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ABSTRACT

The amount of collected health data is growing fast. Insights from these data allow
using biological patient specifics to improve therapy management with further in-
dividualisation. This has spurred personalised medicine that has come to represent
all therapeutic developments based on genomic and other types of individualised
biological data. Eventual goals require development of applicable methods and
tools, interpretable analysis results and usable interfaces of communication. This
thesis addresses problems in multiple sub-fields of personalised medicine.

Therapeutic drug monitoring relies on drug administration adjustments during
treatment. However, drug metabolism is difficult to predict because individual
biological differences cause variability in patient responses. Fortunately, drug
concentrations collected in-treatment can often be associated with outcomes and
can therefore guide personalised dosing decisions. To address the growing need
for such tools, we have developed and externally evaluated a precision dosing tool
that allows individualised dosing of vancomycin in neonates.

Genetics is also a rich source of information for treatment individualisations.
Other than drugs used in therapeutic drug monitoring, most pharmacotherapies
can not rely on continuous input data because self-medication complicates mea-
surements of outcomes. In many of these cases, pre-emptive use of genetic in-
formation can help avert unwanted outcomes. Effects of many genetic variants
are often large enough to warrant changes in drug prescriptions or dosing sched-
ules. On-going initiatives in the field aim to identify, validate and implement tests
for genetic variants that manifest drug effects. We have applied an hypothesis-
free population-based approach in testing drug related adverse effects to genomic
loci, and found and validated a novel variant in CTNNA3 gene that increases the
prevalence of adverse drug effects in patients with oxicam prescriptions. This was
made possible by the nation-wide genomic data collection initiative coordinated
by the Estonia Genome Center.

Computational genetics relies on quantitative methods. The most common
method to study relations between genomic markers and individual traits is the
genome-wide association analysis (GWAS). Downstream analysis of association
results often applies time-consuming custom approaches. A common step in-
volves visual assessment of the distribution of genetic variants and GWAS p-
values. Our previous study on pharmacogenetic variants led to acknowledging the
need for a more automated detection of "interesting" visual peaks worth further
assessment and to the development of Manhattan Harvester. These tools auto-
mate the detection and quality scoring of genomic regions based on GWAS sum-
mary statistics that considerably decreases the time an analyst spends on individ-
ual plots. The quality scores were designed to emulate the subjective assessment
by human evaluators.
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INTRODUCTION

Conventional therapeutic medicine is built on systematic classification of patholo-
gies that are followed up with chemical, surgical or radiation-based interventions.
Clinicians currently use basic patient characteristics such as age and sex in in-
tervention decisions but not much regard is still given to other individual patient
attributes due to lack of knowledge about patient biology and availability of meth-
ods to include detailed patient information. However, all intervention methods are
subject to large between-subject differences and thus a great promise lies in fine-
tuning the use of existing therapeutic methods by patient specifics.

There is an on-going data revolution in health related fields [135]. Increases
in computational capacities and storage make wide-spread data collection feasi-
ble for a growing proportion of stakeholders and rapid advances in genomic se-
quencing technologies have massively increased the amount of available biolog-
ical information [5]. Genomic biobanks contain biological samples that provide
the foundation for subsequent information retrieval. At the same time, there is
a slow but steady movement towards common data sharing practices [158]. Re-
quirements for data availability statements and deposition of intermediate data
in publicly available repositories are becoming more common for scientific jour-
nals [90]. These provide a foundation for research and development in academia
and industry. The genomic data is also supplemented by increasingly effective
measurement and collection of observable patient traits and other data about the
treatment management into electronic health data repositories [153]. Heteroge-
neous sources and types of data are expected to help gain new insights and appli-
cations in the real-world.

This thesis explores several aspects that these new previously unavailable data
sources provide towards improving the outcomes of currently existing treatments.
Broadly, such personalised, individualised or genomic medicine approaches re-
quire quantitative methods to analyse and apply genomic and other types of bio-
logical patient data to make the patient more likely to be responsive to treatment.

Personalised medicine is an umbrella-term often used to relate to therapeu-
tic provision developments based on genetic data. However, there are increasing
attempts to attain similar targets of increased personalised care using sources of
other individualised health data. Therapeutic drug monitoring (TDM) is a branch
of clinical pharmacology that has traditionally been used to adapt therapeutic drug
doses [88]. Its practitioners are increasingly applying data-rich quantitative meth-
ods to guide on-going therapy in response to observed events. One objective is
to use these methods to guide patients’ drug concentration profiles towards thera-
peutic windows that increase the receptivity of a drug. This aim can be achieved
by adjusting doses based on individually measured drug concentrations and other
measurable variables. This thesis presents two articles that demonstrate the work-
ings of a web-based tool that simplifies individualised dosing of vancomycin in
neonates.
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• Ref I - "Dosopt: A Tool for Personalized Bayesian Dose Adjustment of
Vancomycin in Neonates". This novel web-based TDM tool, DosOpt, al-
lows optimisation of in-treatment vancomycin doses in neonates, and is the
first freely available tool focused on this cohort. The adjustments in DosOpt
are based on combing population information with patient concentration
measurements.
• Ref II - "External Evaluation of Population Pharmacokinetic Models for

Vancomycin in Neonates". To further elucidate the pharmacokinetics of
vancomycin in neonates, we also aimed to benchmark academically pub-
lished population models that are used as the basis for DosOpt TDM ad-
justments.

In real life, biological concentration measurements are mostly not available in
self-managed drug treatments but largely immutable biological data such as DNA
can still be used for treatment individualisation. Pharmacogenetics aims to explain
drug response variability in relation to genetic differences. Identification of patient
biomarkers that associate with changes in drug response help lowering rates of
unexpected side effects and hospitalisations [48]. The effect sizes of genomic loci
are often large enough to warrant changes in treatment guidances [118]. In this
thesis we have used population-based data to find genomic loci that are associated
with specific drug usage related adverse effects.
• Ref III - "Genetic Variation in the Estonian Population: Pharmacogenomics

Study of Adverse Drug Effects Using Electronic Health Records". Our con-
tribution is to identify novel and confirm previously known genetic markers
linked to drug related adverse effects. A distinctive feature of this work is
the use of population-based data in the study of pharmacogenetic relation-
ships.

Next, we cover the development of a tool that enables automated detection of
interesting genetic signals from results of associated genomic markers and traits of
interest. The need for such a tool was acknowledged during a previous study that
analysed a large number of genetic regions. The "interestingness" of regions that
are selected for further assessment is in large part subjective and study-dependent.
In our work, we aimed to help reduce the time needed for selecting genetic val-
idation targets by emulating human quality assessments of genomic association
results.
• Ref IV - "Manhattan Harvester and Cropper: a System for GWAS Peak

Detection". Assessment of Manhattan plots is a common step in the genome
wide association analysis pipeline. We developed a software that enables
automatic assessment and evaluation of regional genome plots of genome
wide association study (GWAS) summary data.

Overall, this thesis aims to contribute to the tool-set and knowledge applied
within the framework of personalised medicine as opposed to population-based
pharmacotherapy. The main aims of this thesis are:
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1. To develop and qualify a novel TDM personalised dose optimisation tool
using vancomycin in neonates as an example;

2. To evaluate the effect of using different published pharmacogenetic models
as Bayesian population priors within the developed tool;

3. To identify novel and confirm previously known genetic associations to
drug related adverse effects using data from electronic health records;

4. To simplify the detection of potential signals in genome-wide association
analyses.

The Preliminaries chapter of this thesis provides the background by introduc-
ing concepts of precision medicine, electronic health data, genetics and therapeu-
tic drug monitoring. Subsections of the preliminaries focus on specifics that lead
to thesis results. The two covered personalised medicine subsections are phar-
macogenetics and therapeutic drug monitoring. Concepts in genetics relate to
pharmacogenetics and its clinical applications. One of the main aims of phar-
macogenetic research is to reduce adverse drug effects. Gene-drug associations
that increase target attainment are morphed into therapeutic guidelines and subse-
quently applied in clinical practice. We outline the state of the field and discuss
methods commonly applied in association discovery pipelines. Relevant concepts
in TDM provide context for methods and prerequisites of developing quantita-
tive TDM strategies. The other chapters summarize the author contributions from
publications included in this thesis (Ref I-IV).
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1. PRELIMINARIES

1.1. Precision medicine

Increasingly unsustainable costs of health-care systems in the developed world
have forced administrators to re-evaluate their approaches to providing health-
care [144]. Pharmaceutical industry struggles with lagging research productiv-
ity [183]. The precision medicine approach has held promise for major improve-
ments through more effective resource management and effective use of patient
data in re-imagining therapeutic medicine. Although precision/ personalised/ in-
dividualised medicine has been most pre-eminently associated with advances in
genomics, a wider scope includes all health-related data inputs [41].

Currently, pharmacotheraphy is broadly population-based. Instead, individu-
alised approaches use methods that customise treatment administration and man-
agement according to the past and present specifics of the patient. This approach
is largely data driven - anything that can be collected, counted or measured might
be included in treatment decisions. The promise of precision medicine is to
make health care more personalised, preventative, patient inclusive and more cost-
effective. Ideally, this brings about both improvements in health-outcomes and
introduces cost-savings [10].

Personalised medicine is still a developing field with many unknowns and po-
tential pitfalls [84]. Success in reformulating existing systems depends on per-
ceived economic and health gains. Development of digital support systems that
guide medical decisions makes the system more complex. More of complexity
is expensive to maintain and develop and likely exacerbates the medical outcome
differences between high-and low-income countries [5]. Patients with higher ge-
netic risk may visit physicians more because of increased worry [16]. Physicians
need to develop new skills as they need to learn to use and apply the decision
support systems. The workload of the medical workforce increases as they need
to include analytical computerised interface in their work and in communication
of inferences [12]. This means they need to understand and be convinced of the
benefits [9]. The improvements are expected to come from higher efficacy of
healthcare systems and increased economic output from added qualitative life-
years [42]. Evidence about the meaningful public health-effect of personalised
medicine tests in actual use remains inconclusive. Some sources indicate that
most tests providing better health at a somewhat higher cost and only a minority
present eventual cost savings [154].

Personalised medicine programs are nevertheless being adopted all over the
world. In 2015, the US president proposed an investement of 215 million for
a corresponding national initiative for developing and implementing customised
treatments. Estonian Ministry of Social Affairs administrates the implementa-
tion of Estonian personalised medicine programme 2016-2020 following a feasi-
bility study. Other national efforts in Europe include SPHT in Switzerland and
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Aviesan national alliance in France amongst several others [109, 124, 141]. The
International Consortium for Personalised medicine brings together both national
entities and EU representatives to forge a common development framework in Eu-
rope [26]. Work for foundations of similarly co-ordinated initiatives are being laid
in parts of Asia [146].

Personalised medicine is powered by considerable advances in emerging bio-
logical fields such as genomics and related sub-fields, and data analysis, storage
and collection capacities. The outcomes can be applied in different domains. Ge-
nomic studies have uncovered thousands of trait related markers [199]. Between-
subject drug effect differences can be quantitatively explained by variations in
the genome, transcriptome, microbiome and environment [86, 205]. Advanced
analytics methods can be applied at bed-side at monitoring and patient specific
treatment adjustments [137]. Machine learning methods can help medics detect
malignancies based on medical image processing and diagnostics [51].

1.2. Electronic health data

Predictive models in medicine aim to quantify medical phenomena with the use
of past data to describe the future. These rely on availability and access to data.
Data input is required to investigate and derive inferences for individual decision
support. Therefore considerable efforts in developing precision medicine initia-
tives are going into systemic organisation of electronic data collection and man-
agement. Medical systems all over the world are replacing paper based health
records with electronic data [149]. Benefits of computerised health records in-
clude the availability, legibility, continuity and completeness. These systems aim
to collect and aggregate medical care information of all type starting from patient
life choices, familial health histories, related health-affecting habits and patients
own disease history including case durations, used and prescribed medications,
adverse effects, co-morbidities, symptom descriptions and outcomes [69]. Linked
in digital systems they also provide functions for exchange of data between clin-
icians and interaction with patients [126]. Overview of comprehensive medical
histories is invaluable for providing the best possible care. Besides administrative
effectiveness, the existing system is made more accessible and simultaneously
enables the use of novel clinical data for research.

Electronic health records can substantially improve wellness and disease man-
agement by providing the basis for individual decision support, population man-
agement and analytics routines [153]. Patient portals, in-treatment analytics tools
and predictive clinical models aim to transform patient data to an integrated com-
ponent of on-line care. Currently, electronic health records have not yet filled their
full potential even though national initiatives for adoption and system integration
are on-going [14]. However, patient data management tools are moving from
static dashboards and reports to real-time health assessment reports and calibrated
predictive probabilistic modelling [37]. Evidently, electronic health records have
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a two-fold utility for the patient. First, these can be used to develop predictive
models and patient care routines, and also that individual data can be used in such
models. Use of health records in clinical research for regulatory, observational
and safety studies is being widely used in an expanding set of applications [30].

