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Abstract

The Hippo pathway regulates tissue growth and cell fate. In colon cancer, Hippo pathway 

deregulation promotes cellular quiescence and resistance to 5-Fluorouracil. In this study 14 

polymorphisms in 8 genes involved in the Hippo pathway (MST1, MST2, LATS1, LATS2, YAP, 
TAZ, FAT4 and RASSF1A) were evaluated as recurrence predictors in 194 patients with stages 

II/III colon cancer treated with 5-Fu-based adjuvant chemotherapy. Patients with a RASSF1A 

rs2236947 AA genotype had higher 3-year recurrence rate than patients with CA/CC genotypes 

(56% vs 33%, HR: 1.87; p=0.017). Patients with TAZ rs3811715 CT or TT genotypes had lower 

3-year recurrence rate than patients with a CC genotype (28% vs 40%; HR: 0.66; p=0.07). In left-

sided tumors, this association was stronger (HR: 0.29; p=0.011) and a similar trend was found in 

an independent Japanese cohort. These promising results reveal polymorphisms in the Hippo 

pathway as biomarkers for stage II and III colon cancer.
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1. Introduction

Tumor recurrence following resection of stage II and III colon cancer occurs in 

approximately 25–40% of the patients 1. Adjuvant chemotherapy with 5-Fluorouracil (5-Fu) 

reduces the risk of recurrence 2 and, the addition of oxaliplatin to 5-Fu can further decrease 

this risk in stage III colon cancer patients 3. However, in current practice the majority of 

patients does not benefit from adjuvant chemotherapy and will relapse despite treatment. 

The underlying mechanisms of tumor recurrence after curative treatment are not fully 

understood. Several processes have been proposed to influence tumor relapse and promote 

chemotherapy resistance such as the presence of cancer stem cells (CSCs) or the epithelial 

mesemchymal transition process 4, 5. Disruption of the Salvador-Warts-Hippo pathway, 

commonly known as the Hippo pathway, is the newest contributor to these recurrence 

mechanisms. The Hippo pathway is a highly evolutionary conserved pathway, whose main 

physiological function is to control tissue growth and hence organ size 6, 7. The core 

signaling consists of several kinases, STE20-like kinase 1 and 2 (MST1 and MST2), large 

tumor suppressor 1 and 2 (LATS1 and LATS2) and the adaptor proteins MOB kinase 

activator 1A and 1B (MOB1A and MOB1B). Together, these proteins facilitate the 

phosphorylation of homologous oncoproteins Yes-associated protein (YAP) and 

transcriptional co-activator with PDZ-binding motif (TAZ). Phosphorylation of YAP/TAZ 

leads to their accumulation in the cytoplasm and stimulates their proteosomal degradation 8. 

Inactivation of this cascade results in YAP/TAZ nuclear translocation. In the nucleus, 

YAP/TAZ exert their function by activating transcription factors such as SMAD1–3 and 

TEAD1–4 that induce the transcription of multiple target genes. Among others, these target 

genes include, Axin2, Birc5, Myc, Ctgf, and β2-integrin, which are involved in stem cell 

maintenance, epithelial mesenchymal transition (EMT), metastasis development and 

regulation of microRNA biogenesis 9–11. The upstream regulation of the Hippo pathway still 

remains poorly understood however, several upstream branches have been described 12. One 

of them is the Ras-association domain 1 (RASSF1). RASSF1a is a putative tumor suppressor 

gene that is methylated in several tumor types including colorectal cancer 13. RASSF1a can 

activate Hippo signaling by protein-protein interaction by binding MST2 through its 

SARAH (Sav/Rassf/Hpo) domain 14.

