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Abstract: The interplay of guest 
encapsulation and release mechanisms 
in nanoscale metal-organic vehicles and 
its effect on the drug delivery kinetics 
of these materials were investigated via 
a novel multidisciplinary approach. 
Two rationally-designed molecular 
guests were synthesised, which consist 
of a red-fluorescent benzophenoxazine 
dye convalently tethered to a 
coordinating catechol group and a 
protected, non-coordinating catechol 
moiety. This allowed loading of the 

guests into compositionally and 
structurally equivalent coordination 
polymer particles through distinct 
encapsulation mechanisms: 
coordination and mechanical 
entrapment. The two types of particles 
delivered their fluorescent cargo with 
remarkably different kinetic profiles, 
which could be satisfactorily modelled 
considering degradation- and diffusion-
controlled release processes. This 
demonstrates that careful selection of 
the method of guest incorporation into 

coordination polymer nanoparticles 
allows selective tuning of the rate of 
drug delivery from these materials and, 
therefore, of the time window of action 
of the encapsulated therapeutic agents. 
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Introduction 

Coordination polymer particles (CPPs) have recently emerged as a 

novel family of metal-organic materials formed by self-assembly of 

metal ions and polydentate bridging ligands. 1 , 2  Together with 

crystalline metal-organic frameworks (MOFs), CPPs have been 

proposed for a large variety of applications owing to the intrinsic 

versatility of coordination chemistry, which allows the properties of 

the final materials to be rationally tailored by proper choice of 

metals and ligands. 3  Of special interest is the use of CPPs in 

medicine, which is predicted to have a broad impact in the fields of 

bioimaging and drug delivery.4,5,6 Since the pioneering work from 

Mirkin and co-workers in 2005,1 an increasing number of reports 

have indeed described the successful application of nanoscale 

coordination polymer particles to encapsulate and release 

therapeutic agents.6 Nonetheless, the use of CPPs for drug delivery 

is in its fledgling stage. A detailed rationalisation of guest 

encapsulation and release mechanisms is still required to understand 

the drug delivery kinetics of most CPPs and, consequently, to fully 

assess their potential use as nanocarriers for therapeutic purposes. 

While these issues have already been subject of extensive debate for 

biodegradable organic polymer vehicles as drug delivery 

systems,7,8,9 little attention has so far been paid to them in the case 

of the emerging CPP-based materials.  

 Incorporation of the active molecules in coordination polymer 

nanoparticles usually proceeds via two distinct strategies: (1) 

binding of the drug to the polymer framework as a CPP building 

block10,11,12,13,14 and (2) mechanical entrapment of the therapeutic 

agent within the metal-organic matrix. 15 , 16 , 17  Accordingly, drug 

release can take place though different mechanisms, namely slow 

particle degradation via surface erosion, fast diffusion processes 

and/or a combination of both. This scenario can be even more 

intricate if undesired desorption from the particle surface occurs. As 

a result, complex drug delivery profiles are often encountered in 

CPPs that preclude unambiguous elucidation of the relationship 

between encapsulation and release mechanisms.5,16 

 To share more light into this issue, we have envisioned the 

fabrication of morphologically equivalent CPPs bearing a 

fluorescent guest that can be either coordinated to the polymer 

backbone (M1) or physically encapsulated within the particle (M2). 

[a] L. Amorín-Ferré, Dr. F. Busqué, Dr. J. L. Bourdelande, Dr. J. 
Hernando 
Departament de Química 
Universitat Autònoma de Barcelona 
Edifici C/n, Campus UAB 
Cerdanyola del Vallès, 08193(Spain) 
Fax: (+34) 935811265 
E-mail: jordi.hernando@uab.cat 

[b] Dr. D. Ruiz-Molina, Dr. F. Novio 
Institut Català de Nanociència i Nanotecnologia (ICN2) 
Edifici ICN2, Campus UAB  
Cerdanyola del Vallès, 08193(Spain) 
Fax: (+ 34) 937372648 
E-mail: fernando.novio@cin2.es 

[c] Dr. D. Ruiz-Molina, Dr. F. Novio 
Consejo Superior de Investigaciones Científicas (CSIC) 
Edificio ICN2, Campus UAB  
Cerdanyola del Vallès, 08193(Spain) 

 

 Supporting information for this article is available on the WWW under 

http://www.chemeurj.org/ or from the author. 



 2

These two materials therefore represent excellent benchmark 

systems to comparatively investigate degradation- and diffusion-

controlled drug release processes in CPPs. A schematic 

representation of this approach is shown in Fig. 1. The molecular 

guest of choice for these studies is a red-fluorescent 

benzophenoxazine dye convalently linked to a coordinating catechol 

group, both in its non-protected (1) and protected forms (2). On the 

other side, cobalt nanoparticles with general composition 

[Co(bix)(3,5-dbsq)(3,5-dbcat)] were used as carriers, where bix is a 

flexible bisimidazole bridging ligand and 3,5-dbsq and 3,5-dbcat 

stand for the semiquinonate radical and catecholate forms of the 3,5-

di-tert-butylcatechol.15,16, 18  Although analogous CPPs containing 

Zn2+ ions and bix ligands have already been reported and evaluated 

for drug delivery applications,15,16 the choice of [Co(bix)(3,5-

dbsq)(3,5-dbcat)] nanoparticles is justified by: (1) the high affinity 

of catechol groups to coordinate to cobalt ions, which provided us 

with a simple way to incorporate the fluorescent guest to the 

polymer backbone in M1 without modification of the coordination 

sphere; (2) the well-known optical properties of [Co(3,5-dbsq)(3,5-

dbcat)(N-N)] units, 19  which must result in efficient fluorescence 

quenching of compounds 1 and 2 while they remain in the interior of 

the nanoparticles and, therefore, allow for selective detection of the 

released guest molecules; and (3) the valence tautomerism exhibited 

by [Co(bix)(3,5-dbsq)(3,5-dbcat)] CPPs,18 which can be exploited to 

assess the morphological similarities between M1 and M2. 

 

 

Figure 1. Chemical structures of fluorescent guest compounds 1 and 2, with which M1 

and M2 coordination polymer particles were prepared to investigate degradation- and 

diffusion-controlled release from CPPs. 

Results and Discussion 

Synthesis and characterization of fluorescent guests 1 and 2. 

Scheme 1 shows the synthetic route followed to obtain 1 and 2. 