Collection and measurement of genomic, metabolic or microbiome data is ex-
pensive and administratively difficult [104]. Handling requires careful methods of
storage and transport. Human biological samples are vulnerable to environmen-
tal degradation and require special laboratory conditions. Donor information and
data usage needs to confirm to pre-set requirements and regulatory conditions.
For this, population-based biobanks have emerged to store and manage the sam-
ples safe from physical harm in conditions that minimise their deterioration over
time.

Use of genomic and medical data is riddled with ethical, moral and legislative
questions which complicate adoption. Regulations regarding biobank activities
and their data processing are still evolving and are often handled case-by-case.
Regulatory constraints regarding private medical data severely complicate efforts
in data sharing and aggregation. Patient consent and public approval of reasonable
use policies are crucial, otherwise key stakeholders could be alienated [19, 56].
The general public regards scientific research that translates to public health im-
provements as one of the most desirable use cases [105]. Breach of trust may
decisively turn public opinion against development of novel health approaches
and thus public must be included in the decision making process and kept knowl-
edgeable of the actions regarding their private data [156]. Precaution is warranted
for potential cases of discrimination and data misuse. Large inconsistencies re-
main within data safety and privacy standards of healthcare providers with key
concerns around data access and accountability questions [50]. Data leakage to
external actors is a concern. Public upheaval can result when holders of genetic
data do not understandably inform the donors of their data sharing practices with
third parties [63]. Patients are not comfortable sharing all their medical health data
with any other healthcare provider associated practitioner than the treating physi-
cian [158]. Laws regarding lawful use of data contents are largely not agreed upon
between-systems. For example, calculation of insurance premiums based on med-
ical data has ethical implications. Other barriers to adoption include lack of funds
in the public system, and for the physicians the problems may be in missing skills
and training, lack of desire for additional control measures and little belief in the
utility of innovations [11]. Lack of interest in adopting new technological mea-
sures is grounded in several issues. The physicians are not always educated on
the benefits and taught how to properly use the system [178]. This means that the
implemented systems do not necessarily contain features required for successful
use [181]. In case of compulsory, bureaucratically mandated use, the physicians
start using short-cuts in the digital system by missing fields, inconsistent updates
and copy-pasting previous inputs [14].

In Europe, countries in the Nordic region and UK are especially active in using

16



biobanks in planned precision medicine programs [142]. Specifically, we high-
light the Estonian success story for its approach to data-driven healthcare. The
Estonian Genome Center affiliated with University of Tartu (EGCUT) collects
and manages the genomic data of volunteered adult Estonian population partici-
pants [103]. It was set-up as a longitudinal, population-based Biobank with ability
to re-contact patients but currently also performs the duties of a research insti-
tute. Its aims included promotion of genetic research development, collection of
health and genetics data and public health improvements [104]. Now, EGCUT
also manages the population-wide analysis and communication of genetic feed-
back on selected diseases and drugs to the first 52,000 participants. The genomic
data is supplemented by an extensive questionnaire describing the life-history of
the participating individuals [103]. Current iteration has expanded the genotyped
population to around 150,000 individuals. Publicly oriented Biobank that focuses
on communication of insights has an important role in popularising the idea of
genomic based medicine. About 70% of the population in Estonia is in favour
of the work done in EGCUT [104]. This has been made possible by constant
engagement with the public.

The data in EGCUT is periodically linked to other national health registries
and databases including data registries of main hospitals, Estonian Cancer Reg-
istry, and Death Registry [104] that helps the Center fulfil its research goals. All
research is performed following the broad consent form of University of Tartu Re-
search Ethics Committee. Additionally, initiatives such as the Estonian e-health
system support the development of comprehensive personalised medicine in a
top-to-bottom fashion and is the centralised focal point for nationwide infrastruc-
ture. Estonian National Health Information System collects the health information
provided by patients themselves, general practitioners or specialised physicians.
Databases are connected via a governmental IT framework X-Road [197]. Stan-
dardised data presentation, clear guidelines for access, usage and review provide
the basis for future work and feature additions. In all, a comprehensive person-
alised approach relies on a heterogeneous set of data sources and registries.

1.3. Basics of genetics

Human genetic material containing biological instructions is packed into deoxyri-
bonucleic acid (DNA). DNA is made up of 4 nucleotides: adenine (A), thymine
(T), guanine (G) and cytosine (C). All of organism’s genetic material makes up
its genome. DNA sequences in the genome that produce biologically functional
proteins are called genes. One of the most important biological tenets and the
founding informational pathway is the transcription of double-helix DNA into
single stranded messenger RNA. Three bases of RNA are translated into a single
amino acid. All amino acids derived from a single ribosome mediated translation
event form a protein.

No two humans are genetically identical. A human offspring gets around 50%
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of its genetic material from each of the two parents. To a lesser extent, novel indi-
vidual mutations are introduced to heritable and non-heritable cells at a very slow
rate and genetic material can be recombined between and within chromosomes
during meiosis and mitosis. The resulting genetic between-subject variation en-
sures that the overall ability of a species to respond to changing environmental
and societal changes remains flexible. This genetic shuffle is nature’s method to
heuristically search for combinations that improve the fitness and survival of the
species. The genetic composition of an individual, made up of around 3.6 billion
base-pairs, is unique. Genetics is mostly interested in characterisation, functional-
ity and mechanisms of the structural units that vary between individuals. Genetic
variation exhibits itself in very heterogeneous forms: from one-base single nu-
cleotide variant (SNV) changes to large scale structural variations encompassing
millions of base-pairs in the genome.

Biological processes are difficult to explain mechanistically. Each measur-
able trait or phenotype is a result of numerous complex biological interactions
on molecular, cell and tissue level with added random effects from environmen-
tal variables. Most phenotypes’ exact formation mechanisms and pathways are
unknown. Therefore one of the most popular first approaches for finding genetic
variations related to some expression of a trait is to evaluate the strength of associ-
ations using statistical methods. Statistically significant associations indicate that
the variation is a plausible candidate to have a measurable effect on the outcome
variable and is potentially involved in the system of trait development. A genetic
perturbation can affect the trait by switching genes on/off, decrease/increase the
expression of the gene, alter the protein, mediate regulatory pathways or alter
interactions with epigenetic elements and environmental attributes.

Many technologies exist for interrogating the exact DNA composition of an in-
dividual. Early genotyping technologies involved a painstaking work performed
with techniques such as Sanger sequencing [172]. Preparation required custom-
prepared lab primers and manual labour. DNA microarrays allowed rapid targeted
genotyping of prioritised gene regions and SNVs [61]. Despite that DNA mi-
croarray use requires strong foresight of regions of interest and would not enable
to evaluate out-of-region associations, even now DNA microarrays are the most
cost-effective option for determining the composition of specific genomic loci.

The nucleotides of the first human genome were sequenced by determining
and ordering them for millions of euros by the year 2000 [28]. This mega project
highlighted a need for more scalable techniques which emerged with the next gen-
eration sequencing (NGS) techniques that streamlined genotyping capacity. The
range of available technologies has now greatly expanded the range of testable
genomic regions. NGS techniques include a plethora of methods and technolo-
gies that allow deep characterisation of parts of the genome or its products such
as DNA (DNA-Seq), RNA (RNA-Seq), protein-DNA interactions (Chip-Seq) etc.
[125]. Whole genome sequencing captures (almost) the entirety of the organism
genome, whereas whole exome sequencing encompasses a functionally very im-
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portant subset of all protein coding genes. Rapid advancement of next-generation
technologies has lowered the cost of whole genome sequencing to around a thou-
sand dollars per individual. The decreasing sequencing cost has caused a prolifer-
ation of studies that study genomic effects in relation to observable traits in large
groups of individuals [114]. Whole genome sequencing (WGS) of populations
has also led to construction of reference panels for probabilistically imputing the
untyped genotypes based on a genotyped subset of markers [25, 122, 127]. Com-
bining reference panels with genotyping arrays provides an relatively cheap way
for obtaining comprehensive individual genetic profiles. The gnomAD browser
(v 2.1), which has aggregated data on 125,748 exomes and 15,708 whole-genome
sequences, includes around 230 million unique variant forms, alleles [89]. This
number is likely to continue growing as more individuals are sequenced.

1.3.1. Genome wide association discovery

One of the main aims in genetics is to explain observable traits through genetic
variants. Direct observational studies do not scale to the human genome and
to the large number of statistically significant variants with small individual ef-
fects [151]. Moving from targeted genotyping to whole-genome approaches al-
lows usage of data-driven approaches. Quite commonly investigators apply the
framework of statistical hypothesis testing on a whole genome scale, a genome
wide association study (GWAS), to evaluate genomic variants for statistical cor-
relations with the phenotype [198].

GWAS approach tests the genotype effect in relation to the dependent pheno-
type. Single marker association tests the alleles, realised variant forms, one at a
time. Since humans have two copies of each chromosome then in cases where a
SNV varies between two nucleotides then a genotype configuration at a specific
loci can contain either two copies of either allele or one of each. For example, if
at a certain loci C is the most commonly observed allele and also in the reference
genome (reference allele) but T is also sometimes manifested (alternative allele)
then the genotypes at this position can be CC, CT or TT. For quantitative analyses
the alleles need to be coded so that it reflects the genotype effect change on the
phenotype. Dominant model posits that a single risk allele is needed to exhibit the
effect, a recessive model requires two copies of the risk allele. However, the anal-
yses most commonly apply additive models which assume that the risk increases
linearly with each risk allele so that the genotypes can be coded as 0,1 and 2 [18].

Let’s consider a case for associating genotypes with a phenotype that can take
continuous numeric values. One approach to test the relationship between the phe-
notype and genotype would be to use statistical hypothesis testing which compares
an actual scenario with an expected one given a set of constraints and compares
them based on a test-statistic value. The hypothesis under any null scenario is that
a difference between the two scenarios does not exist. The simplest statistical test,
one sample t-test, compares the mean of a sample to a constant. This test is often
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the basis for testing significance of the predictors in a linear regression model

y = Xβββ + εεε,

where εεε is the residual error vector and its elements are independently and iden-
tically distributed by N(0,σ2

ε ), where σ
2
ε is the variability of the residual error, y

is the dependent variable, X the design matrix that consists of genotypes coded in
accordance with the genetic model and other predictive variables and βββ a vector
of coefficients that are to be estimated for predictive variables. One way of solv-
ing this would be to minimise the sum of squared residuals for which there exists
a closed-form solution

β̂ββ = (XᵀX)−1Xᵀy.

Assuming a number of independent variables, the null hypothesis of the coeffi-
cient for the genotype β1 can be tested for linear relationship with y using hy-
potheses

H0 : β1 = 0,

H1 : β1 6= 0,

using a test-statistic that approximates the normal distribution

t =
β̂1−µ

se(β̂1)
,

where µ evaluates to zero as specified in the hypothesis and se(β̂1) is the standard
error of the β1. Next, the value of this test-statistic (t-statistic) translates to the
probability of observing at least as extreme of a test-statistic value from an under-
lying distribution (t-distribution) known as the p-value. The p-values are used as
the main decision criteria for either rejecting or staying with the null hypothesis
of the test so to decide of the predictor is significant in terms of explaining the
outcome [101].

A second very common set-up would associate genotypes to a binary predic-
tor. For example, one analysis aim would be to relate genotypes with diseased
(case) and healthy (control) statuses of patients. Such a design allows grouping
the patients by their outcome (case/control) and presence of an allele in a gene.
Binary outcomes can be tabulated into frequency tables for which a plethora of
statistical tests such as Chi-squared or Fisher’s exact test can be used for testing
group differences. Fisher’s exact test allows evaluation of direct probabilities from
a hyper-geometric distribution. If the probability of observed data that is used as
the p-value is lower than the threshold then null is rejected and differences in
category frequencies are declared. Chi-squared test relies on the expectation of
a test-statistic from chi-distribution. The extension of 2x2 frequency table is a
logistic model

logit(pi) = log
pi

1− pi
= xiβββ ,
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where xi is a row of design matrix X that contains predictors for the element i
where i = 1 . . .n, to predict the probability pi that the binomially distributed out-
come yi = 1. Logistic regression does not have a closed form solution. Instead
a maximum likelihood estimate, differentiated logarithm of the loss-function, is
obtained using some iterative methods such as Newton-Rhapson or gradient de-
scent [165]. The maximum likelihood estimates are parameter values that max-
imise the likelihood function. Hypothesis testing of logistic regression coefficients
is commonly performed using Wald test [200]

W =
β̂1−µ

se(β̂1)
.

