4Q(0)

2Q(0)
. (5.35)

Given an initial condition at t = 0 a singularity develops along the trajectory if there is
a t1,2 > 0. A simple analysis shows that a singularity is reached if

Q(0) < 0 or (5.36a)

P (0)2 > 4Q(0) > 0 (5.36b)

with the trajectories diverging toward P (t)→ −∞. Under these conditions a shock will
develop along the considered particle path. Alternatively this result can be obtained
from the general expression of the characteristic polynomial of A according to equation
(5.29).
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These analytical results are visualized in figure 5.2, where the two-dimensional vector
field of the ODE system (5.33) together with some trajectories is shown. The green and
orange trajectories diverge toward P → −∞, indicating that shocks will form along
these trajectories. However, the invariant Q will diverge to −∞ for the green trajectories
and to ∞ for the orange trajectories. The remaining red trajectories perform a loop in
the upper half plane and asymptotically reach the origin of the P,Q–plane, indicating
that these trajectories will not develop a singularity.
Having found analytical solutions for the velocity gradient tensor invariants, it is

now interesting to seek for solutions of the full velocity gradient tensor. To this end
we note that differentiation and taking into account that equation (5.32) transforms
equation (5.21) into a second-order linear system of ordinary differential equations with
non-constant coefficients, once the solutions for P and Q are known,

Ä + 2P Ȧ + 2QA = 0 . (5.37)

This differential equation has the solution

A(t) = (C0 + C1t)Q(t) (5.38)

with C0 = A(0)
Q(0) and C1 = −A2(0)+P (0)A(0)

Q(0) = E (due to the Cayleigh-Hamilton theorem).
By this we finally have obtained a complete local characterization of the velocity gradient
tensor evolution along a Lagrangian particle path.

Three-Dimensional Flows

We now proceed to three-dimensional flows, for which the invariants have been stud-
ied extensively in the case of the Navier-Stokes equation (see, e.g., [MDV98, CPS99,
CPC90, Can92, CM06, Dav04] for some recent works and further references). Two major
differences occur compared to the case of the inviscid Burgers equation. As already
mentioned, we have to include the divergence of the velocity field in this discussion.
Second, and more importantly, the arising system of differential equations is closed in
the case of the Burgers equation as the terms related to the pressure Hessian are absent.
This allows for a fully analytical study in the case of the Burgers equation without
resorting to closure assumptions.
The characteristic polynomial in three dimensions takes the form

λ3 − Pλ2 +Qλ−R = 0 , (5.39)

where the tensor invariants are defined according to

P = TrA (5.40a)

Q =
1
2
[
(TrA)2 − TrA2

]
(5.40b)

R = det A . (5.40c)
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Figure 5.2.: Vector field for the velocity gradient tensor invariants of the two-dimensional
Burgers equation. The red lines converge to the origin, while the green and orange lines diverge
toward P → −∞, Q → −∞ and P → −∞, Q → ∞, respectively. The gray line separates
diverging from converging regions.

By differentiating the definitions, we obtain the evolution equations

Ṗ = 2Q− P 2 (5.41a)

Q̇ = 3R− PQ (5.41b)

Ṙ = −PR . (5.41c)

As in the two-dimensional case, we here have used Cayleigh-Hamilton’s theorem to
express higher powers of A in terms of a sum of lower powers according to

A3 = PA2 −QA +RE . (5.42)

As in the one- and two-dimensional case a fluid at rest, i.e. P = Q = R = 0, is a
solution, but for non-vanishing initial conditions a dynamical solution develops. Again,
if R(0) = 0, the solution is restricted to the P–Q–plane, and if additionally Q(0) = 0,
the dynamics of the one-dimensional Burgers equation is recovered. Also the three-
dimensional ODE system can be solved analytically, either by inserting equation (5.29)
and subsequently calculating the remaining solutions or by differentiating 1/R thrice
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and using the ODE set (5.41). The result reads

P (t) =
3t2 + 2at+ b

t3 + at2 + bt+ c
(5.43a)

Q(t) =
3t+ a

t3 + at2 + bt+ c
(5.43b)

R(t) =
1

t3 + at2 + bt+ c
(5.43c)

with a = Q(0)/R(0), b = P (0)/R(0) and c = 1/R(0). As in the one- and two-dimensional case,
we obtain rational functions as solutions. The time at which a singularity develops along
the trajectory of a fluid particle can be determined by investigating the roots of the
denominator. In the case of three dimensions this is doable, but already exhaustive. The
zeros of the denominator can be explicitly determined with Cardano’s method resulting
in the expression

t∗ = − v

3u
+ u− a

3
with

u =

(
−w

2
±
√
w2

4
+
v3

27

)1/3

,

v = b− a2

3
and

w = c+
2
27
a3 − ab

3
. (5.44)

Starting from t = 0, any initial condition with a positive real solution will end in a
singularity. If one seeks to calculate the time the singularity occurs, one has to undertake
the tedious task of analyzing these roots in detail. However, if one is only interested if
a singularity develops at all, the investigation of R(t) allows some simple observations.
For example, if R(0) < 0, there always exists a t∗ > 0 for which a singularity is reached.
For the case of R(0) > 0 the polynomial in the denominator has to be analyzed. If
the polynomial displays no local extrema, no t∗ > 0 exists. In case the polynomial
exhibits local extrema (which is the case if a2 − 3b > 0), it has to be checked whether
the minimum tmin > 0 and f(tmin) ≤ 0. The position of the minimum is given by

tmin =
1
3

(
−a+

√
a2 − 3b

)
with (5.45a)

f(tmin) =
1
27

(
2a3 − 9ab+ 27c− 2(a2 − 3b)

√
a2 − 3b

)
. (5.45b)

An evaluation of these formulas for given initial conditions then shows whether a
singularity forms. These analytical investigations are supplemented with a visualization
in figure 5.3, where the vector field of the ODE system (5.41) is shown. The green region
marks the set of initial conditions that will develop a singularity. One can especially see
how the characteristics of the two-dimensional system are recovered in the R = 0 plane.
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In the two lower panels diverging and converging trajectories are shown in red and blue,
respectively. For R < 0 trajectories are observed that perform a loop in the upper half
of the volume, but finally diverge toward P → −∞ and Q → −∞. In the lower half
of the volume the trajectories also behave similar to the two-dimensional case shown
in figure 5.2, however with a tilt in R-direction. The blue trajectories all converge to
P = Q = R = 0 with some of them performing a loop in the upper half of the volume
and others converging in a straight manner.

As a side remark we note that in all cases considered so far we have observed that a
singularity is formed if the “highest” invariant, i.e. the determinant, is negative. This
just mirrors the fact that the occurrence of a singularity is related to the existence of a
negative eigenvalue of A(0). Alternatively this issue, of course, can also be discussed by
analyzing the spectrum of A using equation (5.29).

According to the two-dimensional situation, the nonlinear velocity gradient evolution
can be transformed to a linear ODE system also in three dimensions. The resulting
equation takes the form

A(3) + 3PA(2) + 6QA(1) + 6RA = 0 . (5.46)

The ODE (5.46) is solved by

A(t) = (C0 + C1t+ C2t
2)R(t) (5.47)

with C0 = A(0)
R(0) , C1 = −A2(0)+P (0)A(0)

R(0) and C2 = 1
R(0)

[
A3(0)− P (0)A2(0) +Q(0)A(0)

]
= E. As the invariants can be calculated from A(0), and the derivatives have been
replaced by powers of A(0), the initial conditions only depend on A(0). A remarkable
property of the presented solution is that it can be found by only investigating the
invariants P , Q and R, as it is known that they are insufficient to fully characterize the
local geometry of the flow [Dav04]. A full characterization can, for example, be given by
investigating the invariants of both the symmetric and antisymmetric parts of A, and
it turns out that P , Q and R are expressed as combinations of these invariants. The
consequences of this observations, however, remain to be understood (at least for the
author).

Relation to the Restricted Euler Model

In this section we want to make a short excursion and compare the results obtained so
far to an important model for the velocity gradient tensor evolution in three-dimensional
incompressible Navier-Stokes dynamics. Taking the inviscid limit, the Lagrangian velocity
gradient tensor evolution takes the form

d
dt

A(y, t) = −A2(y, t)−H(y, t) , (5.48)

where additionally the pressure Hessian Hij = ∂2

∂xi∂xj
p evaluated along a Lagrangian

tracer particle shows up. Due to incompressibility the trace of the velocity gradient
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Figure 5.3.: Visualization of the three-dimensional vector field of the invariants P , Q and R
from two different views. The region of initial conditions developing a singularity is colored in
green. The red trajectories will diverge, whereas the blue will converge to the origin.
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tensor and hence the first invariant vanishes

P ′ = TrA = 0 , (5.49)

such that only the remaining two invariants Q′ and R′ are dynamically active. With
this constraint Q′ and R′ may be defined as

Q′ = −1
2

TrA2 (5.50a)

R′ = −1
3

TrA3 . (5.50b)

Note that compared to the definition of R in (5.40) we have included a sign, in order to
stay compliant with the standard literature. With these definitions the characteristic
polynomial takes the form

λ3 +Q′λ+R′ = 0 . (5.51)

By differentiating these definitions and employing equation (5.48) one obtains the
evolution equations for Q′ and R′

Q̇′ = −3R′ − Tr(AH) (5.52a)

Ṙ′ = 2Q′ − Tr(A2H) , (5.52b)

where again the Cayleigh-Hamilton theorem has been invoked to reduce powers of
A. While the diffusive term neglected in equation (5.48) is assumed mainly to have a
damping influence, which is often modeled linearly (see, for instance, [MDV98]), the
main challenge in this context is to formulate an appropriate model for the unclosed
pressure Hessian. This term introduces a coupling between fluid particles and in this
way induces nonlocal fluctuations to a single trajectory. Here the term fluctuation does
not imply that a simple stochastic modeling is appropriate, as recently highlighted in
[Dai09], but rather that most of the nonlocal information missing, when only a single
fluid particle is considered, accumulates here. It can be argued further that this nonlocal
information is to a good extent contained within the off-diagonal components of this
tensor, as the role of its trace mainly is to preserve solenoidality of the velocity field.
This can be seen by taking the trace of equation (5.48) yielding

Ṗ ′ = 2Q′ − TrH . (5.53)

This shows that for an initial condition with P ′(0) = 0 incompressibility is preserved by

TrH = 2Q′ . (5.54)

Hence the most simple choice for a model of the pressure Hessian is to assume it to be

Hij =
1
3

TrH δij =
2
3
Q′ δij , (5.55)
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which exactly is the constituting approximation for the restriced Euler model [Vie82,
Vie84, Can92]. Insertion into (5.52) yields the Restricted Euler model

d
dt
Q′ = −3R′ (5.56a)

d
dt
R′ =

2
3
Q′2 . (5.56b)

This set of equations takes a very different form than the invariant dynamics of the
Burgers equation (5.41), which also can be seen from the visualization in figure 5.4.
Here the vector field of the Restricted Euler system as well as the Viellefosse line along
with some sample trajectories is shown. Above the Viellefosse line, which separates
swirling regions of the flow from straining regions, the trajectories perform a loop and
then diverge toward R′ →∞ and Q′ → −∞. Below the Viellefosse line the trajectories
first move in direction of the origin but then make a bended curve and diverge in
the same direction as the trajectories above the Viellefosse line. That means that all
trajectories eventually encounter a singularity, which, of course, is not observed in
real turbulent flows, where the solutions remain finite. This, on the one hand, can be
attributed to the neglected viscous effects, as including damping terms actually removes
the singularity. However, the trajectories then spiral toward the origin, such that no
stationary statistics can be obtained from these models. And while the trajectories above
the Viellefosse line show a qualitative agreement with experimentally and numerically
obtained results, the second and maybe more severe shortcoming is that the trajectories
of the Restricted Euler model below the Viellefosse line differ completely from numerical
or experimental results, having opposite directions in some of the regions (see, e.g.,
[Dai09]). The reason for this is that the effects of the pressure Hessian are not captured
by the simple approximation used for the model, as recently shown in a number of works
[CMBT08, Dai09]. It is shown in these works that the pressure Hessian counteracts
the self-amplification of the velocity gradient and helps to prevent the formation of a
singularity. One should stress at this point that the formation of a singularity in the
Restricted Euler model is an artifact of inappropriate modeling assumptions. In contrast
to that, the appearance of singularities in the case of the Burgers equation is a physical
phenomenon and part of the dynamics of inviscid, perfectly compressible flows.

Though the Burgers dynamics appears to be very different from the invariant dynamics
of the Restricted Euler model for incompressible flows, still a relation between both
dynamical systems can be established. To this end we formally include the pressure
Hessian into the Burgers dynamics according to

d
dt

A(t,y) = −A(t,y)2 −H(t,y) (5.57)

but still maintain P as a dynamical variable. One should note that a more elaborate
way to establish this connection would be to start from the compressible Navier-Stokes
equation and include the density field into the considerations. However, at this point
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this slightly inconsistent approach suffices. The inclusion of the pressure Hessian gives a
number of additional terms to the ODE system of the invariants yielding

Ṗ = 2Q− P 2 − TrH (5.58a)

Q̇ = 3R− PQ− Tr [(P −A)H] (5.58b)

Ṙ = −PR− Tr
[
(A2 − PA +Q)H

]
. (5.58c)

Like it should, the original system (5.41) is recovered by the choice H = 0. We now have
two options to derive the Restricted Euler model equations from this set of equations.
The first one is to simply apply the approximation (5.55), which results in

Ṗ = −P 2 (5.59a)

Q̇ = 3R− PQ (5.59b)

Ṙ = −PR− 2
3
Q . (5.59c)

If we additionally demand Ṗ = 0 and consider the initial condition P (0) = 0, we recover
the Restricted Euler model (5.56), when the different sign in the definitions of R and
R′ are taken into account. An alternative way is to alter the approximation which leads
to the model according to

Hij =
1
3

TrH δij =
1
3

(2Q− P 2) δij . (5.60)

Considering solutions with the initial conditions P (0) = 0 also yields the Restricted Euler
model. These considerations might be taken as a starting point for future Restricted
Euler modeling of compressible flows.

The General Case of n-dimensional Flows

After considering the physically interesting cases of two- and three-dimensional flows, we
now want to study the general case of n-dimensional flows. The motivation comes from
the fact that the two- and three-dimensional cases indicate a systematic structure, which
should become more clear when the general case is investigated. In the n-dimensional case
we have to consider the invariants I1 . . . In, which are defined such that the characteristic
polynomial takes the form

λn + I1λ
n−1 + I2λ

n−2 + · · ·+ In−1λ+ In = 0 . (5.61)

Our next aim is to derive evolution equations for all the invariants. Although in principle
possible, it is lengthy to proceed like in the two- and three-dimensional case and derive
each invariant individually. Alternatively one can make use of the Cayleigh-Hamilton
theorem which yields

An + I1An−1 + I2An−2 + · · ·+ In−1A + InE = 0 . (5.62)
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Figure 5.4.: Vector field for the velocity gradient tensor invariants of the Restricted Euler
model. The trajectories above the gray Viellefosse line perform a loop in the upper half plane,
whereas the trajectories in the lower half plane are bended curves. All trajectories diverge along
the Viellefosse line toward R′ →∞, Q′ → −∞.

In what follows, we first derive this expression with respect to time and use the Burgers
dynamics (5.21). The highest appearing power, n + 1, is reduced again invoking the
Cayleigh-Hamilton theorem, and we obtain the expression

I1An + (İ1 + 2I2) An−1 + (İ2 + 3I2) An−2 + · · ·+ (İn−1 + nIn) A + İnE = 0 . (5.63)

Now subtracting the expression (5.61) times I1 eliminates the leading term yielding

(İ1 + 2I2 − I1I2) An−1 + (İ2 + 3I2 − I1I3) An−2

+ . . .

+(İn−1 + nIn − I1In−1) A + (İn − I1In) E = 0 . (5.64)

That means, we have found a polynomial of degree n− 1 which yields the zero matrix
when A is inserted. When we consider the generic case of n different eigenvalues, the
only possible conclusion is that all the terms in brackets vanish. This situation actually
is generic, because it is obtained from degenerate one by infinitesimal perturbations of
the eigenvalues. By this we obtain the system of ODEs

İk = I1Ik − (k + 1)Ik+1 with 1 ≤ k ≤ n , (5.65)

where the case k = n is formally included as In+1 = 0 in a n-dimensional system.
This result, of course, is consistent with the ODEs obtained in the one-, two- and
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three-dimensional case and actually highlights the algebraic structure of the invariant
dynamics; the evolution of each invariant couples to the next higher one and to the first
one. The solution for this set of equations reads

Ik(t) =
(−1)k

k!
p(k)(t)
p(t)

, (5.66)

where the polynomial p(t) is given by

p(t) =
n∑
l=0

(−1)l
In−l(0)
In(0)

tn−l . (5.67)

This polynomial obviously is related to the characteristic polynomial of A, which can be
seen easily by considering equation (5.66) for the case k = n, which (depending on the
dimension up to a sign) corresponds to the solution already given in equation (5.29).
Consideration of equations (5.28) and (5.29) yields the relation

p(t) = ΠA−1(−t) =
tn

det A(0)
ΠA

(
−1
t

)
= (−1)n det A(t) . (5.68)

That means, the solution for each invariant can be obtained by differentiation of the
solution for the determinant. Consequently, the solution given in equation (5.29) contains
all information necessary to determine the temporal evolution of all invariants.

Motivated by the results of the two- and three-dimensional case, it is interesting to look
for solutions for the full velocity gradient tensor also in n dimensions. By differentiation
of the Burgers dynamics and taking into account the characteristic polynomial (5.63),
we obtain a n-th-order differential equation for the velocity gradient,

n∑
k=0

(−1)n−k

(n− k)!
Ik A(n−k) = 0 (5.69)

with the convention I0 = 1. Inspired by the solutions of the two- and three-dimensional
case we look for solutions of the form

A(t) = G(t) In(t) , (5.70)

with an hitherto unspecified matrix-valued function G. It can be shown by induction
that the k-th derivative of this ansatz obeys

A(k) = G(k)In − k!
k−1∑
m=0

(−1)k−m

m!
Ik−m A(m) . (5.71)

Insertion for k = n into equation (5.69) results in a cancellation of all but one term
giving the result

G(n)In = 0 . (5.72)
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Considering only the “fully n-dimensional” case with In 6= 0 allows to integrate this
equation yielding

A(t) = In(t)
n−1∑
k=0

Ck t
k , (5.73)

where the constants of integration are given by

Ck = (−1)k
k∑

m=0

Ik−m(0)
In(0)

Am+1(0) . (5.74)

In case of k = n−1 this expression yields Cn−1 = (−1)nE due to the Cayleigh-Hamilton
theorem. In total the solution for the full velocity gradient tensor is given by the
dynamics of the n-th invariant times a matrix-valued polynomial of order n in t, which
depends on the initial condition A(0).

5.5. Summary

After introducing into the phenomenology of the Burgers equation, we have studied
the evolution of the velocity gradients along Lagrangian trajectories with the goal to
derive exact solutions. A detailed discussion of the two- and three-dimensional case has
allowed for a classification of initial conditions that will develop a singularity in finite
time. These cases are particularly useful to investigate the compressible character of
the dynamics and the emergence of shocks. Turning to the general n-dimensional case
then revealed the systematic structure of the ordinary differential equations governing
the invariant dynamics. Solutions for the full velocity gradient tensor have been found
in all dimensions and the n-dimensional case eventually has shown that they can be
constructed by knowledge of the initial conditions and the determinant dynamics only.
It has to be stressed that the presented solutions are valid also for non-potential initial
conditions. In this sense, the results add insights to the generally poorly studied case
of Burgers dynamics with non-potential initial conditions and comprise the first fully
analytical study of the emergence of finite-time singularities in terms of the Lagrangian
velocity gradient tensor.

One should also note that the presented solutions do not display any signatures of
chaos, which is completely different for the Lagrangian dynamics in incompressible
flows. This direct comparison shows that understanding the properties of the pressure
Hessian is the major challenge for the understanding of fully developed incompressible
turbulence; the local self-amplification or depletion can be well understood in terms of
the Burgers equation or simplified models like the Restricted Euler model.
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6. The Lundgren-Monin-Novikov
Hierarchy

From the point of view of theoretical physics,
turbulence is the first clear-cut instance calling for a
new form of statistical mathematics . . .

(John von Neumann, 1949)

6.1. Introduction and Historical Notes

In chapters 2 and 4 we have motivated that the problem of turbulence is a statistical
one. The challenge of solving this problem has already been outlined by introducing the
closure problem and presenting statistical evaluations of turbulence data. The striking
feature typical for turbulence is the genuinely non-normal statistics going along with
strong correlations. In this part of the thesis we will turn to a statistical formulation
of turbulence in terms of probability density functions based on first principles. By
“first principles” we mean that the derived statistical equations are not introduced on a
phenomenological basis but are directly related to the basic equations of motion, i.e. the
Navier-Stokes equation. Work on this topic has been initiated way back in the middle
of the twentieth century and on a more general level even before, as we will outline in
the following.
Tracing back the line of research we are following leads us to the foundations of

kinetic theory which have been developed in the framework of statistical mechanics for
a many body system. Considering a gas of N particles, it is a well-known result that the
probability density f(x,p, t) for the momentum p of a single gas atom (or molecule) to
be found at space-time point (x, t) evolves according to [LP83]

d
dt
f =

∂

∂t
f + v · ∇f = Coll[f ] . (6.1)

Here Coll[·] denotes the collision operator, which takes into account the change of the
PDF per time unit due to collisions of gas particles in the phase space volume dxdp
and depends on the interaction of the gas particles. If one considers a freely evolving,
non-interacting gas, the collision operator is zero, and consequently the PDF evolves
according to the Liouville theorem. The task now is to formulate a collision operator
which captures the physical mechanisms that govern the statistical evolution of the
system. One of the most prominent expressions for the collision operator has been
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given by Ludwig Boltzmann in 1872 constituting his kinetic equation [LP83]. Taking
into account two-particle collisions and assuming statistical independence of the two
particles in every instance apart from the time of the collision yields

Coll[f ] =
∫

dp̃ dp′ dp̃′ p(p, p̃|p′, p̃′)
[
f ′f̃ ′ − ff̃

]
, (6.2)

where p and p̃ denote the momenta of the first and second particle before the collision
and p′, and p̃′ denote the momenta of the two particles after the collision. p(p, p̃|p′, p̃′)
is the transition probability between these two states. In this sense the Boltzmann
collision term simply specifies the gains and losses due to two-particle collisions to the
phase space interval under consideration. One interesting property of the Boltzmann
equation is that it has a unique stationary solution

f(p) = (2πmkBT )−
3
2 exp

[
− p2

2mkBT

]
(6.3)

with m being the mass of the gas atom, T denoting the temperature of the gas and kB
denoting the Boltzmann constant. Thus under the assumption of a number of physical
properties a collision term has been formulated which determines the equilibrium
distribution for the momentum. Of course, it is not clear whether the assumptions
fully take into account the physical properties of the gas. That is why it is desirable to
develop a framework which yields the general structure of statistical equations without
having to resort to modeling assumptions. Such a framework has been formulated by
Bogoliubov, Born, Green, Kirk and Yvon and today is known as the BBKGY hierarchy
[Bog66, LP83]. The idea here is the following: As the collision operator takes into
account the interaction of multiple particles, it obviously incorporates information of
the statistics of more than one particle. Taking into account all particles, the N -particle
distribution function fN (x1, . . . ,xN ,p1, . . . ,pN , t) contains the full information of the
system at a given point in time. If the equations of motion specified by the interaction
potentials are known for the system, a closed kinetic equation can be derived for fN .
If we assume for the moment that only two-particle interactions, which depend on
the distance of the particles are physically relevant and higher order interactions are
negligible, the Hamiltonian takes the form

H =
N∑
i=1

p2
i

2m
+

N∑
i<j=1

V (|xj − xi|) . (6.4)

This allows to derive the Liouville equation, an evolution equation for the N -particle
distribution function leading to [LP83]

∂

∂t
fN +

N∑
i=1

vi · ∇xifN − (∇pifN) ·
N∑

i<j=1

∇xiV (|xj − xi|)
 = 0 . (6.5)
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The evolution equations for less than N particles can then be obtained by integration
over the coordinates and momenta of the particles not taken into account for the
moment. For the single-particle PDF, for example, one obtains

∂

∂t
f1(x1,p1, t)+v1·∇x1f1(x1,p1, t) = M

∫
dx2 dp2

[∇p1
f2(x1,x2,p1,p2, t)

]·[∇x1V12] .

(6.6)
Here M = N − 1 takes into account that particle 1 interacts with the remaining
N − 1 particles in an identical manner. This expression explicitly demonstrates that the
evolution of the single-particle distribution depends on the two-particle distribution. Of
course, also the evolution equation for the two-particle statistics can be obtained. There,
however, a coupling to the three-particle PDF appears. This hierarchy of evolution
equations eventually stops on the N -particle level. Consequently, we have to deal with a
closure problem when less than N particles are considered, and the Boltzmann collision
integral actually is nothing else than a closure, which rests on the statistical independence
of the two particles before and after the collision. The advantage of the formulation in
terms of the BBGKY hierarchy, rather than starting from a phenomenological model
for the collision operator, is that it allows to derive and study the statistical equations
in a very conceptual manner allowing for well-defined closure approximations. This is
not the only reasons why this approach to statistical mechanics up to today remains
fundamental to a number of research fields. One of the most advanced fields in this
respect is the statistical mechanics of plasmas, which is also studied in terms of kinetic
equations.
When applied to the statistical turbulence problem, a number of difficulties arise.

First of all, the equations of fluid motion are formulated for a continuum. Consequently
the statistical equations have to be formulated for a whole field if the full information
is supposed to be contained in the statistical description. The alternative would be
to study the statistical problem of turbulence on the molecular level coming at the
high price of giving up the advantages of the continuum description. For example, a
turbulent velocity field is smooth below its dissipative length scale such that a continuum
description is appropriate. Resolving this sub-Kolmogorov length scale on a molecular
level would be a much more fine-grained description than necessary. The mathematical
consequence is that the full information of the system cannot be contained within an
N -point PDF, no matter how large N is, one rather has to formulate the statistics of
the whole continuous field. As a side remark we note, however, that from a physical
point of view a finite number of points should suffice to fully characterize the turbulent
system if the field is sampled well below the dissipative length scales. Nevertheless, the
mathematically complete approach has first been followed by Hopf in 1952 [Hop52]
by formulating the evolution equation for the characteristic functional of the velocity
field. This approach later on was also followed by Monin and has become textbook
knowledge nowadays [MY71, MY75]. Although this approach proves to be very elegant
and undoubtedly comprehensive, the mathematical complexity of the arising functional
equations remains a major obstacle up to today. Apart from that, information on
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single-point or two-point statistics of turbulence still would be very valuable, which
motivates the investigation of N -point probability density functions. This actually has
been pursued by a number of authors, and it is remarkable to note that all of these
works have been published independently in 1967. Starting from a fine-grained PDF
describing the velocity field at a single point in space, Lundgren derived the hierarchy
of evolution equations for the velocity field. In addition to a very clear derivation of the
equations this beautifully written paper ([Lun67], received June 9 1966, published May
1967) highlights the connection to the BBGKY hierarchy. The same set of equations
has been obtained in a work by Monin ([Mon67], received August 17 1967, published
1967) from the characteristic functional together with the corresponding hierarchy of
moment equations. As incompressible flows equivalently may be described in terms of
the vorticity field, the hierarchy of evolution equations, of course, can also be formulated
for the vorticity field, which has been done by Novikov for both Eulerian and Lagrangian
PDFs ([Nov68], received on January 30 1967, published in November 1967 in Russian,
the English translation appeared May 1968). And although the velocity field statistics
is very different from the statistics of the vorticity field, the general structure of the
equations is very similar, as we will demonstrate later on. Consequently we think that it
is appropriate to call the hierarchy of evolution equations the Lundgren-Monin-Novikov
(LMN) hierarchy. We will give a detailed review on the hierarchy of equations in the
following sections of this chapter.
Shortly after these pioneering papers a work by Ulinich and Lyubimov appeared in

1969, in which also velocity increment distributions are considered and a perturbative
treatment of the hierarchy is presented [UL69]. Later on, in the eighties it was shown
by Pope that the kinetic equations can be taken as a good starting point for modeling
when instead of the coupling to higher order PDFs the equations are formally truncated
on the single-point level [PC93, Pop00]. This approach opened the whole field of PDF
modeling, which up to today is of great interest in the context of applied turbulence
research dealing with reacting flows [Pop00]. But also on the fundamental side work on
the kinetic equations continued, e.g., a number of Japanese authors published various
closure approximations in recent years (see, e.g., [TY04, Hos07, Hos08]).
Apart from the mathematical difficulties of the arising equations, the second major

obstacle is that “simple” closures like the one suggested by Boltzmann do not yield
meaningful results in the case of fully developed turbulence due to long-range correlations
in the fluid. This is why up to today a general procedure to formulate a closure which
does not miss fundamental properties of the statistics observed in experiments is lacking.
Nevertheless, one should note that the PDF approach still is promising and comes along
with a number of advantages. For example, it is especially suited to formulate closure
assumptions as it guarantees physically realizable solutions of the resulting equations,
something which often is violated for closures of moment equations.
After these introductory remarks the overall situation seems somewhat challenging;

the basic equations have been derived decades ago, and a fully satisfactory statistical
treatment is apparently out of reach at the moment. Hence it is appropriate to wonder
what kind of questions can be sought after within this framework. This brings us to
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the motivation and outline of this part of the thesis. The main strategy here is the
following. Going through the literature one can first of all note that only limited effort
has been spent on investigating the unclosed terms of the PDF equations by numerical
or experimental means. As we a priori do not know how to formulate an appropriate
closure, one consequently should first try to gather data from experiments or numerics.
Numerical evaluations turn out to be especially useful in this context as they allow to
calculate almost any desirable physical quantity in an outstanding statistical quality
(at least for simple statistical quantities). Hence we have performed simulations of fully
developed homogeneous isotropic turbulence in order to obtain this information for both
the velocity and vorticity field. One should note at this point that also Novikov has
worked in this direction in the case of the vorticity equation [Nov93, ND94, MDN96],
and we will take some of his works as a starting point for deeper investigations in the
later chapters.

Coming to the outline of this and the following chapters, we first of all will introduce
the basic definitions and highlight some constraints the PDFs have to fulfill. We then will
give a detailed review on how the PDF equations may be derived for the velocity field.
Here we will follow Lundgren’s approach and will first derive the evolution equations
for the fine-grained PDF and then obtain the full PDF equation by ensemble averaging.
Once the equations are set up, the second thing to notice is that only few attempts have
been made to simplify the mathematical structure of the equations of the hierarchy. It
turns out that drastic simplifications arise when homogeneous isotropic turbulence is
studied. We will close this chapter with some remarks on this topic, but the exploitation
of statistical symmetries will be of central interest in the following chapters as well.

After introducing the basic techniques, chapters 7 and 8 are devoted to a detailed joint
analytical and numerical investigation of the single-point statistics of the velocity and
the vorticity. One of the most interesting results here will be that exploiting statistical
symmetries eventually allows to find solutions of single-point PDF equations that
highlight the dependence of the functional forms of the PDFs on averaged dynamical
properties of the flow. A detailed characterization of the unclosed terms will be given
with the help of DNS results in these chapters.

While the single-point statistics can be treated in a comprehensive manner by joint
analytical and numerical efforts, this approach becomes unpracticable for multi-point
statistics. The reason for this is that the statistical quantities under consideration
are numerically inaccessible due to their high dimensionality. However, we will use
the information gathered on the single-point level to study possible closure schemes.
Chapters 9 and 10 will be devoted to approach the closure problem from two different
sides. in chapter 9 we will try to calculate the unclosed terms analytically in the
framework of the Twisted Gaussian Approximation, which will be introduced then. In
contrast to that, we will analyze in chapter 10 the PDF equations with respect to the
question which information of the two-point PDF has to be contained in a model in
order to correctly close the single-point equation.
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6.2. Basic Concepts

6.2.1. Definitions and Constraints on PDFs

To introduce the basic concepts in deriving evolution equations of PDFs, we are following
Lundgren [Lun67] as the author thinks that his derivation is particularly clear and
comprehensible. More details on the derivation can also be found in Pope’s book [Pop00].
The approach makes extensive use of the properties of Dirac’s delta distribution, such that
we list some of the most important properties in appendix A.1. As already introduced
in chapter 2, the fine-grained probability density function for a velocity field may be
defined as

f̂1(v1;x1, t) = δ(u(x1, t)− v1) , (6.7)

where u(x, t) is a realization of the velocity field and v1 denotes the corresponding
sample space variable. The notation here implies that f̂1 is a probability density with
respect to the sample space variable v1 and a function with respect to the variables x1

and t. The term “fine-grained” refers to the fact that this PDF is sharply peaked in the
sense that, given a realization u(x1, t), the PDF only gives a non-vanishing probability
density if v1 = u(x1, t) for each point (x1, t). Thus knowing the fine-grained PDF for
each point x1 of a particular realization is equivalent to knowing the realization itself.
Now taking into account an ensemble of velocity fields lets us obtain the “full” PDF
from the fine-grained PDF by ensemble averaging according to

f1(v1;x1, t) = 〈f̂1(v1;x, t)〉 = 〈δ(u(x1, t)− v1)〉 . (6.8)

By taking this average, we have turned to a statistical description in which the informa-
tion on the individual realization is lost. In the following we will usually omit the index
1 if only single-point PDFs are considered. Of course, this definition can be extended to
multiple points according to

fN (v1, . . . ,vN ;x1, . . . ,xN , t) = 〈f̂N (v1, . . . ,vN ;x1, . . . ,xN , t)〉

=

〈
N∏
i=1

δ(u(xi, t)− vi)
〉

, (6.9)

which allows for a statistical characterization of N points in space. For example, the
investigation of f2 is necessary to study the statistical properties of velocity increments.
The PDFs are subject to a number of constraints appearing due to the fact that a

physical field at N points is considered. First of all, the PDFs have to fulfill the reduction
property ∫

dvN fN = fN−1 , (6.10)

which means that by integration one can project from the N -point to the N − 1-point
PDF. The normalization condition ∫

dv1 f1 = 1 (6.11)
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can be seen as a special case of this property. Furthermore, the PDFs have to fulfill the
separation property

lim
|x2−x1|→∞

f2(v1,v2;x1,x2, t) = f1(v1;x1, t) f1(v2;x2, t) , (6.12)

here exemplified for the two-point PDF. The separation property just takes into account
the fact that the velocities at two points in space have to become statistically independent
if their separation is large enough. Conversely, if the separation between two points is
becoming infinitesimally small, we have to obtain the same value for v1 and v2, which
imposes the coincidence property

lim
|x2−x1|→0

f2(v1,v2;x1,x2, t) = f1(v1;x1, t) δ(v2 − v1) . (6.13)

As we are considering solenoidal fields, the statistical quantities have to be consistent
with that. The consequence is that incompressibility does not only have to be fulfilled
pointwise, ∇x1 · u(x1, t) = 0, but also on the statistical average. This yields

0 = 〈∇x1 · u(x1, t)〉 = ∇x1 · 〈u(x1, t)〉 = ∇x1 ·
∫

dv1 v1f1(v1;x1, t) . (6.14)

This continuity property also applies to higher order PDFs, which can be seen by
considering

0 =
〈[∫

dv1 δ(u(x1, t)− v1)
]
. . . δ(u(xN , t)− vN )∇x1 · u(x1, t)

〉
= ∇x1 ·

∫
dv1

〈
δ(u(x1, t)− v1) . . . δ(u(xN , t)− vN )u(x1, t)

〉
= ∇x1 ·

∫
dv1 v1 fN (v1, . . . ,vN ;x1, . . . ,xN , t) . (6.15)

This property, of course, may be formulated for any vi. All of these properties have to
be fulfilled by the N -point PDFs describing turbulent flows. It can be shown that this
actually is the case for PDFs of the Lundgren-Monin-Novikov hierarchy [Lun67], and
they can be used as a guideline when models for PDF closures are developed, which we
will demonstrate in chapter 10. There we will also introduce some additional constraints
which arise from statistical symmetries.