Briefly, the tert-butylation and subsequent allylic oxidation of 

commercial 2-methoxy-4-methylphenol gave known aldehyde 3 in 

97% yield, 20  which is a common intermediate for both target 

compounds. At this point, synthetic pathways diverged, either 

temporally protecting the hydroxyl groups of the catechol moiety as 

the corresponding methoxymethylethers, foresighting to obtain 

compound 1, or permanently derivatizating them as the methyl 

ethers found in compound 2. Thus, known intermediate 4a was 

obtained from 3 by sequential demethylation with BBr3, and 

protection of the corresponding catechol with 

methoxymethylbromide (90% overall yield).21  Methylation of the 

free hydroxyl of compound 3 gave previously described derivative 

4b (90%).22 

 

Scheme 1. Synthesis of fluorescent guests 1 and 2. (a) t-BuOH, H3PO4, 80 ºC, 10 h; (b) 

Br2, t-BuOH, rt, 4 h; (c) BBr3, CH2Cl2, rt, 3 h; (d) MOMCl, DIPEA, DMAP, CH2Cl2, 

reflux, 24 h; (e) Me2SO4, K2CO3, (n-Bu)4NI, DMF, rt, 15 h; (f) Ph3PCHCN, toluene, 

reflux, 18 h; (g) H2 (2 atm), Pd/C, EtOAc 18 h; (h) LiAlH4, anh THF, addition at 0 ºC, 

then rt, 15 h; (i) 3-(naphthalen-1-ylamino)propanoic acid, EDCI, DIPEA, CH2Cl2, rt, 18 

h; (j) N-ethyl-5-hydroxy-2-methyl-4-nitrosobenzenaminium chloride, HCl, MeOH, 

reflux, 2 h. 

Next synthetic steps are analogous for both target compounds. The 

Wittig reaction between aldehydes 4a and 4b and the stabilized 

phosphorane 2-(triphenylphosphoranylidene) acetonitrile afforded 

the corresponding olefins 5a (96% yield) and 5b (72% yield), as 

mixtures of Z- and E- isomers. Successive hydrogenation of the 

alkene moieties, at high pressure of H2 under Pd/C catalyst, and 

nitriles, with LiAlH4, furnished amines 7a and 7b in 61 and 51% 

overall yields for both reduction reactions, respectively. After this, 

troublesome formation of amides 8a (31% yield) and 8b (35% yield) 
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was achieved by reaction between amines 7a and 7b and 3-

(naphthalen-1-ylamino) propanoic acid, using 1-ethyl-3-(3-dimethyl 

aminopropyl) carbodiimide (EDCI) as coupling agent.23 Compounds 

1 and 2 were finally obtained by reaction between naphthylamines 

8a and 8b and N-ethyl-5-hydroxy-2-methyl-4-

nitrosobenzenaminium chloride in methanol, under acidic catalyst 

and reflux temperature (45% and 35% yield for 1 and 2, 

respectively).24  Importantly, this last step did not only allow the 

benzophenoxazine dye group of both fluorescent guests to be 

constructed, but also concomitant cleavage of the 

methoxymethylethers to eventually obtain compound 1. 

 Once synthesised, the optical properties of compounds 1 and 2 

were investigated in detail. Fig. 2 plots the absorption and 

fluorescence emission spectra of these species in methanol, which 

are mainly governed by the optical transitions corresponding to their 

benzophenoxazine dye unit. As a result, compounds 1 and 2 display 

equivalent absorption (λmax,1=625 nm, λmax,2=626 nm, 

εmax,1=εmax,2=4.8x104 M-1 cm-1) and emission bands (λmax,1=643 nm, 

λmax,2=645 nm), which resemble those reported for similar 

derivatives. 25  Importantly, covalent tethering of the 

benzophenoxazine unit to catechol and o-methoxyanisole groups in 

1 and 2 does not quench its inherent emissive behaviour, the 

resulting dyads thus presenting high fluorescence quantum yields 

(Φf,1=0.40, Φf,2=0.41). Together with their long-wavelength 

absorption and emission spectra, this makes compounds 1 and 2 

ideal fluorescent reporters to monitor guest release from CPPs as 

well as particle degradation. 

 

Figure 2. Absorption (solid lines) and fluorescence emission spectra (dashed lines) of 

fluorescent guests 1 (black) and 2 (red). 

Fabrication and characterization of M1 and M2 CPPs. Adapting 

an experimental procedure previously published by us,18 

coordination polymer particles M1 and M2 were prepared by 

reaction of Co2+ ions with the ditopic ligands 1,4-bis(imidazol-1-

ylmethyl)benzene and 3,5-di-tert-butylcatechol in the presence of 

guest compounds 1 and 2 (Fig. 3a). This led to the formation of 

[Co(bix)(3,5-dbsq)(3,5-dbcat)] polymers, which readily precipitated 

as nanoparticles due to their low solubility in the reaction medium. 

The resulting CPPs were subsequently collected by centrifugation, 

washed with 5:1 water:ethanol mixtures until no red fluorescence 

was observed in the supernatant solution, and finally dried. For 

comparison purposes, guest-free coordination polymer nanoparticles 

(M0) were also prepared using this methodology. Noticeably, very 

small amounts of compounds 1 and 2 were used in the preparation 

of materials M1 and M2 (catechol:guest molar ratio ~ 100:1). With 

such low doping loads we intended to minimize the effect of the 

fluorescent guests on the formation of the nanoparticles, which 

should allow us to unambiguously ascribe the differences observed 

in their release profiles to the occurrence of distinct guest 

incorporation and delivery mechanisms. 

 

Figure 3. (a) Schematic synthesis of CPPs doped with fluorescent guests 1 and 2. (b-c) 

SEM (left) and TEM (right) images of M1 (b) and M2 (c) particles. Scale bars for SEM 

are 1 µm and for TEM are 200 nm. 