In colon cancer the Hippo effectors YAP/TAZ have been reported to contribute to 5-

Fluorouracil (5-Fu) resistance by inducing cellular quiescence 15 and, their expression has 

been correlated with the patients’ prognosis 16–18. Furthermore, Hippo signaling is 

interconnected with several other pathways that are well-established major role players in 

the development and progression of colorectal cancer. Wnt/β-catenin pathway crosstalks 

with Hippo signaling through a mechanism scarcely understood. β-catenin interacts with 

TAZ/YAP favoring their translocation to the nucleus, thus increasing the transcription of the 

Hippo targeted genes 19. Other colon cancer-associated pathways that engage in regulatory 
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crosstalk with the Hippo signaling include among others transforming growth factor β 
(TGF-β), Hedgehog, and Notch pathways 20.

Based on the importance of Hippo signaling in processes possibly implicated in colon cancer 

recurrence, this work was designed to evaluate the potential role as prognostic biomarkers of 

single nucleotide polymorphisms (SNPs) in genes involved in the Hippo pathway, in patients 

with resected stages II and III colon cancer.

2. Material and Methods

2.1 Eligible patients

A total of 194 patients with high-risk stage II and III colon cancer were included. Patients 

with stage II were classified as high risk if they presented at least one the following 

characteristics: poorly differentiated tumor, lymph node sampling <12, lymphatic or 

perineural invasion, obstruction or perforation as tumor presentation and pT4. All patients 

received adjuvant chemotherapy based on 5-Fu at the Norris Comprehensive Cancer Center/

University of Southern California (NCC/USC) or the Los Angeles County/USC-Medical in 

Los Angeles, California, USA. Data were collected retrospectively from clinical records. 

The USC Review Board approved this study. All the participating patients signed informed 

consent for tissue and blood collection and analysis. A second exploratory cohort comprised 

of 350 Japanese patients with stage III colorectal cancer patients mostly treated with 

adjuvant chemotherapy based on 5-Fu in the Cancer Institute Hospital in Tokyo, Japan. 

Clinical data were collected retrospectively and the study was approved by the Institute’s 

Ethical Committee. Table 1 shows in detail the patients’ basal characteristics. This study was 

performed following the REMARK recommendations for the reporting of biomarkers 21.

2.2 Genetic studies

We studied 14 SNPs in 8 genes involved in the Hippo pathway: MST1, MST2, LATS1, 

LATS2, YAP1, TAZ, FAT4 and RASSF1a. The polymorphisms were selected based on the 

following predefined criteria: more than 10% minor allele frequency (MAF); previously 

reported associations in literature resources (PubMed, dbSNP, Ensembl and Genecards) and 

potential functionality based on genomic location and/or in silico analysis (F-SNP and 

SNPinfo NIH database). The characteristics of the selected SNPs are shown in Table 2. DNA 

was extracted from peripheral blood using the QIAmp-kit (Qiagen, Valencia, CA, USA). All 

samples were genotyped using PCR-based direct sequencing. To ensure the accuracy of the 

genotypes, 5% of the samples were re-sequenced showing a concordance of >99%. The 

researcher performing the genotyping of samples was blinded to the clinical data set.

2.3 Statistical analysis

The endpoint of this study was time to recurrence (TTR) that was defined as a period from 

the date of diagnosis to the date of first documented tumor recurrence. TTR was censored at 

the time of last follow-up or death if patients remained recurrence free. With samples from 

194 patients available (79 events) for genotyping the selected SNPs, this study had 80% 

power to detect a hazard ratio of 1.89–2.13 in a dominant model with a minor frequency of 
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0.1–0.4 and 2.10–3.23 in a recessive model with a minor frequency of 0.25–0.45 using a 

two-sided log-rank test at a significance level of 0.05.

Deviations from the Hardy-Weinberg equilibrium were tested using χ2 test. The association 

between the allelic distribution of the SNPs and their potential association with the baselines 

characteristics was examined using χ2 or Fisher’s exact test. The true inheritance mode of 

the analyzed polymorphisms is unknown, therefore a co-dominant, dominant or recessive 

model was assumed wherever appropriate. The association of the SNPs and time to 

recurrence was analyzed using- Kaplan Meier curves and log-rank test. In the multivariable 

Cox regression analysis, the model was adjusted by stage, type of adjuvant chemotherapy 

and stratified by race.