6.2.2. Evolution Equations for Fine-Grained PDFs

To obtain the equations of the LMN hierarchy, we will now take derivatives of the
fine-grained PDF (6.7) and use the Navier-Stokes equation (1.1) to re-express some of
the terms. We start with taking the partial derivative with respect to time,

∂

∂t
f̂1(v1;x1, t) =

∂

∂t
δ(u(x1, t)− v1) = −∇v1 ·

[
∂u

∂t
(x1, t) f̂1(v1;x1, t)

]
. (6.16)
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We can, of course, proceed in the same manner with spatial derivatives, such that we
obtain

∂

∂xi
f̂1(v1;x1, t) =

∂

∂xi
δ(u(x1, t)− v1) = −∇v1 ·

[
∂u

∂xi
(x1, t) f̂1(v1;x1, t)

]
. (6.17)

If we additionally note that

u(x1, t) · ∇x1 f̂1(v1;x1, t) = ∇x1 ·
[
u(x1, t)f̂1(v1;x1, t)

]
= ∇x1 ·

[
v1f̂1(v1;x1, t)

]
= v1 · ∇x1 f̂1(v1;x1, t) , (6.18)

where we made use of incompressibility and the sifting property of the delta distribution,
we obtain the evolution equation for the fine-grained PDF

∂

∂t
f̂1(v1;x1, t) + v1 · ∇x1 f̂1(v1;x1, t)

= −∇v1 ·
[(

∂u

∂t
(x1, t) + u(x1, t) · ∇x1u(x1, t)

)
f̂1(v1;x1, t)

]
= −∇v1 ·

[(−∇x1p(x1, t) + ν∆x1u(x1, t) + F (x1, t)
)
f̂1(v1;x1, t)

]
.

(6.19)

Here we have used the Navier-Stokes equation (1.1) to replace the terms of its left-hand
side by the terms of its right-hand side. To move on to the evolution for the full PDF,
we take the ensemble average of the last equation and make use of the fact that we can
interchange the temporal derivative as well as the advective term with the ensemble
average. This leads us to

∂

∂t
f1(v1;x1, t) + v1 · ∇x1f1(v1;x1, t)

= −∇v1 ·
〈(−∇x1p(x1, t) + ν∆x1u(x1, t) + F (x1, t)

)
f̂1(v1;x1, t)

〉
.

(6.20)

The first thing to note is that this equation is formally very similar to (6.1) if the
collision operator is identified with the right-hand side. Hence the task here is also to
specify this collision operator, which turns out to be a severe problem. The reason for
that is that the terms of the right-hand side of equation (6.20) cannot be expressed in
terms of v1 and f1 only, i.e., we are facing the closure problem of turbulence. To close
the unclosed terms 〈−∇x1p(x1, t) f̂1(v1;x1, t)

〉
(6.21a)〈

ν∆x1u(x1, t) f̂1(v1;x1, t)
〉

(6.21b)〈
F (x1, t) f̂1(v1;x1, t)

〉
, (6.21c)
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unknown information on the joint statistics of the velocity with the pressure gradient,
the diffusive terms and the external forcing is necessary, and there are several options
how to proceed in the following with these terms.

6.2.3. Coupling to Higher Orders vs. Conditional Averaging

It turns out that the diffusive term and the term involving the pressure gradient can be
expressed in terms of the two-point PDF f2(v1,v2;x1,x2, t). To illustrate this fact, we
start with the diffusive term, where the coupling can be seen especially easily. To this
end we use the identity ∫

dv2 δ(u(x2, t)− v2) = 1 (6.22)

and treat the diffusive term according to〈(
ν∆x1u(x1, t)

)
f̂1(v1;x1, t)

〉
= lim
x2→x1

〈
ν∆x2u(x2, t) f̂1(v1;x1, t)

〉
= lim
x2→x1

ν∆x2

〈
u(x2, t) f̂1(v1;x1, t)

〉
= lim
x2→x1

ν∆x2

∫
dv2

〈
u(x2, t) f̂2(v1,v2;x1,x2, t)

〉
= lim
x2→x1

ν∆x2

∫
dv2 v2 f2(v1,v2;x1,x2, t) . (6.23)

This shows that the coupling of the diffusive term is “almost local”; we only need to
know the velocity field in an infinitesimal small region around x1, such that we can
compute the second derivatives. In this sense the diffusive term depends on the local
geometry of the velocity field.
Things are different for the pressure gradient term as the pressure is determined as

an integral over the whole domain as indicated in equation (1.4). Consequently, the
pressure gradient term is written as〈(−∇x1p(x1, t)

)
f̂1(v1;x1, t)

〉
=
〈
− 1

4π

∫
dx2

(
∇x1

∇x2 · [u(x2, t) · ∇x2u(x2, t)]
|x2 − x1|

)
δ(u(x1, t)− v1)

〉
=
〈
− 1

4π

∫
dx2

(
∇x1

Tr [(∇x2∇Tx2
)(u(x2, t)uT (x2, t))]
|x2 − x1|

)
×

δ(u(x1, t)− v1)
(∫

dv2 δ(u(x2, t)− v2)
)〉

= − 1
4π

∫
dx2 dv2

(
∇x1

1
|x2 − x1|

)
(v2 · ∇x2)2 f2(v1,v2;x1,x2, t) . (6.24)

For this series of rearrangements we made use of the identity (6.22), the solenoidality
of the velocity field and the sifting property of the delta distribution. This expression
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6. The Lundgren-Monin-Novikov Hierarchy

shows that the pressure contains information about the two-point PDF f2 at any point
x2 for fixed x1. As a side remark one should note that the diffusive term is a linear
function of v2, whereas the pressure gradient term is a quadratic one.

The forcing term cannot generally be expressed in terms of the two-point PDF, this
term rather depends on how the velocity field reacts on the external forcing. Maybe
that is the reason why it generally is not considered in the works on the LMN hierarchy
dealing with the velocity field. In general one will expect that the correlation length
and the amplitude of the forcing will influence the velocity field. Things can be made
more precise if a stochastic forcing term is considered. If we assume a Gaussian random
forcing which is delta correlated in time

〈Fi(x, t)Fj(x′, t′)〉 = Qij(x− x′) δ(t− t′) (6.25)

with the covariance tensor

Qij(r) =
Q0

3

[
c⊥(r)δij + (c‖ − c⊥)(r)

rirj
r2

]
with r = x− x′ , (6.26)

it is possible to obtain an explicit expression for the derivative of the joint average of
the fine-grained PDF and the external forcing in the context of stochastic processes.
Here Q0 denotes the amplitude of the forcing, whereas c‖ and c⊥ denote the normalized
longitudinal and transversal correlation functions of the forcing field, respectively. The
results reads [Hak78, Ris96]

∂

∂v1,i

〈
Fi(x1, t) f̂1(v1;x1, t)

〉
=

1
2
Qij(0)

∂2

∂v1,i ∂v1,j
f1 =

1
2
Q0∆v1f1 , (6.27)

i.e., a diffusive term with respect to the sample space variable, which depends on the
amplitude of the forcing term, is obtained. This shall remain a side remark at this point
as a stochastic forcing term has not been used for the DNS results presented in this
thesis.

With these results one can write down the single-point PDF equation (6.20) in terms
of its coupling to the two-point PDF and obtain

∂

∂t
f1 + v1 · ∇x1f1

= −∇v1 ·
[
− 1

4π

∫
dx2 dv2

(
∇x1

1
|x2 − x1|

)
(v2 · ∇x2)2 f2

+ lim
x2→x1

ν∆x2

∫
dv2 v2 f2 + 〈F 1 f̂1〉

]
, (6.28)

where we have dropped arguments in favor of clarity and used the notation F 1 = F (x1, t).
Note that this equation is formally very similar to (6.6) when the unclosed terms on
the right-hand side are regarded as interaction potentials. However, no simple closures
are expected to work in this case as, for example, the integral related to the pressure
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gradient introduces slowly decaying long-range correlations. This whole procedure can
naturally be extended to obtain an evolution equation for f2. Going through all the
steps of the derivation yields

∂

∂t
f2 + v1 · ∇x1f2 + v2 · ∇x2f2

= −∇v1 ·
[
− 1

4π

∫
dx3 dv3

(
∇x1

1
|x3 − x1|

)
(v3 · ∇x3)2 f3

+ lim
x3→x1

ν∆x3

∫
dv3 v3 f2 + 〈F 1 f̂2〉

]
−∇v2 ·

[
− 1

4π

∫
dx3 dv3

(
∇x2

1
|x3 − x2|

)
(v3 · ∇x3)2 f3

+ lim
x3→x2

ν∆x3

∫
dv3 v3 f2 + 〈F 2 f̂2〉

]
, (6.29)

which gives an impression of how the hierarchy of evolution equations looks like. On
the left-hand side “advective” terms with respect to the different points in space appear,
and on the right-hand side the collision operators with respect to the sample space
variables v1 and v2 have to be taken into account. Note that the whole expression is
symmetric with respect to an interchange (x1,v1) ↔ (x2,v2) as none of the spatial
points should be distinguished by notation.
A second way of treating the unclosed terms has been put forward by Pope in the

context of PDF equation modeling [Pop00]. For this approach one makes use of the fact
that the conditional probability of two random variables is defined by the relation

f2(v1,v2;x1,x2, t) = p(v2|v1,x1,x2, t)f1(v1;x1, t) , (6.30)

where we have introduced the transition probability p(v2|v1,x1,x2, t). With this defini-
tion it is possible to evaluate conditional averages according to

〈u(x2, t)|v1〉 =
∫

dv2 v2 p(v2|v1,x1,x2, t) . (6.31)

This allows to express the joint averages of the unclosed terms as〈(−∇x1p(x1, t)
)
f̂1(v1;x1, t)

〉
=
〈−∇x1p(x1, t)

∣∣v1,x1, t
〉
f1(v1;x1, t) (6.32a)〈(

ν∆x1u(x1, t)
)
f̂1(v1;x1, t)

〉
=
〈
ν∆x1u(x1, t)

∣∣v1,x1, t
〉
f1(v1;x1, t) (6.32b)〈

F (x1, t) f̂1(v1;x1, t)
〉

=
〈
F (x1, t)

∣∣v1,x1, t
〉
f1(v1;x1, t) . (6.32c)

These expressions explicitly show that not the full joint PDF of, e.g., the pressure
gradient and the velocity has to be known in order to close the first equation of the
hierarchy, it rather suffices to know the local correlations of the two quantities in form
of the conditional average. With these expressions we may write it down as

∂

∂t
f1 + v1 · ∇x1f1 = −∇v1 ·

[〈−∇p+ ν∆u+ F
∣∣v1

〉
f1

]
, (6.33)
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showing that it takes a particularly simple form, where the left-hand side of the equation
indicates an advective transport of the probability and the right-hand side contains
gains and losses of probability induced by the correlations of the velocity with the
dynamical quantities arising in the right-hand side of the Navier Stokes equation. This
form of formulating the kinetic equation turns out to be particularly easy to interpret as
the closure problem may be cast in form of questions like, e.g., which value the pressure
gradient will take on average given a fixed velocity.

Something not explicitly stressed in the literature is the fact that the introduction of
conditional averages cannot only be done on the single-point level, but rather at any
given level. If we formally denote the coupling exemplified in equations (6.28) and (6.29)
of the evolution for the k-point PDF to the k+ 1-point PDF with Ck

[
fk+1,F 1, . . . ,F k

]
and introduce the conditional averages on the N -point level, the hierarchy takes the
form

∂

∂t
f1 + v1 · ∇x1f1 = C1

[
f2,F 1

]
∂

∂t
f2 + v1 · ∇x1f2 + v2 · ∇x2f2 = C2

[
f3,F 1,F 2

]
...

∂

∂t
fN−1 +

N−1∑
i=1

vi · ∇xifN−1 = CN−1

[
fN ,F 1, . . . ,FN−1

]
∂

∂t
fN +

N∑
i=1

vi · ∇xifN = −
N∑
i=1

∇vi ·
{〈−∇xipi + ν∆xiui + F i

∣∣v1, . . . ,vN
〉
fN
}

(6.34)

i.e., the hierarchy up to the N -th level will be closed if the N -point conditional averages
are known. If one now assumes that N is large enough to provide a sufficiently fine-
meshed sampling of the spatial domain, such that the Kolmogorov length scale is
adequately resolved, one could actually argue that a closed system of PDF equations
on the N -point level would contain all physically necessary information.

We should note at this point that a formally closed set of equations will not automat-
ically give a constructive procedure to calculate the PDFs, something which we will see
when the single-point statistics of velocity and vorticity will be investigated in chapters
7 and 8. However, the hierarchy in the form of (6.34) may formally be solved with the
method of characteristics, which allows to recast the system of equations in terms of
ordinary partial differential equations for the variables xi and vi. Let Xi(t,x0,i,v0,i)
and V i(t,x0,i,v0,i) denote the characteristic curves with

Xi(t0,x0,i,v0,i) = x0,i (6.35a)
V i(t0,x0,i,v0,i) = v0,i . (6.35b)

126



6.2. Basic Concepts

These curves obey the characteristic equations

d
dt
X1 = V 1

d
dt
X2 = V 2

...
d
dt
XN = V N

d
dt
V 1 =

〈−∇x1p1 + ν∆x1u1 + F 1

∣∣v1, . . . ,vn
〉

[xi=Xi(t),vi=V i(t)]

d
dt
V 2 =

〈−∇x2p2 + ν∆x2u2 + F 2

∣∣v1, . . . ,vn
〉

[xi=Xi(t),vi=V i(t)]

...
d
dt
V N =

〈−∇xNpN + ν∆xNuN + FN

∣∣v1, . . . ,vn
〉

[xi=Xi(t),vi=V i(t)]
, (6.36)

and the PDF fN
(
V 1(t), . . .V N (t);X1(t), . . . ,XN (t), t

)
evolves along the solution of

these curves according to

d
dt
fN =

[
−

N∑
i=1

∇vi ·
〈−∇xipi + ν∆xiui + F i

∣∣v1, . . . ,vn
〉]

[xi=Xi(t),vi=V i(t)]

fN .

(6.37)
The interesting fact about this equation is that it can be formally integrated once the
characteristic curves are known, leading to

fN
(
V 1(t), . . . ,V N (t);X1(t), . . . ,XN (t), t

)
= fN

(
v0,1, . . . ,v0,N ;x0,1, . . . ,x0,N , t0

)×
exp

{
−
∫ t

t0

dt′
[
−

N∑
i=1

∇vi ·
〈−∇xipi + ν∆xiui + F i

∣∣v1, . . . ,vn
〉]

[xi=Xi(t′),vi=V i(t′)]

}
.

(6.38)

Of course, obtaining an explicit solution for the general N -point case will be very hard,
however, the method of characteristics can be used for a qualitative understanding of
the evolution of the PDF in probability space and will turn out to be particularly useful
when studying decaying turbulence.

We close this section with the remark that up to now we have encountered three
different types of closure problems. When the Friedman-Keller hierarchy of moments
is considered, the closure problem comes in terms of a coupling to higher moments.
This, for example, has been illustrated in chapter 2 in the context of the Kármán-
Howarth equation. In the framework of the Lundgren-Monin-Novikov hierarchy the
closure problem appears in two alternative ways. One may either formulate the unclosed
expressions in terms of a coupling to PDFs at an increasing number of spatial points or
in terms of local correlations in the shape of conditional averages.
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6.2.4. The Role of Statistical Symmetries

The kinetic equations have been formulated for the most general situation of a turbulent
fluid without further assumptions. As indicated in chapter 2.3, turbulence research
often considers the idealized case of homogeneous isotropic turbulence. In the same
chapter we have motivated how homogeneity and isotropy may be used to simplify
statistical quantities like probability density functions and correlation functions. Of
course, these arguments can also be applied to the conditional averages appearing in the
hierarchy of evolution equations, and we will make extensive use of these simplifications
in the following chapters. Beyond simplifying the description, some of the results only
become possible when these symmetries will be taken into account. The homogeneous
and stationary solutions of the single-point PDF equations for the velocity and vorticity,
that will be derived in chapters 7 and 8, are maybe the most important ones to note in
this context. Instead of giving a general discussion of all arising relations at this point,
we will introduce them in the following chapters when appropriate.
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Velocity

7.1. Motivation

In this chapter we turn to a closer investigation of the single-point velocity PDF f(v;x, t)
in both stationary and decaying turbulence. One might argue at this point that the
single-point velocity PDF of fully developed turbulence is not a very interesting quantity.
Turbulence research has often focused on the two-point characteristics of the velocity
field in terms of velocity increment statistics, and a number of phenomenological theories
exist describing the intermittent behavior we have observed in chapter 4. We refer the
reader, for example, to [Fri95] for an overview of the different theories. Furthermore,
since the middle of the twentieth century experimental data exists demonstrating that
the velocity PDF displays a nearly Gaussian behavior. For example, some classical
measurements by Townsend are presented in [Bat53]. Maybe due to the closeness to
Gaussianity the functional shape of the velocity PDF is often regarded as rather trivial,
and Gaussianity is often assumed on a phenomenological basis sometimes utilizing
hand-waving arguments involving the central limit theorem. Careful numerical and
experimental investigations, however, indicate that slight deviations from Gaussianity
exist, see, e.g., the works by [VM91, NWL+97, GFN02], which show that the PDF
has slightly sub-Gaussian tails. Interestingly this observation can also be made for
Townsend’s data presented in [Bat53], where the kurtosis of the longitudinal velocity
increment is shown. Since this value drops below the Gaussian value beyond the integral
length scale, it can be concluded that the single-point velocity PDF should also be
sub-Gaussian. These findings are consistent with the DNS results presented in this
thesis, as can be seen from figure 4.1.

On the theoretical side the shape of the velocity PDF has been discussed by a number
of authors. Jimenez suggests sub-Gaussian tails taking into account the precise shape
of the energy spectrum [Jim98], while the instanton formalism is used by Falkovich
and Lebedev [FL97] to argue in favor of sub-Gaussian tails depending strongly on the
external forcing. In contrast to that, Gaussian PDFs have been found in the case of
decaying turbulence by Ulinich and Lyubimov [UL69] and later by Hosokawa [Hos08]
or in the case of the cross-independence hypothesis by Tatsumi and coworkers [TY04].
The latter works make use of the statistical framework of the Lundgren-Monin-Novikov
hierarchy [Lun67, Nov68, Mon67] with additional closure approximations.

Hence the motivation for this chapter of the thesis is to examine the shape of probably
the most simple PDF one can consider in the framework of the LMN hierarchy, especially
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focusing on deviations from Gaussianity. The strategy will be the following. First of
all we will go for a deeper investigation of the single-point velocity PDF. We will
especially examine the simplifications that arise due to statistical symmetries and will
present closed expressions for the single-point velocity PDF for both homogeneous and
stationary turbulence. Furthermore, the relation to moment equations is considered
and the theoretical part of this chapter will present possible analytical closures of
the PDF equations. The second part of the chapter then will consult DNS results to
gain information on the unclosed terms. These results will lead to insights into the
correlation of the dynamical quantities arising in the kinetic equation and will allow for
a physical interpretation of the different terms. This analysis will especially highlight
the limitations of analytical closure approaches and will motivate refined closures. As a
check for consistency the homogeneous and stationary solutions of the PDF equations
will be evaluated with these terms. The properties of decaying turbulence will also be
studied in this context. This chapter represents joint work with Anton Daitche. Some of
the results can also be found in [Dai09] and will be published in [WDF10a, WDF10b].

7.2. The Single-Point Velocity PDF Equation

7.2.1. Application of Statistical Symmetries

As introduced in the preceding chapter, the single-point PDF equation may be written
down taking the form

∂

∂t
f + v · ∇f = −∇v ·

[〈−∇p+ ν∆u+ F
∣∣v〉 f] , (7.1)

i.e., the closure problem comes in the shape of the unknown conditional averages of the
pressure gradient, the diffusive term and the external forcing. In the case of decaying
turbulence the forcing term is absent, and it is not possible to maintain a statistically
stationary flow. We will omit the subscript 1 in this chapter as no confusion with higher
order PDFs has to be expected.

For homogeneous turbulence all statistical quantities should be invariant with respect
to spatial translations x 7→ x+r. For the single-point PDF f(v;x, t) the consequence is
that it cannot depend on x, such that the advective term on the left-hand-side vanishes.
By this simplification the kinetic equation takes the form of a continuity equation for
the probability density

∂

∂t
f = −∇v ·

[〈−∇p+ ν∆u+ F
∣∣v〉 f] , (7.2)

where the conditionally averaged right-hand side of the Navier-Stokes equation times the
PDF defines the probability current. Homogeneity furthermore allows to derive relations
between various conditional averages. The most simple relation can be obtained by
calculating the Laplacian of the fine-grained PDF and taking the ensemble average.
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This average vanishes due to homogeneity, and by introducing conditional averages we
obtain the relation

∂2

∂x2
k

f = 0 = − ∂

∂vi

〈
∂2ui
∂x2

k

∣∣∣∣v〉f +
∂

∂vi

∂

∂vj

〈
∂ui
∂xk

∂uj
∂xk

∣∣∣∣v〉f . (7.3)

Here and in the following Einstein’s summation convention will be applied. With this
relation the diffusive term in (7.2) can be replaced, such that the equation takes the
form

∂

∂t
f = − ∂

∂vi

〈
− ∂

∂xi
p+ Fi

∣∣∣∣v〉f − ∂

∂vi

∂

∂vj

〈
ν
∂ui
∂xk

∂uj
∂xk

∣∣∣∣v〉f . (7.4)

By this the so-called conditional (pseudo-)dissipation tensor

Dij(v) =
〈
ν
∂ui
∂xk

∂uj
∂xk

∣∣∣∣v〉 (7.5)

has entered the equation. This nomenclature will become more clear in the following.
It should be mentioned that similar equations have been studied by Pope [Pop00] for
turbulence with mean flow, where they have been used as a starting point for PDF
modeling. The interesting fact here is that exploitation of the homogeneity relation (7.3)
alters the mathematical structure of the kinetic equation such that second derivatives
enter. We will see in the following that both versions of the kinetic equation are useful
for different purposes. For example, the structure of equation (7.4) allows to derive
a unique stationary solution, something which is not possible for equation (7.2). To
exemplify the mathematical structure of equation (7.4) further, let us consider the case
of decaying turbulence. In this case the only two terms in equation (7.4) governing the
evolution of the velocity PDF are the conditionally averaged pressure gradient and the
conditional dissipation tensor. While the former takes the form of a drift induced by
the nonlocal pressure contributions, the latter term may be interpreted as a diffusive
term, however with a negative sign. This sign has a physically plausible origin as for a
diffusion process an initially localized concentration spreads over time, eventually being
dispersed over a large domain. Regarding the decay of the velocity field of a turbulent
fluid, the opposite takes place; an initially broad distribution of velocity contracts as the
velocity field dies away. When the fluid has come to rest, the PDF is localized sharply
in probability space, lim

t→∞
f(v, t) = δ(v), expressing that we have probability one to find

a vanishing velocity.
We now want to study the simplifications possible due to isotropy. As introduced in

chapter 2, isotropy implies invariance of statistical quantities under arbitrary rotations
and reflections1 of the coordinate system. As we have seen there, this implies

f(Rv) = f(v) ∀R ∈ SO(3) , (7.6)

1For the current presentation we only make use of invariance under rotations.
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such that the PDF can only depend on the magnitude of the velocity. This allows to
establish the simple relation

f̃(v) = 4πv2f(v) , (7.7)

where f̃ denotes the PDF of the magnitude of velocity, i.e., the investigation of this
quantity suffices to characterize the PDF of the vector. In experiments and numerical
simulations often the PDFs of the components of the velocity, vx, vy and vz are
investigated. These may be obtained from the PDF of the vector simply by integration,
for example,

f(vx) =
∫

dvy dvz f(v) (7.8)

and may also be obtained directly from f̃(v). This can be seen by introducing cylindrical
coordinates, where vx is chosen as z-axis. A short calculation yields the result

f(vx) =
∫ ∞
|vx|

dv
f̃(v)
v

. (7.9)

This relation can also be inverted by differentiation resulting in

f̃(v) =
[
2vx

d
dvx

f(vx)
]
vx=v

. (7.10)

These considerations demonstrate that for isotropic turbulence the single-point statistics
can fully be characterized in terms of the PDF of the velocity vector, the magnitude
of the velocity or a single component. We choose the PDF of the magnitude as the
resulting equations are especially easy to handle.
The kinetic equation (7.1) contains vectors conditionally averaged with respect to

the vectorial velocity. Isotropy here implies

〈a|Rv〉 = R〈a|v〉 ∀R ∈ SO(3) , (7.11)

which, according to chapter 2, leads to the general form

〈a|v〉 = α(v)v̂ with α(v) = 〈û · a|v〉 , (7.12)

where, for example, v̂ denotes the direction of the v vector. Note that the scalar function
α depends on the magnitude of the velocity vector only, which is a strong simplification
with respect to the numerical evaluation later on. This allows to express the conditional
vectors in the kinetic equations (7.2) and (7.4) in terms of the scalar functions Π, Λ
and Φ according to 〈−∇p∣∣v〉 = Π(v)v̂ Π(v) =

〈−û · ∇p∣∣v〉 (7.13a)〈
ν∆u

∣∣v〉 = Λ(v)v̂ Λ(v) =
〈
νû ·∆u∣∣v〉 (7.13b)〈

F
∣∣v〉 = Φ(v)v̂ Φ(v) =

〈
û · F ∣∣v〉 . (7.13c)
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As a result the knowledge of the three scalar functions suffices to close the kinetic
equation (7.2). To simplify the structure of the conditional dissipation tensor, we take
into account that for second order tensors isotropy implies

D(Rv) = RD(v)RT ∀R ∈ SO(3) . (7.14)

We have motivated in chapter 2 that under these conditions the most general form of
the tensor (which is symmetric) will be [Rob40, Bat53, Dai09]

Dij(v) = µ(v) δij +
[
λ(v)− µ(v)

]vivj
v2

, (7.15)

where µ and λ are the eigenvalues of D depending only on the magnitude of velocity.
For a given matrix D they can simply be determined by the relations

Tr(D) = λ(v) + 2µ(v) (7.16a)
v̂Dv̂ = λ(v) . (7.16b)

To find out their physical meaning, we first note that the trace of D is determined by
the conditional averages of the local rate of energy dissipation ε = 2νTr(S2) and the
squared vorticity ω2,

Tr(D) = ν
〈
Tr(S2)− Tr(W2)

∣∣v〉 =
1
2
〈
ε+ νω2

∣∣v〉 . (7.17)

The second scalar quantity needed to determine D is

v̂Dv̂ =
〈
ν ûAAT û

∣∣v〉 =
〈
ν(AT û)2

∣∣v〉 . (7.18)

This rather formally looking quantity has a simple physical interpretation. As A may
be decomposed in symmetric and antisymmetric parts, we write AT û = (S−W)û. The
last term may also be written as Wû = 1

2ω × û due to the relation Wij = −1
2εijkωk.

Hence, the conditional average appearing in (7.18) involves the absolute value of the
difference between the rate of stretching in the direction of the velocity vector and the
rate of rotation of the unit vector û. Summing up, the conditional dissipation tensor D
in isotropic turbulence has the form

Dij(v) = µ(v) δij + [λ(v)− µ(v)]
vivj
v2

(7.19a)

µ(v) =
1
4
〈
ε+ νω2

∣∣v〉− 1
2
〈
ν(AT û)2

∣∣v〉 (7.19b)

λ(v) =
〈
ν(AT û)2

∣∣v〉 . (7.19c)

We will see in the context of the energy budget equation that only the trace of D is
associated with the dissipation of kinetic energy. Hence the remaining terms may be
interpreted as a redistribution of kinetic energy between the different components of
velocity. Now having expressed all terms arising in equations (7.2) and (7.4) in terms
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of scalar functions depending on the magnitude of velocity only, these terms can be
inserted into the kinetic equations, which yields further simplifications. For example,
the terms involving conditionally averaged vectors take the simple form

∂

∂vi
〈ai|v〉f(v) =

∂

∂vi
α(v)

vi
4πv3

f̃(v)

=
1

4πv2

∂

∂v
α(v)f̃(v) . (7.20)

For the conditional dissipation tensor we proceed in a similar manner and obtain

∂

∂vi

∂

∂vj
Dij(v)f(v) =

1
4πv2

[
∂2

∂v2
λ(v)f̃(v)− ∂

∂v

2
v
µ(v)f̃(v)

]
. (7.21)

If we now insert these relations into our original kinetic equations, they take (what we
call) the isotropic form of the equations (7.2), (7.3) and (7.4)

∂

∂t
f̃ = − ∂

∂v
(Π + Λ + Φ) f̃ (7.22a)

0 = − ∂

∂v

(
Λ +

2µ
v

)
f̃ +

∂2

∂v2
λf̃ (7.22b)

∂

∂t
f̃ = − ∂

∂v

(
Π + Φ− 2µ

v

)
f̃ − ∂2

∂v2
λf̃ . (7.22c)

The important observation now is that these equations depend only on the magnitude of
the velocity vector, any explicit dependence on components of the velocity has vanished.
That means that the problem is hereby mathematically reduced to a one-dimensional
one, which will allow for a number of important conclusions. For example, if we consider
stationary turbulence, the left-hand side of (7.22a) vanishes, such that we obtain

0 =
∂

∂v
(Π + Λ + Φ) f̃ . (7.23)

By integrating this equation and choosing the integration constant to be zero (which is
corresponds to the generic case) we obtain

0 = Π(v) + Λ(v) + Φ(v) . (7.24)

This conditional balance shows that in stationary homogeneous isotropic turbulence the
contributions of the pressure gradient, the diffusive term and the external forcing cancel.
Note that this holds in the conditional sense, which is stricter than the corresponding
relation for ordinary averages. Of course, the latter relation is included in this relation
and may be obtained by integration. This relation basically states that the probability
current of the right-hand side of equation (7.22a) vanishes for stationary turbulence.
This also shows that it is not possible to compute a meaningful stationary solution for
f̃ directly from equation (7.22a).
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7.2.2. Homogeneous and Stationary PDF

The second important property of the equations (7.22b) and (7.22c) is that explicit
expressions for the velocity PDF in the case of homogeneous or additionally stationary
isotropic turbulence may be obtained. For the case of homogeneous turbulence equation
(7.22b) may be integrated, and we obtain

f̃(v; t) =
N

λ(v, t)
exp

∫ v

v0

dv′
Λ(v′, t) + 2

v′µ(v′, t)
λ(v′, t)

, (7.25)

where N denotes a normalization constant, which depends on the integration limit
v0. This expression shows that the precise shape of the PDF of the magnitude of
velocity depends on the conditional average related to the diffusive term Λ and the two
eigenvalues of the conditional dissipation tensor µ and λ. As this relation is only based
on homogeneity and isotropy, it also holds for decaying turbulence, such that all of the
quantities may depend on time.

If we assume stationary statistics, the left-hand side of equation (7.22c) vanishes, and
the equation then may be solved in exactly the same manner. The solution reads

f̃(v) =
N
λ(v)

exp
∫ v

v0

dv′
−Π(v′)− Φ(v′) + 2

v′µ(v′)
λ(v′)

, (7.26)

i.e., the stationary PDF depends on the conditionally averaged pressure gradient and
external forcing as well as on the eigenvalues of the conditional dissipation tensors. Note
that this result can also be obtained from the homogeneous solution (7.25) by exploiting
the conditional balance (7.24). Of course, the functional form of the conditional averages
cannot be explicitly computed at this point without further assumptions, but the
expression reveals that the shape of the probability density function depends on the
correlations between the velocity and the different dynamical effects on the single-point
level. For example, the stationary solution depends on how energy is injected into the
system by the forcing on the large scales, redistributed by the pressure gradient and
finally dissipated on the small scales. Due to this interpretation we think that these
results are more than just formal solutions. We will demonstrate in section 7.2.5 how,
based on physical arguments, closures may be formulated leading to closed expressions
for the PDF. Furthermore one can argue that, although these expressions involve
unknown terms, still meaningful insights can be gained. For instance, this procedure
explicitly reveals which correlations influence the functional shape of the single-point
velocity PDF.