 Formation of morphologically equivalent CPPs was indeed 

revealed by scanning (SEM) and transmission (TEM) electron 

microscopy images (Fig. 3b-c and see also Fig. S1 in the Supporting 

Information). In all cases nanometer-sized solid particles with 

spherical shapes and rather uniform and similar diameters (195 ± 38, 

152 ± 22 and 185 ± 37 nm for M0, M1 and M2, respectively) were 

obtained. X-ray diffraction experiments confirmed the amorphous 

character of these materials, while spectroscopic characterisation 

upon dissolution of the nanoparticles in degassed methanol revealed 

the occurrence of different electronic absorption bands arising from 

their constituent functional units (Fig. 4a). Thus, an absorption band 

at λ∼625 nm was selectively found in the spectra of M1 and M2, 

which corresponds to the fluorescent benzophenoxazine moiety 

loaded in these materials. On the contrary, the other absorption 

bands at λ∼400, 590 and 700 nm were not only encountered in the 

spectra of M1 and M2, but also observed for guest-free M0. These 

can be ascribed to intraligand and metal-to-ligand/ligand-to-metal 
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charge transfer electronic transitions of the [Co(bix)(3,5-dbsq)(3,5-

dbcat)] system.26 Noticeably, these absorption bands corresponding 

to the coordination complex units expand all over the UV, vis and 

NIR regions, and therefore they overlap with the emission spectrum 

of the benzophenoxazine dye (see Fig. 2a). Consequently, efficient 

quenching of dye fluorescence via resonant energy transfer 

processes is expected in the interior of the nanoparticles, where 

these moieties will be located at the near proximity of coordination 

complex units regardless of whether they are directly coordinated to 

the metal centre or physically encapsulated within the polymer 

network. Indeed, no red fluorescence could be measured for M1 and 

M2 particles in the solid state, which confirms effective quenching 

of the emission of the loaded guests (Fig. 4b). 

 

Figure 4. (a) Absorption spectra of M0 (green), M1 (black) and M2 (red) in degassed 

MeOH. (b) Fluorescence emission spectra recorded in degassed MeOH (dashed lines) 

and non-degassed MeOH (solid lines) of M1 (black) and M2 (red). 

Fluorescence quenching is however inhibited upon guest release 

and CPP degradation, which allowed us to monitor the delivery of 

the particle cargo by means of highly sensitive emission 

measurements (vide infra). This was demonstrated by measuring the 

optical properties of M0, M1 and M2 in non-degassed methanol, 

where particle dissolution is followed by coordination polymer 

degradation via ligand exchange and concomitant oxidation of the 

catecholate and semiquinone groups. This leads to disappearance of 

the absorption bands associated to the [Co(bix)(3,5-dbsq)(3,5-

dbcat)] coordination polymers as well as pronounced growth of the 

band at λ∼400 nm corresponding to the quinone species resulting 

from catecholate and semiquinone degradation (see Fig. S2 in the 

Supporting Information). 27  Accordingly, no energy transfer 

processes are expected under such conditions and an enormous 

increase in benzophenoxazine emission was indeed measured (Fig. 

4b). The absorption measurements in non-degassed methanol were 

also used to quantify the encapsulation efficiencies for the 

preparation of dye-doped M1 and M2 particles. Interestingly, higher 

values were obtained for M1 (∼20%) than for M2 (∼10%) under 

equivalent experimental conditions, which indicates that 

incorporation of the fluorescent guest bearing a coordinating 

catechol moiety is significantly more effective.  

Valence tautomerism of M1 and M2 CPPs. The amorphous nature 

of M1 and M2 nanoparticles precludes any accurate structural 

characterisation by classical diffraction techniques. Nevertheless, we 

exploited the valence tautomerism (VT) behaviour shown by 

[Co(bix)(3,5-dbsq)(3,5-dbcat)] CPPs18,19 to investigate the structural 

similarities between M1 and M2. These systems might interconvert 

reversibly between the low-spin ls-[CoIII(bix)(3,5-dbsq)(3,5-dbcat)] 

and high-spin hs-[CoII(bix)(3,5-dbsq)2] tautomers by intramolecular 

metal-ligand electron transfer, a process that can be selectively 

monitored by temperature dependent measurements of magnetic 

susceptibility.  

Fig. 5 plots the results obtained in those measurements for M0, 

M1 and M2. In all cases, an abrupt change in effective magnetic 

moment (µeff) is observed around 300 K, which is consistent with 

valence-tautomeric interconversion from low- to high-spin states for 

a large fraction of molecules in the nanoparticles.18 Importantly, the 

occurrence of valence tautomerism and the actual profile of the 

corresponding µeff vs T plot is not only highly sensitive to metal 

complex composition and structure, but also to the local 

environment.19 In other words, the same complex may exhibit or not 

VT, or the low-spin-to-high-spin conversion might take place at 

different temperatures depending on structural and environmental 

parameters. Therefore, the extremely similar magnetic behaviour 

encountered for M0, M1 and M2 clearly indicates that they must be 

formed by equivalent coordination polymers in rather comparable 

phases. 

  

Figure 5. µeff values as function of temperature for M0 (green), M1 (black) and M2 

(red) CPPs. 

Guest release mechanisms. To investigate guest release from M1 

and M2, colloidal suspensions were prepared in phosphate buffered 

saline solutions (PBS) at pH=7.4, placed in a dialysis bag (cut-off 

molecular weight: 3500 Da) at 37ºC, and finally dialysed against 

PBS for 100 hours. Relative cumulative release profiles were then 
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measured by monitoring the fluorescence of the dialysis bath 

solution in time. In addition, the solid material remaining in the 

dialysis bag after 100 hours was dissolved in methanol and 

characterised by absorption spectroscopy, which allowed us to 

determine the absolute release efficiency of the dialysis experiment. 

Fig. 6 plots the cumulative release profiles measured for M1 and 

M2 under these experimental conditions. Both exhibit very high 

release efficiencies after 100 hours (~90%) with no “burst effects” 

associated to undesired desorption of guest molecules physisorbed 

onto the nanoparticle surface. However, the release kinetics 

measured for these materials were found to be strikingly different. 

In the case of M2, the delivery process was nearly completed after 8 

h (t1/2 ~1.2 h), a behaviour resembling that already reported for the 

release of anticancer drugs mechanically entrapped in analogue 

[Zn(bix)] CPPs.16 In contrast, a much slower process was observed 

for M1, which required about 100 h for completion (t1/2 ~11 h). 

 

Figure 6. Guest release profiles of fluorescent guest molecules from M1 (black) and M2 

(red) at 37 ºC, which were averaged over 4 independent experiments. Solid lines 

correspond to fits of the experimental data as described in the text. 

 On the basis of the non-coordinating nature of the encapsulated 

guest, the release profile of M2 at 37ºC was fitted with a purely 

diffusion-controlled model of drug delivery. In particular, we 

considered the use of equation (1), which was derived for drug 

delivery via Fickian diffusion from spherical particles with 

homogenous and low-doping loads that do not significantly swell or 

degrade during the release process:28 
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In this equation, Mt and M∞ represent the cumulative absolute 

amounts of guest released at time t and infinity, R is the radius of the 

particles and D is the apparent diffusion constant of the drug within 

the system. D is the only variable parameter in this model, which is 

taken to remain constant throughout the release process by 

neglecting swelling and degradation effects on the structure of the 

polymeric drug carrier. 