Since both β1 and µ are assumed to come from normal distribution so the square
of their differences is assumed to arise from Chi-squared distribution. Odds ratios
(OR) from GWAS are used to describe the extent that a genotype affects the out-
come.This measure is derived from logistic regression analysis by exponentiating
the coefficients. An odds ratio derived from a coefficient of a genotype represents
the odds of having a particular risk genotype in cases compared to controls [76]

ORβ1 = exp(β1).

In a single statistical test, a p-value that is often use as a threshold in hypothesis
testing is 0.05. If the p-value probability is lower than the threshold then a statisti-
cally significant difference between observed conditions is declared and the null is
overturned. Increasing the number of statistical tests increases the probability of
observing false associations. A common approach is to perform threshold correc-
tions corresponding to the number of performed tests. The gold standard for ad-
justed threshold in GWAS studies in usually set at p-value 5∗10−8 which roughly
estimates the number of independent tests to around 1,000,000 [27]. Often, ad-
ditional safeguards are applied to guard against spurious results. This includes
using bioinformatics methods for assessing the functionality of the region, exter-
nal validations in independent datasets and evaluation of background knowledge
from previous studies.

The number of significant associations identified with GWAS that relate to
a multitude of traits is already in thousands and growing [114]. Ideally, data-
driven GWAS insights are placed in biological context and explained as part of
mechanistic pathways for the associated traits. In recent years, several calls have
been made to guide research towards translational approaches and clinical appli-
cations [23, 115]. This has proven to be a challenge [45]. Most of the associated
variants are in complex intergenic or intronic regions so the effect of SNVs is
not directly inferrable from the effect on resulting protein [72]. Instead, these
variants seem to have a role in a dynamic system between various regulatory,
epigenomic, transcriptomic elements that can be tissue and development cycle
specific [110, 173]. Mechanistic translational science is more expensive, time-
consuming and less accessible, alas the population-based GWAS approach is still
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wildly popular and even increasing in usage [55, 199]. It is unlikely that adding
many more samples to new GWAS would much increase the currently explained
variability of most commonly studied complex disease traits [168]. With smaller
effect sizes, the statistical significance does not translate to clinical significance.

Still, the success of a data-driven and statistical GWAS approach is testified
in a number of developments. It has significantly increased the amount of ex-
plained genomic variation of many phenotypes, GWAS studies have identified
many SNVs that replicate well and have also yielded some SNVs with clear med-
ical utility [198]. Genomic data used for GWAS can be combined with other
sources to provide the basis for systemically disentangling the mechanisms in
complex biological systems [68]. In drug effect related genomics studies, many
associations between drugs and a single allele have been shown to have effect
sizes that warrant changes in treatment [33]. Individual GWAS SNVs are now be-
ing used in predicting complex traits and common diseases by combining multiple
allele contributions in polygenic risk scores that explain larger proportions of to-
tal variance [29]. These scores have now started to show predictive performances
which may propel translation of polygenic risk scores to clinical practice [92].

1.3.2. Pharmacogenetics

Pharmacogenetic studies mostly investigate the relationship between genomic re-
gions and responses to pharmacological medications. Genetic variation has been
shown to alter drug metabolism, absorption and elimination [71]. These can result
in markable differences in dosages needed to produce similar concentration-time
profiles. Use of a drug with a conflicting genotype could also lead to a com-
pletely missing positive response, unexpected severe health effects, hospitalisation
or even death [44]. Adapting the genetic information to personal drug selection
and adjusted administration holds promise in improving therapeutic care [169].

Under-estimation of drug variability may lead to failure of therapy due to dos-
ing failures, low efficacy or toxicity events. Prevention of adverse drug effects
(ADE) is the motivating factor of studying pharmacogenetics as ADEs account
for around 6.5% of hospital admissions in the western countries [155]. Preven-
tative assessment of ADEs can decrease the expected patient treatment costs but
also improve the rates of successful therapies. However, drug switches for the
primary condition and medications to the resulting ADEs drives up costs [85]. In
the United States, ADE management is estimated to cost up to 30 billion United
States dollars annually [185].

Most drugs have listed some potential side effects but on a population level
most of these have relatively small epidemiological prevalences [15]. Evidence
on ADEs in treatment centres is collected through physician documentations. The
physician needs to recognise the ADE and also link it to drug usage by some
universal identification. Treating physicians are likely to miss related side ef-
fects that have not directly been implicated with the drug before-hand [44]. Pre-
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market testing is unlikely to have identified all possible ADEs that happen in low
frequencies due to limited sample sizes, limited duration of studies and unfo-
cused cohorts [49]. Co-administration of several drugs complicates the outlook.
Thus, estimates of the extent of ADEs are huge but their cost and extent are most
certainly underestimated. In Kuwait, only 34% of the physicians have ever re-
ported ADEs [4]. Hazell and Shakir reported that the median under-reporting rate
from 37 studies conducted in wide range of different countries was a staggering
94% [70]. The high cost of adverse drug effects provides abundant cost-saving
opportunities.

Drug metabolism pathways are relatively well-studied. A set of around 60
genes also known as Very Important Pharmacogenes (VIP) are known to be mech-
anistically involved in metabolism of many drugs [46]. These genes have become
the first focus points when investigating genetic associations to drug response.
Quite uncommonly for many traits, alterations in metabolising genes can result in
drug response events with large effects which makes prevention of ADEs a clini-
cally implementable task [99]. Firstly, limited genomic area of interest means that
the regions are well studied which improves functional profiling and annotation
of variants. Unacceptable ADEs can be avoided by timely drug switches to effi-
cient and non-toxic alternatives. In other cases, knowing the effect and magnitude
of the alterations enables changes in dosing which lead to more preferable drug
concentration profiles leading to desirable therapeutic effects and fewer adverse
effects/toxicity. Therefore, personalised genome-based approach to prevention of
adverse drug effects can lower the rate of re-medications, treatment interventions
and can increase the dosing accuracy as there is a better model for the individual’s
response [24].

Genetics is a significant contributor to the between-subject variability of per-
formance for many drugs but genetics-guided provision is not applicable for all
drugs. Actionability due to genetics is estimated to be the case for around 7%
of drugs which account for around 20% of all prescriptions [40]. The list of
gene-drug pairs with applicable interventions is still growing but it is likely that
contributors with largest effects have been identified. It has been estimated that
around 99% of people have an actionable variant affecting future drug prescrip-
tions [83]. A classic pharmacogenetics success case is NAT2 testing for tuber-
culosis treatment with isoniazid. It was one of the first pharmacogenetic inter-
ventions shown to be clinically relevant and has thus far become standard prac-
tice [47]. Implications of lower doses were based on statistical associations be-
tween the allele variants and observed efficacy. Another classic case concerns test-
ing CYP2C9*2/CYP2C9*3 alleles that affect warfarin pharmacokinetics (PK) [2].
Evidently, S-warfarin, one of the two warfarin components, is largely metabolised
by CYP2C9. The allele carriers require lower doses of warfarin and have a higher
risk of bleeding complications due to impaired hydroxylase that lowers the bind-
ing affinity of the drug [152]. For most drugs the pharmacogenomic pathways
have not been fully elaborated. Uncharacterised variants and regulatory and epi-
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genetic mechanisms are all possible factors in mediating the genomic effect on
drug dosage, toxicity and efficacy. Possible environmental interactions such as
drug-drug interactions and other sources of variability mean that drug monitor-
ing via genotype assessment is not enough and in-treatment follow-ups are still
required.

1.3.3. Clinical applications of pharmacogenetics

Coordinated efforts by medical and scientific societies aim to translate pharma-
cogenomic information into clinical practice. Several professional societies and
consortia are working on developing practical pharmacogenetics guidelines and
curated databases. In Europe consortia such as The European Pharmacogenet-
ics Implementations Consortium and Ubiquitous Pharmacogenomics Consortium
work towards enabling availability of pharmacogenetic testing in clinics and dis-
semination of guidelines for European populations [116]. Members of United
States based Pharmacogenomics Research Network develop uniform guidelines
for Clinical Pharmacogenetics consortium [43, 163]. Their European analogue,
Royal Dutch Association for the Advancement of Pharmacy presented the first set
of guidelines in 2011 [187]. Both focus on actionable translation of genetic infor-
mation to clinical environments. The guidelines link genetic variation with a drug
and give a recommended action with a certainty based on the amount of accumu-
lated evidence. However, they do not inform clinical decision making and there
are differences between the two guidelines. Curated guidelines need to be vali-
dated but randomised clinical studies are expensive and time-consuming to con-
duct [182]. New evidence may change and complicate existing interpretations if
the two conflict. Ancestry based population stratification and differences in allele
frequencies complicate transferability of guidelines between populations [121].
Evidently, practical difficulties in monitoring and curating the genome associated
drug guidelines arise as information accumulates. Contradictory effect directions
from multiple contributing alleles may suggest different courses of action. For
this purpose, databases such as PharmGKB and PharmVar aim to aggregate cur-
rent pharmacogenetic knowledge in concise summarised format and results from
incoming independent studies with sometimes conflicting information are aggre-
gated [54, 71]. Centralised curators disseminate the data whereas implementation
guidelines are left to independent stakeholders and guideline-developers.

Development of pharmacogenetic guidelines aims to maximally account for
evidence-based clinical pharmacogenetic utility. Genetics based decision making
introduces a new source of information which requires novel competencies. The
stakeholders are unlikely to accept new complexity and extra expenses if the utility
of incorporation of genetic information in standard routine care is not clear [162].
Clinicians, the information gatekeepers need to be educated in transmitting the
findings back to the individual patient. The treating physician would be greatly
aided by supportive infrastructure, decision support methods and guidelines that
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are handily accessible. This requires proactive planning and targeted develop-
ment. The patient genotype data needs to be collected, stored and analysed in
unison with other relevant medical data. Information technology systems are re-
quired to be able to process, maintain and communicate the data [196]. With
the availability of patient genomic data most analysis steps can be pre-processed
which cuts the required time and costs [97].

The incentives to nudge pharmacogenetic testing into mainstream use already
exist. Patients pro-actively research their ailments online and increasingly demand
state-of-the-art care. Single marker tests are most often performed when ordered
but multi-gene testing panels may be shifting genetic testing towards preemptive
approaches [162]. Not testing clinically identified pharmacogenetic markers has
precedents of initiated class action law-suits [113].

1.4. Basics of therapeutic drug monitoring

Drug response variability may be attributed to physiological and environmen-
tal factors. Therapeutic drug monitoring (TDM) aims to guide pharmacothera-
phy using information gleaned from patient concentration measurements to attain
therapeutically effective ranges of specified targets, therapeutic windows. This
approach can help achieving individualisation of therapy, drug interaction moni-
toring, minimisation of under- and overdosing and withdrawal management [88].
Drug therapy that does not attain therapeutic windows can result in adverse ef-
fects [13]. For this, quantitative techniques help in quantifying the relationships
between pharmacological concentration profiles and treatment response [189] and
help in optimising expected outcomes in regard to dose amounts, administration
times and dosing intervals [176].

For many drugs therapeutic drug monitoring is not needed or applicable but
those that do benefit share several common characteristics [81]. Utility of TDM
requires that the concentration measurements can be approximated to the thera-
peutic effect and that these can be used to derive interpretable clinical outcomes,
and limited extent of intermediate metabolism processes of the active compound
[88]. Environmental or physiological differences in drug metabolism can result
in large between-subject concentration variability at effect site that increases un-
certainty of outcomes. Essentially, the utility depends on the width of thera-
peutic window that can be narrower if between-subject variability is small but
needs to be wider when the variability is larger [81]. Often clinicians need to
avoid the development of antimicrobial-resistance through higher concentrations
and considerations for special populations where the inter-individual variability
may be larger [31, 167]. This decreases the size of effective target range and
increases the likelihood of toxicity thus warranting more precise TDM. Drugs
routinely monitored in clinical practice include digoxin, lithium, tacrolimus and
vancomycin [58].

Several practical issues restrict the extent and optimal use of TDM applica-
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tions. As in genetics, there is always a need for additional evidence of rela-
tionships between observable concentrations and the outcome to justify addi-
tional complexity. Each use case requires individual evaluation of efficacy and
prospects [176, 193]. The drug must have an interpretable correlation between
the concentration and effect [184]. Physiological differences between some sub-
cohorts require care in development of TDM guidelines [8]. The outcome of TDM
also depends on several external factors. Variation can be included from errors in
timing of concentrations sampling, storage conditions, and measurement assay
specifics [87]. Specific measurement assays may not always be available [58].
Drugs with better explained pharmacological properties and pharmacodynamics
are therefore more adaptable to monitored treatment. There are also requirements
for skill development in interpreting and communicating the TDM information
which introduces new tasks for the physicians.

