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Nanostructured gratings fabricated on silicon chips have been successfully transferred to polypropylene plastic
parts by means of injection molding. Different sets of experiments were carried out along with a repeatability
analysis in order to study the effect in the replication of process parameters such as maximum injection pressure,
injection time, charge and polymer temperature, geometric factors such as width and separation between lines of
the gratings and flow direction as well as demolding conditions. Among all factors, the one with a larger effect is

the separation between consecutive trenches, which was studied in detail through Computational Fluid
Dynamics simulations. In addition, a previously not reported sinking effect in the nanostructured area and a
shrinking of the pattern period were characterized and simulated.

1. Introduction

The development of manufacturing methods for the production of
plastic parts with micro/nano scale features is a relevant field of re-
search both in the academic and in the industry realm due to its wide
field of applications. These include surface hydrophobicity [1], antire-
flectivity [2], antimicrobial properties [3], water treatment [4], lab-on-
chip devices [5], etc.

Injection molding is a convenient manufacturing process due to its
low costs, high replication accuracy and its extended use in industry.
However, the replication of nanometer scale features is not a straight-
forward procedure because the successful replication of the mold lar-
gely depends on process and geometrical parameters such as type of
polymer [6], mold wall temperature [7,8], structure size [9,10], shear
thinning [11], packing conditions [12] and coatings [13] among many
others. This is especially relevant for the replication of nanoscale
structures with high aspect ratio, since the polymer tends to solidify
before it has reached the bottom of the nanocavities.

In the present work, the plastic replication of nanometer scale
gratings is studied in detail. The effect of process parameters such as
maximum inlet pressure, filling time, charge and polymer temperature
in the replication is explored as well as the effect of grating geometry,
relative orientation of the grating with regard to the plastic flow and
the demolding conditions. Despite the high interest in incorporating
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nanometer scale features in plastic parts, a precise knowledge of the
injection process at nanometer scale is still lacking. This problem is
addressed here through the comparison of the experimental results with
Finite Volume Method (FVM) simulations that allow the interpretation
of the observed phenomenology.

Sinking and shrinking effects were observed by comparing the final
dimensions of the plastic parts with the original dimensions of the
mold. The result is explained by the combined effect of pressure and
temperature at the nanostructured areas.

2. Materials and methods
2.1. Mold manufacturing

Fig. 1(a) and (b) show, respectively, a cross section and a picture of
the mold assembly used in the present work and Fig. 1(c) an injected
plastic piece with the replica of a grating in the top part. The injected
plastic, represented in red colour in Fig. 1(a), flows from right to left in
the figure through the ca. 4 mm nozzle advancing radially to meet the
nanostructured surface of the silicon chips represented in grey colour.
The thickness of the resulting plastic piece is 3 mm while the surface of
the silicon chip is at about 1 mm above the mold support. The diameter
of the plastic piece is about 50 mm. The mold shown in Fig. 1(b) was
made out of stainless steel coated with a DLC film [14]. The
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Fig. 1. (a) CAD section of the mold assembly with the critical dimensions (scale
in mm). The injected plastic and the silicon mold are represented by red and
grey colours, respectively. The plastic injection flows from right to left. (b) DLC-
coated stainless steel mold with glued silicon chips. (c) Injected red-colored
polypropylene part showing light diffraction in the nanostructured area. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

nanostructured patterns were fabricated in silicon chips, with
15mm X 15mm dimensions, and glued with an epoxy adhesive on the
injection side of the mold, as can be seen in Fig. 1(b). A red-colored
polypropylene (PP) plastic piece replicating the nanometer-size pat-
terns is shown in Fig. 1(c). The replicated area can be easily identified
by the colored squares as a consequence of the diffraction of white light
induced by the pattern structure that will be introduced below.

2.2. Manufacturing of the nanostructured inserts

The chips were fabricated by standard micro/nano fabrication
methods. First, a photolithography process was performed: Fujifilm
0iR620-09 photoresist was spun on a standard 4-in. silicon wafer with a
final thickness of 0.6 um, then, selected areas of the wafer were exposed
with a NSR-2205-i112D i-line stepper of Nikon with a resolution of
0.35 pum and developed with a OPD-4262 developer (Fujifilm). Second,
the resist pattern was transferred into the silicon via reactive ion
etching using an Alcatel 601E Deep Reactive Ion Etcher (RIE) with a
modified Bosch process to a final depth around 400 nm. Then, the re-
maining resist on the wafer was removed by over-etching in oxygen
plasma (PVA TePla system) and finally, 15 mm X 15 mm chips were cut
from the wafer. The nanostructured patterns consisted on arrays of
trenches carved in silicon with different dimensions w, s and d,, as
schematized in Fig. 2 (a) and (b), respectively. After injection molding,
the cavities in the mold appear as raised features in the plastic part with
heights represented by dpp. The chips were glued on the mold in two
different configurations, namely with the lines of the gratings both
parallel and perpendicular to the direction of the plastic flow, respec-
tively. Fig. 2(c) shows a picture of a silicon chip where the gratings can
be easily identified as colored squares as well as SEM images of one
grating with details of the patterns at different scales.