 As observed in Fig. 6, a rather satisfactory fit of the experimental 

release kinetics of M2 was obtained using equation (1). Therefore, 

the delivery of the mechanically-entrapped fluorescent guest must 

be governed by a time-independent diffusion mechanism (D = 

6.9x10-19 m2 s-1), which indicates that the influence of degradation 

processes on the release kinetics is negligible in this case even 

though it takes place. This is proven by Fig. 7, which displays SEM 

images of M2 nanoparticles suspended in aqueous media at 37ºC for 

0, 5, 26 and 100 h. While most particles preserved their spherical 

shape after 5 h, extensive surface erosion and an increasing amount 

of non-structured material is observed in the SEM images registered 

at 26 and 100 h. This confirms CPP degradation, which however 

takes place at a longer time scale than guest diffusion from the 

nanoparticles at 37ºC. This is in contrast with other systems for 

which clearly different delivery phases are observed that are 

ascribed to the occurrence of sequential fast diffusion and slow 

degradation processes.7-9 

 

Figure 7. SEM images of M2 CPPs suspended at 37 ºC in aqueous media for (a) 0 h, (b) 

5 h, (c) 26 h and (d) 100 h. Scale bars are 500 nm. 

 The release profile obtained for M1 at 37ºC was also tentatively 

fitted with single-mechanism models, which in this case should 

solely account for degradation-controlled delivery. However, poor 

agreement between the experimental and fitted release profiles was 

obtained regardless of using surface-degradation 29  or bulk-

degradation30 models of drug delivery. This suggests the occurrence 

of a more complex release process, which we attempted to model by 

assuming simultaneous delivery via degradation and diffusion 

processes. In this scenario, degradation-controlled release should 

apply for all guest molecules coordinated to the polymeric 

backbone, while those that remain unbound but physically entrapped 

within the metal-organic matrix should be preferentially delivered 

by fast diffusion processes. Based on the previous results obtained 

for M2 and analogue [Zn(bix)] CPPs,16 equation (2) was derived to 

account for such situation: 

( ) ( ) (2)                
 1

11 1                  

  exp
16

1 

3

0

1
2

22

22


































−
−−−+
































−−= ∑

∞

=
∞

RCb

tk
b

R

tDn

n
bMM

d

n

t

π
π

 

The first term in this equation corresponds to the Fickian 

diffusion model already applied to M2, where b is the fraction of 

guest molecules that lie mechanically entrapped within M1 particles. 

As previously discussed, this model assumes that the diffusion-

controlled release of guest molecules takes place before significant 

degradation of the polymer matrix occurs, which allows the particle 
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radius and the apparent guest diffusion constant to be considered 

time independent. This assumption is not only supported by the 

behaviour observed for M2, but also by the similar results obtained 

when monitoring the degradation process of M1 nanoparticles at 

37ºC in water media using SEM (see Fig. S3 in the Supporting 

Information). The second term in equation (2) corresponds to an 

empirical model that has been developed for degradation-controlled 

drug delivery from spherical particles via surface erosion,29 which is 

indeed the degradation mechanism reported for analogue [Zn(bix)] 

CPPs at physiological conditions.16 In this expression (1-b) is the 

fraction of guest molecules coordinated to the metal centres in M1, 

kd is the surface erosion rate constant, C0 is the total initial 

concentration of the guest in the polymer matrix (7.2x10-4 % (w/w)) 

and R is the initial radius of the nanoparticles. 

 To fit equation (2) to the guest release profile measured for M1 at 

37ºC, only two variable parameters were considered: b and kd. To 

test the consistency of our model, D was directly taken from the 

previous fit of M2 delivery kinetics, a rather plausible constraint 

based on the very similar structures of the guest compounds and 

coordination polymer particles investigated in this work. As 

observed in Fig. 6, a good agreement was encountered between the 

experimental and fitted release profiles of M1 even under such 

assumption, which proves the validity of our treatment (b = 0.26, kd 

/(C0 R)= 1.7x10-6 s-1). From this we conclude that most guest 

molecules in M1 nanoparticles (74%) are directly bound to the 

polymer matrix, which are therefore released by slow degradation of 

the material. Nevertheless, a significant fraction of them (26%) are 

not coordinated to cobalt ions despite presenting free catechol 

groups, but they were physically encapsulated during the formation 

of the particles. Accordingly, they are delivered via a fast time-

independent diffusion mechanism similar to that encountered for 

M2 CPPs. 

 Additional guest release experiments were performed at 60ºC 

aiming at investigating the temperature dependence of the delivery 

processes in these materials (see Fig. S4 in the Supporting 

Information). In deep contrast to what had been observed at 37ºC, 

no significant differences were found between the release profiles 

measured for M1 and M2 at this temperature. In both cases, 

complete delivery of the fluorescence guests is observed at ∼5 h, 

revealing the occurrence of much faster release processes. This 

suggests that degradation kinetics enormously accelerates at 60ºC, 

which must become at least comparable to guest diffusion rates. As 

a matter of fact, we expect the release profiles of M1 and M2 CPPs 

at these conditions to be mainly governed by degradation processes, 

which indicates that both the guest delivery kinetics and 

mechanisms of these materials can be dramatically altered by 

temperature control. 

Conclusion 

In this work we report a novel rational approach to investigate the 

relationship between guest encapsulation and release mechanisms 

for metal-organic nanoparticles. By proper design of the guest 

compounds and particle formation conditions, two types of 

coordination polymer particles were prepared that (1) are 

compositionally and structurally equivalent, and (2) were loaded 

with the same fluorescent guests using different encapsulation 

processes. As a result, the release of their fluorescent cargo at 

physiological conditions proceeds via distinct mechanisms that 

converge upon increasing the temperature. Physically encapsulated 

guest molecules are delivered by fast time-independent diffusion 

processes, while the release of coordinated guest moieties is 

governed by slow particle degradation. This leads to remarkably 

different guest release profiles for the CPPs prepared, which 

demonstrates that the kinetics of drug delivery can be selectively 

tuned up to many hours by appropriate choice of the mechanism of 

incorporation of the therapeutic agent into the polymeric nanocarrier. 

This results open new venues for the future use of CPPs in medicine. 