7.2.3. The Method of Characteristics For Decaying Turbulence

The shape of the PDF can be determined in the non-stationary situation by evaluating
the homogeneous solution (7.25). Here, the conditional averages Λ, λ and µ have to be
known as a function of time. Another possibility to study non-stationary situations is
with the help of the method of characteristics as indicated in chapter 6. In the case of
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the single-point velocity PDF in homogeneous isotropic turbulence things turn out to
be particularly simple as we only have to consider the sample space evolution of the
magnitude of the velocity vector. Let V (t, v0) denote a characteristic curve which starts
from v0, i.e. V (t0, v0) = v0. The method of characteristics then yields the following
equations

d
dt
V (t, v0) = [Π(v, t) + Λ(v, t)]v=V (t,v0) (7.27a)

d
dt
f̃(V (t, v0); t) =

[
− ∂

∂v

(
Π(v, t) + Λ(v, t)

)]
v=V (t,v0)

f̃(V (t, v0); t) . (7.27b)

The first equation here describes how a sample space velocity evolves over time due to
the pressure gradient and viscous diffusion. In terms of the PDF, this equation describes
the stretching of the v-axis. The second equation is easily integrated. We obtain the
evolution of f̃ along the characteristic curves

f̃(V (t, v0); t) = f̃(v0; t0) exp

[
−
∫ t

t0

dt′
[
∂

∂v

(
Π(v, t′) + Λ(v, t′)

)]
v=V (t′,v0)

]
. (7.28)

The effect of the exponential factor in this solution is two-fold. First, it preserves
normalization when the v-axis is stretched according to equation (7.27a). Second, it
contributes to the deformation of the PDF in addition to the deformation of the v-
axis. This formal solution describes the evolution of the PDF along the characteristic
curves. Of course, we are more interested in the temporal evolution of f(v; t) instead
of f(V (t, v0); t). This mapping can be achieved with the inverse function of V (t, v0),
which is defined by

V −1(t, V (t, v0)) = v0 . (7.29)

Thus the temporal evolution of the PDF of the magnitude of velocity is given by
f̃(v; t) = f̃(V (t, V −1(t, v)); t), such that we obtain

f̃(v; t) = f̃(V −1(t, v); t0) exp

[
−
∫ t

t0

dt′
[
∂

∂v′
(
Π(v′, t′) + Λ(v′, t′)

)]
v′=V (t′,V −1(t,v))

]
.

(7.30)
As a consequence, the temporal evolution of the PDF is known, when the solution of the
characteristic curve V (t, v) is available for arbitrary initial conditions v. This procedure
allows to discuss the evolution of a PDF in a very intuitive way. We want to exemplify
this with the particularly simple case of a self-similar evolution of the PDF, which is
characterized by

f̃(v; t) =
σ(t0)
σ(t)

f̃

(
σ(t0)
σ(t)

v; t0

)
, (7.31)

where

σ(t) =

√
2
3
Ekin(t) (7.32)
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denotes the standard deviation of the vectorial PDF related to the kinetic energy of the
flow. By comparison of (7.31) and (7.30) it is clear that a self-similar solution can only
be obtained if the characteristics are of the form

V (t, v0) =
σ(t)
σ(t0)

v0 , (7.33)

i.e., the stretching of the v-axis is a linear function of time. The interesting consequence
is that this behavior implies

Π(v, t) + Λ(v, t) = v
d
dt

ln
[
σ(t)
σ(t0)

]
= −1

2
〈ε〉(t)
Ekin(t)

v . (7.34)

That means, the observation of a self-similar evolution of the PDF implies that the
sum of the conditional averages related to the pressure gradient and the Laplacian is a
linear function of v with a negative slope proportional to the ratio of the rate of energy
dissipation and the kinetic energy. In this sense the assumption (or observation) of a
self-similar decay leads to a closure of the kinetic equation for decaying turbulence if the
temporal evolution of the kinetic energy and the rate of energy dissipation are known
by additional modeling or experimental or numerical input.

7.2.4. Relation to Moment Equations

The PDF f(v;x, t) contains the information for all moments 〈vn1
x vn2

y vn3
z 〉 which can be

obtained by integration according to

〈vn1
x vn2

y vn3
z 〉 =

∫
dv vn1

x vn2
y vn3

z f(v;x, t) . (7.35)

As a consequence, the evolution equation for the PDF should also contain evolution
equations for all the moments. In fact, these can be obtained by multiplying the PDF
equation by the moment of interest and subsequent integration with respect to the
velocity. This procedure can be applied to the kinetic equation of the “original” form
(7.1) but to also the kinetic equations (7.2), (7.4), (7.22a) and (7.22c) after exploiting
the statistical symmetries. To exemplify this issue, we would like to take equation (7.4)
for the case of decaying turbulence as a starting point and deduce the law of energy
decay. To this end we multiply equation (7.4) by v2

2 and integrate over v,

∂

∂t
Ekin =

∫
dv
v2

2
∂

∂t
f = −

∫
dv

vkvk
2

[
∂

∂vi

〈
− ∂

∂xi
p

∣∣∣∣v〉f +
∂

∂vi

∂

∂vj

〈
ν
∂ui
∂xk

∂uj
∂xk

∣∣∣∣v〉f] .
(7.36)

The right-hand side may be integrated by parts. Assuming a sufficiently rapid decay of
the PDF, one finds

∂

∂t
Ekin =

∫
dv
[
− 〈u · ∇p|v〉f −

〈
ν
∂ui
∂xk

∂ui
∂xk

∣∣∣∣v〉f]
= −〈u · ∇p〉 − 1

2
〈ε+ νω2〉

= −〈ε〉 . (7.37)
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The last equality comes from the fact that the pressure related average vanishes due
to homogeneity and incompressibility and that the rate of energy dissipation and
squared vorticity (multiplied by ν) have the same spatial and consequently also the
same ensemble average. Hence the result is the well-known law of energy decay. We
stress once more that any other moment equation may be obtained in the same manner
from the kinetic equations. This example demonstrates that the PDF approach is rather
comprehensive as, for example, applying closure hypotheses on the level of the PDF
equation corresponds to applying a closure to all moment equations simultaneously.
This has a number of advantages, of which the most important one might be the fact
that by this realizability of the resulting PDF is guaranteed.

7.2.5. Analytical Closure Approximations

Before we proceed to the evaluation of the DNS results to obtain further information
on the unclosed terms, we want to seek for plausible analytical closure approximations
of the kinetic equations. To this end it is useful to note that the unknown conditional
averages are subject to a number of integral constraints. First of all, it is a well-known
result that the average pressure gradient times the velocity vanishes for homogeneous
isotropic turbulence, which we have already used in the preceding section. This yields
the relation

0 = 〈u · ∇p〉 =
∫ ∞

0
dv
〈
u · ∇p∣∣v〉 f̃(v) = −

∫ ∞
0

dv vΠ(v)f̃(v) . (7.38)

Furthermore, the dissipative terms of the kinetic equations should yield the average rate
of energy dissipation when multiplied with the PDF of velocity and integrated. This
leads to

−〈ε〉 = 〈νu ·∆u〉 =
∫ ∞

0
dv vΛ(v)f̃(v) (7.39a)

〈ε〉 = 〈Tr(D)〉 =
∫ ∞

0
dv [λ(v) + 2µ(v)]f̃(v) . (7.39b)

In the stationary case the rate of energy dissipation is on average balanced by the
external forcing and yields the constraint

〈ε〉 = 〈u · F 〉 =
∫ ∞

0
dv vΦ(v)f̃(v) . (7.40)

Any reasonable closure ansatz for the conditional averages has to fulfill these integral
constraints. Now a very simple argument can be introduced to close the set of equations,
which assumes statistical independence of large-scale and small-scale fields. We have seen
in chapter 4 that the correlation function of the velocity decays slowly compared to the
correlation functions related to the gradients of velocity. The same goes for the pressure
gradient, which is usually assumed to be a strongly fluctuating quantity. In this sense
one is apt to assume that when averaging over regions of nearly identical velocities, the
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dissipation and pressure gradient fields fluctuate strongly such that averaging over these
regions is approximately the same as averaging over the whole field. This decoupling
argument is rather typical for analytical studies of turbulence and has, for example, been
recently used in [FFO10]. On the other hand, as the forcing and the velocity both vary
on large scales, statistical correlations are expected. A linear response of the velocity
field to the external forcing here is the most simple ansatz. With these arguments the
conditional averages of equation (7.22a) take the form

Π0(v) = 0 (7.41a)

Φ0(v) =
〈ε〉
3σ2

v (7.41b)

Λ0(v) = − 〈ε〉
3σ2

v , (7.41c)

showing that this assumption leads to vanishing pressure contributions and a linear
dependence of the diffusive and forcing term on the velocity. Note that the relation
for Λ0 is a direct result of the conditional balance (7.24) for stationary turbulence and
equations (7.41a) and (7.41b). If decoupling is assumed for the conditional dissipation
tensor, it has to simplify to an isotropic tensor of rank two, which is determined by its
trace only. Consequently we obtain

λ0(v) = µ0(v) =
〈ε〉
3

, (7.42)

i.e., the eigenvalues coincide and may be expressed in terms of the average rate of
kinetic energy dissipation. Inserting these approximations into the solutions of the PDF
equation (7.25) or (7.26) yields

f̃(v; t) =

√
2
π

v2

σ(t)3
exp

(
−1

2
v2

σ(t)2

)
, (7.43)

which is the angle-integrated Gaussian distribution2, i.e., the velocity vector is distributed
according to a Gaussian

f(v; t) =
1

(2πσ(t)2)3/2
exp

(
−1

2
v2

σ(t)2

)
. (7.44)

One should be aware of the fact that this result is no proof for Gaussianity as it is not
clear at this point whether the approximations made are appropriate for real turbulent
flows. It shall rather point out that deviations from Gaussianity should be expected if
these simple assumptions are not found to be true. In fact, we will find non-negligible
deviations from these approximations when the DNS results are considered. Furthermore,

2This distribution is also known as Maxwell distribution. Whenever we loosely speak in this thesis of
a Gaussian PDF in the context of a magnitude of a vector, Gaussianity refers to the statistics of
the vector, which results in a Maxwellian for the magnitude.
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we would like to point out that the results arrived at coincide with the results obtained,
for example, by [UL69, Hos08]. In these works, however, the closure assumptions are
introduced on the level of the two-point PDF. Although the results do not differ, we
think that introducing closure approximations on the level of the conditional averages
helps to formulate physically sound and well-controlled closures.
The physical reasoning introduced so far can be made mathematically more precise

if functional constraints imposed by isotropy are studied. To this end one considers
equations (7.11) and (7.12) for the special case of v = 0. This implies〈−∇p∣∣v = 0

〉
= 0 ⇒ Π(0) = 0 (7.45a)〈

ν∆u
∣∣v = 0

〉
= 0 ⇒ Λ(0) = 0 (7.45b)〈

F
∣∣v = 0

〉
= 0 ⇒ Φ(0) = 0 , (7.45c)

showing that the conditional averages of the kinetic equation (7.22a) have to vanish at
the origin. A similar observation can be made for the eigenvalues of D. As δij is the
only isotropic tensor of rank two in three dimensions, we can conclude

Dij(v = 0) ∼ δij ⇒ λ(0) = µ(0) , (7.46)

i.e., the eigenvalues have to coincide at the origin. Additional information can be gained
by considering the derivatives of the conditional averages. We start with taking the
second derivative of the scalar function α determining the conditional vector a in (7.12)

d2α

dv2
(v) =

[
∂

∂vi

∂

∂vj
ak(v)

]
vi vj vk
v3

. (7.47)

The expression ∂
∂vi

∂
∂vj
ak(v) constitutes a tensor of rank three, which is symmetric in i

and j. Now evaluating this expression for v = 0 yields an isotropic tensor of rank three
symmetric in i and j. Such a tensor, however, does not exist. We can conclude that this
expression has to vanish, which implies

d2α

dv2

∣∣∣∣
v=0

= 0 . (7.48)

The same argumentation applies to higher derivatives, as for isotropic statistics no
isotropic tensors of odd rank exist. This leads to the conclusion

dnΠ
dvn

∣∣∣∣
v=0

=
dnΛ
dvn

∣∣∣∣
v=0

=
dnΦ
dvn

∣∣∣∣
v=0

= 0 , if n is even . (7.49)

This strategy, of course, can also be applied to the conditional dissipation tensor. Here,
however, Dij is symmetric in i and j, such that the argumentation already applies for
the first derivative. One, for example, obtains

dλ
dv

(v) =
[
∂

∂vk
Dij(v)

]
vi vj vk
v3

(7.50)
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which has the consequence
dλ
dv

∣∣∣∣
v=0

= 0 . (7.51)

When higher derivatives are considered we obtain

dnλ
dvn

∣∣∣∣
v=0

=
dnµ
dvn

∣∣∣∣
v=0

= 0 , if n is odd . (7.52)

The relations (7.49) and (7.52) have the interesting implication that if the conditional
averages are expanded in powers of v around v = 0, the expansion for Π, Λ and Φ only
contains odd powers, whereas the expansion of λ and µ only contains even powers. In
this sense the physical approximation introduced in this section represents a lowest-order
approximation, which is consistent with the integral constraints (7.38)-(7.40).

7.3. DNS results

After this theoretical investigation of the kinetic equations we turn to the numerical
evaluation of the unclosed terms. We would like to stress that an appropriate simulation
should be both well-resolved and long. The resolution of the fine scales is important as
derivatives of the velocity field like, for example, the rate of kinetic energy dissipation
are considered. The duration of the simulation is particularly important to obtain
homogeneous isotropic statistics as we have demonstrated at the end of chapter 3.
Consequently, in view of limited computational ressources it is better to use data from
a long 5123 simulation at a rather moderate Reynolds number than from a short 10243

simulation at higher Reynolds number. If not stated differently, the following results
are obtained from the simulation sim_512.

7.3.1. Role of the Pressure Gradient, External Forcing and Diffusion

We start with considering the conditional averages appearing in the kinetic equation
(7.22a) in figure 7.1. The conditional forcing term represented by Φ(v) is positively
correlated with the velocity, indicating that for given velocity v a fluid particle will on
average be accelerated due to this term. The dependence of different forcing mechanisms
has been tested and the results proved to be robust. It is not clear at this point how
this finding is consistent with the results presented in [FL97], who find that the tails
of the PDF depend strongly on the precise forcing mechanism. The diffusive term
represented by Λ(v) is negatively correlated with the velocity and consequently tends to
decelerate a fluid particle on average. These observations are physically intuitive as the
forcing is supposed to inject energy into the fluid, whereas the diffusive term dissipates
energy. The pressure gradient term has a particularly interesting shape exhibiting a
zero-crossing. The interpretation is that a fluid particle will be decelerated due to
this term for low to moderate velocities, but will be accelerated for higher velocities
beyond this zero-crossing. The zero-crossing can already be expected from the theoretical
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considerations above; since the pressure has to fulfill the integral constraint (7.38), this
term either has to vanish or has to display at least one zero-crossing. One should stress
at this point that the pressure term is neglected in a number of theoretical works on the
subject [Hos08, TY04], such that there the closure of the single-point equation reduces
to specifying the dissipative terms. At least in [Hos08] it becomes clear that this term
is neglected due to a bug in the mathematical argumentation, when the gradient of
the pressure term is taken. From the theoretical derivation presented above there is
no reason to expect a vanishing of this term, however, a zero contribution is at least
consistent with the integral constraint (7.38). Our numerical results explicitly show
that the pressure contribution is not negligible, and so this term contributes to the
functional shape of the PDF. The second thing to be stressed is that the conditional
averages obtained by the DNS differ strongly from the analytical Gaussian closure
approximations (7.41a), (7.41b) and (7.41c). In this approximation the pressure term is
assumed to vanish and the forcing is a linear function in v, however, with a different
slope than found for the roughly linear function from the DNS data. It is furthermore
clear that (7.41c) yields a poor match for the bended shape of Λ.

Taking all three conditional averages together they add up according to the conditional
balance (7.24) showing that the conditional acceleration exerted on a fluid particle
is zero in stationary turbulence. In fact, we have calculated the forcing contribution
exploiting this balance. The reason for that is that the forcing is applied implicitly to
the velocity field as described in chapter 3. As a consequence, it is not available as an
additive field that we can average over.

Having investigated these terms, the information needed to close the kinetic equation
(7.22a) is in principle available. However, apart from the interesting functional form
of each of the terms, the only conclusion that can be drawn from this formulation is
that the conditional acceleration vanishes. To determine the shape of the PDF with the
help of the homogeneous or stationary solutions (7.25) and (7.26), the eigenvalues of
the conditional dissipation tensor have to be investigated.

7.3.2. Structure of the Conditional Energy Dissipation Tensor

The eigenvalues of the conditional dissipation tensor are displayed in figure 7.2. First
one can note that the functional form of both eigenvalues is very similar; for low values
of velocity the conditional averages are approximately constant and increase strongly
for high values. The similarity of both eigenvalues indicates only weak directional
correlations of both fields (AAT and u). To explain this in more detail, one can assume
that the projection of the conditional dissipation tensor onto a unit vector in direction
of the velocity coincides with projection onto a random direction d̂, which yields the
relation

v̂D(v) v̂ =
〈
ν(AT û)2

∣∣v〉 =
〈
ν(AT d̂)2

∣∣v〉 =
1
3

TrD(v) E . (7.53)

The last equality mirrors the fact that the average projection of a matrix of the form
(7.19a) onto a random direction yields one third of its trace times the unit matrix. This
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Figure 7.1.: Conditional averages Π, Λ and Φ from the kinetic equation (7.22a). The pressure
term Π exhibits a zero-crossing, whereas the forcing term Φ is purely positively correlated with
the velocity and the diffusive term Λ is purely negatively correlated with the velocity.
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Figure 7.2.: Eigenvalues µ and λ of the conditional dissipation tensor D. For low velocities
the eigenvalues are approximately constant. Stronger correlations with the velocity appear for
higher values of v.
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correlations in this range. For higher values strong correlations exist.

in turn implies λ(v) = µ(v).
Furthermore, the approximately constant behavior of the two eigenvalues for low to

moderate values of velocity shows that the dissipative terms and the velocity are almost
uncorrelated in this range. However, it can be seen that correlations become important
for higher velocities, which may be regarded as a signature of intermittency.

These observations are qualitatively consistent with figure 1.1, where both the velocity
and the dissipation field are shown. It is clear to see that the velocity varies on a
much larger scale than the fine-scaled dissipation field, which makes the decoupling
argument presented in section 7.2.5 appear as a rather reasonable approximation for
the conditional dissipation tensor when low velocities corresponding to the core of the
PDF are considered.
Seeking for possible approximations of the conditional dissipation tensor, one can

conclude that ignoring directional correlations, but maintaining the dependence on the
magnitude of velocity, which corresponds to the choice λ = µ, leads to a reasonable
approximation. In this case the conditional dissipation tensor is specified by its trace
only, which may be expressed as

TrD = λ(v) + 2µ(v) = 〈ε+ νω2|v〉 . (7.54)

On the other hand, it is a well-known fact that for homogeneous turbulence the equality

〈ε〉 = 〈νω2〉 (7.55)
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Figure 7.4.: Directly estimated and reconstructed velocity PDF according to equation (7.25)
and (7.26) along with an angle-integrated Gaussian. The agreement is perfect demonstrating
the consistency of the theoretical framework. Significant deviations from the Gaussian shape
are observed in the form of sub-Gaussian tails.

holds, such that the obvious question can be raised whether this equality also holds in
a stricter, conditionally averaged sense. This question can be answered with figure 7.3,
where 〈ε|v〉 and 〈νω2|v〉 are shown demonstrating that this equality approximately also
holds for the conditionally averaged quantities. It can be seen from figure 1.1, however,
that both quantities do not coincide pointwise in space, but only on the single-point level.
Taking these results together, the conditional dissipation tensor can be approximated as

Dij(v) =
1
3
〈ε|v〉 δij . (7.56)

Note that, in contrast to the “lowest-order” approximation presented in section 7.2.5,
here the conditionally averaged rate of energy dissipation is used.

7.3.3. Reconstruction of the Homogeneous and Stationary PDFs

We now come to the explicit evaluation of equations (7.25) and (7.26), where we insert
the numerically obtained conditional averages. The result is depicted in figure (7.4),
from which a perfect agreement between the PDF obtained directly from the DNS
data and the theoretical results is apparent. It should be stressed that this is not very
surprising as the homogeneous and stationary solutions are directly derived from the
basic equation of motion and the unknown terms have been determined directly from
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the DNS data. Still, the agreement serves as a check for consistency. Furthermore, as
both the DNS data and the homogeneous (or stationary) solution deviate significantly
from the Gaussian form, it can be concluded that these deviations come due to the
subtle interplay of the statistical correlations observed for the conditional averages.
In view of this result two questions are rather obvious: Why does the analytical

Gaussian closure presented in section 7.2.5 not fail completely, although the individual
conditional averages differ strongly from the ones observed in DNS? How do the observed
rather pronounced statistical dependences coact, leading to rather moderate deviations
from Gaussianity of the velocity PDF? Both questions can be answered by a closer
investigation of the homogeneous and stationary solutions (7.25) and (7.26), where we
choose the latter equation to discuss the issue. It can be seen from this equation that
Gaussian solutions are obtained if (Π + Φ)/λ is linear, µ = λ and λ = const. The first
relation causes a quadratically decaying exponential factor, the second will give the v2

prefactor of the angle-integrated Gaussian (cf. equation (7.43)). With these two relations
the Gaussian shape is already obtained. The third relation ensures that the prefactor in
(7.26) does not lead to further deviations. It can be noted that these conditions are met
in the case of the analytical closure approximation, which consequently yields a Gaussian
distribution. The numerically obtained conditional averages (Π + Φ)/λ and µ/λ are
presented in figure 7.5 along with the corresponding quantities for the Gaussian closure
approximation. It can be seen that the pronounced statistical correlations observed in
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Figure 7.6.: Velocity PDFs for different Reynolds numbers (sim_256, sim_512, sim_1024).
All PDFs deviate systematically from a Gaussian shape.

figures 7.1 and 7.2 cancel to a good extent, such that the conditions for a Gaussian
shape are nearly met. The remaining deviations then lead to the deviation from the
Gaussian shape of the PDF. These deviations are further modified by the functional
form of λ shown in figure 7.2 due to the non-constant behavior of λ for large v. While
the comparison of the conditional averages obtained within the closure approximations
with the numerically obtained ones in the last two sections performed poorly, their
combinations as appearing in equation (7.26) compare much better, which explains
both the nearly Gaussian behavior of the velocity PDF itself as well as the observation
that the analytical Gaussian closure approximation yields reasonable results.

7.3.4. Reynolds Number Dependence

A rather obvious question we would like to pursue in this section is the Reynolds
number dependence of the results presented so far. To this end we compare the PDFs
and conditional averages of the simulations sim_256, sim_512 and sim_1024 with the
Taylor-based Reynolds numbers Rλ = 76, Rλ = 112 and Rλ = 225, respectively. It
should be mentioned as a word of caution that these simulations do not only differ
in Reynolds number, but, for example, are differently well resolved. Furthermore, the
statistical quality varies between the three runs. Additionally the range of Reynolds
numbers covered is rather small, but this is the best we can do at present.

We start with an inspection of the velocity PDFs in figure 7.6 from which can be seen
that the PDFs display deviations from Gaussianity in all three cases. Interestingly, the
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run at the lowest Reynolds number Rλ = 76 displays the strongest deviations in the
tail, however, this trend is not continued for the higher Reynolds number runs. In the
non-logarithmic inset the PDFs do not show any significant differences, such that the
dependence of the PDF on the Reynolds number, both in shape and range of covered
velocities, seems weak.

The conditional averages Π, Λ and Φ from the kinetic equation (7.22a) are shown
in figure 7.7. First of all, one can note that the conditional averages nearly collapse
for low to moderate values of velocity. For higher values it appears that the statistical
correlations of the diffusive and the pressure gradient term increase with the Reynolds
number, while the forcing appears to be less dependend on the Reynolds number. Due
to the limited statistical quality it is, however, not possible to draw definite conclusions
here.

A similar behavior can be observed for the eigenvalues of the conditional dissipation
tensor shown in figure 7.8. For moderate values of velocity these statistical quantities do
not change much with the Reynolds number. For higher values of velocity the deviations
from statistical independence increase with the Reynolds number.

Based on these numerical results, it appears as if the shape of the velocity PDF does
not vary strongly with the Reynolds number. This fact is accompanied by the observation
that the conditional pressure and dissipative terms display statistical dependences on
the velocity which slightly increase with the Reynolds number without changing the
shape of the velocity PDF too much, i.e., they cancel to a good extent. A broader study
of different numerical results including simulations at much higher Reynolds number
would interesting at this point.

7.3.5. Decaying Turbulence

We now want to turn to an investigation of decaying turbulence. Apart from being
interesting on its own, it helps to further clarify the origin of the deviations of the
velocity PDF from Gaussianity. It was reasoned by Falkovich and Lebedev [FL97] that
deviations from Gaussianity may originate from the external forcing. Conversely, it
was hypothesized by Hosokawa [Hos08] that decaying turbulence may be profoundly
different from stationary turbulence and, as discussed above, Gaussian solutions have
been found under certain closure approximations.
For the case of decaying turbulence it is of course not allowed to take a temporal

average over a run as the statistics is non-stationary. To obtain statistically convergent
results, we have taken twelve statistically independent initial conditions from a run
identical to the run sim_512 and let them decay for about five large-eddy turnover
times (in terms of the initial turnover times). During this decay the energy is decreased
by more than one order of magnitude.
The first question to investigate, of course, is how the PDF of the velocity evolves

over the time. This is shown in figure 7.9 where several PDFs separated by 0.35T are
shown. The variance of the PDFs decreases over time as the kinetic energy is dissipated.
The temporal evolution of the kinetic energy and the rate of kinetic energy dissipation
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Figure 7.13.: Directly estimated and reconstructed velocity PDF according to equation (7.25)
for decaying turbulence after 1.4T .
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are shown in figure 7.10, where it can be seen that both the kinetic energy as well as
the dissipation follow an algebraic decay with exponents of approximately 1.4 and 2.4,
respectively, after a short transient. This transient indicates that turbulence somehow
has to “relax” from the forced regime to the freely evolving decaying regime. Under
the assumption of a purely algebraic decay the exponents for the kinetic energy and
the dissipation are not independent and linked by the law of energy decay (7.37). This
explains the observed difference of the two exponents of one. Slight deviations can
be seen from figure 7.10, which may originate from the fact that the decay is not
perfectly algebraic. Beyond this time a third regime may be surmised from figure 7.10,
in which the energy has decayed to less than one percent of the initial value. It may be
hypothesized that this regime corresponds to the final period of decay, in which most
nonlinear interactions already have ceased.

When the PDFs are rescaled to unit variance, they collapse, indicating a self-similar
decay regime (see figure 7.9). During this regime deviations from Gaussianity similar
to the stationary case are apparent as a comparison with a Gaussian (dashed gray
lines) shows. Hence our simulations do not confirm Hosokawa’s hypothesis that decaying
turbulence in general is expected to yield Gaussian single-point velocity statistics. This
observation can be made more precise by studying the conditional averages that appear
in the kinetic equations. The conditional pressure term and the diffusive term are shown
in figure 7.11, whereas the eigenvalues of the conditional dissipation tensor are presented
in figure 7.12. The results presented were obtained after a decay time of 1.4T and may
serve as a representative example here. Compared to the evaluations for stationary
turbulence in figures 7.1 and 7.2, the investigation of decaying turbulence yields very
similar results, the observed statistical correlations do not display a qualitatively different
functional form. It can be concluded that the observations regarding the statistical
quantities carry over to the decaying case. This can be additionally supported by
checking the homogeneous solution (7.25) against the directly obtained PDF, which
is done in figure 7.13. The reconstruction performs as well as in the stationary case,
showing that the velocity PDF also in decaying turbulence is the result of the interplay
of the different conditional averages. Although this does not seem very surprising at this
point, these results imply that the functional shape of the PDF is not strongly influenced
by the type of forcing, as opposed to the suggestions by Falkovich and Lebedev [FL97],
because this term is absent in the decaying case. One should note that it only makes
sense to evaluate the homogeneous solution (7.25) in the decaying case as the turbulence
is non-stationary.

In the theoretical section 7.2.3 we have derived an exact expression for the conditional
acceleration for the case of a self-similar decay of the velocity field. The relation (7.34)
predicts a linear function in v with the slope depending on the ratio of the rate of kinetic
energy dissipation and the kinetic energy. As our numerical results suggest a self-similar
decay, the relation can be compared to our simulation data. The results are presented in
figure 7.14, in which a good agreement between the expected analytical relation and the
DNS data is found. Slight deviations appear in regions of poor statistics. We stress once
more that only the observation of a self-similar decay suffices to deduce this relation,
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which in a sense reduces the closure problem of the single-point PDF equation to specify
the temporal evolution of the kinetic energy and the rate of energy dissipation. If
additionally an algebraic decay of the kinetic energy is assumed, the temporal behavior
of the rate of energy dissipation is fixed, as explained above, simplifying the problem
even more.

Altogether the results of this section document that the single-point velocity statistics
in decaying turbulence does not fundamentally differ from forced stationary turbulence.

7.4. Summary

In this chapter we have investigated the single-point velocity statistics in turbulence both
analytically and numerically. The presented approach allows for a unified description of
decaying and stationary turbulence within the exact theoretical framework of the LMN
hierarchy. On the theoretical side we have used statistical symmetries to simplify the
kinetic equations. This especially allows to derive new exact formal expressions for the
PDF for homogeneous and stationary turbulence, which can be regarded as one of the
main results of this chapter. Furthermore, the PDF equation has been investigated for
the case of decaying turbulence, where a relation for the conditional acceleration could
be derived under the assumption of a self-similar decay.
A deeper analysis has pointed out functional and integral constraints which narrow

down the possible functional shapes of the unclosed terms in the PDF equation. Based
on these constraints and paralleled by physical arguments, an analytical closure has
been suggested that yields Gaussian statistics. The scope of this closure, however, is not
to claim the velocity statistics to be Gaussian, but to demonstrate which assumptions
lead to this kind of statistics.
The theoretical investigations then have been supplemented and completed by ex-

tensive numerically obtained results for stationary turbulence at different Reynolds
numbers as well as for decaying turbulence. All simulations indicate pronounced statis-
tical correlations of the quantities determining the shape and evolution of the velocity
PDF with the velocity. In particular, pronounced differences to the analytical closures
have been found. It has been shown that the combination of these statistical correlations
eventually leads to the sub-Gaussian shape of the PDF. It should be stressed that only
the joint numerical and analytical investigation of the PDF equation has permitted this
comprehensive analysis.
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8. Single-Point Statistics of the Turbulent
Vorticity

8.1. Motivation

Our theoretical and numerical investigations so far have been focussed on the description
of fully developed turbulence in terms of the velocity field. Incompressible flows, however,
can also be described in terms of the vorticity as explained in chapter 1. Moreover, it
has been motivated that the vorticity field tends to be more localized than the velocity
field. This either can be understood intuitively by identifying coherent structures, as
exemplified in figures 1.1 and 1.4, but is also mirrored by statistical quantities like the
correlation functions determining the vorticity covariance tensor presented in figure
4.16. These observations foster hope that the vorticity is maybe “more fundamental”
than the velocity field in the sense that it might be more accessible to the application
of physical arguments based on the study of individual coherent structures. The fact
that analytical vortex solutions such as the Burgers vortex are available give further
motivation for this view. On the statistical side the single-point vorticity PDF displays
highly non-Gaussian tails, as presented in figure 4.2, indicating that strong vorticity
events are much more likely in turbulence than for a Gaussian random field, which
makes the vorticity statistics especially interesting to study.

In view of these remarks it is somewhat surprising that the statistical description of the
vorticity field based on first principles has not been given nearly as much attention as the
statistical theory of the velocity field. The vorticity field has been studied more deeply
in the context of coherent structures (see, e.g., [SJO90]) and many phenomenological
theories have been developed studying turbulence in terms of an ensemble of vortex
structures [Tow51, Lun82, HK97, MHK03, MHK04, WJF08]. Hence it is of central
interest to develop a statistical theory of turbulence based on the vorticity field. Work
on this has been initiated by Novikov already decades ago and was continued up to the
recent past [Nov68, Nov93, ND94, MDN96]. Interestingly, these works have not been
paid much attention by the part of the community dealing with kinetic equations for the
velocity field [Lun08], which also can be concluded from the fact that the corresponding
works of Novikov are not often cited.

As we will demonstrate in the following, the two hierarchies have formally very much
in common, and we will actually use Lundgren’s approach to derive the hierarchy of
evolution equations for the vorticity field. Still, some major differences stemming from
the different spatial and consequently statistical structure of the turbulent fields make
a combined study of the vorticity and velocity field particularly valuable. This brings
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us to the outline of the present chapter. We first will derive the LMN hierarchy for
the vorticity field, however, in a more condensed form than for the velocity field as
many details have been given already in chapters 6 and 7. We then will turn to a
closer investigation of the single-point vorticity PDF equation and again will exploit
statistical symmetries to simplify its mathematical structure. Before we derive the
homogeneous and stationary solutions of the PDF equation, the continuity version of
the PDF equation will be discussed in more detail. As in the preceding chapter, we then
will use simulation results to study the unclosed terms in more detail. Here, especially
the conditional balance of the right-hand side of the vorticity equation will be of interest
as well as the structure of the conditional enstrophy dissipation tensor.
Some of the results have been published in [WF09a].

8.2. LMN Hierarchy for the Vorticity

As for the case of the velocity, our derivation starts with the fine-grained PDF, now for
the vorticity vector,

f̂1(Ω1;x; t) = δ(ω(x1, t)−Ω1) , (8.1)

where ω(x1, t), of course, denotes a realization of the vorticity field considered at a
point x1 at time t and Ω1 denotes the corresponding sample space variable. As usual,
the single-point PDF is obtained by ensemble averaging,

f1(Ω1;x; t) = 〈f̂1(Ω1;x; t)〉 = 〈δ(ω(x1, t)−Ω1)〉 . (8.2)

In favor of a simple presentation we choose not to introduce an additional subscript to
distinguish the probability density of the velocity from the probability density of the
vorticity. If confusion is likely to occur, we will explicitly write out all arguments of the
PDF.

Now following exactly the same steps as in the derivation of the fine-grained evolution
equation for the velocity in section 6.2.2, we obtain the corresponding equation for the
single-point vorticity,

∂

∂t
f̂1(Ω1;x1, t) +∇x1 ·

[
u(x1, t)f̂1(Ω1;x1, t)

]
= −∇Ω1 ·

[(
∂ω

∂t
(x1, t) + u(x1, t) · ∇x1ω(x1, t)

)
f̂1(Ω1;x1, t)

]
= −∇Ω1 ·

[
(S(x1, t)ω(x1, t) + ν∆x1ω(x1, t) +∇x1 × F (x1, t)) f̂1(Ω1;x1, t)

]
.