No correction for multiple testing was performed.

Recursive partitioning (RP) analysis was conducted to explore patterns of recurrence by 

SNPs of Hippo pathway.

All calculations were performed using SAS statistical package version 9.4 and R package 

version 3.1.0. All tests were 2-sided at a significance level of 0.05.

3. Results

The median follow up of the USC cohort was 4.4 years (range 0.4–16.8 years) and the 3-

year recurrence rate was 36% (± 4% standard error, SE). The median overall survival for this 

cohort has not yet been reached.

The median follow up of the Japanese cohort was 5 years (rage 0.3–8.6) and the 3-year 

recurrence rate was 29% (± 2% SE). The median overall survival of this series has not been 

reached.

Genotypes were achieved in at least 90% of the analyzed samples for each polymorphism. In 

failed cases, genotyping was not successful due to low quality of DNA or limited DNA 

quantity. All the analyzed SNPs but one (rs9552315) were within the probability limits of 

Hardy-Weinberg equilibrium. There were significant differences in some polymorphisms in 

the allele frequencies across races in the USC cohort (Supplementary table 1).

3.1 Genetic determinants and outcome

Located in the Rassf1a gene, the rs2236947 polymorphism was associated with the 3-year 

recurrence probability: patients homozygous for the variant A allele had a 56% (±10% SE) 

3-year recurrence probability compared to 33% (±4%) for patients with a CC or CA 

genotype (HR: 1.87; 95% CI, 1.10–3.17; p=0.017). In multivariable analysis this association 

remained significant (1HR: 1.78; 95% CI, 1.03–3.06; p=0.039).

In the TAZ gene, the variant allele of the rs3811715 polymorphism was associated with a 

lower 3-year recurrence rate. Patients with a CT or TT genotype had a 28% (±5% SE) 3-year 

recurrence probability compared to 40% (±5% SE) for patients with a homozygous wild 
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type CC genotype, although this association did not reach statistical significance (HR: 0.66; 

95% CI, 0.41–1.05; p=0.077).

No association was found in the overall population in the Japanese cohort for these two 

SNPs. The MAF for these polymorphisms in the Japanese cohort was 25% for both SNPs. In 

the Asian population included in the USC cohort, the MAF for these SNPs were 27% and 

34% for Rassf1a rs2236947 and TAZ rs3811715, respectively.

3.2 Subgroup analysis by gender and tumor location

Differences were detected for the association of the analyzed SNPs and the 3-year 

recurrence probability based on gender and tumor location.

Based on tumor location, TAZ rs3811715 correlated strongly with the 3-year recurrence 

probability in patients with left-sided tumors. The genotype frequencies in this subgroup 

were CC=55, CT=28 and TT=6. Patients harboring a CT or TT genotype had a 10% (± 5% 

SE) 3-year recurrence probability whereas patients harboring a CC genotype had 48% (± 7% 

SE) (HR: 0.25; 95% CI, 0.10–0.60; p=0.001). Patients with a TT genotype (n=6) had no 

recurrence. This association remained significant after adjusting for the relevant clinical 

parameters (HR: 0.29; 95% CI, 0.11–0.78; p= 0.011).

In the Japanese exploratory cohort in patients bearing left-side tumors, patients carrying a 

TAZ rs3811715 TT genotype (TT=14, CT=78, CC=129) had 7% (± 7% SE) 3-year 

recurrence rate compared 27% (± 3% SE) for patients with at least a C genotype (HR: 0.21; 

95% CI, 0.03–1.54; p= 0.091). Additionally, in left-sided tumors a polymorphism located in 

MST1, rs17420378, was associated with the recurrence probability. Patients with a GA or 

AA genotypes had a higher recurrence probability than patients with a GG genotype (HR: 

2.31; 95% CI, 1.21–4.43; p=0.009). However, in multivariate analysis this association was 

not maintained (HR: 2.01; 95% CI, 0.98–4.10; p=0.057). This polymorphism was not tested 

in the Japanese cohort, as the reported MAF is <10%.