Experimental Section 

Materials and characterisation: All reactants and reagents were purchased from 

Sigma-Aldrich and used as received. Solvents were purchased from Scharlab and used 

as received. Dialysis bags were purchased from Orange Scientific.Infrared spectra were 

recorded on a Bruker Tensor 27 spectrometer equipped with a Golden Gate Single 

Reflection Diamond ATR (Attenuated Total Reflectance) accessory. High resolution 

mass analyses were performed on an ESI-QTOF Bruker Daltonics micrOTOF-Q 

spectrometer. NMR spectra were recorded on a Bruker ARX 400 (400 MHz for 1H 

NMR and 100 MHz for 13C NMR). The spectra are given in δ (ppm) using the signal of 

the residual non-deuterated solvent molecules as reference. Absorption spectra were 

recorded on a Hewlett Packard 8453 spectrophotometer. HPLC or spectroscopy quality 

solvents were used. Emission spectra were measured by means of a custom-made 

spectrofluorimeter, where a cw He-Ne REO laser (λexc = 594 nm) was used as excitation 

source and the emitted photons were detected in an Andor ICCD camera coupled to a 

spectrograph. HPLC or spectroscopy quality solvents were used. Fluorescence quantum 

yields were determined using Nile Blue A in ethanol solution as reference (Φf =0.27).31 

SEM measurements were registered on a HITACHI S-570 microscope (accelerating 

voltage 0.5–30 kV). TEM measurements were carried out on a HITACHI-7000 

microscope operating at 125 kV. 

Synthesis of compound 4a: This compound was prepared according to ref. [21] with 

some modifications. Demethylation: To a solution of 3 (0.845 g, 4 mmol) in CH2Cl2 (30 

mL) cooled down in a liquid nitrogen bath, 4 mL of 1 M solution of BBr3 in CH2Cl2 

were added dropwise. Next, the reaction was allowed to proceed at room temperature 

for 2 h. The reaction mixture was poured in 40 ml distilled water and the resulting 

aqueous layer was extracted twice with CH2Cl2 (30 mL). The organic extracts were 

dried with MgSO4 and the solvent evaporated under vacuum to afford the demethylated 

compound as a yellowish solid (0.698 g, 90 %). This compound was used in the next 

step without further purification. Protection of the catechol: To a solution of this 

intermediate (0.492 g, 2.54 mmol) in CH2Cl2 (8 mL) cooled down in a water bath, the 

following compounds were added dropwise: DIPEA (2.7 mL, 15.5 mmol), DMAP (30 

mg, 0.22 mmol) and methoxymethyl bromide (0.65 mL, 8.02 mmol). The solution was 

heated under reflux for 8 h. The reaction mixture was treated with water (15 mL) and 

the resulting aqueous layer was extracted twice with CH2Cl2 (15 mL). The organic 

extracts were dried with MgSO4 and the solvent evaporated under vacuum. Crude was 

purified by flash chromatography using hexanes and ethyl acetate (4:1, v/v) to afford 4a 

(0.716 g, 100 %) as a yellowish oil. 1H RMN (400 MHz, CDCl3): δ  = 9.87 (s, 1H), 7.55 

(s, 2H), 5.31 (s, 2H), 5.23 (s, 2H), 3.66 (s, 3H), 3.52 (s, 3H), 1.45 ppm (s, 9H). 13C 

RMN (100 MHz, CDCl3): δ = 191.5, 151.9, 150.4, 144.0, 131.5, 123.8, 114.5, 99.4, 

95.4, 57.9, 56.6, 35.4, 30.3 ppm. IR (ATR): ν = 3076.2, 2953.3, 2905.4, 2826.8, 1690.1, 

1578.5 cm-1. HRMS (ESI-QTOF): m/z calcd for C15H22NaO5: 305.1359; found: 

305.1356.  

Synthesis of 4b: This compound was prepared according to ref. [22] with some 

modifications. To a solution of 3 (3.5 g, 16.8 mmol) in DMF (100 mL), K2CO3 (6.95 g, 

50.4 mmol) and N,N,N-tributyl-1-butanaminium iodide (270 mg, 0.73 mmol) were 

added. The reaction mixture was stirred for 2 h at room temperature. After this time, 

Me2SO4 (3.2 mL, 33.6 mmol) was added dropwise and the mixture was allowed to react 

for 16 h. The resulting mixture was treated with water (100 mL) and the aqueous layer 

was extracted four times with EtOAc (50 mL). The organic extracts were dried with 

MgSO4 and the solvent evaporated under vacuum to afford 4b (3.36 g, 90 %) as a dark 

green oil. 1H RMN (400 MHz, CDCl3): δ  = 9.91 (s, 1H), 7.48 (d, J = 1.9 Hz, 1H), 7.38 

(d, J = 1.9 Hz, 1H), 3.97 (s, 3H), 3.94 (s, 3H), 1.44 ppm (s, 9H). 

Synthesis of 5a. To a solution of 4a (1.559 g, 5.53 mmol) in toluene (45 mL), 

(triphenylphosphoranylidene)acetonitrile (2.070 g, 6.87 mmol) was added. The reaction 

mixture was heated under reflux for 12h, after which the solvent was evaporated under 

vacuum and the residue was purified by flash chromatography using hexanes and ethyl 

acetate (6:1, v/v) to afford a mixture of (E)- and (Z)-5a (1.621 g, 96 %) as a brown oil 

with a diastereomeric ratio of 2.3:1. 1H RMN (400 MHz, CDCl3): δ  = 7.57 (d, J = 2.2 

Hz, 1H), 7.47 (d, J = 2.2 Hz, 1H), 7.32 (d, J = 16.6 Hz, 1H), 7.16 (d, J = 2.2 Hz, 1H), 

7.06 (d, J = 2.2 Hz, 1H), 7.03 (d, J = 12.0 Hz, 1H), 5.75 (d, J = 16.6 Hz, 1H), 5.34 (d, J 

= 12.0 Hz, 1H), 5.26 (s, 2H), 5.24 (s, 2H), 5.21 (s, 2H), 5.19 (s, 2H), 3.66 (s, 3H), 3.65 

(s, 3H), 3.53 (s, 3H), 3.51 (s, 3H), 1.43 (s, 9H), 1.41 ppm (s, 9H). 13C RMN (100 MHz, 

CDCl3): δ  = 150.7, 150.5, 150.0 148.9, 148.7, 148.6, 143.9, 143.8, 128.6, 128.5, 122.5, 

121.0, 118.6, 117.9, 115.0 , 112.5, 99.3, 99.3, 95.5, 95.4, 94.8, 93.4, 57.9, 57.9, 56.5, 