(8.3)

Direct comparison with the corresponding equation for the velocity field (6.19) reveals
a very similar mathematical structure with a convective derivative of the fine-grained
PDF on the left-hand side and the divergence of the right-hand side of the vorticity
equation (1.8) times the fine-grained PDF on the right-hand side. The right-hand side
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is now governed by the vortex stretching term, the diffusive term as well as the term
involving the curl of the external forcing. One should note, however, that now already
the advective term on the left-hand side appears unclosed as the velocity field cannot
be determined by knowledge of the single-point vorticity statistics only. To obtain the
evolution equation for the PDF f1(Ω1;x1, t), we take the ensemble average and obtain

∂

∂t
f1(Ω1;x1, t) +∇x1 ·

〈
u(x1, t)f̂1(Ω1;x1, t)

〉
= −∇Ω1 ·

〈(
S(x1, t)ω(x1, t) + ν∆x1ω(x1, t) +∇x1 × F (x1, t)

)
f̂1(Ω1;x1, t)

〉
.
(8.4)

Of course, we now again have the option to express the unclosed terms through a
coupling to higher orders or to introduce conditional averages as unknown functions.
To express the unclosed terms as functionals of f2(Ω1,Ω2;x1,x2, t), we start with the
diffusive term, which can be treated exactly as in the case of the velocity field. We
evaluate〈(

ν∆x1ω(x1, t)
)
f̂1(Ω1;x1, t)

〉
= lim
x2→x1

〈
ν∆x2ω(x2, t) f̂1(Ω1;x1, t)

〉
= lim
x2→x1

ν∆x2

∫
dΩ2 Ω2 f2(Ω1,Ω2;x1,x2, t) . (8.5)

For the velocity as well as the rate-of-strain tensor we have to express the fields in terms
of the vorticity with Biot-Savart’s law. For the joint average of the velocity field and
the fine-grained vorticity PDF we obtain

〈
u(x1, t)f̂1(Ω1;x1, t)

〉
=
〈

1
4π

∫
dx2

ω(x2, t)× (x1 − x2)
|x1 − x2|3 f̂1(Ω1;x1, t)

〉
=
〈

1
4π

∫
dx2 dΩ2

ω(x2, t)× (x1 − x2)
|x1 − x2|3 f̂2(Ω1,Ω2;x1,x2, t)

〉
=

1
4π

∫
dx2 dΩ2

Ω2 × (x1 − x2)
|x1 − x2|3 f2(Ω1,Ω2;x1,x2, t) , (8.6)

which shows that the average involving the velocity field can only be obtained by
integration of the two-point vorticity PDF over the whole spatial domain. The same
goes for the velocity gradient tensor S = 1

2(A + AT ), which also can be expressed in
terms of the vorticity field by taking derivatives of the Biot-Savart kernel. We obtain

〈
S1,ij f̂1

〉
=
〈

3
8π

∫
dx2 εikl

(x1,k − x2,k)(x1,j − x2,j)
|x1 − x2|5 ωl(x2, t) f̂1

〉
+ (i↔ j)

=
〈

3
8π

∫
dx2 dΩ2 εikl

(x1,k − x2,k)(x1,j − x2,j)
|x1 − x2|5 ωl(x2, t) f̂2

〉
+ (i↔ j)

=
3

8π

∫
dx2 dΩ2 εikl

(x1,k − x2,k)(x1,j − x2,j)
|x1 − x2|5 Ω2,l f2 + (i↔ j) , (8.7)
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where (i↔ j) indicates that the same expression with indices i and j interchanged has
to be added. We omitted some of the arguments in favor of a clearer presentation. As
a mathematical side remark we should mention that the above integrals have to be
interpreted as Cauchy principal value integrals in order to assure a proper definition of
the expressions. Like for the velocity the forcing term cannot be expressed in terms of
the vorticity as it depends on the specifications of this external field.
Putting these results together, we can write down the evolution equation or the

single-point vorticity PDF, which takes the form

∂

∂t
f1 +

1
4π
∇x1 ·

∫
dx2 dΩ2

r12 ×Ω2

r3
12

f2

= −∇Ω1 ·
{

3
8π

∫
dx2 dΩ2

[
(r12 ×Ω2)(r12 ·Ω1)

r5
12

+
Ω1 · (r12 ×Ω2) r12

r5
12

]
f2

+ lim
x2→x1

ν∆x2

∫
dΩ2 Ω2 f2 +

〈
f̂1∇x1 × F 1

〉}
, (8.8)

where we have introduced the notation r12 = x2 − x1. This is easily generalized to the
derivation of an evolution equation for the two-point PDF f2(Ω1,Ω2;x1,x2, t) yielding

∂

∂t
f2 +

1
4π
∇x1 ·

∫
dx3 dΩ3

r13 ×Ω3

r3
13

f3 +
1

4π
∇x2 ·

∫
dx3 dΩ3

r23 ×Ω3

r3
23

f3

=−∇Ω1 ·
{

3
8π

∫
dx3 dΩ3

[
(r13 ×Ω3)(r13 ·Ω1)

r5
13

+
Ω1 · (r13 ×Ω3) r13

r5
13

]
f3

+ lim
x3→x1

ν∆x3

∫
dΩ3 Ω3 f3 +

〈
f̂2∇x1 × F 1

〉}
−∇Ω2 ·

{
3

8π

∫
dx3 dΩ3

[
(r23 ×Ω3)(r23 ·Ω2)

r5
23

+
Ω2 · (r23 ×Ω3) r23

r5
23

]
f3

+ lim
x3→x2

ν∆x3

∫
dΩ3 Ω3 f3 +

〈
f̂2∇x2 × F 2

〉}
. (8.9)

This indicates how the evolution equations couple to the next “level” of the hierarchy
by the Biot-Savart integrals related to the velocity field and the rate-of-strain tensor.
A closer look at these terms indicates that they depend linearly on the “additional”
vorticity, a fact, which is different from the case of the velocity statistics. This will play
a crucial role later on.

Of course, we can alternatively introduce conditional averages for the unclosed terms
according to〈

u(x1, t)f̂1(Ω1;x1, t)
〉

=
〈
u(x1, t)

∣∣Ω1

〉
f1(Ω1;x1, t) (8.10a)〈

Sij(x1, t)f̂1(Ω1;x1, t)
〉

=
〈
Sij(x1, t)

∣∣Ω1

〉
f1(Ω1;x1, t) (8.10b)〈

(ν∆ω(x1, t))f̂1(Ω1;x1, t)
〉

=
〈
(ν∆ω(x1, t))

∣∣Ω1

〉
f1(Ω1;x1, t) (8.10c)〈∇x1 × F (x1, t)f̂1(Ω1;x1, t)

〉
=
〈∇x1 × F (x1, t)

∣∣Ω1

〉
f1(Ω1;x1, t) . (8.10d)
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As in the case of the velocity field, the single-point statistics of the vorticity field is
determined by the local correlations of the vorticity field with the dynamical terms from
the vorticity equation in form of the advecting velocity, the vortex stretching term, the
diffusive term and the external forcing. With these definitions the single-point vorticity
equation takes the simple form

∂

∂t
f1 +∇x1 ·

[〈
u1

∣∣Ω1

〉
f1

]
= −∇Ω1 ·

[〈
S1ω1 + ν∆x1ω1 +∇x1 ×F 1

∣∣Ω1

〉
f1

]
. (8.11)

One should note at this point that the vortex stretching term may also be written as〈
S1ω1

∣∣Ω1

〉
f1 =

〈
S1

∣∣Ω1

〉
Ω1f1 (8.12)

due to the sifting property of the fine-grained PDF. The introduction of conditional
averages can be generalized to the case of multi-point statistics. If we truncate the
hierarchy on the N -th level, the introduction of conditional averages allows to write

∂

∂t
f1 = C1

[
f2,F 1

]
∂

∂t
f2 = C2

[
f3,F 1,F 2

]
...

∂

∂t
fN−1 = CN−1

[
fN ,F 1, . . . ,FN−1

]
∂

∂t
fN = −

N∑
i=1

∇xi ·
{〈
ui|Ω1, . . . ,ΩN

〉
fN
}

−
N∑
i=1

∇Ωi ·
{〈

Siωi + ν∆xiωi +∇xi × F i

∣∣Ω1, . . . ,ΩN

〉
fN
}

. (8.13)

Compared to the velocity PDF hierarchy (6.34), the collision operators Ci now also
contain the advective terms. Once the conditional averages on the N -point level are
known, this set of equations becomes closed. As demonstrated for the velocity field, the
method of characteristics can also be applied to the vorticity field in a straightforward
manner, such that we refrain from a detailed presentation here. We note, however, that
the major difference to the velocity case is that, besides the conditionally averaged
right-hand side of the vorticity equation, also the conditional velocity field evaluated at
the different points appears.

This theoretical introduction into the LMN hierarchy for the vorticity highlights the
striking formal similarities compared to the velocity case. Up to now these derivations
are based on purely mathematical arguments. Apart from the utilization of statistical
symmetries, the following detailed analytical and numerical investigation will involve
more physical arguments, which will allow to fully characterize the single-point vorticity
statistics. Then also some deeper comparisons to the velocity statistics will be discussed.
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8.3. The Single-Point Vorticity PDF Equation

8.3.1. Application of Statistical Symmetries

We now want to pursue a deeper investigation of the single-point vorticity PDF in
homogeneous isotropic turbulence. To this end we start from the single-point PDF
equation

∂

∂t
f +∇ · [〈u∣∣Ω〉f] = −∇Ω ·

[〈
Sω + ν∆ω +∇× F ∣∣Ω〉f] . (8.14)

Here and in the following we will omit the index 1 for a better presentation. We note
first that due to homogeneity the advective term vanishes, as neither

〈
u
∣∣Ω〉 nor f

depend on x. This yields

∂

∂t
f = −∇Ω ·

[〈
Sω + ν∆ω +∇× F ∣∣Ω〉f] , (8.15)

which again takes the form of a continuity equation for the probability density, where
the conditional right-hand side of the vorticity equation times the PDF defines the
probability current. We now introduce the conditional enstrophy dissipation tensor due
to the homogeneity relation

∂2

∂x2
k

f = 0 = − ∂

∂Ωi

〈
∂2ωi
∂x2

k

∣∣∣∣Ω〉f +
∂2

∂Ωi∂Ωj

〈
∂ωi
∂xk

∂ωj
∂xk

∣∣∣∣Ω〉f . (8.16)

This relation allows to express the diffusive term in equation (8.15) in terms of the
conditional enstrophy dissipation tensor

Dij(Ω) =
〈
ν
∂ωi
∂xk

∂ωj
∂xk

∣∣∣∣Ω〉 , (8.17)

such that the kinetic equation may be recast taking the form

∂

∂t
f = − ∂

∂Ωi

〈
Sijωj + εijk

∂

∂xj
Fk

∣∣∣∣Ω〉f − ∂2

∂Ωi∂Ωj

〈
ν
∂ωi
∂xk

∂ωj
∂xk

∣∣∣∣Ω〉f . (8.18)

The mathematical structure of this partial differential equation will in the following
allow for a stationary solution of the PDF when further simplifications due to isotropic
statistics are taken into account. To this end we have to write down the isotropic forms
of all the arising functions like already exemplified for the velocity statistics. First of all,
we can express the PDF of the vorticity vector in terms of the PDF of the magnitude
of vorticity as

f̃(Ω) = 4πΩ2f(Ω) . (8.19)

For the kinetic equation (8.15) we further have to specify the conditional averages of
the rate-of-strain tensor, the diffusive term and the external forcing. Following the
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argumentation in chapter 7, we arrive at

〈
Sij
∣∣Ω〉 =

1
2

Σ(Ω)
(

3
Ωi Ωj

Ω2
− δij

)
Σ(Ω) =

〈
ω̂Sω̂

∣∣Ω〉 (8.20a)〈
ν∆ω

∣∣Ω〉 = Λ(Ω) Ω̂ Λ(Ω) =
〈
νω̂ ·∆ω∣∣Ω〉 (8.20b)〈∇× F ∣∣Ω〉 = Φ(Ω) Ω̂ Φ(Ω) =
〈
ω̂ · (∇× F )

∣∣Ω〉 . (8.20c)

The conditional Laplacian Λ and the conditional forcing term Φ are denoted analogous
to the case of the velocity in order to highlight their meaning. However, one should note
that they represent different functions as, e.g., here the Laplacian of the vorticity is
considered. When the danger of misinterpretation occurs, additional indices will be used.
In contrast to the conditional enstrophy dissipation tensor, which will be analyzed next,
the conditional rate-of-strain tensor may be expressed by a single scalar function Σ, the
eigenvalue of the tensor, only. This comes due to the fact that the trace of this tensor

〈
Sii
∣∣Ω〉 =

〈
∂ui
∂xi

∣∣∣∣Ω〉 = 0 (8.21)

vanishes due to incompressibility. The prefactors are chosen such that the function Σ
corresponds to a (normalized) enstrophy production, which makes the interpretation
especially easy. With this definition the conditional vortex stretching term takes the
form 〈

S
∣∣Ω〉Ω = Σ(Ω)Ω Ω̂ , (8.22)

such that this term in total has the functional form to be expected from a conditionally
averaged vector. The general structure of the conditional enstrophy dissipation tensor is

Dij(Ω) = µ(Ω) δij +
[
λ(Ω)− µ(Ω)

]ΩiΩj

Ω2
, (8.23)

where µ and λ are the eigenvalues of D depending only on the magnitude of velocity,
which again can be obtained according to

Tr(D) =
〈
ν
∂ωi
∂xk

∂ωi
∂xk

∣∣∣∣Ω〉 = λ(Ω) + 2µ(Ω) (8.24a)

Ω̂DΩ̂ =
〈
νω̂i

∂ωi
∂xk

∂ωj
∂xk

ω̂j

∣∣∣∣Ω〉 = λ(Ω) . (8.24b)

As we will see in the next section, the dissipative term of the enstrophy balance takes
the form

〈νωi∆ωi〉 = −
〈
ν
∂ωi
∂xk

∂ωi
∂xk

〉
, (8.25)

which makes clear that the eigenvalues on the one hand are related to the dissipation of
enstrophy. On the other hand, the second term in (8.24) is related to the stretching and
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turning of the vorticity vector due to the vorticity gradient tensor, which may be seen
by 〈

νω̂i
∂ωi
∂xk

∂ωj
∂xk

ω̂j

∣∣∣∣Ω〉 =
〈
ν(ω̂ · ∇ω)2

∣∣Ω〉 . (8.26)

Now having expressed all relevant quantities as isotropic functions, we insert them into
the kinetic equations (8.15) and (8.18) as well as into the homogeneity relation (8.16)
and obtain, after some calculations very similar to the ones outlined in chapter 7, the
isotropic versions of these equations,

∂

∂t
f̃ = − ∂

∂Ω
(Σ Ω + Λ + Φ) f̃ (8.27a)

0 = − ∂

∂Ω

(
Λ +

2µ
Ω

)
f̃ +

∂2

∂Ω2
λf̃ (8.27b)

∂

∂t
f̃ = − ∂

∂Ω

(
Σ Ω + Φ− 2µ

Ω

)
f̃ − ∂2

∂Ω2
λf̃ . (8.27c)

Of course, these equations show a remarkable similarity to the equations (7.22a)-(7.22c),
however, the functional shape of the individual terms will turn out to be very different.
This formulation of the problem will again allow to derive homogeneous and isotropic
stationary solutions. Before coming to this point, we will further study the implications
of equations (8.27a).

8.3.2. The Balance of Enstrophy Production and Dissipation

In the case of stationary turbulence equation (8.27a) takes the simple form

0 =
∂

∂v
(Σ Ω + Λ + Φ) f̃ . (8.28)

Following the same reasoning as in the preceding chapter, we can conclude that also in
the case of the vorticity field the conditional balance

0 = Σ(Ω) Ω + Λ(Ω) + Φ(Ω) (8.29)

holds, i.e., the vortex stretching term, the diffusive term and the term related to the
external forcing tend to cancel on the single-point level. However, we will now seek for
an even stronger conclusion. To this end we consider the enstrophy balance, which is
obtained from the vorticity equation (1.8) by multiplying on ω and subsequent averaging.
We obtain

∂

∂t

〈
ω2

2

〉
+∇ ·

〈
u
ω2

2

〉
=
〈
ωSω

〉
+
〈
νω ·∆ω〉+

〈
ω · (∇× F )

〉
. (8.30)

Considering the case of stationary homogeneous turbulence simplifies this equation to

0 =
〈
ωSω

〉
+
〈
νω ·∆ω〉+

〈
ω · (∇× F )

〉
. (8.31)
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Of course, this equation can also be obtained from equation (8.29) by multiplying on
Ω and f̃ and subsequent integration. Extending an analysis put forward by Tennekes
and Lumley [TL83] and also by Novikov [Nov93], we now go for an order of magnitude
estimation of the different terms with respect to the Reynolds number Re = urmsL

ν . To
find out how the terms scale with the Reynolds number, approximate dimensional esti-
mates of the different quantities have to be made. One should stress that these estimates
cannot be proven rigorously, such that caution in the derivation and interpretation of
the results has to be taken. Based on the relation

〈νω2〉 = 〈ε〉 (8.32)

we estimate the enstrophy production term as〈
ωSω〉 ∼ 〈ε〉 3

2 ν−
3
2 , (8.33)

assuming that relation (8.32) also allows to estimate the rate-of-strain tensor. The term
involving the forcing may be rewritten as〈

ω · (∇× F )
〉

= −〈u ·∆F 〉 (8.34)

by partial integration. As the large-scale forcing varies slowly in space, derivatives may
be estimated to be of the order of L. Additionally noting that 〈u · F 〉 = 〈ε〉 leads us to
the estimate 〈

ω · (∇× F )
〉 ∼ 〈ε〉L−2 . (8.35)

For the dissipative term
〈
νω ·∆ω〉 no simple estimation can be given at this point as it

is unclear which length scale is appropriate to estimate the Laplacian of the vorticity.
To proceed, it is easy to calculate the ratio of the terms (8.35) and (8.33) which yields〈

ω · (∇× F )
〉〈

ωSω〉 ∼ ν
3
2

L2〈ε〉 1
2

∼ Re− 3
2 , (8.36)

where we have made use of the relation 〈ε〉 ∼ u3
rms L

−1. This leads to the conclusion
that the contribution of the forcing term to the enstrophy budget (8.29) decreases
rapidly with Reynolds number and hence can be neglected asymptotically. To ensure a
stationary balance, one can conclude a balance of enstrophy production and dissipation,
i.e.,

0 =
〈
ωSω

〉− 〈ν(∇ω)2
〉

, (8.37)

where the diffusive term has been rewritten by partial integration. This expression
shows that the dissipation of enstrophy is a strictly negative quantity, which implies
that the mean enstrophy production is positive. The fact that the external forcing may
be neglected indicates that the production of enstrophy, that means, e.g., the birth of
vortex tubes, is a result of internal mechanisms of the Navier-Stokes dynamics and is
expected to be independent of the external forcing. This result is consistent with the
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common assumption that the small-scale statistics should become independent of the
large-scale properties of the flow at sufficiently high Reynolds number, an important
foundation of Kolmogorov’s theory outlined in chapter 2.
As a side remark we would like to demonstrate that one can use this balance to

determine the length scale on which the vorticity gradients vary. As this balance should
hold at any sufficiently high Reynolds number one can demand the dissipative term to
identically scale with the Reynolds number as the enstrophy production term. If we
denote the unknown length scale as δ, equation (8.37) yields the relation(〈ε〉

ν

) 3
2

∼ 〈ε〉
δ2

⇒ δ ∼
(
ν3

〈ε〉
) 1

4

= η , (8.38)

i.e., dimensional analysis indicates that the gradients of vorticity vary with the Kol-
mogorov length scale. It consequently has to be expected that the gradients of vorticity
are strongly correlated with the vorticity itself, as the vorticity also varies on small scales.
This will play an important role later on when the results from our DNS evaluation are
interpreted.

We now come back to the conditional balance (8.29) and ask for the implications of
the observations of the last paragraph on this stricter balance equation. To this end we
note that the enstrophy budget (8.31) can be obtained from equation (8.29) by∫

dΩ Ω [Σ(Ω) Ω + Λ(Ω) + Φ(Ω)] f̃(Ω) =
〈
ωSω

〉
+
〈
νω ·∆ω〉+

〈
ω · (∇× F )

〉
= 0 .

(8.39)
Now the easiest way to achieve the asymptotically vanishing contribution of the forcing
is to assume

Φ(Ω) ≈ 0 (8.40)

for sufficiently high Reynolds numbers. This in turn leads to the conditional balance of
enstrophy production and dissipation only,

0 ≈ Σ(Ω) Ω + Λ(Ω) . (8.41)

This argumentation can be supported by a decoupling argument. As the forcing acts
on the large scales and the vorticity is organized into slender vortex tubes, one could
assume statistical independence leading to〈

ω̂ · (∇× F )
∣∣Ω〉 ≈ 〈ω̂ · (∇× F )

〉
= 0 ⇒ Φ(Ω) = 0 . (8.42)

It has to be stressed that these conclusions are not compellent, and we have seen for the
case of the velocity statistics that similar arguments applied to the conditional pressure
gradient lead to wrong results. For the moment we take the conditional balance of the
terms related to enstrophy production and dissipation as a working hypothesis, which
has to be verified with numerical or experimental data.

164



8.3. The Single-Point Vorticity PDF Equation

8.3.3. Homogeneous and Stationary PDF

The next interesting issue to study is the isotropic form (8.27c) of the kinetic equation
as well as the homogeneity relation (8.27b). As we have seen in the case of the velocity
field, the mathematical structure of this type of kinetic equation allows to derive
homogeneous and stationary solutions for the PDF. Since the structure of the kinetic
equations (8.27a)-(8.27c) is identical, this, of course, can also be achieved for the vorticity
field.
The homogeneity relation (8.27b) is integrated yielding

f̃(Ω; t) =
N

λ(Ω, t)
exp

∫ Ω

Ω0

dΩ′
Λ(Ω′, t) + 2

Ω′µ(Ω′, t)
λ(Ω′, t)

, (8.43)

which has exactly the same structure as the homogeneous solution (7.25). However,
the functional shape of the unclosed terms is expected to be very different from the
velocity case. As both of the conditional averages in this expression contain derivatives
of the vorticity, the fact that the vorticity is expected to be strongly correlated with
the vorticity gradients will lead to a strong Ω-dependence of the conditional averages.
Proceeding to the stationary solution, integration of (8.27c) yields

f̃(Ω) =
N
λ(Ω)

exp
∫ Ω

Ω0

dΩ′
−Σ(Ω′) Ω′ − Φ(Ω′) + 2

Ω′µ(Ω′)
λ(Ω′)

, (8.44)

which shows that the single-point vorticity PDF can be expressed in terms of the
conditional vortex stretching term related to the enstrophy production, the external
forcing term and the eigenvalues of the enstrophy dissipation tensor. If we assume that
the approximate conditional balance (8.41) holds, we obtain

f̃(Ω) ≈ N
λ(Ω)

exp
∫ Ω

Ω0

dΩ′
−Σ(Ω′) Ω′ + 2

Ω′µ(Ω′)
λ(Ω′)

. (8.45)

This result is physically very appealing as it shows that the single-point vorticity PDF
is fully determined by the enstrophy production and dissipation term and independent
of the external forcing. This is very different from the velocity situation as we have seen
that in this case the single-point velocity PDF depends on the external forcing, the
pressure contributions and the dissipative effects, i.e., none of the terms can be neglected
there. The DNS results will help us to verify this conjecture about the independence
from the external forcing.

8.3.4. An Analytical Closure Approximation

The solutions (8.43), (8.44) and (8.45) of the PDF equations can in principle be treated
with a decoupling argument like exemplified in the last chapter for the velocity leading
to Gaussian solutions. As we have seen in chapter 4, the PDF deviates strongly from
normality and has pronounced, slowly decaying tails. The reason for this can be seen
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in the strong statistical correlations that have to be expected due to the similarity
of the length scales that the vorticity, the rate-of-strain tensor and the gradients of
vorticity vary on. Hence a “naïve” closure strategy resting on the assumption of statistical
independence as proposed in the preceding chapter has to fail. On the other hand the
complete opposite, i.e., the assumption of strong statistical correlations could work. We
want to investigate this attempt deeper.

The assumption of “perfect” correlation can be regarded as reasonable only for the
strong events of the vorticity, such that the following argumentation only applies to the
tails of the PDF. We let us guide by the argumentation of the approximate enstrophy
balance and assume first of all that the external forcing has a negligible influence. That
means, we take the relation (8.45) as a starting point. To determine the shape of the
PDF, we now have to specify the functional shape of the eigenvalues of the conditional
rate-of-strain tensor as well as the conditional enstrophy dissipation tensor.

First of all, we can note that, as in the case of the velocity statistics, certain integral
constraints have to be fulfilled. The relevant ones in this context are〈

ωSω
〉

=
∫

dΩ Σ(Ω)Ω2 f̃(Ω) (8.46a)〈
ωSω

〉
=
∫

dΩ (λ+ 2µ) f̃(Ω) , (8.46b)

where for the second one we have made use of the fact that the enstrophy production
equals the enstrophy dissipation and that this quantity is obtained by averaging the
trace of the conditional enstrophy dissipation tensor. To specify the functional form
of the conditional averages, we first extend the above argument and assume that the
rate-of-strain tensor is proportional to the vorticity. Hence the most simple estimate on
dimensional grounds is

Σ0(Ω) = aΩ . (8.47)

Furthermore, we have already estimated above that the vorticity gradients vary on a
scale comparable to the vorticity itself. As the conditional enstrophy dissipation tensor
is quadratic in the gradients of the vorticity, it is straightforward to assume

λ0(Ω) = bΩ2 (8.48a)

µ0(Ω) = cΩ2 . (8.48b)

As the strong events in the vorticity field tend to be organized into slender vortex
tubes, strong directional correlations for the conditional dissipation tensor are likely,
i.e., it is not expected that this tensor is isotropic, which would be the case if µ = λ.
Consequently, the fine-scale geometry imposes a relation

λ0(Ω) = dµ0(Ω) ⇒ c =
b

d
. (8.49)
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Inserting these ansatzes into the integral constraints (8.46a) and (8.46b) yields

a =
〈ωSω〉
〈ω3〉 (8.50a)

b =
(

1 +
2
d

)−1 〈ωSω〉
〈ω2〉 (8.50b)

c = (d+ 2)−1 〈ωSω〉
〈ω2〉 . (8.50c)

With these results we can evaluate equation (8.45) and obtain

f̃(Ω) ∼ Ω
2
d
−2 exp

[
−
(

1 +
2
d

) 〈ω2〉
〈ω3〉 Ω

]
, (8.51)

i.e., in this simple approximation the PDF decays exponentially with an algebraic
prefactor and depends on the two moments 〈ω2〉 and 〈ω3〉 as well as on the local
geometry of the field contained in the parameter d. As all of the quantities can be
determined from the statistics of the vorticity field, this expression contains no fit
parameter. For instance, we will see from the DNS data in the following that d = 4
is an appropriate choice. Of course, these approximations are “too simple to be true”,
such that we do not expect a perfect agreement with the numerical data later on.
This analytical approximation rather highlights that under the assumption of strong
statistical correlations highly non-Gaussian PDFs are obtained naturally.

8.3.5. A Simple Stochastic Interpretation

We have already indicated in chapter 7 that the kinetic equations, after introducing the
homogeneity relation, show a remarkable formal similarity to a Fokker-Planck equation,
however, with a negative diffusion coefficient. This negative sign, whose physical origin
has been explained in the last chapter, for some researchers indicates the “ill-posedness”
of the kinetic equations like equations (7.4) and (8.18), at least in a stochastic sense.
In this short section we would like to demonstrate how a simple Langevin model for
the stationary case still can be constructed. To this end we make use of the conditional
balance (8.29) and neglect the external forcing,

∂

∂t
f = − ∂

∂Ωi

〈
Sij

∣∣∣∣Ω〉Ωj f − ∂2

∂Ωi∂Ωj

〈
ν
∂ωi
∂xk

∂ωj
∂xk

∣∣∣∣Ω〉f . (8.52)

By introducing a change of variables

t? = −t (8.53)

the kinetic equation (8.52) takes the form

∂

∂t?
f =

∂

∂Ωi

〈
Sij

∣∣∣∣Ω〉Ωj f +
∂2

∂Ωi∂Ωj

〈
ν
∂ωi
∂xk

∂ωj
∂xk

∣∣∣∣Ω〉f , (8.54)
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which simply means that we consider the kinetic equation backwards in time. As we
are interested in stationary statistics and do not resolve any temporal statistics, this
interpretation does not cause any further problems. If we now identify the terms

D1(Ω) = −〈S∣∣Ω〉Ω (8.55a)

D2
ij(Ω) =

〈
ν
∂ωi
∂xk

∂ωj
∂xk

∣∣∣∣Ω〉 , (8.55b)

the last equation formally takes the form of a Fokker-Planck equation

∂

∂t?
f = − ∂

∂Ωi
D1
i (Ω) f +

∂2

∂Ωi∂Ωj
D2
ij(Ω) f , (8.56)

which by construction yields the same stationary PDF as equation (8.52). It is now easy
to write down the corresponding Langevin equation

dΩ(t?) = D1(Ω) dt? +
√

2D2(Ω) dW (t?) , (8.57)

where dW (t) denotes a delta-correlated white noise. For homogeneous isotropic turbu-
lence we can make use of statistical symmetries and explicitly calculate the drift vector
and diffusion matrix in terms of the scalar functions introduced in section 8.3.1. After a
short calculation the Langevin equation takes the form

dΩi(t?) = −Σ(Ω)Ωi dt? +
√

2
(√

µ(Ω) δij +
[
−
√
µ(Ω)−

√
λ(Ω)

] ΩiΩj

Ω2

)
dWj(t?) .

(8.58)
One should stress at this point that this Langevin equation will by construction yield
the correct single-point statistics, but it cannot be expected that, e.g., the temporal
correlations of such a simple model will be the same as for the vorticity statistics
measured at a single point. Still, this procedure shows that when setting up a Langevin
model for the vorticity statistics, multiplicative noise naturally enters. We refrain from
presenting a numerical implementation of this stochastic model at this point, further
details on the model along with a numerical implementation can be found in [WF09b].
Instead, we proceed to the DNS results on the vorticity statistics and the unclosed
terms.

8.4. DNS Results

8.4.1. The Conditional Balance of Enstrophy Production and
Dissipation

We now come to the evaluation of the DNS data (sim_512) and start with the terms of
the kinetic equation (8.27a) which are presented in figure 8.1. It can be seen that the
conditional vortex stretching term ΣΩ is positively correlated with the vorticity and
depends strongly on its magnitude. The nonlinear dependence mirrors the statistical
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correlations between the rate-of-strain tensor and the vorticity. In the case of statistical
independence of these two quantities the conditional vortex stretching term would
be a linear function of the magnitude of vorticity with a slope determined by the
integral constraint (8.46a). The fact that this function increases with the magnitude of
vorticity indicates that stronger vortices are subject to a stronger vortex stretching. By
multiplying this term with Ω one obtains the conditional enstrophy production, showing
that it is enhanced for stronger vortices.
The diffusive term Λ(Ω) has the opposite effect because it is negatively correlated

with the vorticity. As also this term is a nonlinear function of the magnitude of the
vorticity, it is apparent that also the diffusive term and consequently the enstrophy
dissipation are statistically correlated with the vorticity. This observation is consistent
with the above order-of-magnitude estimate that the gradients of vorticity vary on a
scale comparable to the vorticity itself.
The next important thing to note is that the conditional vortex stretching term

and the (negative) diffusive term are almost identical. Consequently, the conditional
forcing term Φ(Ω) vanishes. This observation affirms the assumption that the small-scale
vorticity statistics indeed is independent from the external forcing mechanisms, and
the conditional balance (8.29) can be simplified to (8.41). Consequently, it is expected
that the stationary solution of the vorticity PDF does not depend on the external
forcing, such that the approximation (8.45) should yield good results. The fact that
the conditional balance is independent from the external forcing shows that enstrophy
production and dissipation can be seen as internal processes of the turbulent dynamics
that do not depend on the details of the external forcing mechanism. This is an important
difference compared to the velocity statistics, where we have seen how the external
forcing contributes to the shape of the single-point PDF. It should be noted that this
conditional balance has already been observed and theoretically discussed for decaying
turbulence in [ND94]. Compared to this work the conditional balance holds better
for our numerical data, which can be accounted to the well-resolved fields, the good
statistical quality and maybe the increased Reynolds number.

8.4.2. The Structure of the Conditional Enstrophy Dissipation
Tensor

Next we want to investigate the eigenvalues of the conditional enstrophy dissipation
tensor, which are shown in figure 8.2. It can be seen that both eigenvalues depend
strongly on the magnitude of vorticity, which has to be compared to the situation
discussed for the velocity, where we have seen a nearly constant functional behavior for
low values of velocity. This was accounted for by a scale separation argument for the
velocity and the kinetic energy dissipation. It is clear that such an argument fails for the
vorticity field as we have seen in the preceding paragraphs. A decoupling argument as
used for the closure approximation in the case of the single-point velocity statistics would
yield constant eigenvalues. In this sense the observation of the strong dependence of the
eigenvalues on Ω fits well into the picture which is suggested by the order-of-magnitude
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Figure 8.1.: Conditional averages ΣΩ, Λ and Φ from the kinetic equation (8.27a). The fact
that the first two functions approximately balance indicates that the external forcing does not
contribute significantly to the enstrophy budget equation (8.29) (sim_512).

estimate for the vorticity gradients implying strong correlations of the vorticity gradients
and the vorticity. This view can qualitatively be confirmed by figure 8.3, where the
absolute value of vorticity as well as the trace of the enstrophy dissipation tensor are
shown. It is clear to see that the gradients display slightly more fine structure than the
vorticity itself, however, strong spatial correlations are visible. This has to be compared
to the visualization of the velocity and kinetic energy dissipation in figure 1.1 which
revealed a scale separation of the quantities.
The second important fact to be observed from figure 8.2 is that the eigenvalues

are approximately proportional to each other by a factor of about four. This implies
that the conditional enstrophy dissipation tensor is not isotropic and contains strong
directional correlations. This conforms to the observation that the small-scale structure
is governed by filamentary vortex structures, which cause strong gradients perpendicular
to the filament axis.

8.4.3. Reconstruction of the Homogeneous and Stationary PDFs

Having estimated all terms that constitute the unclosed terms in the kinetic equations
(8.27b) and (8.27c), we can evaluate the homogeneous and stationary solutions (8.43)
and (8.44) as well as the solution (8.45), that assumes a negligible influence of the
external forcing. All three PDFs are shown in figure 8.4 together with the PDF directly
estimated from the DNS data and an angle-integrated Gaussian for comparison. All three
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Note that λ

4 instead of λ is shown, such that the similar functional shape of λ4 and µ implies
that the enstrophy dissipation tensor is not isotropic. 〈εω〉 denotes the mean rate of enstrophy
dissipation (sim_512).