Personalised medicine is conventionally associated with genomics-based health
care. Nevertheless, TDM belongs to same broad-based family of approaches
[130]. It enables optimisation of therapeutic goals based on accrued evidence from
related individuals with similar conditions and is based on patient data based guid-
ances used in personalised clinical care provision. The aim is to derive definitive
improvement of patient outcomes through incorporation of evidence other than
clinical judgment [48].

1.4.1. Pharmacokinetics in therapeutic drug monitoring

Drugs vary in terms of disposition processes, therapeutic sites and physical ef-
fects [60]. Post-administration the drug is absorbed, distributed, metabolised and
eliminated from the body. Pharmacokinetics aims to explain, model and further
the understanding of drug disposition based on the drug concentration changes at
the site of measurement in relation to time [81]. Modelled processes encompass
all the effects of individual pathways related to drug function. The underlying
assumption is to base basic pharmacokinetic techniques on physiology in the con-
text of absorption-distribution-metabolism-elimination (ADME) processes. Phar-
macokinetic methods and techniques rely on simplifications to approximate the
true physiological processes and drug-body interactions. Models and techniques
for this rely on a set of established principles such as explaining concentration
courses through parameters that approximate some physiological property. Direct
observance of drug disposition in in vivo systems is complicated. Mathematical
approximations of physiological phenomena incorporate and are dependent on
external treatment specifics such as method of drug administration, protein/tissue
binding and pathways of elimination. In the following, we focus on intravenous
infusion administration. This entails administering the drug directly to the blood-
stream over a short period of time. As opposed to oral administration, all of the
drug is instantly absorbed into bloodstream.

Drug concentration amount (Cp) in serum, plasma or blood is the pre-eminent
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attribute that characterises all other dependent pharmacokinetic terms. It is di-
rectly measured. The volume of distribution (V ) is a parameter that is estimated
to approximate for the volume of drug distribution in the soluble space of an or-
ganism. These two parameters, at time t, are related through relationship Cp(t) =
Y (t)

V
, where Y (t) is the amount of drug at time t. The drug disposition through-

out the body is not usually uniform. For simplification, the organism is often
divided in parts of equal solubility and access for the drug called compartments.
As such V often signifies the volume of "central compartment" which represents
well perfused regions (liver, blood) or plasma. Individual volume of distribution
is a result of an interplay between the drug’s fat and water solubility and body
composition, and the activity of drug transporters and other enzymes involved in
metabolism pathways [177]. Clearance (CL) is the volume from which the drug
is eliminated per unit of time. Total clearance is the sum of all individual or-
gan contributions towards elimination. Two main pathways for drug elimination
in human are kidneys and liver. A smaller fraction may be eliminated via other
metabolic organs. Elimination rate constant, k, links the two primary terms by di-
vision (CL/V ) and expresses the fraction of the remaining drug that is eliminated
per unit of time [36].

An analytical parameter that captures all concentration changes throughout
therapy administration is the area under the curve (AUC). In a one-time admin-
istration it links the drug dose and the total clearance by evaluating the area of

concentration curve over time AUC =
∫

∞

0
Cp(t)dt =

D
CL

, where D is the amount

of administered dose. Often, concentration measurements are sparsely available
and simplifications are applied in practical AUC estimation with methods such as
linear trapezoidal rule AUC0−tn for periods where concentrations increase

AUC0−tn =
n

∑
i=1

(
Cp(ti)+Cp(ti+1)

2
)∗ (ti+1− ti)

and the log-linear trapezoidal when concentrations decrease [53]

AUC0−tn =
n

∑
i=1

Cp(ti)−Cp(ti+1)

ln Cp(ti)
Cp(ti+1)

(ti+1− ti).

Here, ti represents the time of a specific concentration measurement and Cp(ti) the
corresponding value, where i= 1 . . .n are indices for available measurements. The
general idea is to extrapolate between available measurements. Log-linear method
reduces overestimation compared to linear estimates if the speed of the process
is related to the remaining drug amount in plasma. In treatment scenarios with
multiple intermittent doses the aim is to arrive to steady state where subsequent
dose administrations with consistent intervals yield identical time-concentration
curves and therapeutic range is most accurately targeted. Importantly, AUC of a
single dose is equal to its interval AUC in steady-state [81].
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ADME drug disposition processes characterise drug transmission through the
body. A central problem is modelling the amount of drug Cp at the effect site at a
given time t. A full time-concentration profile consists of concentration increase
by administration and depletion by elimination. This process of concentration
changes can be captured with description of rate changes in the general form:

±d(Cp(t))
dt

= A∗ (Cp(t))n.

Exponent n determines the order of processes and A is the rate of concentration
change. In pharmacokinetics, a zero-order kinetic process expresses the rate of
administration/elimination that is independent of the existing drug concentration
eg. elimination of ethanol:

Cp(t) = c±A∗ t.

Here, c is a constant signifying the initial amount. In a first-order kinetic process
the rate of change is dependent on the existing concentrations and increases:

Cp(t) = c∗ e±A∗t .

Combination of directional rate processes provide the basis for drug concentration
change modelling for the vast majority of drugs [81].

The rate processes provide a coherent way to model physiological drug PK
by relating dose information and time to concentration changes. An important
simplification for concentration modelling using rate processes relies on grouping
the body in compartmental sections. This assumes similar disposition properties
within a compartment and enables capturing drug movements with a single rate
process between connected compartments. Combination of rate processes of var-
ious order can simulate different modes of administration, amounts of compart-
ments, elimination, absorption pathways and PK dynamics [81]. These considera-
tions guide the selection of a structural model. Fortunately, analytical solutions for
differential equations exist for several commonly found set-ups of drug kinetics
changes. A standard one compartmental model assumes that the drug is adminis-
tered into a compartment of certain volume by some rate and eliminated at a dif-
ferent rate. A standard two compartmental model includes a second compartment
which exchanges contents with the former at different speeds. This aids in sim-
ulating a two-tiered drug elimination curve whereby the faster elimination phase
is followed by a slower one [132]. This thesis highlights the one-compartmental
model with multiple administration episodes of intravenous infusion with zero-
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order absorption and linear elimination of first-order rate:

Cp(t) =



Dn

Tin fn

1
kV

(1− e−k(t−tDn )), if t− tDn ≤ Tin fn & n = 1
n−1

∑
i=1

Di

Tin fi

1
kV

(1− e−kTin fi)e−k(t−tDi−Tin fi)

+
Dn

Tin fn

1
kV

(1− e−k(t−tDn )), if t− tDn ≤ Tin fn & n > 1
n−1

∑
i=1

Di

Tin fi

1
kV

(1− e−kTin fi)e−k(t−tDi−Tin fi)

+
Dn

Tin fn

1
kV

(1− e−kTin fn)e−k(t−tDn−Tin fn), otherwise.

Variable Di is dose amount, tDi is the time of dose, Tin fi is duration of infusion
for the dose administration i where i = 1, . . . ,n−1. Also k is the elimination rate,
V is volume of distribution and Cp(t) is concentration at time t. Variables Dn, tDn ,
Tin fn represent analogous quantities but for the last, nth, observed dose adminis-
tration [39]. The idea is to characterise concentration movements over time given
an arbitrary dosing schedule. The concentrations increase when less time than
the duration of infusion has passed from the dosing event and decrease otherwise.
The first case is used to evaluate concentrations for single-administration events
at such times t when the infusion is on-going. The second case is used to evaluate
concentrations in cases with more than 1 administration at time-points t till the
end of last infusion event and the third case is used to describe the decreases in
concentration for any t > Tin fn + tDn .

The compartmental models aim to link time and dosages with concentrations.
The concentration predictions are also influenced by values of physiological PK
parameters such as clearance and volume of distribution that are not readily avail-
able. Therefore, the non-linear compartmental models are often used for mod-
elling the drug concentrations so to estimate the related pharmacokinetic parame-
ters. Additionally, properties of the drug often warrant inclusion of other covari-
ates that affect and stratify PK such as age, weight, co-administration of a different
drug etc. These other measurable and predictive variables are often modelled as
covariates of the PK parameters through allometric, proportional, linear or expo-
nential functions and standardised in relation to population or expected reference
values. A realisation of pharmacokinetic parameter θpop may then in reality be
a function of any interlinked explanatory variables θpop = f (γγγ), where γγγ is the
vector of additional covariates and f () is the linking function. Relevance of co-
variates is determined by relying on physiological assumptions and their effect on
improving model performance. The latter is measured with residual analyses and
statistical tests [132, 170] .

Pharmacokinetic data are longitudinal and often sparse; datasets are made up
of a fairly small number of samples with unbalanced number of measurements.
To extract most value from these data, in time, several approaches have been used
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in parameter estimation. Previously, the two-stage approach relied on distinct
estimation of individual kinetic parameters [20]. First stage estimates individ-
ual parameters by non-compartmental approaches and AUC based concentration
curves. In the second phase, individual estimates are aggregated by standard sta-
tistical estimates such as standard deviation and the mean. Another popular way
is to apply weighted non-linear least squares regression [134]. The weakness of
that approach lies in sensitivity to the number of samples available per patient,
the issue of weight selection and threat of over-fitting. Two-stage and weighted
regression are not population-based as estimations are aggregated from individual
patient samples.

Currently, the non-linear mixed-effects modelling is the most popular method
for developing population-based PK models [132]. Hierarchical modelling cap-
tures between-subject variability of physiological parameters as a surrogate for
population-wide concentration variability. A pharmacokinetic non-linear mixed
effect model could be represented as Cp(t) = f (t,θθθ), where vector θθθ repre-
sents physiological parameters that are assumed to be normally distributed and
t is time. Assuming independence between different physiological parameters,
the vector of random effects ηηηθ1

describes population-wide concentration vari-
ability for a specific pharmacokinetic parameter θ1 and its individual elements
are distributed by N(0,ω2

θ1
) where ω

2
θ1

is the population variance of the PK pa-
rameter. Another expansion of structure accounts for model residual variability
with error terms. In the context of longitudinal concentration values, a fair pre-
supposition is to expect larger unexplained variability at higher concentrations.
As opposed to additive residual structure (Cp(t) = f (t,θθθ) + ε0t), proportional
(Cp(t) = f (t,θθθ) ∗ (1+ ε0t)), exponential (Cp(t) = f (t,θθθ) ∗ exp(ε0t)) and com-
bined models (Cp(t) = f (t,θθθ)∗ (1+ ε0t)+ ε1t) allow for heteroskedastic residual
modelling. Here, a common simplification assumes independence between differ-
ent error terms and between error terms and parameter values. Here, instances for
εzt at time t for error component z are assumed to be drawn from the distribution
N(0, σ

2
z )), where σ

2
z is the variability estimate of the zth error term [132, 170].

Pharmacokinetic model fitting produces models for the PK parameters such as
clearance and volume of distribution that consist of estimates accompanied by any
additional variables explanatory variables. In the case of a mixed-effect model the
between-subject variability of PK estimates can be described as the population-
wide variability of the concentrations. As such this model of pharmacokinetic
parameters allows simulation of individual PK parameter values for a population
using draws from the random effect distribution as θi = g(ηi,θpop) where g() is
a link function that captures the relationship between individual values to fixed
effect population level estimates for the individual i and θpop is the population
value of the PK parameter. As above ηi is an individual estimate for random
variation around the population estimate of the corresponding PK parameter θi.
The link function is often expressed through an exponential component θi = θpop∗
exp(ηi). Proportional (θi = θpop ∗ (1+ηi)) and additive structural forms (θi =
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θpop +ηi) are also in common use.
Pharmacokinetic modelling is relevant for most drugs which can benefit from

TDM for dose optimisation and concentration monitoring [57]. However pub-
lished range of results, structural models and covariates often differ even within
one drug and cohort [120, 203]. Several attributes affect the success of pharma-
cokinetic study outcomes. Sampling design is crucial because of limited avail-
ability of samples and per patient concentration measurements [123]. Sample
unavailability may be caused by the rarity of the condition or because the drug
concentration measurements pose additional health threats. In turn, limited sam-
ple sizes reduce the number of covariates that can be modelled and increase es-
timation biases [139]. These in turn affect model validation which translates to
generalisability and over-fitting issues [17].