2.3. AFM and SEM characterization

The manufactured silicon patterns were characterized prior to the
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plastic injection using a Zeiss Auriga scanning electron microscope to
determine the s and w parameters, as shown in Fig. 1(c). The accurate
dimensions of the trenches were determined by means of a Bruker ICON
atomic force microscope (AFM) operated in tapping mode using
OTESPA cantilevers.

Four combinations of geometric parameters of the trench arrays
were selected, with nominal values s = 500 and 1000 nm and w = 500
and 1000 nm, respectively, in order to analyze the dependence of the
replication on the dimensions of the trenches (see Table 1). These va-
lues were used in the simulations for the sake of clarity. It can be ob-
served that the measured values are quite close to the nominal one. The
trench depth d,,, shows some dispersion from the target 400 nm value;
for trenches b and d (s = 500 nm), it is lower than for trenches a and ¢
(s = 1000 nm), differences that can be attributed to the etching process.

2.4. Injection molding

The injections were performed in a Babyplast 6/10P, a micro in-
jection molding machine, with raw material SABICO PP 621P, a PP
random copolymer for cast film with a melt flow rate of 8.0 dg/min at
230°C and 2.16 kg according to ISO 1133 standards and to the manu-
facturer. Previous experiments using polycarbonate (PC) were used as
starting conditions to design a set of experiments in order to analyze the
influence of first and second injection pressures (P; and Py, respec-
tively), injection (t;) and holding times (t,), polymer temperature (Tp)
and new parameters such as the stroke of pressure piston or charge (C)
[14]. The injection pressure is applied from zero to P; during t; seconds,
with a fraction of this time at constant P;. After t; the pressure is reduced
to Py, and applied during t;, seconds.

With the aim of stabilizing and ensuring the optimal machine per-
formance, tens of test injections were done before every injection set.
After that, a first injection was performed with the selected conditions
in order to confirm the viability of the process (complete mold filling,
easy detachment from the mold, no polymer burning, etc.) and then, a
minimum of two additional parts were injected. In order to avoid
possible interferences with the previous parameters the first injected
part was always discarded. The injections were done on the same day in
order to minimize the influence of external factors. Additionally, a
specific analysis was carried out to confirm repeatability (see
Supplemental Information I). Thermal imaging was used during the
injection to monitor the temperature of the polymer and mold walls
(See Supplemental Information II). The velocity of the polymer melt
ranged from 60 mm/s near the inlet to 40 mm/s at the end of nanos-
tructured zone where the thickness of the plastic part is reduced from
3.0 down to 2.5 mm. After > 500 injections no significant changes were
observed on the silicon patterned area of the mold. This validates the
stability of silicon inserts in small batches used for the prototyping of
plastic parts.

3. Results and discussion
3.1. Influence of mold geometric parameters on the replication fidelity

We analyze first the influence of the w and s parameters on the
efficiency of the replication process when the direction of the plastic
flow is perpendicular to the direction of the lines of the gratings [see
Fig. 2(c)]. We define the fidelity factor (f) as the ratio between dpp and
dm; f = dpp/dyy, [see Fig. 2(b)]. The different injection conditions used,
A to E, are described in Fig. 3 and the replication depth dpp of the
trenches is determined by AFM for four combinations of w and s, 0.5
and 1 ym.

From Fig. 3 it becomes obvious that the geometrical factor with a
major effect on the height of the replicated plastic nanostructures is the
distance between consecutive trenches (w); the smaller this parameter
is, the deeper the polymer penetrates into the cavities achieving a
maximum fidelity factor f = 0.7. To our knowledge, this observation is
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Fig. 2. (a) Scheme of a silicon chip showing the relevant dimensions. (b) Cartoon of the cross section of the micro/nanostructures on the silicon (grey) and
polypropylene (red) parts defining the dimensional parameters: w and s (horizontal) and d,, and dpp (vertical). (c) Picture of a silicon chip with the patterns grating
revealed by diffraction of white light and SEM images of one grating showing details of the patterns at different scales. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Table 1 Pressure Pressure
Silicon chip nominal and measured values for s, w and d,, parameters. Wall outlet Wall outlet Wall
w s = 1000nm w s = 1000nm w
Trench W nom. s nom. w real s real d,, AFM d,, SEM
array (nm) (nm) (nm) (nm) (nm) (nm)
- a 1000 1000 995 1020 413 428
Wl Wall d,,
- b 1000 500 995 525 363 377 2000 nm
- ¢ 500 1000 500 1020 417 432
|:| d 500 500 470 540 367 381 Symmetry Symmetry
Pressure inlet