Figure 8.3.: Volume renderings of the absolute value of the vorticity and the trace of enstrophy
dissipation tensor. Spatial correlations of the two quantities are apparent (simulation parameters
identical to sim_512).
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solutions agree perfectly with the highly non-Gaussian functional form of the vorticity
PDF and indicate both the consistency of the theory as well as the validity of the
approximate conditional balance of enstrophy production and dissipation. Additionally
the tail dependence according to the analytical closure (8.51) is shown for reference. It
can be observed that, although not delivering a perfect match, the approximate behavior
of the PDF for large values of vorticity is captured quite well.

These observations again motivate the question how the interplay of the conditional
averages leads to the observed highly non-Gaussian shape of the PDF. This can be
answered with a closer look at the terms of, e.g., the stationary solution (8.45) together
with figure 8.5, where the terms appearing in the integrand are shown. The approximately
algebraic behavior of λ in the prefactor of equation (8.45) causes an algebraically
decaying contribution to the functional shape of the PDF. The remaining two terms
in the integrand contribute with a rather complicated functional shape. It can be
seen that these two terms contribute very differently to the PDF. The fact that these
functions are not linear or constant, respectively, altogether yields the slowly decaying
(stretched) exponential tails of the PDF. Although a direct comparison (not shown)
of the conditional averages Σ0, λ0 and µ0 from the analytical closure approximation
compares poorly to the ones estimated directly from the numerical data, the resulting
approximation for the tail is quite decent. This can also be understood with figure 8.5,
where the corresponding ratios are also shown for reference. It can be seen that for
large values of vorticity the simple closure approximations yield a rough estimate for
the ratios determined from DNS. While the estimate for the ratio of the two eigenvalues
of the conditional dissipation tensor together with the prefactor in equation (8.45)
yields an algebraic decay, the exponential contribution to the functional shape can be
accounted to the ratio of the conditional vortex stretching term and the eigenvalue of
the conditional enstrophy dissipation tensor. So the situation is similar to the Gaussian
closure approximation in chapter 7, where the individual conditional averages of the
approximates compared poorly to the ones estimated directly from DNS, and their
ratios compared quite well.

8.4.4. Reynolds Number Dependence

The results for the vorticity statistics have also been investigated with respect to
Reynolds number dependence for the simulations sim_256, sim_512 and sim_1024.
The vorticity PDF for different Reynolds numbers is shown in figure 8.6. It can be
seen that the PDF displays strongly non-Gaussian, stretched exponential tails for all
Reynolds numbers. For increasing Reynolds numbers the PDFs become increasingly
stretched, showing that extreme values of vorticity become more probable. This probably
results from the fact that the vorticity concentrates in finer and finer vortex structures
with increasing Reynolds number. Recall that the tendency to develop more extreme
values (in terms of standard deviations) with increasing Reynolds numbers has not been
observed for the velocity, such that it can be concluded that, although the vorticity is
getting more non-Gaussian, the vorticity field does not produce a more non-Gaussian
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velocity field on the single-point level.
Coming to the conditional averages that arise in the PDF equations, figure 8.7 shows

the functions related to the vortex stretching and the diffusive term. It can be observed
that the functional form does not vary strongly with the Reynolds number, and the
balance of the vortex stretching term and the diffusive term does not change significantly.
The major difference is that the range of values of the vorticity extends with the Reynolds
number mirroring the appearance of more intense events. The same observation basically
holds for the conditional averages related to the conditional enstrophy dissipation tensor,
which are shown in figure 8.8. The ratio between the two eigenvalues of this tensor of
about four proves to be robust for all Reynolds numbers, and it would be interesting to
see if this observation carries over to even higher Reynolds numbers. If one would like
to extract a trend form these figures, one could say that the slope of the conditional
vortex stretching terms seems to decrease a little bit for increasing Reynolds number,
whereas the slopes of the eigenvalues related to enstrophy dissipation increase with the
Reynolds number. These two influences, together with the extension of the possible
vorticity values, then lead to a more pronounced stretched exponential shape of the
PDF.
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Figure 8.9.: Volume rendering of the magnitude of vorticity for a simulation with randomized
initial conditions. The simulation time increases from upper left to lower right: 0.0T , 0.07T ,
0.35T 3.5T . The randomized initial condition does not contain any coherent vortex structures,
but already after 0.07T the first vortices have emerged. In the course of time they grow stronger,
eventually forming again a fully developed turbulent field.
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8.4.5. Evolution of Non-Gaussian Statistics from Random Initial
Conditions

After investigating the homogeneous and stationary solutions of the PDF as well as the
conditional balance of vortex stretching and diffusion, we want to turn to a non-stationary
situation in this section. In particular, we investigate the evolution of the vorticity field
starting from random Gaussian initial conditions. To this end a subensemble of the run
sim_512 consisting of five independent fields has been randomized with the method
described in chapter 4 before these fields have been taken as an initial conditions. Some
snapshots of the temporal evolution of these simulations are shown in figure 8.9. It can
be seen that the initial condition appears unstructured and does not contain any vortex
tubes. This, however, changes soon as figure 8.9 shows that already after 0.07T the
first structures have emerged. In the course of time these structures grow stronger, and
already after 0.35T pronounced vortex tubes have developed. For even later stages of
the simulation, the fully developed turbulent structure of the vorticity field like for a
stationary simulation is recovered, where both the number as well as the strength of
the vortex tubes has increased.
It is now interesting to study this scenario in the framework of the kinetic equation

(8.27a) with the method of characteristics, which yields the set of equations

d
dt

Ω̃(t,Ω0) = [Σ(Ω, t)Ω + Λ(Ω, t)]
Ω=eΩ(t,Ω0)

(8.59a)

d
dt
f̃(Ω̃(t,Ω0); t) =

[
− ∂

∂Ω
(
Σ(Ω, t)Ω + Λ(Ω, t)

)]
Ω=eΩ(t,Ω0)

f̃(Ω̃(t,Ω0); t) . (8.59b)

For this presentation we take for granted that the conditional forcing Φ can be neglected
even in this non-stationary situation, which has been checked by testing the results also
for decaying turbulence. The conditional vortex stretching term Σ(Ω, t)Ω as well as the
conditional diffusive term Λ(Ω, t) are shown for different stages of the simulation in
figure 8.10 along with the PDF of vorticity. The randomized Gaussian initial condition
displays vanishing vortex stretching and a linear diffusive term. After a short time,
corresponding to the first appearance of vortex tubes in figure 8.9, both nonlinear vortex
stretching as well as vorticity diffusion have developed. Interpreting these conditional
averages with equations (8.59a) and (8.59b) shows that the vorticity is, as observed
before, depleted due to the dissipative term and amplified due to the vortex stretching
term. However, dealing with a non-stationary situation, these two influences do not
cancel. For the core of the PDF the diffusive term is dominant, such that the PDF is
squeezed toward lower values of vorticity. For larger values, the vorticity is amplified
due to unbalanced vortex stretching. At the same time equation (8.59b) additionally
contributes to the change of shape of the PDF. By this an initially Gaussian PDF
gradually develops exponential and finally stretched exponential tails, up to the time
when the conditional balance (8.41) is recovered. Note that, as the evolution of the
vorticity PDF is not self-similar, the right-hand side of (8.59a) is a nonlinear function,
consistent with the discussion in chapter 7.
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Figure 8.10.: Conditional vortex stretching and vorticity diffusion for simulations starting
from Gaussian initial conditions. The random initial condition has vanishing vortex stretching
(i.e. enstrophy production) and a linear diffusive term. Already after 0.07T nonlinear vortex
stretching and vorticity diffusion have emerged, where the low values of the vorticity are diffusion
dominated, whereas the high values are dominated by vortex stretching. After several large-eddy
turnover times the conditional balance of the right-hand side of equation (8.27a) as observed
for stationary statistics is recovered. The same instants as in figure 8.9 have been chosen.

Along with the visualizations in figure 8.10, the physical interpretation of these
observations is straightforward. Small fluctuations in the random initial condition
constitute the germs of vortex structures that emerge under the action of the vorticity
equation. In the course of time the vorticity with low magnitude, which can be thought
of as more unstructured, decays due to dominating dissipation. At the same time strong
vortices will become even stronger due to unbalanced vortex stretching until the field
finally relaxes to a statistically stationary state.

8.5. Ensemble of Burgers Vortices

The visualizations so far indicate that the vorticity field consists of a large number
of filamentary coherent structures. It is therefore tempting to try to calculate the
conditional averages arising in the kinetic equations from an ensemble of such vortices.
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An analytically tractable vortex solution has already been introduced in chapter 1 in
the form of the Burgers vortex. The vorticity field of such a vortex located at position
x0 and pointing into the direction e‖ is given by

ω(x) = ω(r⊥) e‖ with ω(r⊥) =
Γa
4πν

exp
[
−ar

2
⊥

4ν

]
, (8.60)

and the distance to the vortex axis r⊥ is calculated according to

r⊥ =
∣∣x− x0 −

[
(x− x0) · e‖

]
e‖
∣∣ . (8.61)

Our ensemble shall consist of isolated, non-interacting vortex structures, such that
we can calculate all terms of interest from a single vortex structure. In a sense we
consider a “dilute Burgers vortex gas” at a fixed viscosity ν, where each Burgers vortex
is characterized by the rate of strain a and the circulation Γ.
To calculate the terms of interest for an individual structure, we choose x0 = 0 and

e‖ = ez. To obtain the vortex stretching term, we first note that the rate-of-strain
tensor may be decomposed into

S = Sext + SB , (8.62)

where the external contribution

Sext =

 −a
2 0 0

0 −a
2 0

0 0 a

 (8.63)

is given by the potential flow related to the rate of strain a, and SB is the strain locally
induced by the vortex tube, which can be obtained by differentiating the velocity field
(1.18) of the Burgers vortex. As only the vortex stretching term plays a role in the
kinetic equations (8.27a) and (8.27c), it is useful to note that this term depends only
on the external contribution to the rate-of-strain tensor such that

Sω = Sextω = aω , (8.64)

i.e., the vortex stretching field is directly proportional to the vorticity field. It is also
straightforward to calculate the diffusive term for a single Burgers vortex yielding

ν∆ω =
[
−a+

a2r2
⊥

4ν

]
ω , (8.65)

showing that also this term depends linearly on the vorticity field. Finally, one can also
calculate the enstrophy dissipation tensor, which takes the form

(
ν
∂ωi
∂xk

∂ωj
∂xk

)
1≤i,j≤3

=

 0 0 0
0 0 0

0 0 a2r2
⊥

4ν

ω2 , (8.66)
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such that this tensor is quadratic in ω and has only a single entry. The last point has
an important implication as it can be seen that an ensemble of Burgers vortices is
incapable of reproducing the ratio of the eigenvalues λ and µ which has been observed
in the DNS data; each Burgers vortex contributes with µ = 0 and λ = a2r2

⊥
4ν Ω2. On

the one hand this may be seen as a disappointing statement as we cannot expect to
calculate the “correct” statistics from such a simplified model. On the other hand the
interesting conclusion to be drawn is that the coherent structures in turbulence display
an inner structure which is not represented by the Burgers vortex.
Nevertheless, we would like to pursue the idea of a vortex ensemble a bit further as

the last calculations have shown that, when we are considering an individual Burgers
vortex, we can express the vortex stretching term, the diffusive term and the enstrophy
dissipation tensor locally in terms of the vorticity field. This eventually allows to calculate
the conditional averages analytically to a certain extent as we want to demonstrate now.
To this end consider the general situation that we want to calculate the conditional
average of a quantity q(x) with respect to the vorticity ω. If Q denotes the corresponding
sample space variable, this can be done via〈

q
∣∣Ω〉 f(Ω) =

∫
dQQf(Q,Ω) . (8.67)

Assuming that the considered volume is large enough to represent the ensemble average,
the joint PDF f(Q,Ω) can be obtained by

f(Q,Ω) =
1
V

∫
dx δ(q(x)−Q) δ(ω(x)−Ω) . (8.68)

By inserting this expression into (8.67), we readily arrive at〈
q
∣∣Ω〉 f(Ω) =

1
V

∫
dx q(x) δ(ω(x)−Ω)

=
∑
i

1
Vi

∫
Vi

dx q(x) δ(ω(x)−Ω) . (8.69)

For the second equality we have made use of the fact that the considered volume
can be decomposed into disjoint volumes containing only single Burgers vortices. The
interesting fact now is that all quantities of interest for the statistical equations can
be expressed in terms of the vorticity field and a function containing parameters of
the individual vortex and, if necessary, a spatial dependence. That means, for the i-th
vortex we find

q(x) = G(Γi, ai,x0, e‖,x)F (ω) . (8.70)

By inserting this expression into (8.69) and making use of the sifting property of the
delta distribution, we obtain

〈
q
∣∣Ω〉 f(Ω) = F (Ω)

[∑
i

1
Vi

∫
Vi

dxG(Γi, ai,x0, e‖,x) δ(ω(x)−Ω)

]
. (8.71)
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8.6. Summary

This shows that the function F (Ω) can be separated, leaving an expression which
depends on how in detail the ensemble is set up. Note that the integral term still may
contain a functional dependence on Ω. A simple observation, however, can be made for
the case that G = c is a constant function. In that case we simply obtain

〈
q
∣∣Ω〉 f(Ω) = F (Ω)

[∑
i

1
Vi

∫
Vi

dx c δ(ω(x)−Ω)

]
= c F (Ω) f(Ω) , (8.72)

such that the conditional average is determined by c and F only. If we apply this
reasoning to the individual terms relevant for the kinetic equations, we obtain

〈
Sω
∣∣Ω〉f(Ω) = Ω

[∑
i

1
Vi

∫
Vi

dx ai δ(ω(x)−Ω)

]
(8.73a)

〈
ν∆ω

∣∣Ω〉f(Ω) = Ω

[∑
i

1
Vi

∫
Vi

dx

[
−ai +

a2
i r

2
⊥,i

4ν

]
δ(ω(x)−Ω)

]
(8.73b)

〈
ν
∂ωi
∂xk

∂ωi
∂xk

∣∣∣∣Ω〉f(Ω) = Ω2

[∑
i

1
Vi

∫
Vi

dx
a2
i r

2
⊥,i

4ν
δ(ω(x)−Ω)

]
. (8.73c)

From a formal point of view the problem is solved in this way, although an analytical
evaluation of the remaining integral terms is impracticable. If one, however, assumes
that the dependence on Ω of these terms is weak, the general functional shape expected
from such a vortex model can be seen from the prefactors.

8.6. Summary

In this chapter we have worked out the details of the single-point equation for the
vorticity in the framework of the LMN hierarchy. To this end we first extended Lundgren’s
approach to the vorticity field and in this way obtained the hierarchy of PDF equations
already introduced by Novikov. We then simplified the resulting equations by application
of statistical symmetries, which eventually allowed to derive homogeneous and stationary
solutions for the vorticity PDF, which is one of the main results of this chapter. Although
these solutions are formally identical to the solutions in the velocity case, a very different
single-point statistics is expected due to a different functional form of the conditional
averages. This has been supported theoretically with a number of considerations. First,
we have argued that the forcing is expected to have a negligible influence on the statistics,
such that the conditional balance of vortex stretching and diffusion holds. This is a
physically important result, as it indicates that the shape of the vorticity PDF is the
result of the “pure” dynamics of the vorticity equation and is not influenced by the
external forcing. Furthermore, we have argued that a simple scale separation argument,
that leads to Gaussian results in the case of the velocity field, has to fail for the vorticity
field. However, the complete opposite assumption, namely the assumption of strong
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8. Single-Point Statistics of the Turbulent Vorticity

statistical correlations then was used to calculate an explicit expression for the tail
behavior of the PDF. Apart from that, it has been demonstrated how the kinetic
equation may be used to set up a simple Langevin model, which by construction yields
the correct single-point statistics.

As for the velocity field, these theoretical points have been supplemented and verified
by DNS results, which revealed strong statistical correlations of the arising conditional
averages and the vorticity. A particularly interesting observation in this context has
been the fact that the conditional enstrophy dissipation tensor exhibits non-vanishing
off-diagonal elements, which is different from the conditional dissipation tensor for the
kinetic energy. This observation originates from the fact that the presence of small-scale
coherent structures induces directional correlations of the vorticity gradients and the
vorticity itself. As for the velocity, the homogeneous and stationary solutions have been
obtained also for the vorticity and a perfect agreement with the directly estimated PDF
has been found. In this context we have also demonstrated the conditional balance of
vortex stretching and vorticity diffusion, which has already been observed and predicted
by Novikov. However, our results confirm his results at an unprecedented statistical
quality and at higher Reynolds numbers. All of the statistical results have also been
checked as a function of Reynolds number, showing that the stretched exponential
character of the PDFs increases with increasing Reynolds number.

To investigate the influence of coherent structures on the statistical quantities, several
attempts have been made. We first investigated the evolution of the conditional right-
hand side of the vorticity equation for a flow starting from random Gaussian initial
conditions. Interpreting these results with the method of characteristics revealed that
strong vortices grow stronger due to unbalanced vortex stretching, whereas weak vorticity
decays due to dominant dissipation. We then outlined how the unknown conditional
averages can be calculated under the assumption that turbulence consists of an ensemble
of Burgers vortices. The main outcome here is that, while these calculations in general
will yield highly non-Gaussian vorticity statistics, the Burgers vortex itself is a too simple
structure to explain the local conditional structure of turbulence. This observation will
be a key point in the following chapter.

On a general level this and the preceding chapter have shown how a general framework
describing and explaining the single-point statistics of fully developed homogeneous
isotropic turbulence can be established by combining analytical and numerical efforts.
Although the mathematical approach is very similar in the case of the velocity and the
vorticity field, it has been shown how the differing topological structure of the fields
eventually yields very different single-point statistics. Up to now the discussion has
been led in terms of statistical correlations of the various dynamical quantities that
arise in the Navier-Stokes and vorticity equation. In the following two chapters we will
outline how the closure problem may be discussed and treated on the basis of two-point
statistics.
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9. Two-Point Enstrophy Statistics and the
Closure Problem on the Level of
Multi-Point Statistics

9.1. Motivation

Up to now we have treated the closure problem on the basis of a discussion of the
local dynamical correlations of the right-hand side of the Navier-Stokes or the vorticity
equation with the velocity or vorticity, respectively. This has allowed to physically
interpret the arising terms, and eventually homogeneous and stationary solutions in
terms of these quantities have been obtained. It is, of course, possible to proceed in this
direction and apply the same strategy for two-point statistics, and in fact we will partly
follow this path in the current chapter investigating the two-point enstrophy statistics in
fully developed turbulence. To this end we will first discuss the two-point PDF equation
for the vorticity and its relation to the two-point enstrophy PDF equation. As in the
preceding chapters, the unclosed terms will be estimated from DNS data leading to a
number of interesting observations.

We then, however, will seek for a connection of the results to the multi-point statistics
of vorticity. This has already been discussed in chapters 6 and 8, where we have seen
that the kinetic equations may be formulated in a way that the single-point equation
couples to the two-point equation and so forth.
If one wants to treat the closure problem from this point of view, the two-point

statistics of turbulence has to be understood and eventually modeled in order to yield a
closure on the single-point level. To be more precise, closure here means to establish a
model for the two-point statistics in a way that the conditional vortex stretching term
and vorticity diffusion can be calculated. Accordingly, closing the two-point equations
involves an investigation and understanding of three-point statistics.
With an increasing number of spatial points, the statistical quantities become more

and more complex. It soon becomes clear that the dimensionality of the problem
will prohibit a global numerical and analytical treatment of the problem, such that
simplifying assumptions have to be made to study the multi-point statistics of fully
developed turbulence and compare predictions to numerically obtained results.
These considerations are closely related to two works by Novikov [Nov93, MDN96],

in which the analysis of the local conditional structure of the vorticity field in fully
developed turbulence has been introduced. After reviewing and extending these works,
we will take the multivariate Gaussian PDF as a guide how the multi-point statistics
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can be treated analytically. It already becomes clear on the single-point level that the
functional structure of Gaussian PDFs is incapable of explaining the observed vorticity
statistics, such that we will construct an in a sense minimal model compatible with the
mathematical structure of the kinetic equation. Hereby we will introduce the Twisted
Gaussian Approximation, which is extendable to the statistics of multiple points in
space. This concept then eventually will allow to study the two-point vorticity statistics
in the Twisted Gaussian Approximation. These results then will be compared to DNS
results and discussed.

9.2. Two-Point Enstrophy Statistics

9.2.1. The PDF Equations

The general procedure of setting up evolution equations for PDFs has already been intro-
duced and exemplified in chapters 6, 7 and 8. Following these derivations, it is straightfor-
ward to write down the evolution equation for the two-point PDF f2(Ω1,Ω2;x1,x2, t).
It takes the form

∂

∂t
f2+∇x1 ·

[〈
u1

∣∣Ω1,Ω2, r
〉
f2

]
+∇x2 ·

[〈
u2

∣∣Ω1,Ω2, r
〉
f2

]
=

−∇Ω1 ·
[〈

S1ω1 + ν∆x1ω1 +∇x1 × F 1

∣∣Ω1,Ω2, r
〉
f2

]
−∇Ω2 ·

[〈
S2ω2 + ν∆x2ω2 +∇x2 × F 2

∣∣Ω1,Ω2, r
〉
f2

]
, (9.1)

i.e., the right-hand side of this PDF equation is similar to the single-point PDF equation
(8.14), however, the different terms of the vorticity equation now have to be evaluated
at the two spatial points x1 and x2 and are conditionally averaged with respect to the
two sample space vorticities Ω1 and Ω2. On the left-hand side we have two advective
terms. Due to homogeneity the statistics can only depend on r = x2 − x1 such that we
have

∇x1 = −∇r and ∇x2 = ∇r . (9.2)

As a consequence the two advective terms can be combined to yield

∇x1 ·
[〈
u1

∣∣Ω1,Ω2, r
〉
f2

]
+∇x2 ·

[〈
u2

∣∣Ω1,Ω2, r
〉
f2

]
= ∇r ·

[〈
u2 − u1

∣∣Ω1,Ω2, r
〉
f2

]
=: ∇r ·

[〈
δu
∣∣Ω1,Ω2, r

〉
f2

]
, (9.3)

by which we have introduced the conditional velocity increment. Since we are considering
two-point statistics, homogeneity does not imply a vanishing advective term. Accordingly,
we have a probability flux in scale induced by a coupling of the advective term. An
important implication is that the single-point balance (8.29) does not generally hold for
the two-point vorticity statistics. The imbalance of the conditionally averaged right-hand
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sides for fixed spatial distances is rather accompanied by a probability flux in scale.
For the special case of r → ∞, for which the statistics of the two points becomes
independent, the single-point balance, however, is recovered.
Of course, this PDF equation can be simplified further under the assumption of

isotropic statistics. Even under this assumption the two-point PDF f2(Ω1,Ω2; r, t) still
depends on six scalar quantities, which can be chosen as

Ω1, Ω2, r, r̂ · Ω̂1, r̂ · Ω̂2 and Ω̂1 · Ω̂2

as already mentioned in the introductory chapter. Furthermore, the conditional averages
appearing in the kinetic equation may statistically point in all possible directions which
can be built from the vectors they depend on. This eventually prohibits to construct
an orthonormal set of sample space vectors. Facing this situation, it is clear that the
full information contained in the unclosed terms is numerically inaccessible. We thus
seek for a lower-dimensional representation of the two-point vorticity statistics which is
numerically tractable and still contains meaningful information.

One natural choice for such a lower-dimensional projection is the enstrophy statistics
for several reasons. First of all, the enstrophy represents an invariant of the vorticity
statistics. Second, the investigation of the enstrophy statistics has been at the center
of a number of studies as it quantifies certain aspects of the small-scale structure of
turbulence (see, for example, [Tsi09] and references therein). This probably is related
to the fact that events of strong enstrophy can be discussed in the context of coherent
vortex structures, which allows for an intuitive interpretation of the results. In the
context of PDF methods, the enstrophy seems especially well-suited as the evolution
for the enstrophy equation is readily obtained by multiplying the vorticity equation on
the vorticity, which yields

∂

∂t

ω2

2
+ u · ∇ω

2

2
= ωSω + νω ·∆ω + ω · (∇× F ) . (9.4)

As discussed in chapter 8, the terms on the right-hand side can be regarded as the local
enstrophy production due to self-amplification, dissipation1 and the local enstrophy
production due to the external forcing. After the considerations of the preceding chapter
the latter term can be assumed to have a negligible statistical impact. If we now denote z
as the sample space variable corresponding to the enstrophy, we can define the two-point
enstrophy PDF according to

f2(z1, z2;x1,x2, t) =
〈
δ

(
ω2

2
(x1, t)− z1

)
δ

(
ω2

2
(x2, t)− z2

)〉
. (9.5)

The corresponding evolution equation for the PDF can be derived in exactly the same
manner as in the case of the velocity or vorticity PDF. Following the subsequent steps

1In this chapter we will speak of the diffusive term also loosely as dissipation.
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of the derivation one finally obtains for homogeneous turbulence

∂

∂t
f2 +∇r ·

[〈
δu
∣∣z1, z2, r

〉
f2

]
=− ∂

∂z1

[〈
ω1S1ω1 + νω1 ·∆x1ω1

∣∣z1, z2, r
〉
f2

]
− ∂

∂z2

[〈
ω2S2ω2 + νω2 ·∆x2ω2

∣∣z1, z2, r
〉
f2

]
.

(9.6)

We have already omitted the terms related to the external forcing here. Due to isotropy
only the longitudinal component of the velocity increment〈

δul
∣∣z1, z2, r

〉
=
〈
r̂ · δu∣∣z1, z2, r

〉
(9.7)

contributes to the advective term, such that the PDF equation simplifies to

∂

∂t
f2 +

1
r

∂

∂r
r
[〈
δul
∣∣z1, z2, r

〉
f2

]
=− ∂

∂z1

[〈
ω1S1ω1 + νω1 ·∆x1ω1

∣∣z1, z2, r
〉
f2

]
− ∂

∂z2

[〈
ω2S2ω2 + νω2 ·∆x2ω2

∣∣z1, z2, r
〉
f2

]
.

(9.8)

The evolution of the two-point enstrophy PDF hence is given by the conditional
enstrophy production and dissipation terms at the two spatial points. The coupling
between different scales is given by the longitudinal velocity increment. The velocity
increment has to fulfill the additional constraint

0 =
〈
δul
〉

=
∫

dz1 dz2

〈
δul
∣∣z1, z2

〉
f2(z1, z2) , (9.9)

such that if the velocity increment is non-vanishing, zero-crossings will occur. That
means, there will be different regions in the z1-z2-plane associated with a probability flux
up- and downscale. The structure of the PDF equation implies for stationary turbulence
that if the probability current on the right-hand side vanishes, also the probability flux
in scale is zero. Consequently, the imbalance of enstrophy production and dissipation is
a necessary condition for a coupling of the PDFs of various distances. Note that the
equations are symmetric with respect to an exchange of z1 and z2, such that the vector
field defined by the unclosed terms also will display this symmetry.

Although we have derived this equation starting from the definition of the fine-grained
two-point enstrophy PDF, one could in principle also obtain this equation by projection
of the two-point vorticity PDF equation (9.1). A second important thing to note is
that, when only the single-point enstrophy PDF is considered, the PDF equation
is completely equivalent to the single-point vorticity PDF (8.27a) for homogeneous
isotropic turbulence. The reason for this is that for homogeneous isotropic turbulence
the single-point vorticity PDF depends on the magnitude of vorticity, or equivalently
the enstrophy, only. This especially means that for the limit of large spatial separations,
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where we find statistical independence of z1 and z2, the well-known conditional balance
(8.41) will be observed pointwise in sample space.

For the interpretation of the following DNS results it is useful to consider the
characteristic equations corresponding to equation (9.8). If we denote R(t, z1,0, z2,0, r0),
Z1(t, z1,0, z2,0, r0) and Z2(t, z1,0, z2,0, r0) as solutions of the characteristic equations,
these solutions obey

d
dt
R =

[〈
δul
∣∣z1, z2, r

〉]
[r=R(t), z1=Z1(t), z2=Z2(t)]

(9.10a)

d
dt
Z1 =

[〈
ω1S1ω1 + νω1 ·∆x1ω1

∣∣z1, z2, r
〉]

[r=R(t), z1=Z1(t), z2=Z2(t)]
(9.10b)

d
dt
Z2 =

[〈
ω2S2ω2 + νω2 ·∆x2ω2

∣∣z1, z2, r
〉]

[r=R(t), z1=Z1(t), z2=Z2(t)]
(9.10c)

d
dt
f2 = −

[
1
r

∂

∂r
r
〈
δul
∣∣z1, z2, r

〉
+

∂

∂z1

〈
ω1S1ω1 + νω1 ·∆x1ω1

∣∣z1, z2, r
〉

+
∂

∂z2

〈
ω2S2ω2 + νω2 ·∆x2ω2

∣∣z1, z2, r
〉]

[r=R(t), z1=Z1(t), z2=Z2(t)]

f2 . (9.10d)

Consequently, if we know the functional shape of the unclosed terms in the space
spanned by z1, z2 and r, we can track their statistical evolution. At the same time the
last equation determines the deformation of the PDF along these solutions.

9.2.2. DNS Results

For the numerical evaluation we take the data from the simulation sim_512. First of
all, one can note that the statistics in the z1-z2-plane can equivalently be represented
considering the statistics in the Ω1-Ω2-plane. The latter choice is particularly useful for a
graphical representation as the coordinate axes are not as stretched as when choosing a
representation in terms of the enstrophy. Accordingly, we evaluate f̃2(Ω1,Ω2; r) instead
of f2(z1, z2; r). In fact, there is a simple relation between the two probability densities
taking the form

f̃2(Ω1,Ω2) =
[
(2z1)

1
2 (2z2)

1
2 f2(z1, z2)

]
z1/2= 1

2
Ω2

1/2

. (9.11)

This especially allows to make contact to the results presented in chapter 8. For example,
the conditional averages of the right-hand side of equation (9.8) have to reduce to the
ordinary balance (8.41) when projected onto the Ω1- or Ω2-axis. This is exemplified in
figure 9.1 for r = 2.5η. Of course, this reduction property holds for arbitrary separations.
When discriminated with respect to Ω1 and Ω2, in general no pointwise cancellation
of the terms is expected. One example is shown in figure 9.2 for r = 2.5η, where the
vector field spanned by the conditional enstrophy production(〈

ω1S1ω1

∣∣Ω1,Ω2

〉
,
〈
ω2S2ω2

∣∣Ω1,Ω2

〉)
, (9.12)
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Figure 9.1.: Conditional balance of the single-point enstrophy production and dissipation
obtained by projection of the two-point enstrophy statistics for r = 2.5η. As expected, the
conditional production balances the conditional dissipation (sim_512). The analytical result
for the Twisted Gaussian Approximation (discussed in section 9.5) is shown for reference. The
inset shows the conditional averages times the PDF.

the conditional enstrophy dissipation(〈
νω1 ·∆x1ω1

∣∣Ω1,Ω2

〉
,
〈
νω2 ·∆x2ω2

∣∣Ω1,Ω2

〉)
(9.13)

and their sum is shown. As in the single-point case, the vector field belonging to the
enstrophy production points into the direction of larger values of vorticity and hence
has an amplifying effect. The opposite effect is achieved by the dissipative terms, which
produce a vector field pointing toward the origin. If the two vector fields are summed up,
as in the PDF equation (9.8), they cancel to a good extent, only a small non-vanishing
fraction remains. This is an important observation as it shows that enstrophy production
and dissipation are strongly localized processes in sample space, which already almost
balance pointwise in sample space.
In addition to the evolution in the Ω1-Ω2-plane one has to consider the evolution in

scale, which is related to the conditional longitudinal velocity increment also shown in
figure 9.2. Here, the first thing to note is that the velocity increment field changes sign
in the Ω1-Ω2-plane. It takes a negative sign if Ω1 strongly differs from Ω2 and becomes
positive if the two vorticities are roughly equal. If the conditional velocity increment is
non-vanishing, this change of sign has to occur, because the increment has to fulfill the
integral constraint (9.9). This observation adds another aspect to the interpretation of
the statistical results. If two nearby vorticities differ strongly, they tend to be attracted
on the statistical average and tend to separate if the two vorticities are roughly equal.

The statistics is presented as a function of scale in figures 9.3 and 9.4 along with the
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Figure 9.2.: Conditional averages of the two-point enstrophy PDF equation (9.8) for r = 2.5η.
Upper figure: conditional enstrophy production

〈
ωiSiωi

∣∣Ω1,Ω2

〉
/〈εω〉 (red) and enstrophy

dissipation
〈
νωi ·∆xi

ωi
∣∣Ω1,Ω2

〉
/〈εω〉 (blue) together with the small net vector field (gray), all

vectors have been multiplied by a factor of 0.1. Lower figure: conditional longitudinal velocity
increment

〈
δul
∣∣Ω1,Ω2

〉
/
(

2
3 〈u2〉) (sim_512).

189



9. Two-Point Enstrophy Statistics and the Multi-Point Closure Problem

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 0  2  4  6  8  10  12  14
Ω1/σ

 2

 4

 6

 8

 10

 12

 14

Ω
2/

σ

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

 0  2  4  6  8  10  12  14
Ω1/σ

 0

 2

 4

 6

 8

 10

 12

 14

Ω
2/

σ

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 0  2  4  6  8  10  12  14
Ω1/σ

 2

 4

 6

 8

 10

 12

 14

Ω
2/

σ

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

 0  2  4  6  8  10  12  14
Ω1/σ

 0

 2

 4

 6

 8

 10

 12

 14

Ω
2/

σ

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 0  2  4  6  8  10  12  14
Ω1/σ

 2

 4

 6

 8

 10

 12

 14

Ω
2/

σ

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

 0  2  4  6  8  10  12  14
Ω1/σ

 0

 2

 4

 6

 8

 10

 12

 14

Ω
2/

σ

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 0  2  4  6  8  10  12  14
Ω1/σ

 2

 4

 6

 8

 10

 12

 14

Ω
2/

σ

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

 0  2  4  6  8  10  12  14
Ω1/σ

 0

 2

 4

 6

 8

 10

 12

 14

Ω
2/

σ

Figure 9.3.: Joint PDF f̃2(Ω1,Ω2; r)σ2 and conditional averages of the two-point enstrophy
PDF equation (9.8) for r ∈ {1.2, 2.5, 4.9, 9.9}η (sim_512).
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Figure 9.4.: Joint PDF f̃2(Ω1,Ω2; r)σ2 and conditional averages of the two-point enstrophy
PDF equation (9.8) for r ∈ {19.8, 39.6, 79.1, 158.3}η (sim_512).
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joint PDF f̃2(Ω1,Ω2; r). The joint PDF, as expected, undergoes a transition from a very
narrow shape for small separations to a broader shape for increasing separation. This
just mirrors the fact that for vanishing separation the coincidence property has to be
met, whereas for large distances the separation property has to hold.