1.4.2. Therapeutic targets

Structurally modelled pharmacokinetics provides a way to link individual drug
kinetics estimates to context specific therapy adjustments. Drug administration
in therapeutically monitored treatment is followed by a concentration measure-
ment that is converted to a desired target index and evaluated against index values
associated with improved treatment outcomes. Modifications for the next dose
administration are done so that discrepancies between observed and expected tar-
gets are reduced and to improve the probability of target attainment (PTA). This
process is repeated for the duration of the treatment [88]. TDM requires avail-
ability of target metrics and their optimal values or ranges. Such pharmacoki-
netic/pharmacodynamic (PK/PD) indices are commonly established by associat-
ing the treatment endpoints to drug kinetics.

The most common treatment endpoint that is monitored in TDM via PK/PD
indices is efficacy [32]. For some drugs such as gentamicin and vancomycin, tox-
icity monitoring is also important [67, 95]. In the broad class of antimicrobial
drugs, the mechanism of anticipated drug effect is a good indicator of the most
suitable PK/PD index [195]. Still, final index selection is mostly based on best
observed correlations with the endpoint [133]. Penicillins, macrolides and car-
bapenems exhibit time-dependent effect and minimal persistent effects, and are
often evaluated by the time of concentration above the minimum inhibitory con-
centration (t > MIC). The PK/PD index of concentration dependent drugs with
prolonged persistent effects such as ketolides and aminoglycosides is the maximal
concentration over minimum inhibitory drug concentration (Cpmax/MIC). On the
other hand, concentration-dependent drugs with moderate to prolonged persistent
effects are often evaluated by dividing area-under-curve of the pathogen by mini-
mum inhibitory concentration (AUC/MIC) [6]. Vancomycin and clindamycin are
examples of the last group [108]. Consequently, drug related PK/PD index dis-
criminates efficiency outcomes on a certain threshold. For most drugs the debate
about the optimal values for desired PK/PD indices is on-going.

31



Computation of pharmacodynamic indices by derivation from concentration
measurements may result in loss of accuracy. AUC estimates are not always
consistent due to differences in the choices of time-concentration curve fitting
model, sampling times and estimation method [94]. In some cases, the approx-
imate PK/PD indices can be substituted with direct indicators such as peak or
trough concentration values (Cptrough) or respective concentration ranges thanks
to correlations between different PK/PD indices. For example, ample evidence for
associations between trough concentration values to AUC/MIC for vancomycin in
paediatric populations show that trough concentrations of 10 mg/L are sufficient
to achieve AUC/MIC > 400 [22, 52, 98, 194] but contradicting evidence has also
been presented [138]. Directly correlating concentration profiles with efficiency
indices can provide a more straightforward application of TDM. Because they are
easier to measure and to interpret, the Cptrough values are somewhat easier to use
in clinical settings.

Quantitative TDM requires both known efficiency related indices and a sys-
temic approach to performing individual adjustments [167]. Traditional approaches
rely on nomograms or charts designed for the current drug and patient cohort
set. Simpler rule of thumb adjustments apply proportional dose adjustments de-
pending on the direction of error. Model based monitoring is most useful for
drugs with narrow therapeutic windows and high inter-individual variability such
as vancomycin [136]. Larger differences in population-wide variability and nar-
rower therapeutic range make patients more susceptible to toxic over-dosing or
inefficient under-dosing. Therefore, related improvements in target attainment
can have a considerable real-world therapeutic effect. For this, precision dosing
methods aim to apply computational methods to improve treatment provision by
higher target attainment of therapeutic indices [137].

1.4.3. Precision dosing

Bayesian framework derives probabilistic inferences by updating prior beliefs
with observed data. Solution of a Bayesian parameter estimation, conditional
on the observed data, is a full distribution of parameter values instead of a point
estimate. These are derived on the basis of a Bayes rule that is used to combine
evidence with prior beliefs

P(θ |x) = (P(x|θ)∗P(θ))
P(x)

.

Here, P(θ |x) is the posterior distribution of parameters conditioned on the data,
P(x|θ) is the likelihood function for probabilities of observing the data condi-
tional on unknown parameter values. P(θ) is the initial belief or prior about the
distributions of parameter values. The evidence P(x) is the scaling factor for the
density function to scale the sum of probabilities to 1. The evidence can be eval-
uated as an integral over all possible parameter values in continuous parameter
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P(x) =
∫

P(x|θ)P(θ)dθ .

In the absence of conjugate priors for likelihood distributions, the analytical eval-
uation involves often intractable high-dimensional integration [100].

The foundations for Bayesian applications in pharmacokinetics were made in
the 1980s [175]. Bayesian methods are a natural extension to compartmental pop-
ulation PK models which allow including new concentration measurements to
update population estimates. In Bayesian context, kinetic compartmental mod-
els serve as likelihood function which ties the measured individual drug concen-
trations with the dosing information (dosing times, duration of doses, amounts)
and the PK parameters as Cp(t) = f (t,θθθ), where θθθ represents the physiologi-
cal pharmacokinetics parameters. Commonly, population model between-subject
estimates and residual model error estimates would be respectively used for pa-
rameter variability and unexplained variability estimates with the corresponding
structural model that was used in population-wide PK estimation.

A solution for the posterior PK parameters with a Bayesian PK model is the
product of the compartmental likelihood function and the prior distributions of
PK parameters normalised by the prior-likelihood product over the space of all
possible pharmacokinetics parameter values. First, the normalising constant is
intractable and involves a multi-dimensional integration. Secondly, the likeli-
hood function is non-linear and conjugate solutions are not often available. Such
cases have spurred development of approaches that provide approximate solu-
tions. Intractable Bayesian equations are often solved using numerical Monte
Carlo Markov Chains. The aim is to sample the parameter space so that the re-
trieved samples produce a posterior distribution of target parameters. For exam-
ple, given the likelihood function and prior distributions, the Metropolis-Hastings
algorithm is used to perform a random walk in the parameter space. Assuming
the ergodicity and stationarity of the Markov chain, the walk converges towards a
stable final distribution [96, 166].

Non-linear mixed PK models can be used to predict concentration profiles
stratified by selected model attributes. The main benefit of a Bayesian approach
is in providing iterative updates to the final PK model with individual concen-
tration data. Each timed concentration measurement weighs the population PK
distribution towards a distribution that would attain observed concentrations un-
der the likelihood model. Posterior estimates provide the basis for accurate indi-
vidual treatment course simulations and dose optimisations. Predictive improve-
ments that result from inclusion of individual data over general population mod-
elling has been demonstrated for many drugs, including tacrolimus, ciclosporin,
vancomycin, voriconazole, busulfan and many others [73, 75, 117, 137, 143, 164,
202]. Bayesian TDM tools have been developed by both both academic and pri-
vate actors. Tools such as NONMEM, TDMx (http://www.tdmx.eu/), BestDose
(http://www.lapk.org/ bestdose.php) and DoseMe ((https://doseme.com.au/)) pro-
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vide the computational frameworks to combine population information with indi-
vidual data.

Even though precision based dosing of drugs with narrow therapeutic windows
and large between-subject variability have the potential for large cost-savings [12],
the clinical adoption of precision based dosing methods has not been straightfor-
ward [12, 38]. Computational TDM requires novel skills and clinically validated
tools which are to be implemented to accompany other bed-side apparatus [140].
Such systems need to be prospectively and clinically validated for feasibility be-
fore clinical use [59]. Organisational problems include lack of sound guidelines
and uniform standards that creates mistrust as physicians are not convinced of the
benefits.

1.4.4. Vancomycin pharmacokinetics

Vancomycin is a commonly used antibiotic used in neonates for decades. Its pop-
ularity is driven by high methicillin-resistance rates of coagulase negative staphy-
lococci (CoNS) and the spread of Methicillin Resistant Staphylococcus Aureus
(MRSA) [80]. Vancomycin has a relatively narrow therapeutic target and time-
dependent efficacy. Still, there is disagreement about exposure levels of under- or
overdosing and concentration profiles that improve treatment outcome. In adults,
the PK/PD index which is best associated with efficacy is AUC/MIC [171]. There
is some evidence that in adults PK/PD target AUC/MIC > 400 improves treat-
ment outcome with MRSA pneumonia [129]. This result is inconclusive for neo-
nates. Optimal target index values may vary by pathogens, clinical conditions
and patient sub-cohort specifics [74, 79]. Some evidence indicates that CoNS in-
fections require lower exposure in neonates compared to staphylococcus aureus
conditions [180]. Bedside derivation of AUC from concentration measurements
is inconvenient and inconsistent [82]. Instead, Cptrough monitoring is widely used
as surrogate for the AUC/MIC. In neonates Cptrough values around 10 mg/L are
claimed to be sufficient for achieving AUC/MIC > 400 [22, 52, 98, 194]. Evi-
dence on toxicity in neonates is limited [107], Lodise suggests that increases start
from Cptrough values above 20 mg/L [112]. Correspondingly, the higher end of
AUC/MIC values that does not increase adverse effects has been claimed to be

around 700
mg∗h

L
[138, 186]. Others have associated vancomycin nephrotoxic-

ity with cumulative exposure [95]. Values of AUC/MIC are highly dependent on
the minimum inhibitory concentration of the pathogen. Therefore, common dos-
ing schemes do not apply due to potentially toxicity inducing concentrations in
cases of MIC > 2 mg/L. Padari et al. reported underachieving AUC/MIC > 400
and AUC/MIC > 300 compared to targeted attainment levels with common dos-
ing schedules [148]. This may corroborate that fear of toxicity may guide neo-
natologists to choose more cautious dosing schemes and err on the side of under-
dosing [78].

High population variability and need for efficiency related targets have made
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vancomycin widely investigated in PK/PD studies. Many studies focused on
vancomycin PK characterisation exclusively on neonates [3, 7, 52, 93, 111, 119,
145, 174, 204]. Elimination clearance in neonates with normal renal function is

around 0.04-0-09
L

kg∗h
and volume of distribution is around 0.57-0.7 L/kg. The

clearance of pre-term neonates is lower due to renal and hepatic immaturity. In
turn, proportionally more extracellular liquid increases the volume of distribu-
tion [171]. Marsot et al. estimated that the mean between-subject variability of
vancomycin clearance parameter was 30% and 23% in case of volume of distribu-
tion [120]. PK in neonates is often described using a one-compartmental model
whereas adult PK is commonly modelled using two compartments. Most models
include age (postnatal, post-menstrual or gestational) and birth- or current weight.
Attributes such as creatinine, co-administration effect with inotropes and artificial
ventilation have also been used in published models [120]. Generalisability of the
models remains an issue but more are being externally validated, standard pro-
cesses for model development are forming and sample sizes are increasing [203].
This state of improvement is a starting point for translating model information
towards practical scenarios.

High variability of population PK, uncertainties regarding therapeutic PK/PD
targets in special cohorts, changes in pathogen resistance rates and administra-
tive complexities all attribute to low precision dosing method adoption in TDM
[12, 38]. Currently, dose modifications are mostly guided by nomograms/charts
due to their applicability, simplicity of use and robustness as computerised clinical
systems have not really gained widespread use [140]. Nevertheless, vancomycin
is used for treating therapeutically serious conditions, it has a narrow therapeu-
tic target and preliminary evidence exists for efficacy related PK/PD indices so
one-size-fits-all criteria rarely applies in vancomycin treatment and TDM is also
actively encouraged for patients with altered PK [74]. These features make van-
comycin a good candidate for precision based TDM to benefit from individualised
patient treatment [150].
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2. PRECISION DOSING OF VANCOMYCIN IN
NEONATES

Even though vancomycin has been marketed for more than 50 years, its use is
steadily growing due to increasing rates of resistance of gram positive bacte-
ria to standard lines of treatment [128]. The pharmacokinetic/pharmacodynamic
(PK/PD) indices that associate with optimal treatment outcome in neonates are
not well ascertained but effective standardised treatment regimens rely on estab-
lished PK/PD targets that maximise efficacy and minimise toxicity. Our previous
work in University of Tartu showed that doses commonly used for neonates do
not attain the recommended AUC/MIC targets [148]. The primary goal of the
Neovanc consortium (2014-2019; Horizon2020; Framework Programme 7) was
to resolve the uncertainty about PK/PD indices for vancomycin in neonates using
a randomised clinical trial. It consisted of 12 European partners including a group
in University of Tartu led by prof. Irja Lutsar.

To supplement the on-going consortium work, we additionally saw the need for
a tool that would help the clinicians better achieve fixed PK/PD targets through
dosing changes as high variability of PK also complicates target attainment. In
Ref I, this inspired us to develop a web-based dosing tool DosOpt that we have
made available at www.biit.cs.ut.ee/DosOpt. Other than developing a tool for sim-
ulating personalised therapy scenarios with variable PK/PD targets, dosings and
individual responses, it provided us with an opportunity to observe the dynam-
ics in attainment of therapeutic windows resulting from simulated dosing changes
based on individually modelled concentration data.