Based on gender, the association of TAZ rs3811715 with the 3-year recurrence rate was 

stronger in the female population (HR: 0.46; 95% CI, 0.22–0.96; p=0.031), although this 

association did not retain significance in the multivariable analysis (p=0.06) (Table 4).

3.3 Recursive partitioning analysis

Recursive partitioning analysis was applied to construct a decision tree as a model to classify 

patients according to their 3-year recurrence risk (Figure 1). In the overall population, four 

terminal nodes arose showing significantly different 3-year recurrence probabilities ranging 

from 12 % (± 6% SE) for patients in node 1 to 56% (± 9% SE) for patients allocated in node 

4. The initial split was due to Rassf1a rs2236947 indicating that this SNP was the main 

contributor to the variation in the recurrence probability rate, followed by TAZ rs3811715 

and FAT4 rs1039808 (Figure 1).

Recursive partitioning analysis also confirmed the influence of tumor location and revealed 

different patterns for patients bearing left or right-sided tumors. For patients with right colon 

carcinomas, Rassf1a rs2236947 remained the most important polymorphism to predict 
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recurrence probability followed by YAP rs8504 and LATS rs9552315, whereas for patients 

with left-sided tumors TAZ rs3811715 was responsible for the tree’s initial split (Figure 2).

4. Discussion

The present study identifies polymorphisms within genes involved in the Hippo pathway as 

predictors of recurrence in patients with high-risk stage II and stage III colon cancer treated 

with adjuvant 5-Fu based chemotherapy. Moreover, our data suggest that the value of these 

polymorphisms as biomarkers for localized colon cancer is influenced by tumor location and 

gender.

The Hippo signaling pathway has gained notoriety over the past few years. Despite of this 

increasing interest, to our knowledge, polymorphisms located in genes involved in this 

pathway had never been evaluated as biomarkers for colon cancer. As an emerging cascade 

involved in cancer, in Hippo signaling neither the upstream regulators nor the downstream 

effectors are fully understood. One of the upstream regulators is Rassf1a, a tumor suppressor 

that is frequently methylated in colon cancer and that can activate Hippo signaling by 

binding to MST and ultimately promote apoptosis through p53. In this work, the Rassf1a 

rs2236947 polymorphism, correlated with the recurrence probability in this cohort of 

patients. Although no functionality is known for this SNP, in silico analysis revealed that this 

SNP could affect transcriptional regulation 22.

At the center of the Hippo signaling cascade, the highly homologous YAP and TAZ are the 

main effectors of the pathway. When phosphorylated YAP/TAZ remain in the cytoplasm, 

Hippo signaling acts as a tumor suppressor pathway. In the cytoplasm YAP/TAZ interact 

with β-catenin, which can lead to inhibition of Wnt signaling. Moreover, YAP/TAZ form 

cytoplasmic complexes with junctional proteins like Scribble or α-catenin maintaining cell 

polarity. Disruption of the pathway leads to increased YAP/TAZ translocation into the 

nucleus, which promotes tissue growth, cell viability and stem cell maintenance by 

regulation of different transcription factors 12, 23. Even more, loss of cell polarity due to lack 

of TAZ regulation has been implicated in the epithelial-mesenchymal-transition (EMT) 24. 

In this work, the TAZ rs3811715 polymorphism correlated with the recurrence probability. 