Coming to the effective vector field spanned by the sum of the conditional enstrophy
production and dissipation, this vector field is particularly strong for small separations
and decreases in magnitude for larger separations. For small spatial separations the
remaining vector field by and large has an amplifying effect if Ω1 6≈ Ω2 and a depleting
effect if Ω1 ≈ Ω2, increasing nonlinearly with the magnitude of the two vorticities. This
means, that if, on the statistical average, the enstrophy is not equal in two nearby points,
turbulence tends to level this difference. Approximately equal enstrophies, however, are
subject to a comparably slow decay. To put it differently, vortex stretching is especially
active amplifying low vorticity in the neighborhood of strong vorticity, sometimes even
amplifying the strong vorticity as can be seen from the details of the vector field. The
dissipative effects are dominant when the two vorticities tend to coincide in magnitude.
In a sense this reminds of the life cycle of a vortex structure generated by the vortex
stretching of surrounding vorticity and eventually decaying after growing strong. For
intermediate distances, for example at r = 9.9η, the almost pointwise cancellation of
enstrophy production and dissipation is already observed for low vorticities. Events
of strong vorticity, however, still are amplified due to dominant enstrophy production.
This differing behavior of low and high magnitudes of vorticity could be a signature of
the presence of coherent structures. While for small and weak structures the spatial
correlation is already lost, particularly strong and elongated vortices found in the tails
of the PDF are still subject to growth. For scale separations, where the joint PDF
becomes statistically independent, the pointwise balance observed for the single-point
enstrophy statistics is recovered. This is physically intuitive as two distant points should
not influence each other.

The conditional longitudinal velocity increment displays a structure similar to the one
already discussed for small scales. However, it takes the strongest positive and negative
values at intermediate scales of the order of ten Kolmogorov micro scales. Due to the
limiting properties of the statistics it has to vanish for vanishing separations and also
for large ones. Additionally the region corresponding to a positive flux in scale increases
with increasing separations.

These qualitative observations can be cast in a simple model for the characteristic
equations (9.10), which captures the main features of the observed dynamics. The model
reads

d
dt
R = α1 [(Z1 − α2Z2)(Z2 − α2Z1)− α3] (9.14a)

d
dt
Z1 = Z1Z2 [β1(Z2 − Z1) + β2(Z1 + Z2) + β3] + β4

[
Z2

1 + Z2
2

]
(9.14b)

d
dt
Z2 = Z1Z2 [β1(Z1 − Z2) + β2(Z1 + Z2) + β3] + β4

[
Z2

1 + Z2
2

]
, (9.14c)

192



9.3. The Closure Problem in Terms of Conditional Moments

where all prefactors αi and βi are functions of the spatial distance R. First of all, one
can note that the model is symmetric with respect to a simultaneous change of Z1

and Z2. Depending on the choice of the parameters αi, the transport in scale can be
adjusted in a way that a probability flux upscale is found for Z1 ≈ Z2 and downscale
for Z1 6≈ Z2. The extents of the corresponding regions can be fixed with the parameter
α2, which allows to model the scale dependent deformation observed in the DNS data.
α3 can be adjusted such that the model fulfills the integral constraint (9.9) by choosing

α3 = (1 + α2
2)
〈
Z1Z2

〉− α2

(〈
Z2

1

〉
+
〈
Z2

2

〉)
. (9.15)

The limiting behavior for small and large separations can be modeled by adjusting α1.
For example, choosing lim

R→∞
α1 = 0 leads to a vanishing probability flux in scale for

large separations.
The dynamics is the Z1-Z2-plane can be understood best by considering limiting

cases. For example, for Z1 = 0 only the term involving β4 is non-vanishing and leads to
the characteristic amplification of enstrophy observed in the DNS data. For Z1 = Z2 the
depleting effect for coinciding enstrophies can be modeled by choosing a negative β3. β2

can be adjusted in a way that the amplification of large enstrophies, observed in the DNS
for intermediate distances, is captured. In between these two limiting cases the model
vector field points toward the line corresponding to Z1 = Z2, such that in total the
typical amplification for non-coinciding and the slight decay for coinciding enstrophies
is found. For vanishing and infinite distances the limiting behavior Ż1 = Ż2 = 0 is met
by choosing βi = 0.
While the goal of this simple ad hoc model is to capture the topological structure

of the vector field governing the evolution of the characteristics, it would be desirable
to derive this type of model equations from a consideration of the two-point statistics,
which is the topic of the following sections.

9.3. The Closure Problem in Terms of Conditional
Moments

We now want to seek for an understanding of the unclosed expressions in terms of the
multi-point vorticity statistics. The starting point of the analysis is the kinetic equation
for the single-point PDF f1(Ω1;x1, t) of the form

∂

∂t
f1 +

1
4π
∇x1 ·

∫
dx0 dΩ0

r10 ×Ω0

r3
10

f2

= −∇Ω1 ·
{

3
8π

∫
dx0 dΩ0

[
(r10 ×Ω0)(r10 ·Ω1)

r5
10

+
Ω1 · (r10 ×Ω0) r10

r5
10

]
f2

+ lim
x0→x1

ν∆x0

∫
dΩ0 Ω0f2 , (9.16)

which couples to the two-point PDF f2(Ω0,Ω1;x0,x1, t). This PDF equation has
already been introduced in chapter 8. Note that the spatial point integrated over and
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the corresponding sample space vorticity are now denoted by the subscript 0 and we
define r10 = x0 − x1. This slight change in notation will eventually allow to generalize
the results conveniently to multiple points in space. As discussed before, this equation
explicitly reveals the coupling of the single-point PDF equation to the two-point PDF.
Here and in the following the external forcing is neglected, which seems to be a reasonable
approximation due to the results of the last chapter. The important point now is that
the kinetic equation written down in the above form involves the sample space vorticity
Ω0 only linearly, an observation which has first been mentioned by Novikov [Nov93].
By expressing the two-point PDF in terms of the conditional PDF

f2(Ω0,Ω1;x0,x1, t) = p(Ω0|Ω1,x0,x1, t) f1(Ω1;x1, t) (9.17)

one recognizes that operations of the unclosed terms do not act on f1(Ω1;x1, t). Addi-
tionally noting that∫

dΩ0 Ω0 p(Ω0|Ω1,x0,x1, t) =
〈
ω(x0, t)

∣∣Ω1,x1

〉
, (9.18)

it becomes clear that all the unclosed terms can be expressed in terms of the conditional
vorticity field. By comparison with the kinetic equation (8.14) one actually recognizes
that all the unknown averages (apart from the external forcing) arising in this equation
can be obtained as a functional of

〈
ω(x0, t)

∣∣Ω1,x1

〉
. For the velocity we explicitly

obtain 〈
u1

∣∣Ω1

〉
= − 1

4π

∫
dx0

x1 − x0

|x1 − x0|3 ×
〈
ω0

∣∣Ω1

〉
, (9.19)

i.e., we have to evaluate the Biot-Savart integral over the conditionally averaged vorticity
field. In the same manner we can calculate the conditional rate-of-strain tensor as〈

S1,ij

∣∣Ω1

〉
=

3
8π

∫
dx0 εikl

(x1,k − x0,k)(x1,j − x0,j)
|x1 − x0|5

〈
ω0,l

∣∣Ω1

〉
+ (i↔ j) , (9.20)

where this integral again has to be understood as a Cauchy principal value integral.
The dissipative term is also obtained easily as〈

ν∆x1ω1

∣∣Ω1

〉
= lim
x0→x1

ν∆x0

〈
ω0

∣∣Ω1

〉
, (9.21)

i.e., by differentiating the conditional vorticity field and taking the limit. That means,
once the local conditional structure in terms of the first conditional moment of the
vorticity is specified as a full field, all of the unclosed terms are specified. To put it
differently, knowledge of the first conditional moment closes the single-point equation
of the type (9.16). This eventually establishes the connection between the above type
of kinetic equation and the ones involving conditional averages that we have dealt
with in chapters 7 and 8. Compared to the latter equations, where knowledge of local
correlations of different dynamical quantities at a single point in space is necessary, a
closure now requires knowledge of a whole field as both integrals and derivatives of this
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field have to be computed. In a sense the conditional averages on the single-point level
considered in the preceding chapter contain condensed information of this conditional
vorticity field. It has been noted by Novikov that the possibility to close the above
kinetic equation in terms of the first conditional moment of the vorticity field is a
unique property of the vorticity equation, as the pressure term in the Navier-Stokes
equation is a quadratic functional of the velocity field. We would like to stress at this
point that the kinetic equation presently discussed, however, does not allow to calculate
the stationary solution of the single-point vorticity PDF. The corresponding version
(equation (8.18)), for which a stationary solution has been presented in the preceding
chapters, involves the conditional dissipation tensor which can be shown to depend on
the second conditional moment. This will be the starting point of another modeling
approach in the following chapter.

Of course, this whole procedure cannot only be applied to the single-point equation,
but on an arbitrary level of the hierarchy. That means, the LMN hierarchy of the form
(8.13) can be closed on the N -point level by knowledge of the conditional moment〈

ω0

∣∣Ω1, . . . ,ΩN

〉
. (9.22)

One additionally should note that the conditional fields in general obey a reduction
property similar to the PDFs〈

ω0

∣∣Ω1, . . . ,ΩN−1

〉
fN−1(Ω1, . . . ,ΩN−1)

=
∫

dΩN

〈
ω0

∣∣Ω1, . . . ,ΩN

〉
fN (Ω1, . . . ,ΩN ) (9.23)

and eventually〈
ω0

〉
=
∫

dΩ1 . . . dΩN

〈
ω0

∣∣Ω1, . . . ,ΩN

〉
fN (Ω1, . . . ,ΩN ) . (9.24)

For the two-point vorticity or enstrophy statistics, that we will study later on in this
chapter, we will need to specify

〈
ω0

∣∣Ω1,Ω2

〉
, and it is immediately clear that this

term is inaccessible to a numerical study due to its dimensionality. Hence the strategy
will be to explore the structure of the analytically and numerically accessible quantity〈
ω0

∣∣Ω1

〉
, that closes the single-point equation, and take this as a starting point to

formulate reasonable ansatzes for the vorticity field conditionally averaged with respect
to two fixed vorticities. The results obtained in this way will eventually be compared to
“condensed” statistics that is numerically accessible again.

9.4. The General Structure of the First Conditional
Moment

After having emphasized the role of the first conditional moment of the vorticity field,
we now want to investigate its possible functional form. To this end one has to note
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that the expression
〈
ω(x0, t)

∣∣Ω1,x1

〉
is a function of the time t, the two spatial points

x0 and x1 and the sample space vorticity Ω1. Considering stationary homogeneous
isotropic turbulence, the functional form can be simplified. As usual, stationarity implies
that the conditional field does not depend on time and homogeneity implies that the
field depends only on the distance vector. To find the most general form for isotropic
statistics, one first has to recognize that a complete set of invariants to be formed of r
and Ω1, for example, consists of r, Ω1 and γ := r̂ · Ω̂1, i.e., of the two magnitudes and
the direction cosine of the two vectors. To find the statistical directions the conditional
vorticity field may point to, we consider the transformation properties of the vector field

R
〈
ω0

∣∣Ω1, r
〉

=
〈
ω0

∣∣RΩ1,Rr
〉 ∀R ∈ O(3) , (9.25)

which leads to the conclusion that possible directions for isotropic turbulence are r̂, Ω̂1

and r̂ × Ω̂1. However, for the following investigations it is more convenient to construct
an orthonormal set of directions of these three vectors as was pointed out in [MDN96].
These can be chosen as

Ω̂1 =
Ω1

Ω1
(9.26a)

λ̂ =
r̂ − (r̂ · Ω̂1)Ω̂1[
1− (r̂ · Ω̂1)2

] 1
2

(9.26b)

τ̂ = Ω̂1 × λ̂ , (9.26c)

such that the general structure of the conditional vorticity field will be of the form
[MDN96] 〈

ω0

∣∣Ω1, r
〉

= a(r,Ω1, γ) Ω̂1 + b(r,Ω1, γ) λ̂+ c(r,Ω1, γ) τ̂ . (9.27)

The scalar functions a, b and c are then easily obtained by projection according to

a(r,Ω1, γ) = Ω̂1 ·
〈
ω0

∣∣Ω1, r
〉

(9.28a)

b(r,Ω1, γ) = λ̂ · 〈ω0

∣∣Ω1, r
〉

(9.28b)
c(r,Ω1, γ) = τ̂ · 〈ω0

∣∣Ω1, r
〉

. (9.28c)

Furthermore, the two scalar functions a and b cannot be chosen independently as the
conditional vorticity field obeys solenoidality,

∂

∂ri

〈
ω0,i

∣∣Ω1, r
〉

= 0 , (9.29)

which yields the relation

rγ

(
∂a

∂r

)
+ r

[
1− γ2

] 1
2

(
∂b

∂r

)
+
[
1− γ2

](∂a
∂γ

)
− γ [1− γ2

] 1
2

(
∂b

∂γ

)
= 0 (9.30)
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after a short calculation. That means, we can choose the two scalar functions a and c
independently to characterize the local structure of turbulence, the scalar function b
then preserves solenoidality of the field. It is important to note that the term related
to the scalar a statistically points into the direction of the vorticity, whereas the term
related to c gives a twisting contribution to the vorticity field.
Of course, it is now interesting to investigate how these functions contribute to

the conditional vortex stretching and diffusion term. Calculations on that have been
performed in [Nov93] in Fourier space. We here rather obtain the results in real space
as the calculations then are easier to follow.

We start with calculating the diffusive term from the kinetic equation (8.27a) which
is obtained from the conditional vorticity field according to

Λ(Ω1) =
〈
νω̂1 ·∆x1ω1

∣∣Ω1

〉
= lim
|x1−x0|→0

ν Ω̂1 ·
〈
∆x0ω0

∣∣Ω1

〉
= lim

r→0
ν Ω̂1 ·∆r

[
a(r,Ω1, γ) Ω̂1 + b(r,Ω1, γ) λ̂+ c(r,Ω1, γ) τ̂

]
= lim

r→0
ν Ω̂1 ·∆r

[
a(r,Ω1, γ) Ω̂1 + b(r,Ω1, γ) λ̂

]
. (9.31)

For the last equality we have made use of the fact that the terms related to the twist
do not contribute when projected onto Ω̂1. This means that the dissipative term of the
kinetic equation is determined by the scalar functions a and b only. For example, the
first term contributes with

lim
r→0

Ω̂1·∆r

[
a(r,Ω1, γ) Ω̂1

]
= lim

r→0

[(
∂2a

∂r2

)
+

2
r

(
∂a

∂r

)
− 2γ
r2

(
∂a

∂γ

)
+

1− γ2

r2

(
∂2a

∂γ2

)]
.

(9.32)
Hence the limiting behavior of the scalar functions in the origin determines the dissipative
term. To calculate the scalar function related to the vortex stretching term, we evaluate

Σ(Ω1) =
〈
ω̂1S1ω̂1

∣∣Ω1

〉
=

3
4π

∫
dx0

(r̂ · Ω̂1)
r3

[
r̂ × 〈ω0

∣∣Ω1

〉] · Ω̂1

=
3

4π

∫
dr

(r̂ · Ω̂1)
r3

[
r̂ × (a Ω̂1 + b λ̂+ c τ̂

)] · Ω̂1

=
3

4π

∫
dr

(r̂ · Ω̂1) c
r3

[r̂ × τ̂ ] · Ω̂1

=
3

4π

∫
dr

γ (1− γ2)
1
2 c

r3
, (9.33)

which shows that the enstrophy production is related to the twisted contribution only.
Taking these observations together, we see that the scalar functions a and b are related to
the dissipative terms of the field, whereas the scalar function c determines the enstrophy
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production of the field. This is a very important result regarding the establishment of
models for the local conditional structure of turbulence [Nov93, MDN96]. Any model
lacking a twisting contribution will fail to fulfill the conditional balance of vortex
stretching and vorticity diffusion. In fact, a consistent model has to fulfill

lim
r→0

ν Ω̂1 ·∆r

[
a Ω̂1 + b λ̂

]
+

3Ω1

4π

∫
dr

γ (1− γ2)
1
2 c

r3
= 0 (9.34)

and additionally satisfy the solenoidality relation (9.30) between a and b. These relations
are highly nontrivial, and it is obviously not possible to make a simple guess for the
scalar functions a, b and c. That is why we will follow a more systematic approach later
on and start from Gaussian statistics to investigate the conditional structure of the field.
The functional relations presented in this section then will guide the way to construct a
consistent model. Before that, however, we will investigate the conditional structure of
the velocity field with the help of DNS results.

9.4.1. The First Conditional Moment from DNS

The conditional vorticity field in terms of the scalar functions a, b and c has been
evaluated from the DNS data (sim_512). A similar statistical evaluation is presented
in [MDN96] at lower Reynolds numbers and with fewer statistics. As the conditional
averages have to be taken with respect to three quantities, r, Ω1 and γ, an extraordinarily
high amount of data is needed. Additionally, only a small number of bins allows for
statistically convergent results, such that, for example, the width of each Ω1 bin is about
three standard deviations.

Figure 9.5 shows the scalar functions a, b and c as a function of r and γ for different
values of Ω1. The scalar function a, which represents the amplitude of the field pointing
into Ω1-direction, decays rapidly. The function b peaks for larger values of r. Maybe
the most striking feature is the non-vanishing twist term related to the scalar function
c, which yields a helical contribution to the vorticity field. Also this function peaks
for r around 10η, such that the twisting contribution peaks near the fixed vorticity.
Considered as a function of γ, a is maximal for parallel and anti-parallel Ω1 and r,
whereas the twist term is maximal for inclined situations. The twist term vanishes for
γ = 0, i.e. for perpendicular r and Ω1. It can be observed that all the functions increase
with the magnitude of the vorticity, particularly indicating that the vorticity field is
stronger twisted in regions of high vorticity.
These observations can be made more intuitive by investigating the conditional

vorticity field for different magnitudes of vorticity fixed in z-direction, which is presented
in figure 9.6. It appears that the conditional field shows an elongated twisted shape
concentrated near the fixed vorticity and fanning out along the elongated direction. Thus
the conditional vorticity field has a remarkable similarity to the vortex tubes observed in
fully developed turbulence, compare figure 1.5. Note that the twisting contribution, which
is related to the enstrophy production induced by the local conditional structure, can also
be found by a careful inspection of vortex tubes. In this sense the conditional vorticity
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field may be thought of as the “typical local structure” of the flow field reminiscent
of the coherent structures present in the flow. It is evident that the axisymmetric
Burgers vortex does not display a twisted spatial structure. As a consequence, the
Burgers vortex is incapable of generating enstrophy. The enstrophy contribution of such
a simplified vortex tube is rather induced by the external strain field. Hence it might be
more appropriate to model the local structure of the vorticity field with strained spiral
vortices like the famous Lundgren vortex [Lun82, Lun93].

9.5. Analytical Treatment of the Closure Problem

After having investigated the structure of the first conditional moment both analytically
and numerically, we now want to study the possibility of an analytical treatment. To
this end we start from Gaussian conditional expectations and subsequently obtain a
model consistent with the local structure of turbulence. In view of the fact that the
single-point statistics of the vorticity field has been found to be highly non-Gaussian
in chapter 8, it may seem inappropriate to start analytical calculations from Gaussian
statistics. However, the Gaussian distribution is maybe the only analytically tractable
PDF on the multi-point level, such that we do not really have a choice. Second, as we
are currently interested in the conditional structure of the vorticity field rather that in
the precise shape of the PDF, taking Gaussian statistics as a starting point will turn
out to be promising.

9.5.1. Gaussian Approximation and its Failure

We show in appendix A that the first conditional moment for a Gaussian random field
takes the form 〈

ω0

∣∣Ω1, r
〉
G

= C(r)Ω1 , (9.35)

where C is the two-point correlation tensor already encountered in the preceding chapters.
It may be expressed in terms of the longitudinal and transversal correlation functions
according to

Cij(r) = c⊥(r) δij +
[
c‖ − c⊥

]
(r)

rirj
r2

, (9.36)

where we have slightly changed the usual notation of the correlation functions in order
to avoid confusion with the notation for the PDFs. Comparing this result with the
general expression (9.27) for the conditional vorticity field, this results corresponds to a
choice of

a(r,Ω1, γ) =
[
c⊥ + (c‖ − c⊥) γ2

]
Ω1 (9.37a)

b(r,Ω1, γ) = (1− γ2)
1
2 γ (c‖ − c⊥) Ω1 (9.37b)

c(r,Ω1, γ) = 0 . (9.37c)

This means that the Gaussian approximation does not contain any twisting contributions
and is consequently not able to prevail the conditional balance (8.41) as enstrophy
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Figure 9.5.: Scalar functions a, b, c for different values of r,γ and Ω1 (upper figure: fixed
γ = 2

3 , lower figure: fixed r = 9.9 η). The amplitude a corresponding to the Ω1-direction
decays monotonically, while the b and c peak for r around 10η. As a function of γ the angular
dependence is resolved.
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Figure 9.6.: Conditional vorticity field for different amplitudes Ω1. From top left to bottom
right Ω1 ∈ {1.4σ, 4.3σ, 7.2σ, 10.1σ}. The vorticity field gets increasingly intense (as indicated by
the colors) and twisted.
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production is missing. This, of course, can be also seen from an explicit calculation,
which is demonstrated in the appendix A.

Still the Gaussian approximation can be used to compute the dissipative contribution,
which is obtained as 〈

∆x1ω(x1)
∣∣Ω1

〉
G

= lim
|x1−x0|→0

∆x0

〈
ω0

∣∣Ω1

〉
G

= lim
r→0

∆rC(r)Ω1 , (9.38)

i.e., the dissipative contribution is determined by the derivative of the correlation tensor
in the origin. This derivative is readily calculated and yields

∆rCij(r) =
[
c⊥
′′+

2
r
c′⊥+

2
r2

(c‖−c⊥)
]
δij+

[
(c‖−c⊥)′′+

2
r

(c‖−c⊥)′− 6
r2

(c‖−c⊥)
]
rirj
r2

.

(9.39)
Taking the limit requires invoking l’Hospital’s rule. The result is

lim
r→0

∆rCij(r) = (2c⊥ + c‖)
′′(0) δij = TrC′′(0) δij . (9.40)

Thus we end up with the conditional dissipation term according to〈
ν∆x1ω(x1)

∣∣Ω1

〉
G

= ν TrC′′(0) Ω1 , (9.41)

which finally yields a linear relation between the dissipative term and Ω1,

ΛG(Ω1) = ν TrC′′(0) Ω1 . (9.42)

As ΛG has to fulfill the integral constraint

− 〈εω〉 =
∫

dΩ ΛG(Ω) Ω f̃(Ω) , (9.43)

we can conclude
TrC′′(0) = − 〈εω〉

3νσ2
. (9.44)

Interestingly, this result is compliant with the lowest order closure approximation
introduced for the velocity in chapter 7. While the qualitative trend of Λ is consistent
with the numerically obtained result in figure 8.1, it is clear that the detailed functional
shape of the dissipative term differs from the Gaussian approximation.

9.5.2. Twisted Gaussian Approximation

To extend the Gaussian approximation in a way that the conditional vorticity balance is
fulfilled, we follow along the lines of Novikov’s work [Nov93] and generalize the Gaussian
approximation by adding an additional term according to〈

ω(x0)
∣∣Ω1

〉
=
〈
ω(x0)

∣∣Ω1

〉
G

+
〈
ω(x0)

∣∣Ω1

〉
T

= C(r)Ω1 + cT (r) (r̂ · Ω̂1) (Ω̂1 × r̂) , (9.45)
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Figure 9.7.: Vorticity field in Gaussian (left) and Twisted Gaussian Approximation (right) for
Ω1 = 1.

which corresponds to a model choice of

c(r,Ω1, γ) = cT (r) γ
(
1− γ2

) 1
2 . (9.46)

Hereby we have introduced the up to now unspecified twist amplitude cT . Note that
this choice of a twist term is independent of the magnitude of vorticity, such that the
rate-of-strain tensor calculated from this expression will not depend on the vorticity
magnitude. It has already been checked by the general considerations above that a term
introduced in such a way does not interfere with the solenoidality of the field and gives
no contribution to the diffusive term. It is nevertheless instructive to calculate the terms
for this particular choice of the twist term. The calculation is found in the appendix A.
To check for the contribution to the dissipative term, we calculate the Laplacian of

the twist term yielding

〈
∆x0ω(x0)

∣∣Ω1

〉
T

= ∆r

[
cT (r)(r̂·Ω̂1)(Ω̂1×r̂)

]
=
(
c′′T +

2c′T
r
− 6cT

r2

)
(r̂·Ω̂1)(Ω̂1×r̂) ,

(9.47)
which indeed gives no contribution to the diffusive term of the conditional enstrophy
balance as the sum in brackets vanishes in the limit r → 0 given both cT (0) = c′T (0) = 0.
It additionally cannot give a contribution to Λ, because this term vanishes when
projected onto the direction of the vorticity.
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To calculate the contribution to the conditional vortex stretching term, we evaluate

ΣT (Ω1) =
〈
ω̂1S1ω̂1|Ω1

〉
=

3
4π

∫
dr

cT (r)
r3

(r̂ · Ω̂1)2
(
1− (r̂ · Ω̂1)2

)
=

3
4π

∫
dr dϕdϑ

cT (r)
r

sin(ϑ) cos2(ϑ)
(
1− cos2(ϑ)

)
=

3
2

∫
dϑ sin3(ϑ) cos2(ϑ)

∫
dr

cT (r)
r

=
2
5

∫
dr

cT (r)
r

, (9.48)

where we have introduced spherical coordinates with the z-axis pointing into Ω1-
direction, such that γ = cosϑ. The result shows that the conditional (normalized)
enstrophy production is determined by an integral over the up to now unspecified
twist amplitude cT . The possible choices for cT can be narrowed down by requiring the
conditional balance

ΣT (Ω1) Ω1 + ΛG(Ω1) = 0 . (9.49)

This implies the relation ∫ ∞
0

dr
cT (r)
r

= −5ν
2

TrC′′(0) , (9.50)

an integral relation for the twist amplitude cT . This relation obviously can be fulfilled
in many ways. One consistent choice is

cT (r) =
5ν
2
r

(
1
r

TrC′(r)
)′

, (9.51)

which has also been investigated in [Nov93, MDN96]. By this the conditional local
structure of the vorticity has been modeled in a way that the conditional balance (8.41)
holds. In this way a closure of the kinetic equation (9.16) has been achieved. To put it
differently, a careful analysis of the kinetic equation has led to a model for the local
structure of turbulence. Unlike in the case of the Boltzmann closure, which allowed to
determine the momentum PDF, this closure has determined the local structure of the
vorticity field rather than the single-point PDF. We have seen in the preceding chapter
that the determination of the single-point PDF eventually involves the conditional
enstrophy dissipation tensor, which is related to the second moment of the conditional
two-point PDF.
In figure 9.7 a visualization of the Gaussian approximation as well as the Twisted

Gaussian Approximation (TGA) is shown. While the Gaussian approximation yields
a non-screwed vorticity bundle, the Twisted Gaussian Approximation adds the twist
already observed in the DNS results. A closer comparison with the visualization in
figure 9.6 reveals a number of differences. First, the local structure extracted from
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DNS appears to be more elongated. Second, and maybe more important, the twisting
contribution appears to be more localized at the center of the field for the TGA. This
can be made more quantitative with a direct comparison of the scalar functions a, b
and c, which are presented in figure 9.8 for the TGA. The overall functional behavior of
the scalars a and b observed in the DNS data is captured by the TGA. The comparison
holds especially good for a, while stronger differences are present both in amplitude as
well as in the functional dependence on γ for the scalar b. The most striking difference
can be observed for the twisting contribution c. First of all, this function peaks for
lower values of r for the TGA. Second, as the twist contribution has been modeled
independent of the magnitude Ω1, the functions collapse for different Ω1. On a more
general level one can criticize that, although the TGA fulfills the conditional balance
(9.49), the functions ΛG and ΣT differ in the functional shape from the ones observed
in DNS.
These shortcomings are likely to be fixed by construction of an improved approx-

imation, which will remain a task for the future. For the present considerations the
topological similarity of the model with the DNS results suffices to proceed further.

9.5.3. Generalization to Multi-Point Statistics

The advantage of taking Gaussian statistics as a starting point is that the generalization
of the conditionally averaged vorticity field with respect to a single vorticity to a field
conditionally averaged with respect to a number of fixed vorticities is straightforward.
We calculate in appendix A that for a Gaussian random field the first conditional
moment with respect to N fixed vorticities takes the form

〈
ω(x0)

∣∣Ω1, . . . ,ΩN

〉
G

=
N∑

i,j=1

R(x0,xi)R−1(xi,xj) Ωj . (9.52)

For fixed i and j R(xi,xj) here denotes the 3× 3 covariance tensor of the vorticities
Ωi and Ωj located at position xi and xj . This, of course, implies

R(x1,x1) =
〈ω2〉

3
E and R(x1,x2) =

〈ω2〉
3

C(x1,x2) . (9.53)

For the special case of two fixed vorticities, which will be of interest in the following, we
simply have〈

ω(x0)
∣∣Ω1,Ω2

〉
G

= R(x0,x1)
[R−1(x1,x1) Ω1 +R−1(x1,x2) Ω2

]
+R(x0,x2)

[R−1(x2,x1) Ω1 +R−1(x2,x2) Ω2

]
(9.54)

with

R =
〈ω2〉

3

(
E C(x1,x2)

C(x2,x1) E

)
, (9.55)
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Figure 9.8.: Scalar functions a, b, c for the Twisted Gaussian Approximation (upper figure:
fixed γ = 2

3 , lower figure: fixed r = 9.9 η). Though the functions are qualitatively similar to the
ones presented in figure 9.5, quantitative differences are visible.
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Figure 9.9.: Vorticity field for two fixed inclined vorticities in Twisted Gaussian Approximation
for Ω1 = 1 and Ω2 = 1.

which explicitly can be inverted yielding

R−1 =
3
〈ω2〉

[
E− C(x1,x2)2

]−1
(

E −C(x1,x2)
−C(x2,x1) E

)
, (9.56)

where the prefactor is obtained according to (see appendix A)

[
E− C2

]−1

ij
=

1
1− c2

⊥
δij +

c2
‖ − c2

⊥

(1− c2
‖)(1− c2

⊥)
rirj
r2

. (9.57)

The conditional vorticity field (9.54) has a number of interesting properties. First of all,
if one of the vorticities is infinitely far away, the expression reduces to the conditional
vorticity field with one fixed vorticity,

lim
|x0−x2|→∞

lim
|x1−x2|→∞

〈
ω0

∣∣Ω1, Ω2

〉
G

=
〈
ω0

∣∣Ω1

〉
G

lim
|x0−x1|→∞

lim
|x1−x2|→∞

〈
ω0

∣∣Ω1, Ω2

〉
G

=
〈
ω0

∣∣Ω2

〉
G

, (9.58)

which can be seen from the fact that the corresponding correlation functions tend to zero
for infinitely large separations. This is just the separation property of the multi-point
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PDFs used on the level of the conditional averages. For the limit x1 → x2 the terms of
equation (9.54) in brackets have to be considered. We obtain

lim
|x1−x2|→0

[
R−1(x1,x1)+R−1(x1,x2)

]
ij

=
3
〈ω2〉 lim

|x1−x2|→0

[
E− C(x1,x2)2

]−1

ik

[
E− C(x1,x2)

]
kj

=
3
〈ω2〉 lim

r→0

[
1− c⊥
1− c2

⊥
δij +

(
1

1 + c‖
− 1

1 + c⊥

)
ri rj
r2

]
=

1
2

3
〈ω2〉 δij , (9.59)

where we have used l’Hospital’s rule to perform the limit for the first term. Furthermore,
we obtain Ω1 = Ω2 in this limit, such that we finally get

lim
|x1−x2|→0

〈
ω0

∣∣Ω1, Ω2

〉
G

=
〈
ω0

∣∣Ω1

〉
G

, (9.60)

which simply is the coincidence property for the conditional field. The third important
property of this ansatz is the reduction property∫

dΩ2

〈
ω0

∣∣Ω1, Ω2

〉
G
f2(Ω1,Ω1; r) =

〈
ω0

∣∣Ω1

〉
G
f1(Ω1) , (9.61)

which can be calculated explicitly for the multivariate Gaussian distribution. A detailed
calculation shows that this result comes due to an intricate cancellation of terms. Hence,
we cannot expect to maintain this property when additional terms are added to the
Gaussian expression.

This flaw has to be kept in mind when introducing the twist term. However, the sep-
aration and coincidence properties can be fulfilled easily by an appropriate construction
of the additional term. A particularly simple choice for the twist term is〈

ω0

∣∣Ω1,Ω2

〉
T

=
1− c⊥(r12)
1− c2

⊥(r12)
[
cT (r01) (r̂01 · Ω̂1) (Ω̂1 × r̂01) + cT (r02) (r̂02 · Ω̂2) (Ω̂2 × r̂02)

]
=:

1− c⊥(r12)
1− c2

⊥(r12)
[
T (x0,x1,Ω1) + T (x0,x2,Ω2)

]
(9.62)

with r01 = x1 − x0, r02 = x2 − x0 and r12 = x2 − x1. It is readily checked that this
choice fulfills the separation property, because

lim
|x0−x1|→∞

cT (r01) = 0 (9.63a)

lim
|x0−x2|→∞

cT (r02) = 0 . (9.63b)
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The coincidence property is fulfilled by the prefactor as a short calculation invoking
l’Hospital’s rule shows. By constructing a closure for the two-point statistics in this
way, it is possible to study arbitrary configurations with two fixed vorticities. One such
configuration of two nearby inclined vorticities is shown in figure 9.9 as an example.
Apart from the twisted structure near the fixed vorticities one can observe a mutual
influence of the localized vorticities. It is evident that an estimation from DNS data of
such a setting is at the moment impossible due to statistical constraints, that is why a
simplified modeling approach seems reasonable at this point. The analytical study of
arbitrary configurations is, for example, necessary to evaluate the rate-of-strain tensor
conditionally averaged with respect to two vorticities, which will be the topic of the
following sections.