Concentration measurements in TDM are scarce. DosOpt overcomes the lack
of individual data by using estimates for the pharmacokinetic parameters from
academically publicised population PK models as priors to be combined with con-
centration measurements. Since published models include a variety of different
covariates with highly varying estimates then DosOpt naturally emerged as a plat-
form for performing comparative evaluations of different PK models based on
assessments of differences in their simulated attainment rates and predictive ac-
curacy. Therefore, in Ref II we set out to elucidate the landscape of vancomycin
PK models in neonates with the goal of informing the DosOpt population prior.

DosOpt provides a practical use case for TDM based individual dose optimi-
sation through the example of vancomycin in neonates. Based on retrospective
validation, it serves to illustrate the feasibility of computational TDM for special
cohorts, the benefits of individualised dose optimisation but also provides a basis
for continued developments into bringing such methods more widely into clinical
care.
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2.1. Web-based dosing tool - DosOpt (Ref I)

Practical use-cases highlight the utility of model based TDM for vancomycin [73,
106, 143, 150]. Computational frameworks such as NONMEM provide the user
with functionality to develop the models and code their own analyses but practical
applications also need to have user-geared interfaces and third party usability [1,
38]. These applications are still largely missing for special populations such as
neonates [34].

DosOpt is an on-line tool that applies Bayesian methods in combining in-
treatment individual concentration measurements with population level estimates
for population PK parameters to obtain individual estimates. Generally, the use
of DosOpt follows a set of operations. The user selects the prior and uploads in-
treatment concentration measurements that are used to model individual pharma-
cokinetics estimates. Based on these the users can simulate individualised time-
concentration profiles and optimise doses against therapeutic indices. Modelled
scenarios can include any user provided custom design for dose administration
time, infusion length, dosing interval or desired PK/PD index. The primary use of
DosOpt is the simulation of optimal dosing schemes under a desired therapeutic
PK/PD target value based on previous dosing and concentration measurement his-
tory. The optimal dose is probabilistically most likely to attain the desired target.
This dose is provided back to the user with the corresponding probability.

DosOpt was implemented with R Shiny [21] and the Bayesian modelling oper-
ations used JAGS (Just Another Gibbs Sampler) [157]. The first model for priors
that was implemented in DosOpt was from Anderson et al. [7] that uses a one-
compartmental population model with zero-order input and first order elimination.
This model estimated the volume of distribution as Vpop = Vstd ∗Vallom ∗1.18Inot ,
where allometric component Vallom = (Wt/70), Wt is body weight and Inot indi-
cates the use of inotropes. Population level estimate Vstd = 39.4 and the between-
subject variability ω

2
V = 0.197. Correspondingly, clearance CL was modelled

as CLpop = CLstd ∗CLallom ∗CLrenalmat ∗ 1.03Vent , where CLallom = (Wt/70)0.75,
renal maturation component CLrenalmat = PMA3.68/(PMA3.68 + 33.33.68), PMA
is post-menstrual age in weeks and Vent indicates the use of positive pressure
artificial ventilation. Population level estimate CLstd = 3.79 and the between-
subject variability ω

2
CL = 0.209. The distribution of PK parameters was assumed

to be log-normal then pharmacokinetic parameter values for the ith individual
were modelled as CLi = CLpop ∗ exp(ηCL,i) and Vi = Vpop ∗ exp(ηV,i). The one-
compartmental model that ties together the concentration data with PK parameters
was used as a likelihood function. Posterior estimates for the physiological phar-
macokinetic parameters are simulated using the Metropolis algorithm in JAGS
(Ref I, Fig. 1) which are then used with dosing information to construct individ-
ual time-concentration curves and optimise for doses that attain therapeutic targets
with maximal attainment.

We used several different datasets in evaluating the performance of the Dos-
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Opt tool with the Anderson et al. model. First, we assessed the modelling bias
and precision by using a simulated population with fixed pharmacokinetics. This
was done by simulating attributes required in the Anderson model et al. for 1,000
patients and then used the model of PK parameters to simulate individual PK val-
ues. We then used the simulated PK values for time-concentration curves under
a pre-designated dosing schema assuming a 15 mg/kg loading dose followed by
three 10 mg/kg infusions with 1-hour duration in 12-hour intervals, and extracted
concentrations at five reference time points. Then, we modelled these individu-
als with DosOpt with variable number of included individual concentration points
to predict concentrations not included in modelling at remaining reference time
points. We evaluated the prediction errors using the normalised prediction distri-
bution error (NPDE) approach and several other error measures (mean absolute
error [MAE], mean absolute percentage error [MAPE], mean percentage error
[MPE]).

Secondly, we used the same simulated population to assess the accuracy of the
probabilities assigned to target attainment in dose optimisation. For each simu-
lated individual with fixed PK, we established the range of doses that obtained
Cptrough within 10-15 mg/L. The modelled comparison data was obtained by us-
ing the extracted reference concentration measurements to retrieve the most prob-
able dose suggested by DosOpt, the corresponding predicted probability and if
this dose was within the range of feasible doses. Any observed predictive biases
in the modelling would thus implicate problems in DosOpt modelling processes,
algorithm or implementation.

Thirdly, we used a retrospective clinical dataset to evaluate the predictive per-
formance of DosOpt on real patients from the paediatric intensive care unit of
Tartu University Hospital that received vancomycin treatment within January 1,
2010, and December 31, 2015. Each included patient had at least one measured
trough concentration. Assessments of predictive accuracy were evaluated in terms
of MAE, MAPE and MPE as in simulated data. Here, we used a different number
of available concentrations starting from base PK models to predict concentrations
in all time points with known concentrations that were not included in modelling.
For assessments of real world performance, we also used patients in our retro-
spective dataset to optimise for doses that gave highest attainment probabilities
in Cptrough range 10-15 mg/L and compared these to attainment proportions ob-
served in the retrospective dataset. For this we used individually modelled PK
estimate distributions that were adjusted by prediction error distributions specific
to the population with the matching number of concentrations included in the
model. Then each individual’s documented dosing schedule was extended with
another dose that was optimised so that it maximised the probability of resulting
in a Cptrough within a target window.

The predictive performance analysis results on simulated data showed that
mean prediction error estimates were not different from zero regardless of the
number of modelled individual concentrations. Increase in the number of individ-
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ual measurements decreased mean absolute errors and mean absolute percentage
errors as new data shrank estimates towards true values (Ref I, Table 2). The result
was the same when simulated concentrations were added inter-occasional vari-
ability with zero-mean and standard deviation of 15% of the concentration value
(Ref I, Supplementary Table 3). However, variability of normalised prediction
distribution errors decreased significantly below 1 with more than two individual
concentrations. DosOpt model predictions converging towards true values faster
than expected means that the probabilities of attaining the best doses were under-
estimated. This phenomenon was illustrated in the target attainment probability
evaluations in the simulated dataset. On average, DosOpt provided a 48% prob-
ability of target attainment in the 10-15 mg/L trough target when no additional
concentrations were included to modelling. Since values of the pharmacokinetic
parameters were known in the simulated dataset then we could confirm that in
reality the dose suggested by DosOpt was sufficient for attaining desired trough
levels in 45.8% of cases. When the number of concentrations that was included in
modelling was increased to 3 then the mean probability from DosOpt increased to
81.5% but the actual proportion of simulations within the target window rose to
96.2% (Ref I, Fig 4).

The qualifications on clinical data were performed on a retrospective test dataset
consisting of 149 individual treatment episodes from 121 patients with 1-10 mea-
surements (median 2) from each (Ref I, Table 3). DosOpt allowed us to use each
patients’ own dosing schedule. Mean percentage errors with Anderson et al.
model were biased when less than two individual concentrations were included
(Ref I, Table 4) but only one concentration was required to improve predicted op-
timised dose target attainment in Cptrough range of 10-15 mg/L above observed
rates in the retrospective data set (Ref I, Fig. 5). Each additional individual con-
centration also decreased MAPE and MAE.

DosOpt is publicly accessible at www.biit.cs.ut.ee/DosOpt. It is designed to
have a user-friendly interface and requires no technical skills besides formatting
TDM data into pre-designated format. Tests with simulated data indicated that
DosOpt modelling is unbiased and increasing the number of individual concen-
trations decreases forecasting error. Application of the Bayesian approach based
on Anderson et al. model on retrospective data improved therapeutic attainment
rates above those observed in clinic with just one individual concentration. As
the lead author, my contributions were the design of the study, development and
implementation of the tool, all analyses and writing up the manuscripts.

2.2. External evaluation of pharmacokinetics models (Ref II)

Initial evaluation of DosOpt was based on PK population estimates from Ander-
son et al. We observed that this model prior combined with a single individ-
ual concentration was sufficient to improve target attainment in the 10-15 mg/L
Cptrough range above hospital attainment rates even whilst with one concentration
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the predictions remained systemically biased. We then hypothesised that these
results could likely be improved with priors that match more closely with the tar-
get population as the number of neonatal vancomycin PK models published in
academic literature is quite extensive [3, 7, 52, 93, 111, 119, 120, 145, 174, 204].
Relatively more precise prior estimates would require fewer individual measure-
ments to adapt to individual PK which in turn would lead to more accurate dosing
and concentration predictions.

In a clinical TDM scenario, the aim of collecting concentration predictions
is to guide patient dosing. Individual concentration measurements provide indi-
vidual level information that is not accounted in population model based predic-
tions. Data based adjustments are expected to decrease unexplained variability as
demonstrated in a similar analysis for tacrolimus [202]. External evaluations test
generalisability of model performance outside training data but in reality many
developed pharmacokinetics models have not been externally validated owing to
high capital and time costs of collecting such datasets [17,203]. Therefore, we set
out to test performance differences from the use of different literature based PK
priors.

We aimed to gather all population PK models for neonates in vancomycin. The
models needed to have been described in sufficient detail for implementation in
DosOpt with all the variability measures and structural models fully described.
All evaluations were performed using a retrospective dataset of patients collected
in Tartu University Hospital between 2010 and 2015 with postnatal age < 90 days.
This was the same dataset as used for retrospective evaluations in Ref I. Population
model predictions were assessed using normalised prediction distribution errors
(NPDE), MAE, MAPE and MPE over all individually available concentrations.
Evaluations of Bayesian predictive accuracy correspondingly evaluated absolute
error (AE), percentage errors (PE) and absolute percentage errors (APE) to predict
a value for a known concentration using a specified number of previously known
measurements. We also assessed the proportion of percentage errors within 20%
and 30% of true concentrations. Next, we employed a simulated dosing scenario
with patients in our retrospective dataset to estimate model-wise probability of
target attainments in Cptrough between 10-15 mg/L and 10-20 mg/L.

The retrospective dataset contained 309 concentration measurements from 149
treatment episodes from 121 patients (Ref II, Table 1). There was a total of 149,
84 (56.4%), and 38 (25.5%) patient treatment episodes that had at least 1, 2, and >
2 vancomycin time- concentration points available, respectively. We performed a
literature review for population pharmacokinetic models from academic literature
(Ref II, Fig. 1). Final model selection yielded 12 candidate models including the
Anderson et al. model (Ref II Supplementary Table 1) [3, 7, 52, 93, 111, 119, 120,
145, 174, 204].

All published models were biased in population-model based validation as ev-
idenced by NPDE analysis results (Ref II, Supplementary Fig. 1). In comparison
of predictions made without any individual data and all individual data included
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(Ref II, Table 2; Supplementary Fig. 2), we observed improvements in adjusted
R2 values, reduced median MPE and MAPE values for all models. This indicates
that compartmental models are a suitable fit to the data.

Inclusion of a single individual concentration in forecasting improved both
precision and accuracy metrics compared to results from only model based pre-
diction. The inclusion of a second concentration did not result in additional major
improvements (Ref II, Fig. 3; Supplementary Table 3). All models got less than
half of predictions within 30% of the measured concentrations when forecasting
did not include individual concentrations. Inclusion of a single concentration at-
tained more than half of the predictions for 8 of the twelve models within the 30%
range. Six models had more than 40% of predictions within 20% percentage error
range. Importantly, predictions for the subset of individuals with more collected
concentrations generally had larger percentage errors.

Probability of target attainment evaluations indicated improvements for tar-
geted Cptrough dosing within 10-15 mg/L and 10-20 mg/L when base model pre-
dictions were compared with those based on one individual concentration. On
average, the probability of target attainment estimates in Cptrough 10-15 mg/L
improved to around 40% with two included concentrations and to 60% within
Cptrough range 10-20 mg/L. We observed that PTA estimates improved with indi-
vidual concentrations by about 25% (Ref II, Fig. 4; Supplementary Table 5).