56.6, 35.5, 35.3, 30.4, 30.3 ppm. IR (ATR): ν = 3371.2, 2953.8, 2213.6, 1615.5, 1428.9 

cm-1. HRMS (ESI-QTOF): m/z calcd for C15H22NaO5: 328.1519; found: 328.1519. 
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Synthesis of 5b. Synthesised from 4b using the same procedure as for 5a. Yield = 72 % 

with a diastereomeric (E):(Z) ratio of 4.8:1. 1H RMN (400 MHz, CDCl3): δ  = 7.53 (d, J 

= 2.1 Hz, 1H), 7.34 (d, J = 16.5 Hz, 1H), 7.23 (d, J = 2.1 Hz, 1H), 7.05 (d, J = 12.1 Hz, 

1H), 7.00 (d, J = 2.0 Hz, 1H), 6.88 (d, J = 2.0 Hz, 1H), 5.75 (d, J = 16.5 Hz, 1H, 4.39 (d, 

J = 12.1 Hz, 1H), 3.92 (s, 3H), 3.92 (s, 3H), 3.90 (s, 3H), 3.88 (s, 3H), 1.39 (s, 9H), 1.37 

ppm (s, 9H). 13C NMR (100 MHz, CDCl3) δ  = 153.7, 153.4, 151.7, 151.2, 151.0, 149.2, 

144.1, 143.7, 128.5, 128.4, 122.0, 119.9, 119.8, 118.6, 110.2, 108.6, 94.5, 92.9, 60.7, 

60.7, 56.0, 56.0, 35.3, 35.3, 30.4, 30.4 ppm. IR (ATR): ν = 2952.0, 2213.3, 1615.6, 

1571.5, 1415.0, 1142.9, 1067.0, 1023.7 cm-1. HRMS (ESI-QTOF): m/z calcd for 

C15H19NaNO2: 268.1308, found: 268.1309. 

Synthesis of 6a. A mixture of (E)- and (Z)-5a (1.442 g, 4.8 mmol) and 10% Pd/C (5:1, 

substrate/catalyst) in ethyl acetate (16 mL) was stirred at room temperature under 

hydrogen atmosphere for 24 h. Next, Pd/C was filtered off and the solvent was removed 

in vacuo. The residue was purified by flash chromatography using hexanes and ethyl 

acetate (3:1, v/v) to afford 6a (1.003 g, 68 %) as a brown oil. 1H RMN (400 MHz, 

CDCl3): δ  = 6.90 (d, J  = 2.1 Hz, 1H), 6.84 (d, J  = 2.1 Hz, 1H), 5.18 (s, 2H), 5.16 (s, 

2H), 3.64 (s, 3H), 3.51 (s, 3H), 2.88 (t, J  = 7.4 Hz, 2H), 2.58 (t, J = 7.4 Hz, 2H), 1.41 

ppm (s, 9H). 13C RMN (100 MHz, CDCl3): δ 150.6, 145.0, 143.9, 133.0, 120.6, 119.2, 

114.7, 99.1, 95.6, 57.6, 56.4 , 35.3, 31.7, 30.6, 19.6 ppm. IR (ATR): ν = 2952.2, 2904.6, 

2826.2, 2374.0, 1602.7, 1433.6, 1154.6, 936.8 cm-1. HRMS (ESI-QTOF): m/z calcd for 

C17H25NaNO4: 330.1376; found: 330.1375. 

Synthesis of 6b. Synthesised from 5b using the same procedure as for 6a. Yield = 67 %. 
1H RMN (400 MHz, CDCl3): δ  = 6.74 (d, J  = 2.1 Hz, 1H), 6.69 (d, J = 2.1 Hz, 1H), 

3.86 (s, 6H), 2.90 (t, J = 7.4 Hz, 2H), 2.60 (t, J = 7.4 Hz, 2H), 1.37 ppm (s, 9H). 13C 

RMN (100 MHz, CDCl3): δ  = 171.5, 153.7, 148.0, 144.0, 133.0, 119.7, 119.0, 111.0, 

60.8, 56.0, 35.0, 32.2, 30.9 ppm. IR (ATR): ν = 2951.4, 2866.4, 2831.8, 2245.0, 1688.2, 

1580.1, 1421.9, 1346.7, 1260.0, 1067.6, 1006.1 cm-1. HRMS (ESI-QTOF): m/z calcd for 

C15H21NaNO2: 270.1465; found: 270.1465.  

Synthesis of 7a. To a suspension of LiAlH4 (298 mg, 7.9 mmol) in anhydrous Et2O (2 

mL) cooled down in a water bath, a solution of 6a (695 mg, 2.2 mmol) in anhydrous 

Et2O (2 mL) was added dropwise. Next, the reaction mixture was stirred at room 

temperature for 14h under inert atmosphere. The reaction mixture was cooled down to 0 

ºC and quenched with NaOH 1M (15 mL). The resulting aqueous layer was extracted 

with Et2O (15 mL) and CHCl3 (15 mL). The combined organic extracts were dried with 

MgSO4 and the solvent removed in vacuo to afford 7a (627 mg, 89 %) as a yellowish oil. 

This product was used without further purification. 1H RMN (400 MHz, CDCl3): δ  = 

6.85 (d, J  = 2.0 Hz, 1H), 6.80 (d, J  = 2.0 Hz, 1H), 5.17 (s, 2H), 5.16 (s, 2H), 3.64 (s, 

3H), 3.50 (s, 3H), 2.73 (t, J = 7.6 Hz, 2H), 2.58 (t, J = 7.6 Hz, 2H), 1.74 (qt, J = 7.6 Hz, 

2H), 1.40 ppm (s, 9H). 13C RMN (100 MHz, CDCl3): δ  = 150.2, 143.9, 143.3, 137.2, 

120.6, 114.7, 99.1, 95.5, 57.6, 56.4, 42.1, 35.7, 35.2, 33.4, 30.7 ppm. IR (ATR): ν = 

3362.8, 2949.4, 1578.6, 1431.9, 1076.7, 961.7 cm-1. HRMS (ESI-QTOF): m/z calcd for 

C17H29NNaO4: 334.1989; found: 334.1979. 