Fig. 4. Model used for analyzing the impact of w in the replication of nano-
-x - 1““,:1.':;01' suan cavities. The control point is located 40 nm above the mold surface.
B W = 0.5 um; s =1 pm

~w=05pm;s=0.5um

not previously reported in the literature and it deserves a detailed
analysis. This effect can be explained by the fact that a smaller w value
leads to a warming of the mold walls between consecutive cavities and,
hence, the replicated depth increases as if the polymer was effectively
injected at a higher mold temperature. Mold temperature has been re-
ported as a factor with a large positive effect in the replication depth by
many authors including for simulations and injections of micro-
cantilever structures [15], for microcantilevers with different aspect
ratio [16] and for nanocavities with a submodeling simulation ap-
Condition A B c D E proach [14], among others. In order to prove this hypothesis, a 2D CAD

Pybar s 80 100 80 80 80 model was created with adjustable w dimension and a temperature

¢ /n:':z lf 1’;5 4?; 1185 145 control point was set at the mold surface, as depicted in Fig. 4. In order

TolPC e 220 220 220 220 270 to analyze the mold temperature increase the model takes into con-
sideration two consecutive trenches.

Fig. 3. Set of experiments for quantifying the effect of four factors in the na- The submodeling approach described in [14,17] was used in the

nocavities replication (maximum inlet pressure, injection time, charge and
polymer melt temperature). Legend depicts nominal values, real values are
found in Table 1.

simulations. This algorithm overcomes the computational impossibility
of carrying a simulation of a macroscopic part with a nanoscale mesh.
First, a global simulation of injection molding was performed with the
Solidworks Plastics software without considering nanometer features
and, second, the results of this simulation were used as boundary
conditions in a second nanoscale computational fluid dynamics
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Fig. 5. Simulated results of the impact of w for s = 1 um in the replication of
nanocavities. For w < 1 pum a clear tendency can be observed: smaller w leads
to higher temperatures at the control point (red) and higher replications (blue).
On the other hand, this tendency was not observed for w > 1pum. Inset:
Simulation of the depth reached by the polymer depending on the temperature.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

simulation performed using the ANSYS Fluent software. The simula-
tions used the following parameters: P; = 80 bar, t; = 1.5s, C = 44 mm,
Tp = 220 °C and mold temperature of 50 °C, and w was varied from
0.01 pm up to 6 pm in order to study its effect on the replication and in
the control point temperature. The results are shown in Fig. 5.

The simulation results are consistent with the hypothesis of larger
replication due to the warming of the mold wall between nanotrenches.
Simulations showed a negligible influence of the s parameter in the
replication. Indeed, the simulation shows an increase of the control
point temperature with smaller w dimensions (right axis of Fig. 5) and
this leads to a larger replication of the nanocavity (left axis of Fig. 5). It
is also observed that there is a threshold w dimension, around 1 um,
above which the effect of w becomes negligible. Fig. 6 depicts the si-
mulated temperature profile once the polymer reaches the no flow
temperature (NFT) for w = 1 um [Fig. 6(a)] and w = 0.1 pm [Fig. 6(b)]
confirming that the mold between nanotrenches reaches larger tem-
peratures for smaller w dimensions. The NFT was set to 60 °C in the
simulation.

a ) 1um

T/°C
217

- 175.3

133.5

. 91.8

50

Fig. 6. Temperature distribution once the polymer reaches the no flow tem-
perature for wall width w = 1 um (top) and w = 0.1 um (bottom). Trench width
is s = 1 um in both cases.
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In order to investigate the precision of the tests, a repeatability
analysis was performed. A total of 12 parts, 6 at 220 °C and 6 more at
270 °C were injected for the equivalent four combinations of w and s.
The average standard deviation (10) of the height measurements was of
4.4nm confirming that the replication process is repeatable and that
the observed behavior is significant (See Supplemental Information I).

Additional experiments were carried out to prove that the de-
molding time did not affect the replication of the cavities either when
the two sides of the mold were separated or in contact. The results can
be found in the Supplemental Information III.