This study is the first to consider the effects of using individual concentra-
tions in pharmacokinetics re-estimation for vancomycin administration in neo-
nates. Improved precision and accuracy from precision dosing translate to higher
probabilities of attaining therapeutic targets. Relatively low predictive precision
of predictive models limits attainment in narrow therapeutic targets. In our simu-
lations of PTA estimates, the best results were obtained with the model by Zhao
et al. which is a prior candidate for prospective DosOpt evaluation but different
PK models may have use cases depending on available covariates and specific
patient cohorts [204]. All evaluated models were implemented in DosOpt. My
contributions in this article were in the same extent as in Ref I.
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3. GENETICS OF ADVERSE DRUG EFFECTS

Tools like DosOpt are useful in raising efficacy for treatments that can be actively
monitored and are directly actionable for instance through dosing changes. This
is not the case for many drugs self-administered at home additionally complicated
by the difficulty of keeping to the prescribed medication schedule in an every day
life. Patient DNA is largely immutable and provides a source of information for
raising the probability of a successful treatment for many such cases. Since the
metabolism processes of many drugs are affected by products of only a limited
number of genes then variation in the gene products or their regulation can have a
large effect on the drug response.

Most pharmacogenomic studies focus on limited sets of drugs and genomic re-
gions. In contrast, we were able to leverage the whole genome sequenced and im-
puted samples in the Estonian Biobank linked with population registries on drug
prescriptions and documented illnesses. In Ref III we performed a population-
based assessment by looking for adverse drug effects among individuals that had
been prescribed various drugs. This allowed us to test previously known associa-
tions but also use a hypothesis-free approach in assessing novel regions.

3.1. Population-based discovery of pharmacogenetic adverse
drug effects (Ref III)

Adverse drug effects are a frequent and severe problem in drug therapy [99]. In
fact, ADEs cause up to a tenth of all hospitalisations with considerable costs on
healthcare services [155]. Many of these effects could be predicted as many drugs
are metabolised by the same set of pharmacologically important VIP genes (Ref
III, Supplementary Table 2) and in many instances variants in VIP genes have
been shown to have a large effect on drug ADME processes [46]. However, drug
and health related phenotypes are slow and expensive to collect. Associations
studies on drug response have been lagging compared to other phenotypes [201].
Compared to studies with targeted recruitment, population-based studies use a
hypothesis-free approach to amass larger sample sizes. This can result in unex-
pected discoveries. To elucidate the field, we designed a study that investigates
the relationships of ADEs related to drug prescriptions and genetics. Ref III is
a proof-of-concept study to confirm and discover biomarkers related to adverse
drug effects using multiple sources of population-based data: whole genome se-
quences, electronic health data and drug prescription records.

Our analysis was based on the 2,240 whole-genome sequences and more than
16,000 imputed genotypes of Estonian Biobank participants. The imputation ap-
plied a custom Estonian reference panel of 16.5∗106 SNVs [127]. ADE instances
were defined based on a pre-defined list of 79 medical condition related, ICD-10,
codes. These were additionally grouped into 12 mechanistic categories (Ref III,
Supplementary Table 1). The ICD-10 codes and drug prescription data were ex-
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tracted from Health Insurance Fund Treatment Bills (from 2004), Tartu University
Hospital (from 2008) and North Estonia Medical Center (from 2005) electronic
data registries [102].

We overlapped these heterogeneous sources of data to characterise relation-
ships between genetic polymorphisms and ADEs among individuals with pur-
chases of specific drug prescriptions. First, we described the genomic variation
of pharmacogenetic VIP genes in Estonian population and in context with other
genomic regions. Our second set of analyses aimed to replicate variant-drug ADE
associated with levels of evidence 1A-2B in the PharmGKB database. The desig-
nations of alleles in CYP2D6 and HLA-B genes were handled using special pur-
pose allele calling tools. Thirdly, we tested non-synonomous pharmacogenetic
variation detected in VIP genes in gene-drug pairs that had been previously im-
plicated in PharmGKB on any evidence level (evidence 1-4). For these, we also
tested conditional independence of previously associated variants in test genes.
Fourth, we conducted a genome-wide association study for adverse drug effects
with drugs of more than 1000 prescriptions. For this, all variants with allele fre-
quency greater than 1% were included. All the association tests above were eval-
uated using logistic regression of cases and controls that adjusted for body-mass
index, 4 principal components, sex, age and genotyping platform. Findings were
selected for follow-up based on p-value, variant frequency greater than 5% and
subjective visualisations of the loci and biological plausability based on a variety
of databases. Next, we re-evaluated these SNVs using newly genotyped individ-
uals with associated drug prescriptions of the Estonian Genome Center data that
were not available in the preliminary GWAS analysis. Up to 500 cases with an
ICD-10 code for the most significant ADE subgroup were included to combine for
a total of 1000 individuals. In case of fewer available cases, we used maximally
three controls per one case. Replication findings were declared significant based
on Bonferroni corrected p-values.

This study was the first to combine EHR and WGS data for ADE population
scale investigation. We identified 1,314 putative high-impact variants in 64 phar-
macogenes of which 80.3% were found with lower frequency than 1% and 20.3%
were novel population-specific variants (Ref III, Table 1). Around 3% of the vari-
ants were predicted as loss-of-function (LoF) (Supplementary Table 6). We found
that 32.5% of the participants carried at least one loss-of-function variant in a
pharmacogene, with 3.5% of the individuals being homozygous for at least one
inactivated gene. However, none of the LoF variants could be detected as directly
associated with drug related ADEs in our sample. Next, we selected 337 previ-
ously described high-confidence associations in 64 pharmacogenes of which we
were able 37 associations satisfied the condition of at least 500 samples (Ref III,
Supplementary Table 7). The CYP2D6*6 allele was associated with higher in-
cidence of ADEs in patients that had taken tramadol or amitriptyline (p-value <
0.05). Additionally, we discovered nine independent non-synonomous variants
in genes predominantly associated to drug related ADEs by other variants in the
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same genes (Ref III, Table 2). In the GWAS analysis of 43 phenotypes (Supple-
mentary Table 3), we filtered down candidate variants (Ref III, Supplementary
Table 4, Supplementary Table 8) to five promising novel gene-drug associations.
However, only the association between a CTNNA3 intronic variant and myopathy
related ADEs among individuals taking oxicam was replicated in an extended co-
hort of 706 individuals from the Estonian Biobank (Ref III, Fig. 3, Supplementary
Table 5).

In summary, we used data from Estonian Biobank to use the cohort in iden-
tifying novel and previously reported pharmacogenetic associations. We were
able to identify and externally evaluate a novel association between a single nu-
cleotide polymorphism in the CTNNA3 gene and higher prevalence of drug in-
duced myositis among users of oxicam class drugs. This study provided further
knowledge about the prevalence of population-based variants, including loss of
function type of variants and showed that population-based cohorts can be used
for pharmacogenetic association studies. As the co-lead author of this study, my
contributions included performing most of the the analyses, coming up with the
relevant research questions and significant participation in writing the manuscript.
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4. AUTOMATED REGIONAL VISUALISATIONS OF
GENOME WIDE ASSOCIATION STUDY RESULTS

Our previous population-based pharmacogenomics study relied on testing asso-
ciations between genomic loci and adverse drug effect status. The number of
such tests is large and due to pragmatic reasons only a limited number of associ-
ations can be selected for further evaluation. One very common step in assessing
GWAS results is to visualise genomic regions using the association p-values and
genomic positions (Manhattan plots). Regional visualisation of significant loci is
commonly used as an instrument to find regions that may be of interest for further
investigation [159]. Even though the visual plot does not provide any informa-
tion about the biological function then several geometric properties have come
to signal interestingness. Some desired properties are presence of SNVs with
low p-values, a relatively larger number of SNVs in linkage disequlibrium and a
symmetric peak-like shape. However, there are no gold standards for selection
and the inspection process remains a largely subjective and time consuming en-
deavour. Manual inspection means that investigators can only focus on a subset
of significant regions for further analyses downstream of GWAS. This becomes
particularly challenging when hundreds of phenotypes are available for analysis.

To our knowledge, there are no such tools that automate the detection of re-
gions of high potential interest. Therefore, to decrease the time evaluators spend
on this laborious stage, we developed two tools in Ref IV - Manhattan Harvester
and Cropper - that allow automated handling of GWAS summary statistics for
viewing, zooming and cropping regions of interest. Both tools are available at
https://www.geenivaramu.ee/en/tools/.

4.1. Manhattan Harvester and Cropper (Ref IV)

A considerable portion of knowledge discovery in genetics relies on GWAS. A
recent push directs genetics towards developing translational applications for the
clinic in order to challenge the status quo of GWAS based genetics research [23]
but the number of GWAS is actually still increasing [199]. The core methodology
of correlative associations in GWAS is still a highly effective way for communi-
cating findings that are interpretable and easily convertible for usage in scientific
publications [35]. Therefore, the increasing sample sizes, hundreds of pheno-
types that become available through electronic health records, and technological
complexity still requires development of scalable methods to analyse and extract
GWAS output effectively. Common aims are to elaborate causal variants, to iden-
tify targets for biological validation and to predict functionality [77].

Our tools Manhattan Harvester and Cropper automate the detection and rank-
ing of genomic peak regions based on GWAS summary data. This aims to emulate
the quality assessment of human evaluators and aims to considerably reduce time
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spent on manual visual inspection of genomic regions around tag-SNVs.
Manhattan Harvester applies several techniques to identify peak areas and as-

sign border positions. Its first aim is to find peak borders for any SNVs in GWAS
summary statistics with p-values less than 0.001. Each SNV in a genomic region
is characterised by a p-value and its chromosomal position. These are used as the
basis to perform a series of transformations that allow heuristically finding dis-
tinct genomic regions with an arbitrary number of SNVs that form a peak area.
Peak border detection methodology was developed by Toomas Haller, the lead
author of Ref IV. First, the SNV p-values are smoothed using linear regression
on five SNVs, the two closest flanking SNVs in both directions and the smoothed
SNV. The original p-value is replaced with the prediction on the middle SNV.
Next, height-based compression transforms base-pair distances by bringing SNVs
with smaller p-values closer together after which the positions of SNVs are re-
assigned to correspond to middle distance between their flanking SNVs. The final
step identifies final peak borders using vector fragmentation by sequentially cre-
ating chunks containing SNVs by moving from largest inter-SNV distances to
the smallest until a stopping criteria that defines a sufficiently dense cluster of
SNVs. Two parameters are computed for each chunk i = 1 . . .n. First stopping

parameter as stop1i =
max(Gi)

mean(Gi)
and stop2i =

max(Gi)

mean(Gi+1)
, where maxGi is the

maximal inter-point gap size and meanGi is the mean inter-point gap size. Op-
timal chunk was chosen to be either the maximal value stop1i or in cases where
stop1i− stop2i > 2, it was selected as stop2i. After a successful run the data
within the detected area is removed and the iteration continues with the next round
of vector fragmentation to identify additional peaks (Ref IV, Fig. 1).

We used a publicly available metabolite GWAS dataset result to generate visu-
alisations for tests and evaluations [91]. Automatic peak border assignment was
evaluated by a single expert on 100 randomly chosen peaks. Additionally, all iden-
tified peak areas were quantified using 16 parameters that characterise the peak.
To develop the GQS we extracted 277 Manhattan plots with Cropper and asked 20
experts from University of Tartu, knowledgeable in GWAS, to grade these peaks
on a 5 point scale. These scores were used as data for a mixed-effects proportional
odds model that assumes an ordinal response and accounted for expert specific
effects. We applied step-wise model development to identify which of the 16 pa-
rameters explain variation in expert scores. The aim was to minimise the average
mean square error of model predictions by using a five-fold out-of-sample cross
validation. Final model parameters were re-estimated on a full dataset to assess
correspondence between the means of 20 evaluator scores and expected values of

model based score predictions: E(score) =
5

∑
i=1

P(score = i) ∗ i. Lastly, Cropper

and Manhattan Harvester were also subjected to qualitative evaluation in terms of
their processing speed, ease of usage and peak identification quality.

Manhattan Harvester and Cropper were implemented in C++ and made avail-
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able for downloads from www.geenivaramu.ee/en/tools. A summary statistics file
with 560,000 rows was analysed in 3.07 seconds. With current sequencing tech-
nologies, genome wide analyses filtered for allele frequencies of more than 1%
would not exceed 10,000,000 variants so computational speed is not likely to be-
come a limiting factor (Ref IV, Table 1). In terms of border assignment quality,
border-points on test peaks were agreed in 97% of cases as coinciding between
the expert and Manhattan Harvester. A single peak was mis-assigned in terms
of the width of the base. The other errors were caused by Manhattan Harvester
extracting a sub-peak from the complete. Also the expert scores were never more
than one unit different from the model prediction.