9.5.4. Two-Point Enstrophy Statistics in Twisted Gaussian
Approximation

After this presentation of the two-point enstrophy statistics from our DNS data at the
beginning of this chapter, we now want to study the two-point enstrophy statistics in the
Twisted Gaussian Approximation. The strategy will be to first calculate the unclosed
terms from the conditional vorticity field

〈
ω0

∣∣Ω1,Ω2

〉
and then to project the result

onto the Ω1-Ω2-plane. For conditional averages of arbitrary scalar functions F (ω1,ω2)
depending on the vorticity field in two distinct points this projection is achieved by〈
F (ω1,ω2)

∣∣Ω1,Ω2

〉
f̃2(Ω1,Ω2) =

∫
dΩ̂1 dΩ̂2

〈
F (ω1,ω2)

∣∣Ω1,Ω2

〉
f2(Ω1,Ω2) , (9.64)

i.e., by integrating the conditional average with respect to the vectors times the PDF
over all possible directions of the two sample space vectors. We will calculate the
resulting terms analytically whenever possible, however, especially the projection onto
the plane has to be done numerically. To this end we take the analytically obtained
expression for the conditional average with respect to the two sample space vorticities
and evaluate it statistically by drawing the two vorticities from a joint normal PDF with
prescribed correlation tensor. The result then is binned with respect to the magnitude
of the vectors, which corresponds to a statistical evaluation of the above relation (9.64).
Before we proceed to the evaluation of the individual terms, let us recapitulate

the results of the single-point enstrophy balance obtained in the Twisted Gaussian
Approximation, for which the enstrophy balance is graphically represented in figure 9.1.
It can be seen that the qualitative behavior compares well to the directly obtained result,
however, the precise functional shape differs. While the enstrophy productions depends
quadratically on the magnitude of vorticity for the Twisted Gaussian Approximation,
differences occur for the results obtained from DNS as already discussed in chapter 8.
The amplitudes of the functions obtained in Twisted Gaussian Approximation have been
fixed such that the integral constraints of the functions are fulfilled, i.e., the conditional
averages have to reduce to correct ordinary averages. It can be seen from the inset of
the same figure that both the directly obtained and approximated conditional averages
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will yield the same average upon integration. Consequently, we can expect qualitative
rather than quantitative insights from the following calculations.

Dissipative Terms in TGA

To compute the dissipative terms, we consider

〈
νω1 ·∆x1ω1

∣∣Ω1,Ω2

〉
= νΩ1 ·

[
lim

|x0−x1|→0
∆x0

〈
ω0

∣∣Ω1,Ω2

〉]
. (9.65)

For the Gaussian contribution to the dissipative terms we have to evaluate

〈ω1 ·∆x1ω1|Ω1, Ω2〉G = Ω1 ·
[

lim
|x1−x0|→0

∆x0R(x0,x1)R−1(x1,x1)
]
Ω1

+ Ω1 ·
[

lim
|x1−x0|→0

∆x0R(x0,x1)R−1(x1,x2)
]
Ω2

+ Ω1 ·
[

lim
|x1−x0|→0

∆x0R(x0,x2)R−1(x2,x1)
]
Ω1

+ Ω1 ·
[

lim
|x1−x0|→0

∆x0R(x0,x2)R−1(x2,x2)
]
Ω2 , (9.66)

which involves the computation of the Laplacian of R(x0,x1) and R(x1,x2) before
taking the limit. We obtain

lim
|x1−x0|→0

∆x0R(x0,x1) =
〈ω2〉

3
[
TrC′′(0)

]
δij

lim
|x1−x0|→0

∆x0R(x0,x2) =
〈ω2〉

3

([
c⊥
′′ +

2
r
c′⊥ +

2
r2

(c‖ − c⊥)
]
δij

+
[
(c‖ − c⊥)′′ +

2
r

(c‖ − c⊥)′ − 6
r2

(c‖ − c⊥)
]
rirj
r2

)
.

(9.67)

Additionally the inverse matrices R−1(xi,xj) have to be calculated, for which explicit
expressions can be found in appendix A. Taking these terms together we obtain the
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Gaussian part of the diffusive term according to〈
ω1 ·∆x1ω1

∣∣Ω1, Ω2

〉
G

=

TrC′′(0)
1− c2

⊥
Ω2

1 +

[
TrC′′(0)

]
(c2
‖ − c2

⊥)

(1− c2
‖)(1− c2

⊥)
(r̂ ·Ω1)2

−
[
TrC′′(0)

]
c⊥

1− c2
⊥

(Ω1 ·Ω2)−
[
TrC′′(0)

]
(c‖ − g)(1 + c‖c⊥)

(1− c2
‖)(1− c2

⊥)
(r̂ ·Ω1)(r̂ ·Ω2)

+
[
c⊥
′′ +

2
r
c′⊥ +

2
r2

(c‖ − c⊥)
][
− c⊥

1− c2
⊥

Ω2
1 −

(c‖ − c⊥)(1 + c‖c⊥)
(1− c2

‖)(1− c2
⊥)

(r̂ ·Ω1)2

+
1

1− c2
⊥

(Ω1 ·Ω2) +
c2
‖ − c2

⊥

(1− c2
‖)(1− c2

⊥)
(r̂ ·Ω1)(r̂ ·Ω2)

]
+
[
(c‖ − c⊥)′′ +

2
r

(c‖ − c⊥)′ − 6
r2

(c‖ − c⊥)
][

1
1− c2

‖
(r̂ ·Ω1)(r̂ ·Ω2)− c‖

1− c2
‖
(r̂ ·Ω1)2

]
.

(9.68)

While it is rather intricate to discuss this expression in detail, a number of simple obser-
vations can be made. As in the single-point case, all of the terms depend quadratically
on the magnitudes of Ω1 and Ω2, however, also cross terms and direction cosines appear.
It is also interesting to evaluate the limit of vanishing and infinite distances of x1 and
x2, for which we obtain the Gaussian contribution of the single-point diffusive term,

lim
r→0

〈
ω1 ·∆x1ω1

∣∣Ω1, Ω2

〉
G

= TrC′′(0) Ω2
1 (9.69a)

lim
r→∞

〈
ω1 ·∆x1ω1

∣∣Ω1, Ω2

〉
G

= TrC′′(0) Ω2
1 . (9.69b)

For the first result a regrouping of the terms and the application of l’Hospital’s rule is
needed. Of course,

〈
ω2 ·∆x2ω2

∣∣Ω1, Ω2

〉
G
is calculated in exactly the same manner.

For the twist contribution to the dissipative terms we have to evaluate〈
ω1 ·∆x1ω1

∣∣Ω1,Ω2

〉
T

=
1− c⊥(r12)
1− c2

⊥(r12)
Ω1 ·

[
lim

|x1−x0|→0
∆x0

[
T (x0,x1,Ω1) + T (x0,x2,Ω2)

]]
. (9.70)

It has already been calculated in the single-point case in equation (9.47) that the
first term gives no contribution after taking the limit. So only the second term is
non-vanishing and we obtain〈
ω1 ·∆x1ω1

∣∣Ω1, Ω2

〉
T

=
(

1− c⊥
1− c2

⊥

)(
c′′T +

2c′T
r
− 6cT

r2

)
(r̂ · Ω̂2)

[
Ω1 · (Ω̂2 × r̂)

]
.

(9.71)
It is readily checked that this term vanishes in the two limiting cases. Additionally,
when projected onto the Ω1-Ω2-plane, this term vanishes as well. This can be seen, since
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while the joint Gaussian PDF is invariant with respect to a simultaneous change of
sign of Ω1 and Ω2, the above expression is not, such that the expression vanishes upon
projection. Hence only the Gaussian terms contribute to the dissipative terms of the
two-point enstrophy statistics.

Enstrophy Production Terms in TGA

To compute the conditional enstrophy production, we have to evaluate〈
ω1S1ω1

∣∣Ω1, Ω2

〉
=

3
4π

∫
dx0

Ω1 · r̂01

r3
01

[
r̂01 × 〈ω(x0)|Ω1, Ω2〉

] ·Ω1 . (9.72)

Again we start with the Gaussian contribution, for which we have to evaluate〈
ω1S1ω1

∣∣Ω1, Ω2

〉
G

=
3

4π

∫
dx0

Ω1 · r̂01

r3
01

Ω1 ·
[
r̂01 × (R(x0,x1)

[R−1(x1,x1) Ω1 +R−1(x1,x2) Ω2

]
+ R(x0,x2)

[R−1(x2,x1) Ω1 +R−1(x2,x2) Ω2

] )]
.

(9.73)

Without further calculation one can note that all of these terms vanish upon projection
onto the Ω1-Ω2-plane, as the expression changes sign when Ω1 and Ω2 change sign
simultaneously. Consequently, there is no Gaussian contribution to the enstrophy
production terms in the plane. Still, the integrals can be evaluated analytically, which
is demonstrated for the first one in the appendix A.
For the twist contribution to the conditional enstrophy production the integrals〈
ω1S1ω1

∣∣Ω1, Ω2

〉
T

=
3

4π

(
1− c⊥
1− c2

⊥

)∫
dx0

Ω1 · r̂01

r3
01

Ω1 ·
[
r̂01 ×

[
T (x0,x1,Ω1) + T (x0,x2,Ω2)

]]
(9.74)

have to be evaluated. The integral related to the first twist term has already been
evaluated for the single-point statistics and yields

3
4π

∫
dx0

Ω1 · r̂01

r3
01

Ω1 ·
[
r̂01 × T (x0,x1,Ω1)

]
=

2
5

∫
dr01

cT (r01)
r01

. (9.75)

It turns out that the second integral unfortunately cannot be treated fully analytically.
It takes the form

3
4π

∫
dx0

Ω1 · r̂01

r3
01

Ω1 ·
[
r̂01 × T (x0,x2,Ω2)

]
=

3
4π

Ω2
1

∫
dx0

(Ω̂1 · r̂01) (Ω̂2 · r̂02) cT (r02)
r3

01

Ω̂1 ·
[
r̂01 × (Ω̂2 · r̂02)

]
, (9.76)
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from which it is clear that it depends quadratically on Ω1. As the integrand depends
both on r01 and r02, a further analytical treatment is not possible at this point. One can,
however, note that in the limit of x1 → x2 the above analytically tractable integral is
recovered. To treat this integral numerically, it is expressed in terms of the fourth-order
tensor

IS
ijkl =

3
4π

∫
dx0

h(r02)
r3

01

r̂01,i r̂02,j r̂01,k r̂02,l . (9.77)

This integral tensor has to be evaluated once for each choice of r, such that this term
can be treated numerically in an effective way. This leads to the desired result

3
4π

∫
dx0

Ω1 · r̂01

r3
01

Ω1 ·
[
r̂01 × T (x0,x2,Ω2)

]
=Ω2

1

[
Ω̂1,i Ω̂2,j (Ω̂1 · Ω̂2) IS

ijkk − Ω̂1,i Ω̂2,j Ω̂2,k Ω̂1,l I
S
ijkl

]
. (9.78)

Longitudinal Velocity Increment in TGA

Finally, we investigate the conditional longitudinal velocity increment〈
r12 · [u(x2)− u(x1)]

∣∣Ω1, Ω2

〉
= − 1

4π

∫
dx0 r12 ·

[[
r02

r3
02

− r01

r3
01

]
× 〈ω(x0)|Ω1, Ω2〉

]
.

(9.79)
For the Gaussian contributions the integrals〈
r12 · [u(x2)− u(x1)]

∣∣Ω1, Ω2

〉
G

= − 1
4π

∫
dx0 r12 ·

[ [
r02

r3
02

− r01

r3
01

]
× (R(x0,x1)

[R−1(x1,x1) Ω1 +R−1(x1,x2) Ω2

]
+R(x0,x2)

[R−1(x2,x1) Ω1 +R−1(x2,x2) Ω2

] )]
(9.80)

have to be evaluated. However, with respect to the projection to the plane it is also
already clear in this case that Gaussian terms will give no contribution as the integrand
changes sign under a simultaneous change of sign of Ω1 and Ω2.
For the twisting contribution we have to evaluate〈
r12 · [u(x2)− u(x1)]

∣∣Ω1, Ω2

〉
T

= − 1
4π

(
1− c⊥
1− c2

⊥

)∫
dx0 r12 ·

[ [
r02

r3
02

− r01

r3
01

]
× [T (x0,x1,Ω1) + T (x0,x2,Ω2)

]]
,

(9.81)

which, similar to the case of the rate-of-strain tensor, cannot be evaluated analytically.
However, as in the case above it is possible to introduce two integral tensors

Iu,1ijk = − 1
4π

∫
dx0 cT (r01) r̂01,i r̂01,j

[
r02

r3
02

− r01

r3
01

]
k

(9.82a)

Iu,2ijk = − 1
4π

∫
dx0 cT (r02) r̂02,i r̂02,j

[
r02

r3
02

− r01

r3
01

]
k

, (9.82b)
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by which the whole expression may be written as〈
r12 · [u(x2)− u(x1)]

∣∣Ω1, Ω2

〉
T

=
(

1− c⊥
1− c2

⊥

)
r12,l

[
Ω̂1,l Ω̂1,i I

u,1
ikk − Ω̂1,i Ω̂1,k I

u,1
ilk + Ω̂2,l Ω̂2,i I

u,2
ikk − Ω̂2,i Ω̂2,k I

u,2
ilk

]
.

(9.83)

This expression then can be evaluated again numerically. It can already be seen at this
stage that, as the expression does not depend on the magnitude of Ω1 and Ω2, the result
will differ from our DNS results.

Comparison of TGA and DNS results

We start with a presentation of the terms related to the right-hand side of the kinetic
equation (9.8), which are presented for various spatial distances in figure 9.10. At first
sight a remarkable qualitative agreement with figures 9.2, 9.3 and 9.4 can be observed.
The enstrophy production terms have an amplifying effect, whereas the diffusive terms
tend to deplete the enstrophy. As observed in the DNS data, these two contributions
cancel to a large extent such that only a small net vector field remains on small scales.
This net vector field then vanishes for large spatial distances, where the pointwise
conditional balance of enstrophy production and dissipation of the single-point statistics
is recovered. That means, the local mechanisms of enstrophy production and dissipation
are qualitatively captured by our simple ansatz (9.62). One shortcoming of the model in
this context is that projection of the two-point enstrophy production term on the single-
point enstrophy production fails, slightly underestimating the correct result. A deeper
analytical analysis shows that the projection properties of the conditional averages are
related to a subtle cancellation of terms, which is violated by an ad hoc introduction
of the twist term. The reason for this is that this term is absent in the conditional
averages of multivariate Gaussian PDFs. The dissipative terms, however, show the
correct reduction properties, as they are calculated from the Gaussian contributions to
the conditional vorticity field only.
A more severe shortcoming of the two-point Twisted Gaussian Approximation is

that the resulting conditional longitudinal velocity increment is not captured correctly,
therefore we refrain from a detailed presentation at this point. While it turns out that for
small scales a comparable functional shape as observed in DNS is found, the conditional
velocity increment shows a scale-dependent offset. As a result, the integral constraint
(9.9) is not fulfilled, such that the simultaneous up- and downscale probability flux is
not captured by the model. This is presumably related to the shortcoming regarding
the reduction properties of the model ansatz (9.62) and to the fact that the twist
contribution does not depend on the magnitude of the two vorticities.
The results seem promising with respect to the decent qualitative agreement of the

terms related to enstrophy production and dissipation. It has been shown that the
twisted structure of the conditional vorticity field yields reasonable results regarding
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Figure 9.10.: Two-point enstrophy production and dissipation in Twisted Gaussian Approxi-
mation for r ∈ {1.2, 2.5, 19.8, 158.3} η.
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the enstrophy production also on the two-point level and the Gaussian contribution
is responsible for the dissipative contributions. The breakdown of the two-point TGA
regarding the velocity increment shows that for an understanding of the probability flux
in scale further research on the local conditional structure of turbulence is necessary. In
this context an important next step would be to correct the reduction properties of the
multi-point TGA.

9.6. Summary

The scope of the present chapter is two-fold. First of all, we have investigated the two-
point enstrophy statistics within the framework of the LMN hierarchy both analytically
and numerically. Compared to the single-point statistics considered so far, the two-
point PDF equation contains a coupling of different spatial scales. An analysis of the
equation showed that this probability flux in scale is related to a local imbalance of
the conditional two-point enstrophy production and dissipation. Additionally, we have
seen that due to an integral constraint a probability flux both up- and downscale is
expected. The numerical evaluation of the unclosed terms then has indicated that the
production and dissipation terms cancel to a large extent on all scales. However, for small
distances the remaining effective vector field is non-vanishing leading to an interesting
dynamical evolution in sample space. The investigation provides first insights into the
spatial structure of the vorticity statistics, which up to now has only been treated
sparsely in the literature. A next step obviously is to gain a deeper qualitative and
quantitative understanding of these observations. A first step in this direction was made
by introducing a simple ODE system for the characteristic equations, which captures
the main topological features of the vector field found in DNS.
We then turned to an investigation of the closure problem in terms of multi-point

statistics, which revealed that a closure of the kinetic equations discussed in this chapter
involves the analysis of the conditional vorticity field with respect to multiple fixed
vorticities. Following works by Novikov, we have investigated the conditional vorticity
field both analytically and numerically, revealing that enstrophy production is related
to the statistical twist of the conditional vorticity field. Then an extension to multiple
points in space has been introduced, allowing for a semi-analytical treatment and a
direct comparison to the two-point enstrophy statistics from DNS. The major outcome
here is that, while the local dynamical effects of vortex stretching and diffusion of
vorticity are qualitatively captured by the model, the probability flux in scale is not.
Although oversimplifying assumptions have been made, the complexity of the analytical
calculations indicates that an improvement of this simple model remains a challenging
task for the future.
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10. A Model for the Two-Point PDF of
Turbulent Vorticity

10.1. Motivation

We have encountered the closure problem of turbulence in various ways throughout this
thesis. It has been discussed in chapters 7 and 8 in terms of correlations between the
statistical variable and dynamical influences related to the corresponding equation of
motion. Knowledge of these unknown correlations has led to a closure of the kinetic
equations determining the shape of the single-point PDF.
In chapter 9 we have then additionally treated the problem in terms of the local

conditional structure of the vorticity field. There it became clear that the kinetic
equations for the vorticity field can be closed in terms of the first moment of the
conditional PDF. However, it has to be stressed that the particular type of kinetic
equation considered does not fix the shape of the probability density function.

In the last chapter of this work we want to add yet another aspect to the discussion.
To this end we first have to clarify the traditional notion of a closure. Regarding the
hierarchy of PDF equations, closure in the traditional sense means to truncate the
hierarchy on a given level, say N , by expressing (i.e. modeling) the N + 1-point PDF in
terms of the N -point PDF only. Probably the most simple ansatz for such a closure
involves a factorization of the PDF assuming statistical independence of the N + 1st
point from the others. This assumption, however, does not lead to physically reasonable
results in the case of strongly interacting systems like fully developed turbulence. A
number of more sophisticated approaches have been proposed (see, e.g., [Lun72, TY04]
for two different suggestions), the results show some more or less severe discrepancies
when compared to experimental results.

It is thus just to ask whether a closure in the traditional sense is possible at all.
On the contrary, one could ask, which information from the N + 1-point PDF has to
be incorporated into a model of the N -point PDF to yield a closure. This is exactly
the issue discussed in this chapter at the example of the most simple PDF equation
describing the single-point statistics of vorticity. Instead of modeling the two-point PDF
only with single-point information, we try to incorporate as few information from the
two-point PDF as possible in order to achieve a closure of the single-point PDF equation.
Our closure shall especially allow to determine the shape of the single-point PDF, which
makes clear that specification of the first conditional moment will not suffice. In this
sense, the current approach aims at a best bargain: if we cannot get the closure for free,
what is the minimum price to pay? Consequently, we do not achieve a true closure (in
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10. A Model for the Two-Point PDF of Turbulent Vorticity

the traditional sense), but the analysis will elucidate, which features of the two-point
PDF play the important role when it comes to determine the single-point statistics.
Apart from the information necessary to close the next lower order of the PDF

hierarchy, the multi-point PDFs have to fulfill a number of physical constraints, among
which are the reduction, coincidence and separation properties already introduced in
chapter 6. A perfect closure should, of course, fulfill all of these constraints. However,
it turns out that for generally non-normal statistics it is hard to analytically specify
a joint PDF. This brings up the question how an imperfect model can be improved,
which will be treated in the context of a maximum entropy approach.

The remaining chapter is structured as follows. We first will reinvestigate the single-
point PDF equation with respect to its coupling to the two-point PDF. This will lead
to an analytical model, which then will be compared to DNS data and discussed in
terms of its limitations. We will then turn to a generalization involving a maximum
entropy formulation of the problem.

10.2. An Analytical Closure Approach

10.2.1. Formulation of the Model

We take the kinetic equation of the form (8.18) as the starting point of our investigations,
however, neglecting the external forcing as in the preceding chapter. As has been exposed
in chapter 8, this version of the kinetic equation involving the conditional enstrophy
dissipation tensor eventually allows to calculate a stationary solution of the form (8.45).
For a solution both the eigenvalues of the conditionally averaged rate-of-strain tensor
as well as the conditional enstrophy dissipation tensor have to be known. We have seen
in the preceding chapter that the scalar function determining the conditional enstrophy
production can be calculated from the twisting contribution to the first conditional
moment of the vorticity field, see equation (9.33). For the conditional dissipation tensor
we consider the relation

∂ω1,i

∂x1,k

∂ω1,j

∂x1,k
=

1
2

[
∆x1 ω1,iω1,j − ω1,j ∆x1 ω1,i − ω1,i ∆x1 ω1,j

]
=

1
2

lim
|x2−x1|→0

[
∆x2 ω2,iω2,j − ω1,j ∆x2 ω2,i − ω1,i ∆x2 ω2,j

]
. (10.1)

Multiplying by ν and taking the conditional average results in an expression for the
conditional enstrophy dissipation tensor,〈

ν
∂ω1,i

∂x1,k

∂ω1,j

∂x1,k

∣∣∣∣Ω1

〉
=

1
2
ν lim
|x2−x1|→0

[
∆x2

〈
ω2,iω2,j

∣∣Ω1

〉− Ω1,j ∆x2

〈
ω2,i

∣∣Ω1

〉− Ω1,i ∆x2

〈
ω2,j

∣∣Ω1

〉]
,

(10.2)
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which shows that this tensor can be calculated from the first and second moment of the
conditional PDF p(Ω2|Ω1). Consequently, specifying the first two conditional moments
of the vorticity field suffices to calculate the terms determining the single-point velocity
PDF according to the stationary solution (8.45). It has to be stressed, though, that
these moments already contain a tremendous amount of information as has been pointed
out in the context of the general functional structure of the first conditional moment
in chapter 9. Following the analysis presented there, the second conditional moment
may be built from δij and all possible combinations of Ω̂1, λ̂ and τ̂ weighted by scalar
prefactors depending on Ω1, r and γ. Based on combinatorics only, we count ten possible
scalar functions. As a side remark, one should note that the conditional second moment
for Gaussian statistics is proportional to δij only, demonstrating the simple functional
structure of Gaussian statistics.

We now want to put these considerations into the context of the two-point PDF. The
only assumption for our ansatz now is that we have a reasonable choice for the first
two conditional moments of the vorticity field either by modeling or by knowledge from
experiments or numerics. For the sake of brevity, these moments will be denoted as

µ(1)(Ω1, r) := 〈ω2|Ω1〉 (10.3a)

µ
(2)
ij (Ω1, r) := 〈ω2,i ω2,j |Ω1〉 . (10.3b)

Let us from now on assume that the first two conditional moments are given as modeling
input from, e.g., DNS data or analytical considerations. The first important thing to
note is that parts of the desired constraints can be incorporated into the model by the
limiting behavior of the conditional moments. For vanishing and infinite distances the
moments behave like

lim
r→0

µ(1)(Ω1, r) = Ω1 (10.4a)

lim
r→0

µ
(2)
ij (Ω1, r) = 0 (10.4b)

lim
r→∞

µ(1)(Ω1, r) = 〈ω2〉 = 0 =: µ(1)
∞ (10.4c)

lim
r→∞

µ
(2)
ij (Ω1, r) = 〈ω2,i ω2,j〉 =

〈ω2〉
3

δij =: µ(2)
ij,∞ . (10.4d)

The ansatz for our two-point model now consists of the product of two hitherto unspeci-
fied single-point PDFs fM

1

fM
2 (Ω1,Ω2; r) = fM

1

(
Ω2;µ(1), µ

(2)
ij

)
fM

1

(
Ω1;µ(1)

∞ , µ
(2)
ij,∞

)
, (10.5)

of which the first one is shifted and rescaled according to the first two conditional
moments. By this choice the first factor represents a model for the conditional PDF
p(Ω2|Ω1), whereas the second one just plays the role of the single-point PDF. By
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construction, the first two conditional moments are readily obtained as〈
ω2

∣∣Ω1,Ω2

〉
=
∫

dΩ2 Ω2 f
M
1

(
Ω2;µ(1), µ

(2)
ij

)
(10.6a)〈

ω2,iω2,j

∣∣Ω1,Ω2

〉
=
∫

dΩ Ω2,i Ω2,j f
M
1

(
Ω2;µ(1), µ

(2)
ij

)
. (10.6b)

As it is further possible to calculate the conditional enstrophy production as well as the
eigenvalues of the conditional dissipation tensor from the first two conditional moments,
it is also possible to determine the shape of the single-point PDF with the help of
equation (8.45). This lets us determine the up to now unspecified single-point PDF fM

1 .
We thus have constructed a consistent model of the two-point PDF, which closes the
single-point PDF equation and additionally allows to determine the single-point PDF
in a correct manner.
To check for the coincidence and separation property, we recognize

lim
r→0

fM
2 (Ω1,Ω2; r) = δ(Ω2 −Ω1) fM

1

(
Ω2;µ(1)

∞ , µ
(2)
ij,∞

)
(10.7a)

lim
r→∞

fM
2 (Ω1,Ω2; r) = fM

1

(
Ω1;µ(1)

∞ , µ
(2)
ij,∞

)
fM

1

(
Ω2;µ∞, µ

(2)
ij,∞

)
. (10.7b)

The coincidence property results from the fact that by the limiting behavior according
to the relations (10.4) the conditional PDF shrinks toward zero variance, which under
quite general assumptions can be represented by a delta distribution. The reduction
property is fulfilled identically for the variable Ω2,∫

dΩ2 f
M
1

(
Ω2;µ(1), µ

(2)
ij

)
fM

1

(
Ω1;µ(1)

∞ , µ
(2)
ij,∞

)
= fM

1

(
Ω1;µ(1)

∞ , µ
(2)
ij,∞

)
(10.8)

as this only requires normalization of the conditional PDF. However, the reduction
property with respect to Ω1 will only be fulfilled approximately to the extent the modeled
conditional PDF will resemble the true one. Note that the ansatz works perfectly in
the limit of vanishing and infinite separations, where it also obeys the correct reduction
property. One should also note that the ansatz is fully consistent in the case of Gaussian
two-point statistics, where the reduction property is fulfilled for arbitrary separations.
Another shortcoming of this ansatz concerns its asymmetry with respect to the

exchange of Ω1 and Ω2 to be expected in the general case, which is clearly unphysical
for homogeneous isotropic turbulence. Still, the simplicity of the ansatz together with
the number of fulfilled properties seems promising and we now want to compare it to
DNS results, before we discuss possible generalizations.

10.2.2. Comparison with DNS Data

As already discussed in the preceding chapter, a numerical evaluation and presentation of
the full two-point PDF is impossible. For a comparison with the DNS data we therefore
focus on the joint statistics of a component of the vorticity field at two distant spatial
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points. The data is taken from the simulation sim_512. As the conceptual approach
outlined above allows to fix the shape of the single-point PDF, we take knowledge of
the first two conditional moments of the projected PDF as well as the single-point PDF
itself for granted and evaluate equation (10.5) numerically. To this end we construct
the conditional PDF pM(Ω2,x|Ω1,x, r) from the single-point PDF f1(Ω1,x) by a proper
shifting and rescaling according to the first two conditional moments.
The resulting conditional PDFs are shown as a function of scale in figures 10.1 and

10.2 along with reference PDFs from DNS. For small as well as large spatial separations
the agreement is best. The reason for this is that the model ansatz (10.5) by definition is
exact in the two limiting cases. For intermediate separations a still moderate agreement
is observable, the qualitative features of the PDF are captured. In view of the simplicity
of the ansatz this result may be regarded as satisfactory.
To further quantify the performance of the model, the reduction property in the

variable Ω2,x is compared to the correct single-point PDF in figure 10.3. Although the
reduction property in this direction does not hold by construction, the agreement still
is very good for low to intermediate values of vorticity. Deviations are only visible in
the tails of the PDF. The reason for this is that the imperfections of the model seem to
cancel to a certain extent leading to a decent agreement with the true PDF. Maybe the
most severe shortcoming from the model may be seen from figure 10.4, where the joint
PDF is compared to the corresponding PDF from DNS. While the PDF from DNS is
symmetric under the transformations Ω1,x ↔ Ω2,x as well as Ω1,x ↔ −Ω2,x, the model
PDF is not. The reason for this is the asymmetry of the ansatz (10.5). So the conclusion
at this point is that the simple ansatz yields reasonable results regarding the modeling
of the conditional PDF with shortcomings becoming especially apparent when the joint
PDF is considered.

10.3. Improvement of Imperfect Models

10.3.1. Concept

If one now wishes to overcome the discussed shortcomings, the analytical possibilities
are limited. One could, e.g., symmetrize the ansatz (10.5), but then would loose the
correct reduction property also in the variable Ω1.
One would rather like to take the imperfect model as a starting point and improve

it, such that the yet missing constraints are fulfilled. Thus we end up with the quite
general conceptual problem that we want to improve an imperfect model for a joint
PDF with respect to a number of constraints. The improved model should be “as near
as possible” to the already established one, at best obtained from the imperfect model
by multiplication with a correction factor. A mathematical formulation of these desired
properties naturally leads to the relative entropy or Kullback-Leibler divergence which
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Figure 10.1.: Original (left) and model (right) conditional PDF for r ∈ {1.2, 2.5, 4.9, 9.9}η
(sim_512).

222



10.3. Improvement of Imperfect Models

Figure 10.2.: Original (left) and model (right) conditional PDF
for r ∈ {19.8, 39.6, 79.1, 158.3}η (sim_512).
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Figure 10.3.: Single-point PDF f(Ω2,x) for DNS data and the two-point model for r = 2.5η
(sim_512). Slight deviations occur in the tails of the PDF.

Figure 10.4.: Joint PDF for r = 2.5η of DNS data (left) and the two-point model (right)
(sim_512). The PDF estimated from DNS is symmetric in its arguments, which is not the case
for the model PDF.
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is defined as1

K[f IM
2 ] =

∫
dΩ1 dΩ2 f

IM
2 (Ω1,Ω2) ln

[
f IM

2 (Ω1,Ω2)
fM

2 (Ω1,Ω2)

]
. (10.9)

Here, f IM
2 defines the improved model. It is clear from the definition that the relative

entropy shares some similarities with a distance measure [Hak06]. For instance, it is
always positive or zero, of which the latter corresponds to the case that fM

2 = f IM
2 , i.e.,

that the imperfect and improved model already coincide. A difference to a true distance
measure is that the relative entropy is not symmetric with respect to an exchange of
fM

2 and f IM
2 . The relative entropy now shall be minimized in terms of a number of

constraints, which are formulated in terms of the true PDF f2. So the general situation
is that we have a prior, imperfect model PDF fM

2 , that we want to improve to a PDF
f IM

2 , which incorporates a number of features known from the true statistics described
by f2.
To proceed, we first have to list all desired properties in terms of functional con-

straints. We start with the constraints imposing the correct marginal distributions, i.e.,
incorporating the reduction property, as well as the first two conditional moments. These
can be formulated as ∫

dΩ2 f
IM
2 (Ω1,Ω2; r)− f1(Ω1) = 0 (10.10a)∫

dΩ1 f
IM
2 (Ω1,Ω2; r)− f1(Ω2) = 0 (10.10b)∫

dΩ2 Ω2,i f
IM
2 (Ω1,Ω2; r)− µ(1)

i (Ω1; r)f1(Ω1) = 0 (10.10c)∫
dΩ1 Ω1,i f

IM
2 (Ω1,Ω2; r)− µ(1)

i (Ω2; r)f1(Ω2) = 0 (10.10d)∫
dΩ2 Ω2,iΩ2,j f

IM
2 (Ω1,Ω2; r)− µ(2)

ij (Ω1; r)f1(Ω1) = 0 (10.10e)∫
dΩ1 Ω1,iΩ1,j f

IM
2 (Ω1,Ω2; r)− µ(2)

ij (Ω2; r)f1(Ω2) = 0 . (10.10f)

Of course, the improved model should also be normalized,∫
dΩ1dΩ2 f

IM
2 (Ω1,Ω2; r)− 1 = 0 . (10.11)

As we will discuss below, an additional class of constraints may be deduced from the
fact that we want to represent homogeneous isotropic turbulence. For example, it turns
out that the two-point vorticity PDF should be invariant with respect to an exchange
of arguments according to

f IM
2 (Ω1,Ω2; r)− f IM

2 (Ω2,Ω1; r) = 0 . (10.12)
1The definitions of the entropy as well as the relative entropy usually include an additional sign. In
this chapter we will, however, also loosely speak of the Kullback-Leibler divergence as a relative
entropy.
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Although there are more symmetry constraints, this one shall suffice for the moment to
clarify the procedure. Finding the minimum Kullback-Leibler divergence with respect to
these constraints naturally introduces the method of Lagrange multipliers. As all of the
constraints, except for the normalization, are functions, the corresponding multipliers
will be functions, too. Hence the task is to minimize the Kullback-Leibler distance with
respect to these constraints, i.e., we have to minimize the relative entropy functional

Kc[f IM
2 ] =∫

dΩ1 dΩ2 f
IM
2 (Ω1,Ω2) ln

[
f IM

2 (Ω1,Ω2)
fM

2 (Ω1,Ω2)

]
+ λN

[ ∫
dΩ1dΩ2 f

IM
2 (Ω1,Ω2; r)− 1

]
+
∫

dΩ1 λ
1,0(Ω1)

[ ∫
dΩ2 f

IM
2 (Ω1,Ω2; r)− f1(Ω1)

]
+
∫

dΩ2 λ
2,0(Ω2)

[ ∫
dΩ1 f

IM
2 (Ω1,Ω2; r)− f1(Ω2)

]
+
∫

dΩ1 λ
1,1
i (Ω1)

[ ∫
dΩ2 Ω2,i f

IM
2 (Ω1,Ω2; r)− µi(Ω1; r)f1(Ω1)

]
+
∫

dΩ2 λ
2,1
i (Ω2)

[ ∫
dΩ1 Ω1,i f

IM
2 (Ω1,Ω2; r)− µi(Ω2; r)f1(Ω2)

]
+
∫

dΩ1 λ
1,2
i,j (Ω1)

[ ∫
dΩ2 Ω2,iΩ2,j f

IM
2 (Ω1,Ω2; r)− µ(2)

ij (Ω2; r)f1(Ω1)
]

+
∫

dΩ2 λ
2,2
i,j (Ω2)

[ ∫
dΩ1 Ω1,iΩ1,j f

IM
2 (Ω1,Ω2; r)− µ(2)

ij (Ω1; r)f1(Ω2)
]

+
∫

dΩ1 dΩ2 λ
s(Ω1,Ω2)

[
f IM

2 (Ω1,Ω2; r)− f IM
2 (Ω2,Ω1; r)

]
, (10.13)

by which we also have introduced the functional Lagrange multipliers. To find an expres-
sion for the improved model, we calculate the functional derivative of the constrained
relative entropy functional with respect to the improved model PDF and set it to zero,

δKc[f IM
2 ](Ω1,Ω2)

δf IM
2 (Ω′1,Ω

′
2)

= 0 , (10.14)
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which leads to the interesting result

f IM
2 (Ω1,Ω2) = fM

2 (Ω1,Ω2)×

exp
[
− λN − 1− λ1,0(Ω1)− λ2,0(Ω2)

− Ω2,i λ
1,1
i (Ω1)− Ω1,i λ

2,1
i (Ω2)

− Ω2,iΩ2,j λ
1,2
ij (Ω1)− Ω1,iΩ1,j λ

2,2
i,j (Ω2)

− [λs(Ω1,Ω2)− λs(Ω2,Ω1)
]]

. (10.15)

This is exactly the formulation for an improved model outlined at the beginning of this
section. The new, improved model is obtained from the old model by multiplication
with a correction that ensures compliance with the imposed constraints. Having arrived
at this central theoretical result, some further comments are in order.
First of all, it is a priori not clear if a minimum of this functional exists for a given

situation. This surely depends on the particular choice of the model PDF to be improved
as well as on the imposed constraints. Thus it is impossible for us to answer this question
on a general level. However, if one, for example, considers a model PDF which assigns
zero probability to a given combination of Ω1 and Ω2 in sample space, which is not
consistent with the imposed constraints, it is clear that the correction factor cannot
correct for this. This shows that an inappropriate model PDF as a starting point will
yield no solution of the problem. The second interesting fact about these results concerns
the particular choice of the model. Consider the case that we do not have an old model
based on prior considerations. This corresponds to assume a uniform density for fM

2 . In
this case the whole approach reduces from a maximum relative entropy approach to
the standard maximum entropy approach (up to a sign) [Jay57a, Jay57b, Jay03]. As
a result equation (10.15) then contains only the correction factor, which defines the
PDF. This shows in particular that the possible functional classes of the resulting PDF
depend heavily on the type of imposed constraints.2

The third, and maybe most important point in this context is that the method of
Lagrange multipliers yields the general result (10.15), which expresses the improved
model PDF in terms of the functional Lagrange multipliers. However, it does not give
a constructive procedure to actually calculate them. In general it will be difficult, if
not impossible, to obtain the Lagrange multipliers analytically. Thus we will outline an
iterative way to numerically obtain the Lagrange multipliers below.