3.2. Analysis of the replication fidelity

Fig. 7 shows cross sections of AFM images of the mold (black con-
tinuous lines) and of the PP part (red continuous lines). The direction of
the plastic flow is indicated in the figure, which is perpendicular
[Fig. 7(a)] and parallel [Fig. 7(b)] to the direction of the lines of the
gratings, respectively. The injections for both directions were per-
formed in separate experiments using different silicon molds. The
nominal w and s parameters are w = 0.5um and s = 1 ym in Fig. 7(a)
and w = 0.75um and s = 0.5um in Fig. 7(b), respectively. In both
cases P; and t; were set to 80bar and 1.5s, respectively, and the
polymer temperature to 200 and 220 °C in Fig. 7(a) and (b), respec-
tively, and the polymer charge 48 and 19 mm in Fig. 7(a) and (b), re-
spectively.

In each figure the left and right part correspond to the plastic flow
entering and exiting the mold pattern, respectively. The scale of the
mold curve has been inverted in order to facilitate the comparison. Two
salient effects are observed: (i) the PP never reaches the bottom of the
trenches and the base line of the replicated region lies below the base
line corresponding to the plastic region in contact with the flat silicon
surface, which is represented by Ah (sinking effect) and (ii) the period
of the replicated pattern is smaller than that corresponding to the mold
(shrinking effect). Both effects are studied next.

3.2.1. Sinking effect

As mentioned above the replicated grating appears below the
ground level of the region without grating. Fig. 8 shows the measured
heights due to sinking both at the entry (Aheqyy) and exit (Ahey) in the
case of the polymer flow perpendicular to the direction of the trenches
for the experimental conditions depicted in Table 1 and Fig. 3. From the
figure it can be concluded that no clear difference between Ahepy and
Ah,: is observed but that the values are clearly higher for smaller
trench separations (w). In this case the polymer is at higher tempera-
ture, as discussed in Section 3.1, and as a consequence the polymer fills
more fraction of the cavity as compared to the case of larger w and,
therefore the pressure increases more. In addition, at higher tempera-
tures the Young's modulus of the polymers decreases becoming more
easily deformed (see Discussion below).

An analogous analysis for the case of the plastic flowing parallel to
the trenches leads to similar results, as evidenced in Fig. 7(b). For such
analysis a mold with w = 0.7 um (nominal 0.75um) and s = 0.55 pm
(nominal 0.5pum) was used with the following injection parameters:
P; =80bar, t;=1.5s, C=19mm and Tp = 220 °C. In this case we
obtained a sinking depth of 60 nm and a penetration dp, of 190 nm.

We attribute the sinking of the replicated pattern to the trapping of
air in the cavities of the mold. The polymer completely covers the full
cavity of the mold in < 0.6 s, since the velocity of the polymer melt at
the end of the mold is about 40 mm/s and the radius of the mold is
25mm [see Fig. 1(a)]. Moreover, the polymer melt flows over the si-
licon mold in < 0.4 s, since the lateral dimensions are 15mm X 15 mm
and for an individual pattern (1.5mm X 1.5 mm) this time is < 0.04s.
However, the injection time is above 1s, so that the patterns of the
mold are already covered when the polymer is still in the phase of
filling the cavities. The advance of the melted polymer in the cavities
compresses the trapped air, thus increasing its pressure following the
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Boyle's law [18] and, therefore, hindering the polymer progress.
Therefore, the sinking should appear regardless of the orientation, as
has been experimentally demonstrated.

Fig. 9 shows the prediction of the sinking effect arising from si-
mulations for w and s values of 0.5 and 1pum and at two different
pressures of 0.2 and 0.4 MPa corresponding to trapped air in the cav-
ities. The simulations considered a 2D layer of 1um thickness. The
polymer Young's modulus was reduced from 800 MPa at room tem-
perature down to 20 MPa for the simulation of air trapped at high
temperature following previously reported results [19]. Air is initially
set to atmospheric pressure of approximately 0.1 MPa. When air is
compressed to one fourth of its original volume the pressure increases
up to 0.4 MPa. When the replication height is only reduced to half of the
trench height the pressure is only 0.2 MPa. Then, the resultant force

200
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applied to plastic is the summation of number of marks multiplied by
the surface area of each mark. Note that the colour scale in the figure
reflects displacements referred to unperturbed regions sufficiently away
from mold.