No between-experts scores correlated less than 0.5 with most experts’ pair-
wise correlations between 0.7 and 0.8 (Ref IV, Fig. 5). We were able to include
two parameters that yielded improvements to the null mixed-effect proportional
odds model. These were the log max p-value in the peak region and also the best
slope, the largest coefficient of the regression slope for any two points in the peak
region. Final score predictions from Manhattan Harvester and mean expert scores
correlated with r=0.88 (Ref IV, Fig. 6) and mean squared error of the model was
0.92.

To our knowledge, Manhattan Harvester and Cropper, is the first published tool
that allows the automated assessment of Manhattan plots created based on GWAS
summary statistics (Ref IV). Visual plots often accompany published GWAS stud-
ies to show that a genomic region of significance includes many loci with a dis-
tinctly separable "peak". A region with more significant and closely located vari-
ants is commonly more likely to be selected for further evaluation. Manhattan
Harvester uses summary statistics for automatic peak detection and scores the
region by emulating the assessment of human reviewers. This decreases analysis-
time and opens avenues for more exploration studies on hundreds of phenotypes
simultaneously. We showed that the predicted results correlate well with expert
evaluations. My contribution to this paper was the development of general quality
scores. I took part in expert evaluator grade collection, chose the model and per-
formed the model fitting and secondary analyses. I also wrote the corresponding
section of the manuscript.
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CONCLUSIONS

Precision medicine applies genomic and other biological and health data to de-
velop novel methods and approaches to treatment provision, administration and
monitoring. Real-world applications rely on integration of methods, tools, clin-
ically interpretable insights and communication channels. The work presented
in this thesis covers several different stages in the application of precision meth-
ods for provision and monitoring of pharmacotherapy and the discovery of novel
genomic associations.

To demonstrate specific examples of precision medicine that do not rely on
genomic data, we developed a therapeutic drug monitoring tool, DosOpt. It uses
individual concentrations to optimise for drug doses that maximise therapeutic
target attainment for vancomycin in neonates (Ref I). Vancomycin has a high
between-subject variability so pharmacokinetic models provide a good base for
use in TDM. Our study showed that dosing guided by information from on-going
treatment can help improve therapeutic target attainment rates in clinical settings
with very little input data. This applies also when population priors are not in
perfect alignment with the test population which shows that developing and intro-
ducing precision dosing methods in TDM to clinical practice has great potential
in increasing the attainment rates in desired therapeutic windows. Still, transition
from proof-of-concept application to clinical practice requires validation so our
future aim is to prospectively validate the tool by neonates receiving vancomycin
therapy in Tartu University Hospital and Tallinn Children’s Hospital.

There is a serious generalisability issue to be considered when applying phar-
macokinetic models outside the model training population. Even though non-
conclusive evidence exists on the desirable target attainment estimates for van-
comycin administration [143, 164], we aimed to retrospectively externally eval-
uate several population priors within DosOpt to estimate changes in predictive
performance that are dependent on the underlying model (Ref II). Notably, con-
centration predictions improved in our studies with all PK priors given that in-
dividual concentrations data were accounted for. We claim that for Cptrough tar-
get window 10-15 mg/L, inclusion of individual concentrations could result in an
improvement to around 40% from around 30% attainment based on population
model predictions. Our study indicated that the choice of the population prior has
a considerable effect on the target attainment but different PK models may still
have separate use cases depending on the proximity of the population where the
underlying model was developed and the target population, and the overlap of co-
variates between the PK model and available patient data. Some of the benefits
of the precision dosing approach include less subjectivity and added automation
of the decision making process through quantitative methods. Potential compli-
cations are in the technical complexity and organisational overheads of setting up
and managing such systems.

Our pharmacogenetics study (Ref III) showed that combination of population-
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based genomic data linked with other independent sources can aid in pharmacoge-
nomic association discovery. Unlike targeted studies, population-based studies
identify markers outside pre-specified target regions and pathways. These types
of approaches are likely to become more frequent as comprehensive approaches
to management and collection of health data are improving the data quality and
access. Improving cost-efficiency of sequencing-based technologies and imputa-
tion panels also democratises the use of genotype data. Hypothesis free combina-
tion of heterogeneous sources of complex data guides research in novel directions
and uncovers unexpected findings [131]. Discoveries can be followed up with
mechanistic evaluations and translated to clinically applicable guidelines [179].
This is important as genomic medicine has much potential in improving pharma-
cotherapy. Population-based studies can be successfully applied in elucidating
relationships between drug responses and genetic variation based on electronic
health records and genotype information.

Association studies in genomics commonly include visualisation of signifi-
cances in a genomic region. The shape of a regional locus plot is dependent on
the underlying biological aspects but does not give information about the peaks
biological functionality. Instead their "interestingness" corresponds to subjective
preferences. In Ref IV we automated this evaluation and selection process by
developing software that mimics the preferences of human evaluators based on
visually observable characteristics. These do not use biological background in-
formation. In the end, the human evaluators still make the decision on which
peaks to follow up on. Thus may be dependent on other aspects that Manhattan
Harvester does not include such as any biological mechanisms or attributes, pre-
viously known information about the peak, the capacity of an evaluator to follow
up based on available resources. Even though Manhattan Harvester incorporates
p-values in the general quality score evaluation as experts do, the initial peak dis-
covery relies instead on a set of data manipulation techniques that are able to filter
for genomic regions based on quality controlled GWAS summary statistics in-
puts. As such Manhattan Harvester and Cropper integrate into a standard GWAS
pipeline and make standard analyses more time efficient.

Related work on the topic of drug pharmacokinetics modelling [65, 66, 147,
148, 188]. and analysis of next-generation sequencing data [62, 160, 161] by the
author includes several other publications not included in this thesis.

This thesis aims to illustrate that precision medicine emerges from different
sources. Firstly, bedside monitoring of pharmacotherapies can be made more
precise when drug administration adjustments are directly informed by patient
responses. Secondly, drug related genetic markers can improve pharmacothera-
pies with finer individualisation of drug prescriptions. Analysis and identification
of such targets can be more effective with computational approaches that reduce
analysis time and help assessment of more potential candidate associations. Fulfil-
ment of these promises relies in the continued collaboration of medical, scientific
and legislative partners.
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SISUKOKKUVÕTE

Bioinformaatika meetodid personaalses farmakoteraapias

Bioloogiliste ja muude terviseandmetega seotud andmehulgad kasvavad väga kii-
resti. Täppismeditsiini eesmärk on kogutud andmestest saadud informatsiooni ka-
sutada inimeste ravis. See tähendab, et ravi määramisel, jälgimisel ja juhtimisel
juhindutakse patsiendi individuaalsetest bioloogilistest eripäradest. See nõuab toi-
mivaid meetoteid, spetsialistidele käepäraseid tööriistu, ja arusaadavaid kliinilisi
tõlgendusi. Bioloogiliste andmete suur maht ja struktuurne keerukus on analüüsi
jaoks oluline takistus. Selles doktoritöös käsitleme nelja avaldatud teadusartiklit,
mis panustavad täppismeditsiini mitmesse erinevasse tahku.

Täppismeditsiin ei kasuta ainult geneetilisi andmeid. Patsientidelt mõõdetud
ravimikontsentratsioone saab kasutada juhtimaks ravi kvantitatiivsetete meetodi-
tega. Artiklis I arendasime selle ilmestamiseks tööriista, mis võimaldab kasutada
vastsündinutel mõõdetud ravimi vereproove, et valida neile manustatavat vanko-
mütsiini doosi. Veebiaadressil www.biit.cs.ut.ee/dosopt vabalt kättesaadavaks teh-
tud tööriist, DosOpt, kombineerib selleks patsientide kontsentratsioonimõõtmis-
eid uuritava populatsiooni ravimikineetikale tehtavate eeldustega. Me näitasime
Tartu Ülikooli kliinikumis kogutud andmetel retrospektiivselt, et sellega saavuta-
me täpsemaid tulemusi kui traditsiooniliselt juhitud ravis.

Kuna dooside optimeerimise tulemused on sõltuvad esmastest ravimikineeti-
kale tehtavatest eeldustest, siis artiklis II kasutasime DosOpti, et valideerida Eesti
andmestiku abil akadeemilisest kirjandusest kogutud vankomütsiini vastsündinute
ravimikineetika mudeleid. Selleks hindasime erinevate mudelite ennustusvõimet
ja võrdlesime erinevate kaasatud individuaalsete kontsentratsioonide arvu korral
fikseeritud ravieesmärkide saavutamise määrasid. Selle eesmärgiks oli aidata vali-
da DosOpti jaoks Eesti populatsioonis kõige sobivam ravimikineetika alusmudel,
mida siis tööriista prospektiivse valideerimise jaoks kasutada.

Geneetika on ravimimõjude avaldumises väga oluline. Selliste variantide tu-
vastamise, seoste interpreteetimise ja kommunikeerimisega tegeleb farmakoge-
neetika. Kuna suure hulga ravimite metabolism toimub läbi geenide, mida tuntak-
se kui väga oluliste farmakogeenidena (Very Important Pharmacogenes), siis võib
nendes geenides esinevate muutuste bioloogiline mõju olla piisvalt suur, et seda
haigetele ravimite määramisel arvesse võtta. Artiklis III kasutasime Eesti Gee-
nivaramu rahvastikupõhiseid andmeid, et kontrollida juba teadaolevalt olulisi ja
otsida uusi ravimikõrvalmõjude tekkimisega seotud geneetilisi markereid kindla-
te ravimite tarbimisel. Valideerisime mitmeid teadaolevalt olulisi geen-ravim seo-
seid, leidsime varem ravimikõrvalmõjudega seostatud geenides uusi sõltumatult
olulisi variante ja leidsime ning valideerisime uue seose CTNNA3 geenivarian-
di jaoks, mis tõstab kõrvalmõjude sagedust põletikuvastaste ravimite tarbimise
korral. Meie uuring näitas, et rahvastikupõhiseid terviseandmeid saab kasutada
farmakogeneetilisteks uuringuteks, ja andis täpse kirjelduse Eesti rahvastikus le-
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Kõige levinum meetod geneetiliste ja väliste tunnuste vaheliste statistiliste
seoste kirjeldamiseks on ülegenoomne seoseanalüüs (GWAS). See on tõhus ja
kiire meetod, mille jaoks leidub palju tööriistu ja, mis on tihti esmane meetod
genoomiandmete uurimiseks. GWAS analüüsist tulevad seoste andmed on väga
mahukad ja edasised sammud lähtuvad analüüsi lõplikust eesmärgist. Tihti on,
olenevalt edasise analüüsi jaoks kasutada olevatest ressurssidest, vaja uuritava-
te seoste hulka piirata. Üks sagedasemaid meetodeid selleks on visuaalselt uuri-
da huvipakkuvaid geneetilisi regioone ja nendes leiduvate variantide GWAS p-
väärtuste jaotumist. Kuigi sellised geneetiliste markerite graafikud bioloogilise
olulise kohta informatsiooni ei paku, siis on teatavad signaalid, mis muudavad
piirkonna edasise uurimise huvipakkuvamaks. Lookusgraafikute puhul on eelis-
tatud geomeetriline sümmeetria koos välja joonistunud tippudega, rohkemaarvu-
liselt olulisi markereid, mis on omavahel aheldustasakaalutuses (LD) ja markeri-
te väiksemad p-väärtused. Selliste graafikute läbivaatamine on väga aeganõudev.
Kuna selle hõlbustamiseks puuduvad teadaolevalt vajalikud tööriistad, siis artik-
lis IV arendasime välja kaks: Manhattan Harvester ja Cropper, mis aitavad üles-
andele kulutatavat aega vähendada. Need leiavad GWAS tulemusandmete põhjal
huvitavad regioonid ja pakuvad neile välja paremusjärjestuse. Regioonide headust
hinnatakse statistilise mudeliga, mis arendati välja GWAS jooniseid hinnanud eks-
pertide hinnangute põhjal.

Meie töö seob täppismeditsiini teaduse mitmeid tahke. Arendasime välja töö-
riista, millega saab teha ravi täpsemaks kasutades patsientidelt kogutud ravimi-
kontsentratsioone dooside valimisel ja ravimimonitoorimisel. Teisalt näitasime, et
terviseandmete ja geneetilise informatsiooni kombineerimisel on potentsiaali, et
tuvastada geneetilisi variante, mille korral esineb suurema sagedusega ravimikõr-
valmõjusid. Meie panuste hulka kuulub ka arvutuslik tööriist, mis aitab nii eelpool
mainitud farmakogeneetilisi uuringuid kui muid geneetilisi analüüse efektiivse-
malt ja kiiremini läbi viia.
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