In some limiting cases, however, analytical solutions are at hand. Consider, for example,
the case of infinite spatial separations, in which the two-point statistics factorizes. In
this case our simple model ansatz suggests the correct results

lim
r→∞

fM
2 (Ω1,Ω2; r) = f1(Ω1) f1(Ω2) (10.16)

2Compare this to the ordinary moment maximum entropy problem for a univariate PDF, where the
result always is an exponential of a polynomial.
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and therefore already fulfills all the imposed functional constraints. As a consequence
all the Lagrange multipliers are zero yielding a unit correction factor. In this case the
improved model already coincides with the simple model. This can also be stated in the
opposite case of vanishing spatial separation, in which the simple model ansatz yields

lim
r→0

fM
2 (Ω1,Ω2; r) = δ(Ω2 −Ω1) f1(Ω2) . (10.17)

A general feature of this whole approach is that, when the original model already fulfills
a number of constraints, these will not lead to further corrections.

We close the section with a more general, but non-trivial example, where we assume a
uniformly distributed prior model, that means we are considering the standard maximum
entropy approach. If we impose the two marginal PDFs as the only constraints, it can
be seen directly from (10.15) that the two corresponding Lagrange multipliers read

λ1,0(Ω1) = ln f1(Ω1) (10.18a)

λ2,0(Ω2) = ln f1(Ω2) , (10.18b)

which leads to
f IM

2 = f1(Ω1) f1(Ω2) , (10.19)

i.e., the maximum entropy approach here leads to statistical independence of Ω1 and
Ω2, something very reasonable.

10.3.2. More on Symmetry Constraints

In the above discussion we have already included a symmetry constraint which should
be fulfilled by an improved model. This naturally brings up the question what type
of symmetries are expected for a joint PDF and how to find them. As highlighted a
number of times throughout this thesis, these symmetry constraints originate from the
fact that statistical observables of fully developed, stationary, homogeneous isotropic
turbulence are invariant with respect to transformations from the symmetry group O(3),
i.e.,

f2(Ω1,Ω2; r) = f2(RΩ1,RΩ2; Rr) ∀R ∈ O(3) . (10.20)

Now choosing a special transformation from this group corresponding to, e.g., an
exchange of certain components of the arguments, reveals a particular symmetry expected
from the PDF. For example, any transformation turning r = x2 − x1 to −r = x1 − x2

is equivalent to an exchange of coordinates x1 and x2.
These considerations are especially of interest, when projections of the full two-

point PDF are considered as in the numerical data presented in this chapter. Without
loss of generality, we take in the following r = rex. Consider, for example, the PDF
f2(Ω1x,Ω2x; r) subject to a rotation Ry(π) around the y-axis with an angle of π. This
yields

f2(Ω1x,Ω2x; r) = f2(−Ω1x,−Ω2x;−r) = f2(−Ω2x,−Ω1x; r) , (10.21)
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transformation transformed Ω transformed v sign of r
Rx(π) (Ωx,−Ωy,−Ωz) (vx,−vy,−vz) +
Rx(π2 ) (Ωx,−Ωz,Ωy) (vx,−vz, vy) +

Rx(−π
2 ) (Ωx,Ωz,−Ωy) (vx, vz,−vy) +

Ry(π) (−Ωx,Ωy,−Ωz) (−vx, vy,−vz) -
Rz(π) (−Ωx,−Ωy,Ωz) (−vx,−vy, vz) -

reflection in 0 (Ωx,Ωy,Ωz) (−vx,−vy,−vz) -

Table 10.1.: Transformation properties of vorticity and velocity under rotation and inversion.

where the first equality comes from isotropy and the second from the above exchange
argument. This symmetry can immediately be checked with numerical or experimental
data and may serve as a test for the fulfillment of isotropy.
To find further symmetries, we now consider transformations that map coordinate

axes on coordinate axes. A number of examples are listed in tabular 10.1. By projecting
onto the components of interest, the expected symmetries can be obtained. These
considerations also directly show that longitudinal and transversal components display
different transformation properties. Additionally, the inversion symmetry yields an
interesting result when vorticity and velocity are compared. Due to the pseudo-vector
character of the vorticity the transformation property differs from the velocity under
reflection. This implies

f(Ω1x,Ω2x; r) = f(Ω2x,Ω1x; r) , (10.22)

a symmetry not present for the corresponding velocity PDF.

10.3.3. Outline of an Iterative Method: A Steepest Descent
Algorithm

To obtain the Lagrange multipliers iteratively, the problem may be regarded as an
optimization problem, for which a large number of algorithms exist. We here outline
a steepest descent algorithm, which turns out to be particularly simple. In principle
Newton methods outperform steepest descent approaches with respect to stability and
rate of convergence, however, these methods involve matrix inversions. As we are dealing
with a functional problem here, where the discretized PDFs are sampled on O(100) grid
points, this quickly leads to numerically demanding problems depending on the number
and type of constraints imposed. That is why a steepest descent algorithm, where only
a gradient has to be evaluated, is chosen here.
We start with the definition

Z[λ] =
∫

dΩ1 dΩ2 f
IM
2 (Ω1,Ω2; r) , (10.23)
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which in some sense resembles the partition function known from statistical mechanics.
To perform a descent, we have to define a potential, which is introduced as

F [λ] =−Z[λ]− λN −
∫

dΩ1 λ
1,0(Ω1) f1(Ω1)−

∫
dΩ2 λ

2,0(Ω2) f1(Ω2)

−
∫

dΩ1 λ
1,1
i (Ω1)µ(1)

i (Ω1) f1(Ω1)−
∫

dΩ2 λ
2,1
i (Ω2)µ(1)

i (Ω2) f1(Ω2)

−
∫

dΩ1 λ
1,2
ij (Ω1)µ(2)

ij (Ω1; r) f1(Ω1)

−
∫

dΩ2 λ
2,2
ij (Ω2)µ(2)

ij (Ω2) f1(Ω2) , (10.24)

where [λ] indicates the functional dependence on the set of Lagrange multipliers. The
important property of this functional now is that calculating the functional gradient of
this potential readily gives the constraints. We obtain, for example,

δF [λ](Ω′1)
δλ1,0(Ω1)

=
∫

dΩ2 f
IM
2 (Ω1,Ω2)− f1(Ω1) , (10.25)

for which we have made use of equation (10.15). As a consequence when

∇λF [λ] = 0 , (10.26)

we have reached a local extremum of this potential corresponding to the fulfillment of
all imposed constraints.

The numerical implementation then is straightforward. Starting with fM
2 as an initial

guess, we calculate the gradient, which is the difference between the evaluated constraints
based on the current estimate for the λ (which are chosen to be zero initially) and the
reference constraints. We then update the Lagrange multipliers according to

λi+1 = λi − α∇λF [λi] , (10.27)

approaching (10.26) iteratively. The parameter α has to be chosen in an appropriate
manner, such that convergence of the algorithm is as fast as possible and still stable.
A number of open questions remain. As already indicated above, it is by no means

clear if the introduced potential actually possesses an extremum. Furthermore, the
optimization problem has to be convex in order to ensure convergence to a unique minimal
configuration. This, however, can be ensured by calculating the second variations of F
and showing that this functional Hessian is positively (semi-)definite. This is actually
possible for the present problem, however, the lengthy calculations exceed the scope of
this presentation.

10.3.4. Comparison with DNS Data

For the comparison with numerical data some more comments on the numerical imple-
mentation of the algorithm are in order. As in the first part of this chapter, we apply
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Figure 10.5.: Left: joint PDF from DNS in the statistically independent regime for r = 316.6η.
Right: maximum entropy solution with the single-point PDF as given constraints obtained from
the steepest descent algorithm with α = 0.1 and β = 0.5.

the method to a projection of the full two-point PDF to the plane. For the examples
presented here, we again take the PDF of the two longitudinal components of vorticity
f2(Ω1,x,Ω2,x; r) with r = rex.

Furthermore, the algorithm is only applied in regions of sample space, in which data
points have been measured. This is achieved by masking bins without any entries. In a
sense, this incorporates additional information not included in the constraints so far,
which might be problematic on a conceptual basis. However, when dealing with real
data, additional assumptions like this have to be made in order to set up a well-defined
numerical procedure.
A second modification of the algorithm is introduced with respect to the rate of

convergence. For the present example the convergence to the non-Gaussian tails is
of special interest. While choosing a constant α leads to a fast convergence in the
core of the PDF, convergence in the tails is worse. That is why for the constraints
related to the reduction property and the first two conditional averages a modification
increasing convergence in the tails is introduced by a proper weighting with the marginal
distribution. For the constraints depending on Ω1,x we choose

α 7→ α f1(Ω1,x)−β . (10.28)

For β = 0 this ansatz reduces to an ordinary optimization ansatz, whereas a β > 0 leads
to a faster convergence in the tails. We found in numerous tests that this modification
results in a significantly increased rate of convergence. It has further been checked in a
number of cases that these modifications do not change the outcome of the optimization
procedure. Furthermore, it has turned out to be useful to treat the symmetry constraints
by calculating the logarithmic differences between the estimated and actual PDF leading
to an improved convergence.
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The optimization procedure is stopped if the norm of functional gradient becomes
small for a given consecutive number of iterations. This is checked by

ln |F [λi]|2 ≤ εthreshold (10.29)

for a given threshold. Note that this is equivalent to computing the logarithm of the
norm of the error between imposed and actually fulfilled constraints. As the symmetry
constraints appear to converge more rapidly, only the constraints concerning the marginal
distributions and the conditional moments are taken into account for this criterion.

In total we see that the numerical implementation involves a number of modifications
and arbitrary choices of thresholds, which may be subject to future improvements. In
this sense the following results shall be understood as a proof of principle rather than a
final answer to the problem.
To benchmark the numerical implementation, we take the particularly simple case

of an ordinary maximum entropy setting with given marginal distributions already
introduced above. According to the exact results discussed there, the algorithm is
expected to converge to the factorized joint PDF f1(Ω1,x)f1(Ω2,x) starting from a
uniform initial distribution fM

2 . The numerical result for this case is shown in figure
10.5 together with the true two-point PDF. The agreement is perfect demonstrating the
conceptual validity of the numerical approach.
As a second example we take the analytical model for r = 2.5η as shown in figures

10.1 and 10.4 as an initial condition for the numerical optimization. As constraints we
choose the marginal PDFs, the first two conditional moments as well as the symmetry
constraints (10.21) and (10.22). The outcome is presented in figure 10.6. By comparison
with the conditional and joint PDFs from the DNS also shown in 10.1 and 10.4, it can
be concluded that the improved model actually yields a better result than the analytical
model. Especially the symmetries present for the data from DNS are captured by the
improved model. However, as the initial analytical model displays characteristic “kinks”
on the Ω1,x = 0 line, these kinks are symmetrized by the algorithm and persist until
the algorithm has converged.

10.4. Summary

In this chapter we have treated the closure problem in terms of a modeling of the
two-point vorticity PDF. We first have shown that the stationary solution of the
vorticity PDF can be calculated from the kinetic equation if the first two moments of the
conditional PDF are specified. The obvious conclusion is that a model for the two-point
PDF should contain these moments in order to allow for a closure of the single-point
equation. We then have introduced an analytically tractable model for the two-point
PDF, incorporating these conditional averages and fulfilling a number of constraints
like, e.g., the separation property. The model has been compared to numerical data
by considering a lower-dimensional projection. The results have been found to be in
particularly good agreement in the limiting cases of small and large separations, where
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Figure 10.6.: Conditional (left) PDF and joint PDF (right) of the improved model with
the initial condition of the analytical model shown in figures 10.1 and 10.4 for r = 2.5η. All
constraints, including the symmetry constraint, were subject to optimization with α = 0.01 and
β = 0.1.

we have discussed that the present ansatz is exact. For intermediate separations the
results prove to be acceptable, where the most obvious discrepancies originate from the
fact that the model PDF does not account for a number of symmetries observable in
the statistics of turbulent flows.
To correct for these shortcomings, we were naturally led to a maximum relative

entropy approach, where the simple model ansatz has been taken as a starting point
for further improvements. Apart from discussing the theoretical framework for such
an approach, a numerical algorithm was outlined and implemented. The results have
been shown to yield reasonable results in simple benchmark cases. However, as some
theoretical points as well as a number of technical issues have not been fully clarified
by the time of the finishing of this thesis, further research has to be spent on this
approach. In this respect it is of particular interest to improve the convergence rates
of the algorithm. A different numerical implementation using a Monte-Carlo method
could perform better.
Although not all issues have been resolved, the results of the presented chapter are

interesting on a conceptual basis. For instance, it might prove to be very useful to treat
the closure problem of turbulence on the level of PDFs with the help of maximum
entropy methods. As indicated in this chapter, the choice of the imposed constraints is
particularly important. Based on the outcome of the presented optimization procedure,
a provocative working hypothesis for future research on this topic could be: What if the
two-point statistics of turbulence is fully characterized by the fact that a closure of the
single-point equation is achieved while fulfilling the constraints generally to be imposed
on multi-point PDFs, like, e.g., the reduction property?
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The central aim of the current thesis is to add some new insights to the statistical
description of fully developed turbulence in terms of probability density functions. To
this end we have combined the statistical equations of the Lundgren-Monin-Novikov
hierarchy with direct numerical simulations of fully developed homogeneous isotropic
turbulence. Estimating the unclosed terms from the simulation data especially has
allowed to establish a connection between the basic dynamical features and the statistical
properties of turbulence.

The purpose of the first part of the thesis has been to introduce the reader both into
the fundamental physical questions of statistical fluid mechanics as well as into the
algorithmic details of the simulation code developed and used within this PhD project.
Beyond a detailed description of the algorithm and its implementation, performance
benchmarks were presented, documenting a good scaling performance of the code.
The second part of the thesis started with a presentation and characterization of a

number of standard statistical evaluations of the simulation data. The purpose here has
been to highlight the intermittent statistical properties typical for turbulence as well
as to benchmark the simulation results. The first aim was supported by a comparison
to random fields, which allowed to highlight the typical features of turbulence. The
second aim was supplemented with a comparison to experimentally obtained results to
work out the strengths and shortcomings of direct numerical simulations. It has turned
out here that, due to the amount of generated data, DNS is especially appropriate
to study high-order statistics of turbulence related to the extreme events observable.
Additionally, new kinematic results relating the covariance tensors of velocity, vorticity
and the velocity gradients have been obtained and checked numerically.
Seeking for analytically tractable cases, the second chapter of this part has dealt

with properties of the multi-dimensional Burgers equations. Although not directly
applicable to the case of viscous incompressible Navier-Stokes turbulence, still some
useful insights have been gained from studying the self-amplification mechanisms of the
velocity gradients with respect to small-scale dynamics of fully developed turbulence.
The main results of this chapter are the derivation of exact solutions for the evolution
of the velocity gradient tensor along Lagrangian trajectories as well as a systematic
characterization of the dynamics of the velocity gradient tensor invariants. The structure
of the arising equations revealed the systematic coupling of the invariants and their
relation to the formation of finite-time singularities typical for the Burgers equation. The
presented results also apply to non-potential initial conditions, in which the Hopf-Cole
transformation is not applicable, adding insights to this sparsely studied case. The
hope here is that the analytically obtained results might also be applicable to highly
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compressible Navier-Stokes turbulence, which could be a future direction of research.
After starting the third, central part of the thesis with an introduction into the

Lundgren-Monin-Novikov hierarchy and discussing its relation to the BBGKY hierarchy
known from statistical mechanics, a chapter on the single-point statistics of the velocity
field followed. In this chapter the application of statistical symmetries has been explained
in detail and eventually has led to the homogeneous and stationary solutions of the
PDF equations as a new, central result. It turned out that the single-point statistics
may be quantified in terms of the conditional pressure gradient and forcing statistics
as well as the eigenvalues of the conditional kinetic energy dissipation tensor. Another
central theoretical aspect concerned the application of the method of characteristics to
decaying turbulence. The theoretical part was completed by a discussion of an analytical
closure approximation leading to Gaussian statistics. Data from DNS then has been used
to estimate the unclosed terms. Here, among others, non-vanishing pressure gradient
contributions to the single-point statistics as well as correlations between the conditional
dissipation tensor and the velocity were found as main results. Both facts up to now have
been neglected in the literature on PDF equations. However, the current thesis shows
that the sub-Gaussian shape of the velocity PDF can been related to these observations.
The investigation of an ensemble of decaying velocity fields revealed the presence of a
self-similar regime, in which the unclosed terms turned out to be particularly simple.
It turned out that the method of characteristics is particularly useful to study and
interpret such non-stationary situations. An investigation of Lagragian or Eulerian
intermittency of the velocity increments with this method would be a possible direction
of future research.
Basically the same considerations then have been applied to the vorticity field,

for which also homogeneous and stationary solutions have been derived. Here the
corresponding stationary PDF has been expressed in terms of the conditional vortex
stretching, the forcing as well as the eigenvalues of the conditional enstrophy dissipation
tensor. Already the theoretical section has indicated the possibility that the external
forcing is of minor importance for the vorticity statistics. Furthermore, an analytical
closure approach has been shown to lead to slowly decaying, strongly non-Gaussian tails.
The corresponding DNS results revealed pronounced statistical correlations between the
rate-of-strain tensor as well as the conditional enstrophy dissipation tensor. These more
pronounced correlations (compared to the velocity statistics) have been related to the
more localized nature of the vorticity field and eventually were shown to cause the highly
non-Gaussian shape of the PDFs. The DNS results also have confirmed the prior results
by Novikov and have confirmed the conditional balance of vortex stretching and vorticity
diffusion, in which the external forcing is negligible, at an unprecedented numerical and
statistical quality. As a consequence, the external forcing mechanism does not influence
the shape of the single-point vorticity PDF. This result may be seen as a nice example
that the small-scale statistics of turbulence can become independent from the large-scale
driving. The chapter was completed with a discussion of the influence of coherent vortex
structures on the statistics of turbulence from two different aspects. It has been shown for
an ensemble of Burgers vortices that the resulting statistics generically is non-Gaussian.
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Numerical simulations starting from Gaussian initial conditions, on the other hand, have
demonstrated that the emergence of coherent structures goes along with unbalanced
vortex stretching until a statistically stationary situation with non-Gaussian vorticity
statistics is obtained. The direct comparison of the results on the single-point velocity
and vorticity statistics has shown that the vorticity is particularly well-suited quantity
to connect the dynamics and the statistics of fully developed turbulence.

The following two chapters have dealt with different aspects of the two-point vorticity
statistics of turbulence, which up to now has only been treated sparsely in the literature.
We first have studied the two-point enstrophy statistics, which has allowed to characterize
the spatial structure of the vorticity field as well as the interaction of different spatial
scales. The evaluation of DNS data explicitly revealed a simultaneous up- and downscale
probability flux going along with an imbalance of enstrophy production and diffusion.
The method of characteristics was used to discuss the shape deformation across the
scales in terms of these dynamical influences, and a simple analytical model resembling
the main characteristics of the vector field has been introduced. In the second half of the
chapter the connection between the conditional averages arising in the kinetic description
and the two-point vorticity statistics has been discussed. Extending works by Novikov, we
have introduced the semi-analytically tractable Twisted Gaussian Approximation, which
has been shown to qualitatively capture the enstrophy production and dissipative effects
both on the single-point and two-point level. The understanding of the probability fluxes
in scale related to the conditional longitudinal velocity increment, however, remains
a challenging task for future research with the aim of explaining the direct cascade
in terms of the vorticity statistics. The final chapter has dealt with the question how
a consistent model for the two-point PDF of the vorticity can be established. As a
main result we have introduced a model for the two-point PDF incorporating the first
two conditional moments of the two-point statistics. With an appropriate choice of the
first two conditional moments it has been shown that this ansatz provides a closure
of the single-point PDF equation allowing to determine the shape of the single-point
PDF. Furthermore, it has been shown that this simple analytical ansatz fulfills the
majority of desired constraints imposed on the two-point PDF. In the second part of
this chapter we have embedded this simple model into the context of maximum relative
entropy methods to correct for the shortcomings of the analytical model. It has been
shown that an improved model is obtained from the initial one by multiplication with a
correction factor involving functional Lagrange multipliers. We finally have outlined
an iterative method to obtain the Lagrange multipliers and presented first results of
a numerical implementation in the form of a steepest descent approach. This new
systematic approach to construct consistent models for joint PDFs is not restricted
to turbulence theory only and may be as well applied within the theory of stochastic
processes.
To conclude, we have demonstrated in this thesis how combined theoretical and

numerical efforts may be used to yield new insights into the statistical nature of
turbulence. The close joint analytical and numerical investigation of the PDF equations
may be regarded as a main novelty of this thesis. First identifying the statistical
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11. Summary and Conclusions

quantities that govern the evolution and shape of probability density functions from
the Lundgren-Monin-Novikov hierarchy, the subsequent numerical evaluation of these
terms has yielded a detailed explanation of the connection between average dynamical
influences and the resulting statistics. Beyond giving this characterization, this thesis
provides an identification of necessary properties for systematic closures. The hope is that
these results can be used for a qualitatively and quantitatively improved understanding
of the closure problem of turbulence and for the formulation of simple models that
capture the central aspects of the statistics.

While we have been able to treat the single-point statistics of velocity and vorticity on
a comprehensive level, already the investigation of the two-point statistics has made clear
that compromises regarding the dimensionality of the considered statistical quantities
have to be made. As a consequence it is clear that future advancements of the theory
most likely have to go along with the development of new conceptual ideas reducing the
complexity of the statistical equations to be treated.

On a more general level the results of the current thesis show that, when seeking for
an understanding of the statistics of fully developed turbulence, one can distinguish
different types of deviations from Gaussianity, namely regarding the shape and inner
structure of statistics. While the first type may be modeled by a proper mapping of
Gaussian random fields, the latter type necessitates the challenging task of developing
an understanding of the statistics of non-Gaussian random fields.
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A. Mathematical Details

A.1. Some Properties of the Delta Distribution

The derivation of the PDF equations relies on some properties of the delta distribution.
We want to mention the most important ones.

The delta distribution may be introduced by∫ ∞
−∞

dx δ(x− a)f(x) = f(a) . (A.1)

It is clear from this definition that

δ(x− a) = δ(a− x) . (A.2)

It further can be concluded that

f(x)δ(x− a) = f(a)δ(x− a) , (A.3)

which is sometimes called the “sifting property” of the delta distribution. This relation
is especially important in the context of the derivation of PDF equations as it allows
to interchange realizations with the corresponding sample space variable. Another
important point refers to derivation of the delta distribution. It is evident that

∂

∂a
δ(x− a) = −∂

∂x
δ(x− a) = −∂ δ(x− a)

∂(x− a)
. (A.4)

A generalization to vector notation is straightforward.

A.2. Multivariate Gaussian Distributions

A.2.1. PDF and Characteristic Function

We consider the statistics of the vorticities Ω0, . . .ΩN at the spatial points x0, . . . ,xN .
In the case of Gaussian statistics the joint PDF takes the form

fN+1(Ω0, . . . ,ΩN ) = (2π)−
3N
2 det (R)−

1
2 exp

[
− 1

2

N∑
i,j=0

ΩiR−1(xi,xj)Ωj

]
. (A.5)
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The corresponding characteristic function can be obtained by Fourier transform and
simply reads

φN+1(α0, . . . ,αN ) = exp
[
− 1

2

N∑
i,j=0

αiR(xi,xj)αj

]
. (A.6)

Some remarks on the notation are in order. For fixed i and j R(xi,xj) represents the
3×3 covariance tensor of the vorticities Ωi and Ωj located at position xi and xj . Hence
R is a matrix with covariance tensors as entries.

A.2.2. Conditional Averages

The evaluation of conditional averages is analytically possible for Gaussian statistics.
For example, the first conditional moment is calculated according to

〈ω(x0)|Ω1, . . . ,ΩN 〉fN (Ω1, . . .ΩN )

=
∫

dΩ0 Ω0 fN+1

=
∫

dΩ0 Ω0

∫
d{αi} exp

[
i
N∑
i=0

αi ·Ωi

]
φN+1

=
1
i

∫
dΩ0

∫
d{αi}∇α0 exp

[
i
N∑
i=0

αi ·Ωi

]
φN+1

= −1
i

∫
dΩ0

∫
d{αi} exp

[
i
N∑
i=0

αi ·Ωi

]
∇α0φN+1

=
1
i

∫
dΩ0

∫
d{αi} exp

[
i
N∑
i=0

αi ·Ωi

]( N∑
j=0

R(x0,xj)αj

)
φN+1

= −
∫

dΩ0

( N∑
j=0

R(x0,xj)∇Ωj

)
fN+1

=
N∑

i,j=1

R(x0,xi)R−1(xi,xj) Ωj fN . (A.7)

Next we check the limiting properties of this expression

lim
|x0−xk|→0

〈ω(x0)|Ω1, . . . ,ΩN 〉 =
N∑

i,j=1

R(xk,xi)R−1(xi,xj) Ωj

=
N∑

i,j=1

δkj Ωj = Ωk . (A.8)
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To get an explicit expression for the conditional averages, one has to invert R. When
only two points are considered, the situation is especially simple. Then we have

R =
〈ω2〉

3

(
E C(x1,x2)

C(x2,x1) E

)
. (A.9)

We now introduce the short-hand notation R(x1,x1) = R(0) = 〈ω2〉
3 E and R(x1,x2) =

〈ω2〉
3 C(x1,x2), defining how different entries of this matrix are accessed. The inverse of
R explicitly reads

R−1 =
3
〈ω2〉

[
E− C(x1,x2)2

]−1
(

E −C(x1,x2)
−C(x2,x1) E

)
. (A.10)

C(x1,x2) = C(x2 − x1) = C(r) represents the ordinary correlation matrix

Cij(r) = c⊥(r) δij + (c‖ − c⊥)(r)
rirj
r2

, (A.11)

i.e., c‖ and c⊥ represent the longitudinal and transversal correlation functions, respec-
tively. From this we get

(δij − CikCkj) = (1− c2
⊥)δij + (c2

⊥ − c2
‖)
rirj
r2

, (A.12)

which explicitly is inverted to

(δij − CikCkj)−1 =
1

1− c2
⊥
δij +

c2
‖ − c2

⊥

(1− c2
‖)(1− c2

⊥)
rirj
r2

, (A.13)

such that we have obtained an explicit expression of R−1(x1,x2) in terms of c‖ and c⊥.
This allows to explicitly compute the inverse matrices

R−1
ij (x1,x1) = R−1

ij (x2,x2) =
3
〈ω2〉

(
1

1− c2
⊥
δij +

c2
‖ − c2

⊥

(1− c2
‖)(1− c2

⊥)
rirj
r2

)
(A.14a)

R−1
ij (x1,x2) = R−1

ij (x2,x1) =
3
〈ω2〉

(
− c⊥

1− c2
⊥
δij −

(c‖ − c⊥)(1 + c‖c⊥)
(1− c2

‖)(1− c2
⊥)

rirj
r2

)
.

(A.14b)
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A.3. More Details on the Twisted Gaussian Approximation

A.3.1. Gaussian Contribution to the Single-Point Enstrophy
Statistics

The conditional rate-of-strain tensor in the Gaussian approximation has the general
structure〈

S1,ij

∣∣Ω1

〉
G

=
3

8π

∫
dr εikl

rkrj
r5

Clm(r)Ω1,m + (i↔ j)

=
3

8π

∫
dr εikl

rkrj
r5

(
c⊥(r) δlm − (c‖ − c⊥)(r)

rlrm
r2

)
Ω1,m + (i↔ j)

=
3

8π

∫
dr c⊥(r) εikl

rkrj
r5

Ω1,l + (i↔ j)

=
3

8π

∫
dr

c⊥(r)
r3

(
r̂ ×Ω1

)
i
r̂j + (i↔ j) . (A.15)

Multiplying this expression from both sides with Ω1 yields the conditional enstrophy
production, which vanishes:

〈
ω1S1ω1

∣∣Ω1

〉
G

=
3

4π

∫
dr

c⊥(r)
r3

Ω1 ·
(
r̂ ×Ω1

)︸ ︷︷ ︸
=0

(r̂ ·Ω1) (A.16)

A.3.2. Solenoidality of the Twisted Gaussian Approximation

For the contribution to the divergence of the conditional vorticity field we obtain〈∇x0 · ω(x0)
∣∣Ω1

〉
T

=
∂

∂ri
cT (r) r̂pΩ̂1,p εiklΩ̂1,kr̂l

= c′T r̂i r̂pΩ̂1,p εiklΩ̂1,kr̂l

+ cT

(
δip
r
− rirp

r2

)
Ω̂1,p εiklΩ̂1,kr̂l

+ cT r̂pΩ̂1,p εiklΩ̂1,k

(
δil
r
− rirl

r2

)
= 0 , (A.17)

showing that each term vanishes independently.
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A.3.3. Gaussian Contribution to the Two-Point Enstrophy Statistics

As discussed in chapter 9 the Gaussian contribution to the two-point enstrophy produc-
tion takes the form

〈ω1S1ω1|Ω1, Ω2〉G
=

3
4π

∫
dx0

Ω1 · r̂01

r3
01

Ω1 ·
[
r̂01 × (R(x0,x1)

[R−1(x1,x1) Ω1 +R−1(x1,x2) Ω2

]
+ R(x0,x2)

[R−1(x2,x1) Ω1 +R−1(x2,x2) Ω2

] )]
.

(A.18)

As an example, we want to evaluate the first integral explicitly, that means, we have to
evaluate

3
4π

∫
dx0

Ω1 · r̂01

r3
01

[
r̂01 ×R(x0,x1)R−1(x1,x1)Ω1

] ·Ω1 . (A.19)

Here the integrand takes the form[
r̂01 ×A(x0,x1,x2)Ω1

] ·Ω1 (A.20)

with

Aij(x0,x1,x2) = a(x0,x1,x2) δij + b(x0,x1,x2) r̂01,i r̂01,j

+ c(x0,x1,x2) r̂12,i r̂12,j + d(x0,x1,x2) (r̂12 · r̂01) r̂01,i r̂12,j , (A.21)

where the scalar functions a, b, c and d depend on the longitudinal and transversal
correlation functions at the different spatial points. It can be seen easily that the
integrals related to a, b and d vanish because of the structure of the integrand. The
scalar function c is evaluated yielding

c(x0,x1,x2) =
c2
‖(r12)− c2

⊥(r12)

(1− c2
‖(r12))(1− c2

⊥(r12))
c⊥(r01) . (A.22)

Hence the integral takes the form

c2
‖(r12)− c2

⊥(r12)

(1− c2
‖(r12))(1− c2

⊥(r12))
(Ω1 · r̂12) Ω1,i (Ω1 × r̂12)j

3
4π

∫
dx0

c⊥(r01)
r3

01

r̂01,ir̂01,j

=
c2
‖(r12)− c2

⊥(r12)

(1− c2
‖(r12))(1− c2

⊥(r12))
(Ω1 · r̂12) Ω1,i (Ω1 × r̂12)j 3δij

∫
dr01

c⊥(r01)
r01

= 0 , (A.23)

showing that this term already vanishes before projection. The remaining Gaussian
terms can be treated similarly, which we will not demonstrate here. They will in general,
however, not vanish identically.
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