Synthesis of 7b. Synthesised from 6b using the same procedure as for 7a. Yield = 76 %. 
1H RMN (400 MHz, MeOD-d4): δ  = 6.74 (d, J  = 2.0 Hz, 2H), 3.82 (s, 3H), 3.80 (s, 3H), 

2.70 (t, J = 7.5 Hz, 2H), 2.58 (t, J = 7.5 Hz, 2H), 1.79 (qt, J = 7.5 Hz, 2H), 1.34 ppm (s, 

9H). 13C RMN (100 MHz, MeOD-d4): δ  = 153.5, 146.9, 142.7, 136.8, 118.7, 111.3, 

59.8, 55.3, 40.8, 34.8, 33.9, 33.3, 30.2 ppm. IR (ATR): ν = 3452.3, 2936.2, 1578.1, 

1421.9, 1321.1, 1262.1, 1144.8, 1066.5, 1008.1 cm-1. HRMS (ESI-QTOF): m/z calcd for 

C15H25NNaO2: 252.1958; found: 252.1963. 

Synthesis of 8a. To a solution of 3-(naphthalen-1-ylamino)propanoic acid (646 mg, 3 

mmol), HOBt (589 mg, 4.3 mmol), EDCI (760 mg, 3.9 mmol) and DIPEA (1.6 mL, 9.1 

mmol) in 20 mL of anhydrous CH2Cl2, a solution of 7a (956 mg, 3 mmol) in 10 mL of 

anhydrous CH2Cl2 was added. The reaction mixture was stirred at room temperature for 

17h. Then, it was washed twice with a solution of saturated NaHCO3 (10 mL) and once 

with a solution of saturated NaCl (10 mL). The organic layer was dried with MgSO4 and 

solvent was evaporated under vacuum. Crude was purified by flash chromatography 

using hexanes and ethyl acetate (1:1, v/v) to afford 8a (482 mg, 31 %) as a brown oil. 
1H RMN (400 MHz, CDCl3): δ = 7.81 (d, J = 8.1 Hz, 1H), 7.74 (d, J = 7.6 Hz, 1H), 

7.38 – 7.23 (m, 4H), 6.79 (d, J = 1.9 Hz, 1H), 6.4 (d, J = 1.9 Hz, 1H), 6.58 (d, J = 7.6 

Hz, 1H), 6.04 (s, 1H), 5.16 (s, 2H), 5.11 (s, 2H), 3.63 (s, 3H), 3.54 (t, J = 6.02 Hz, 2H), 

3.46 (s, 3H), 3.24 (dd, J = 13.1 Hz, J = 6.7 Hz, 2H), 2.50 (m, 4H), 1.73 (qt, J = 7.6 Hz, 

2H), 1.39 ppm (s, 9H). 13C RMN (100 MHz, CDCl3): δ 171.9, 150.1, 143.4, 143.1, 

136.23, 134.4, 128.6, 126.5, 125.9, 124.9, 123.9, 120.4, 117.8, 114.5, 104.5, 99.0, 95.4, 

57.6, 56.4, 40.4, 39.3, 35.3, 35.2, 33.3, 31.2, 30.7 ppm. IR (ATR): ν = 3304.4, 2949.4, 

1638.2, 1580.4, 1526.7, 1199.4, 1035.5, 961.9 cm-1. HRMS (ESI-QTOF): m/z calcd for 

C30H40N2NaO5: 531.2829; found: 531.2834.  

Synthesis of 8b: Synthesised from 7b using the same procedure as for 8a. Yield = 35 %. 
1H RMN (400 MHz, MeOD-d4): δ = 7.93 (d, J = 8.1 Hz, 1H), 7.69 (d, J = 7.9 Hz, 1H), 

7.41 – 7.23 (m, 3H), 7.14 (d, J = 8.1 Hz, 1H), 6.69 (d, J = 2.9 Hz, 1H), 6.69 (s, J = 2.9 

Hz, 1H), 6.65 (s, 1 H), 6.60 (d, J = 4.3 Hz, 2H), 3.76 (s, 3H), 3.69 (s, 3H), 3.54 (t, J = 

6.60 Hz, 2H), 3.17 (t, J = 7.00 Hz, 3H), 2.59 (t, J = 6.60 Hz, 2H), 2.53 – 2.45 (m, 4H), 

1.73 (qt, J = 7.6 Hz, 2H), 1.31 ppm (s, 9H). 13C RMN (101 MHz, MeOD-d4): δ 174.6, 

154.3, 147.7, 144.7, 143.5, 137.6, 135.8, 129.3, 127.6, 126.6, 125.4, 125.1, 121.7, 119.5, 

118.1, 112.1, 105.1, 60.7, 56.1, 41.6, 40.0, 36.3, 35.8, 34.2, 32.3, 31.1 ppm. IR (ATR): 

ν = 2919.5, 2478.6, 2065.58, 1627.1, 1577.7, 1450.4, 1420.8, 1143.8, 1067.9 cm-1. 

HRMS (ESI-QTOF): m/z calcd for C28H36N2NaO3: 449.2799; found: 449.2804.  

Synthesis of 1. To a solution of N-ethyl-5-hydroxy-2-methyl-4-nitrosobenzenaminium 

chloride (72 mg, 0.4 mmol) in 1 mL of MeOH cooled down in a water bath and under 

inert atmosphere, a solution of 8a (170 mg, 0.33 mmol) in 1 mL of degassed MeOH and 

a 3 droplets of HCl 35 % were added. This mixture was heated under reflux for 1.5 h. 

Then it was cold down to room temperature and CH2Cl2 (5 mL) and a mixture of 

saturated NaCl (2 mL) and 3 droplets of HCl 35 % were added. The resulting organic 

layer was washed twice with saturated NaHCO3 (3 mL) and once with saturated NaCl (3 

mL). Next, it was dried with MgSO4 and solvent was removed in vacuo. Crude was 

purified by flash chromatography using CH2Cl2 and MeOH (10:1, v/v) to afford 1 (87 

mg, 45 %) as a bluish-violet solid. 1H RMN (400 MHz, MeOD-d4): δ = 8.73 (d, J = 8.1 

Hz, 1H), 8.22 (d, J = 8.1 Hz, 1H), 7.82 (t, J = 7.5 Hz, 1H), 7.71 (t, J = 7.5 Hz, 1H), 

7.51 (s, 1H), 6.90 (s, 1H), 6.70 (s, 1H), 6.40 (s, 1H), 6.38 (s, 1H), 3.95 (t, J = 6.2 Hz, 

2H), 3.49 (q, J = 7.2 Hz, 3H), 3.21 (m , 2H), 2.75 (t, J = 6.2 Hz, 2H), 2.35 (m, 2H), 2.29 

(s, 3H), 1.67 (qt, J = 7.2 Hz, 2H), 1.46 ppm (s, 9H). 13C RMN (100 MHz, MeOD-d4): δ 

= 172.9 158.2, 156.9, 152.5, 149.3, 145.7, 143.3, 136.8, 133.9, 132.9, 132.6, 132.5, 

132.4, 132.3, 130.7, 129.0, 125.5, 124.5, 123.6, 118.2, 113.5, 94.5, 94.1, 41.9, 40.3, 

39.8, 35.8, 34.0, 32.5, 30.1, 17.8, 14.2 ppm. IR (ATR): ν = 3213.7, 3076.2, 2921.8, 

2852.5, 1640.1, 1587.6, 1540.9, 1433.8, 1307.7, 1160.8 cm-1. HRMS (ESI-QTOF): m/z 

calcd for C35H41N4O4
+: 581.3122; found: 581.3124. 