This SNP is located intronically and prediction tools revealed that affects a splicing site 

leading to a frameshift coding change 25. In our work, patients with at least a variant allele at 

this locus had lower recurrence probability than patients with a homozygous wild type 

genotype, suggesting that the variant allele could reduce TAZ’s nuclear ability to promote 

cell proliferation, survival and EMT. The presence of a variant allele for TAZ rs3811715 and 

the correlation with a lower recurrence probability was stronger in patients bearing left-side 

tumors. Increasing data have underlined the fact that right and left side tumors are different 

entities 26. Particularly in the adjuvant setting, these molecular differences might influence, 

in part, the response and the benefit from 5-Fu-based adjuvant treatment 27. Interestingly, 

Hippo signaling has been implicated in resistance to 5-Fu in CRC cell lines as YAP 

overexpression has been shown to lead to cellular quiescence and chemoresistance 15. 

However, the potential differences in the Hippo signaling activity depending on the tumor 

location have not been studied. In an exploratory analysis performed in an independent 

Japanese cohort, a similar trend was found for TAZ rs3811715 in patients bearing a left-
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sided tumor. However, this association was found in a different genetic model, and did not 

reach statistical significance. Many reasons could account for this fact such as the 

differences in minor allele frequencies between the two cohorts. The American cohort 

comprises of different races including Caucasian, African-American, Hispanic as well as 

Asian and MAFs among these groups differ greatly. We also believe that the clear 

differences in the baseline characteristics of the patients in these two cohorts have clearly 

influenced these results. These differences include the percentage of stages II and III (the 

Japanese cohort is comprised of only stage III patients), the number of resected lymph nodes 

or the tumor location as it shown in table 1. Surprisingly, despite of being all stage III 

patients, the Japanese cohort had a lower recurrence rate than the American cohort (36% vs 

29%). This fact could be explained by the higher rate of optimal lymphadenectomy in the 

Japanese cohort.

Overall, this work represents the first approach to the evaluation of polymorphisms within 

genes involved in the Hippo pathway as prognostic factors. This hypothesis generating study 

lacks correction for multiple testing and a more similar validation cohort, therefore these 

results should be interpreted with caution. Nonetheless, the critical implications of the Hippo 

signaling in several recurrence mechanisms like stem cell maintenance, EMT and resistance 

to 5-Fu, make this pathway a highly interesting target for colon cancer treatment. Therefore, 

further genetic studies are warranted.
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Figure 1. 
Recursive partitioning analysis and estimated recurrence-free probability for all patients
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Figure 2. 
Recursive partitioning analyses based on tumor location
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Table 2

Primary information on the analyzed polymorphisms

GENE SNP LOCATION SNP FUNCTION/ASSOCIATION F-SNP SCORE

MST1
rs17420378 Exon 11 Missense

Val312Met 0.533

rs6073629 3′UTR Transcriptional regulation 0.5

MST2 rs10955176 3′UTR NA NFI

LATS1 rs12174349 5′UTR NA NFI

LATS2 rs558614 Exon 4 Missense
Ala324Aval 0.156

LATS2 rs9552315 3′UTR Transcriptional regulation 0.5

YAP
rs8504 3′UTR NA NFI

rs1820453 Upstream Survival in NSCLC27 NFI

TAZ
rs3811715 Intron Splice donor 0.242

rs6783790 Intron Splice donor 0.389

FAT4

rs1014867 Exon 17
Missense

Pro4972Ser
Esophageal cancer risk26

0.59

rs1039808 Exon 1
Missense

Ala807Val
Esophageal cancer risk26

NFI

RASSF1
rs2073498 Exon 3

Missense
Ala133Ser

Breats cancer risk28
0.5

rs2236947 Intron Transcriptional regulation 0.268

Abbreviations: MST1: STE20-like kinase 1; MST2: STE20-like kinase 2; LATS1: large tumor suppressor 1; LATS2: large tumor suppressor 2; 
YAP1: yes associated protein; TAZ: transcriptional co-activator with PDZ-binding motif; FAT4: atypical cadherin 4; RASSF1: Ras-association 
domain 1; NA: not analyzed; NFI: no functional information; NSCLC: non small cell lung cancer.
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