From the simulations we can conclude that the sinking effect de-
pends on the trench density, obtaining a displacement Ah of 81.8 nm for
w = 0.5 and s = 1 um. However, a very small influence of w on Ah is
observed, as evidenced when comparing Fig. 9 (b) and (c). The reason is
that the reduction of the Young's modulus with temperature has to be
considered. If the Young's modulus decreases, the polymer penetrates
more into the trenches, increasing the effective pressure (less volume
and more temperature of trapped air), and so, enhancing the sinking
effect. The sinking is very sensitive to pressure, as it is shown by
comparing Fig. 9(a) and (b) with Fig. 9(e) and (f), when the pressure of

200

1754

73

Fig. 8. Study of the sinking effect at the entry (left) and at the exit (right) of the silicon chip for different process conditions and plastic flow perpendicular to the lines
of the gratings. The legend depicts nominal values. The actual values are found in Table 1.
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b) w=0.5um; s=0.5um; AP=0.4MPa
-67.9nm

d)

w=1um; s=0.5um; AP=0.4MPa
-55.4nm
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-21.8nm
i1 nnininil

Fig. 9. Simulated displacements of a replicated mold using a colour code using the following parameters: (a) w = 0.5pum, s = 1 um, 0.4 MPa, (b) w = 0.5 um,
s = 0.5pm, 0.4 MPa, (c) w = 1 ym, s = 1 um, 0.4 MPa, (d) w = 1 pm, s = 0.5 um, 0.4 MPa, (e) w = 1 pm, s = 1 um, 0.2 MPa and (f) w = 1 ym, s = 0.5 um, 0.2 MPa.

trapped air is reduced from 0.4 MPa to 0.2 MPa. Note that at higher
pressures the polymer separates from the mold in the regions defined by
the w parameter [see Fig. 2(b)]. Thus, simulations of sinking effect are
useful if the larger temperatures achieved on thinner walls, where a
major replication is observed, are taken into account.

3.2.2. Shrinking effect

As pointed out when describing Fig. 7, the period of the replicated
grating is smaller than that corresponding to the silicon mold and we
attribute this result to the thermal contraction of the plastic part once
separated from the mold. In order to explore the effect of thermal
contraction we have performed a conventional plastic injection simu-
lation to estimate the size of the volumetric shrinking in the whole
plastic part [see Fig. 10(a)]. From the figure we observe that the pre-
dicted volumetric shrinking varies from about 10% in the area close to
the center of the plastic disc to about 5% in the radial direction. An
additional simulation of the effect of thermal expansion considering the
gratings was carried out and the results are shown in Fig. 10(b). The
initial temperature was set to 220 °C for the polymer and 50 °C for the
mold. The thermal expansion coefficient for polypropylene was set to

%

I 98

88
7.7
66

55

l 44

1.6 -10"*K ! and to 1.6 - 107K ™! for the silicon chip, which is an
order of magnitude smaller (the thermal expansion of steel, 2 -
10~ ° K™, is similar to that of silicon). Fig. 10(b) shows a clear decrease
of the polymer period, with a total shrinking of 420 nm, after cooling
down to 20 °C after separation of the plastic part and mold and over-
lapping with the mold as it is shown experimentally in Fig. 7.

4. Conclusions

Plastic injection is an inexpensive, fast and established technique
suitable for replicating micro/nanostructures at industrial level. Silicon
chips glued onto conventional injection molds provide a fast and simple
method for experimental investigation of the injection process applied
to the replication of nanostructures. The replication of nanoscale grat-
ings has been investigated and different phenomena have been identi-
fied that will be relevant for the future development of plastic injection
as a method for high volume fabrication of nanostructured surfaces.

From the experimental analysis of dimensional parameters, it is
concluded that the width of the trenches in the mold is a factor of minor
significance in the investigated dimensions range (between 0.5 and

UX (nm)

Fig. 10. (a) Volume shrinking simulation with conventional plastic injection simulation and (b) thermal contraction of steel mold with silicon chip on top compared
to plastic part bottom to justify different period in trenches at 20 °C after cool down.
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1 um). However, the trench separation plays a key role in the dimen-
sions of the features in the plastic part: thinner walls lead to a more
efficient heat transfer and thus to a more accurate polymer replication.
The trench separation effect was found to be significant for w values
below 1 pm, as corroborated by Computational Fluid Dynamics simu-
lations.

Remarkably, a sinking in the nanostructured area of the polymer
part is found out, ranging from 25 to 180 nm depending on the injection
molding conditions. This sinking effect is attributed to the combined
effect of the pressure effectuated by the trapped air in the pattern area
and to the local lowering of polymer Young's modulus in this region.

In addition, a shrinking of the pattern period is observed which is
due to the thermal contraction of the plastic part once it is removed
from the mold. Simulations predict a shrinking ranging from about
4.4% to 10%.

Finally, no difference in the replication accuracy was observed for
different demolding conditions, including different cooling times and
temperatures.
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