Synthesis of 2. Synthesised from 8b using the same procedure as for 1. Yield = 35 %. 
1H RMN (250 MHz, MeOD-d4): δ 8.70 (d, J = 8.1 Hz, 1H), 8.20 (d, J = 8.1 Hz, 1H), 

7.81 (t, J = 7.6 Hz, 1H), 7.70 (t, J = 7.6 Hz, 1H), 7.48 (s, 1H), 6.91 (s, 1H), 6.70 (s, 1H), 

6.51 (s, 1H), 6.49 (s, 1H), 4.56 (s, 2H), 3.97 (t, J = 5.9 Hz, 2H), 3.74 (s , 3H), 3.70 (s , 

3H), 3.49 (q, J = 6.2 Hz, 2H), 3.22 (t, 2H, J = 6.8 Hz, 2H), 2.77 (t, J = 5.9 Hz, 2H), 

2.39 (t, J= 6.8 Hz, 2H), 2.28 (s, 3H), 1.68 (qt, J = 6.8 Hz, 2H), 1.43 – 1.23 ppm (m, 

12H). 13C RMN (63 MHz, MeOD-d4): δ 173.0, 158.2, 156.8, 154.3, 152.5, 149.2, 147.8, 

143.6, 140.2, 137.4, 133.9, 132.9, 132.6, 132.2, 130.7, 129.0, 125.5, 124.5, 123.6, 119.4, 

114.7, 112.1, 94.5, 60.7, 56.2, 41.9, 40.2, 39.8, 35.7, 34.9, 34.2, 33.0, 32.4, 31.9, 31.1 

ppm. IR (ATR): ν = 2920.8, 2851.6, 1640.4, 1588.12, 1541.4, 1451.0, 1310.0, 1160.9, 

1133.6, 1006.6 cm-1. HRMS (ESI-QTOF): m/z calcd for C37H44N4NaO4: 609.3435; 

found: 609.3435.  

Synthesis of M0. To a solution of di-tert-buthylcathecol (107.2 mg, 0.48 mmol) and 

1,4-bis(imidazol-1-ylmethyl)benzene (59.6 mg, 0.25 mmol) in EtOH (5 mL), 1 mL of 

an aqueous solution of Co(CH3COO)2·4H2O (61.7 mg, 0.24 mmol) was added dropwise. 

The mixture was stirred for 10 min and then the formation of nanoparticles was induced 

by fast addition of 25 mL of miliQ H2O. Ligand excess was removed by centrifugation 

and the nanoparticles were washed three times with H2O. 

Synthesis of M1. To a solution of 1 (5.5 mg, 9.5 µmol), di-tert-buthylcathecol (211.5 

mg, 0.95 mmol) and 1,4-bis(imidazol-1-ylmethyl)benzene (117.3 mg, 0.49 mmol) in 

EtOH (20 mL), 4 mL of an aqueous solution of Co(CH3COO)2·4H2O (121.4 mg, 0.49 

mmol) were added dropwise. The mixture was stirred for 10 min and then the formation 

of nanoparticles was induced by fast addition of 100 mL of miliQ H2O. Ligand excess 

was removed by centrifugation and the nanoparticles were washed with a mixture of 

EtOH:H2O (v/v 1:5) until no red fluorescence was observed from the supernatant 

solution. 

Synthesis of M2. To a solution of 2 (3.1 mg, 5.1 µmol), di-tert-buthylcathecol (120 mg, 

0.53 mmol) and 1,4-bis(imidazol-1-ylmethyl)benzene (65 mg, 0.27 mmol) in EtOH (10 

mL), 2 mL of an aqueous solution of Co(CH3COO)2·4H2O (68.9 mg, 0.28 mmol) were 

added dropwise. The mixture was stirred for 10 min and then the formation of the 

nanoparticles was induced by fast addition of 50 mL of miliQ H2O. Ligand excess was 

removed by centrifugation and the nanoparticles were washed with a mixture of 

EtOH:H2O (v/v 1:5) until no red fluorescence was observed from the supernatant 

solution. 

Guest release experiments. A dialysis bag (cut-off molecular weight: 3500) containing 

M1 or M2 (c ~ 3 mg/mL) dispersed in phosphate buffered saline solution (PBS; pH = 

7.4) was placed in 150 mL of PBS (pH = 7.4; dialysate) at 37 ºC under light stirring. To 

determine the increase of 1 or 2 concentration diffused through the dialysis bag, 0.5 mL 

of external PBS solution were taken from the dialysate at prefixed times and diluted in 2 

mL of MeOH, and each aliquot was analyzed by fluorescence spectroscopy. The solid 

material remaining in the dialysis bag after 100 hours was dissolved in methanol and 

characterised by absorption spectroscopy. 
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I. Characterisation of coordination polymer nanoparticles M0, M1 and M2 
 

 

Figure S1. (a) SEM image of M0 nanoparticles. Scale bar is 500 nm. Histograms of the size distribution of (b) M1, (c) 

M2 and (d) M0. 

 

 

Figure S2.UV-vis spectra of M0 (green), M1 (black) and M2 (red) in non-degassed MeOH. 

  



II. Guest release experiments 
 

 

Figure S3. SEM images of M1 CPPs suspended in aqueous media at 37 ºC for (a) 0 h, (b) 5 h, (c) 26 h and (d) 100 h. 

Scale bars are 500 nm. 

 

 

Figure S4. (a) Guest release profiles of fluorescent guest molecules from M1 (black) and M2 (red) at 60 ºC. (b) 

Comparison of the guest release profiles measured for M1 (black) and M2 (red) at 37 ºC (solid lines) and at 60 ºC 

(dashed lines). 

 


