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Abstract

The thesis develops a new tool that detects money laundering criminals and can be

used by financial institutions. It builds on the basis of Benford’s Law and machine

learning techniques, applied to the banking data: transactions, carried out by private cus-

tomers of a mobile bank. The developed algorithm is shown to outperform the traditional

rule-based approach.

Keywords: anti-money laundering, benford’s law, machine learning, logistic regres-

sion, random forest, xgboost

4



Contents

1 Introduction 6

2 Literature review 7
2.1 Money laundering and anti-money laundering regulations . . . . . . . . . . . 7
2.2 Benford’s law and its applications in various fields . . . . . . . . . . . . . . 11

3 Methodology 17
3.1 Distance measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Machine learning methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Imbalanced dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Quality assessment metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Data 24

5 Results 29

6 Conclusions 36

5



1 Introduction

Over the past 10 years, an amount of $26 billion in fines has been imposed for non-
compliance with Anti-Money Laundering (AML), sanctions and Know Your Customer (KYC)
regulations. Since 2018, Danske Bank has been in the spotlight, through the Estonian branch
of which large amounts of money had flowed between 2007-2015. Only in 2018, regulators
also fined many other banks, including Deutsche Bank, ABLV Bank Latvia, 1MDB, Gold-
man Sachs, Pilatus Bank, US Bancorp, Commonwealth Bank of Australia, ING, Rabobank
and UBS. The main reason is a failure to detect suspicious transactions and weak anti-money
laundering controls.

Banks fail to investigate thousands of alerts every month, sometimes because of a shortage
of employees, sometimes because of an inability to design a proper screening system and
sometimes on purpose. Currently, banks are obliged to investigate every transaction above a
certain threshold and those made by sanctioned individuals, but this approach is extremely
inefficient as it generates massive amounts of false alerts and is not able to catch the majority
of fraudsters. One thing is clear: there is a need for a more intelligent system, that is much
harder to trick than by breaking one big transfer into many small or changing a letter in a
surname.

Meanwhile, past years were also rich in events and developments in Artificial Intelligence
and processing power of computers has grown exponentially, which gives an opportunity to
apply them to a huge amount of data that banks have and increase the accuracy of fraud
and money laundering detection while reducing costs. Correspondingly, there exist old and
proven methods to detect anomalies, like Benford’s law, which is still widely used in finance,
accounting and other areas. It states that in many naturally occurring collections of numbers,
the leading significant digit is likely to be small. The number one appears as the most signifi-
cant digit about 30% of the time, while nine appears as the most significant digit less than 5%
of the time. Bank transaction data is likely to be a naturally occurring collection of numbers
so is expected to follow the distribution, in contrast to money laundering processes.

This study combines these two areas and tests the possibility of automated money launder-
ing detection with the help of Benford’s law and modern machine learning techniques. Data
analyzed is the individual transaction amounts data provided by mobile bank Monese Ltd.
The dataset consists of more than 30 million transactions carried out by more than 150,000
customers that were active in the year 2018 and in January of 2019. For each customer, frac-
tions of transactions that start with and have second digit 0,1, . . . ,9 are calculated, as well as
several types of distances between observed and Benford’s distribution. The dataset is highly
imbalanced, containing 0.34% of money laundering criminals.
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Applied techniques cover traditional supervised and unsupervised machine learning meth-
ods, such as logistic regression, random forest classifier and XGBoost classifier from the
supervised basket and k-means clustering, DBSCAN and isolation forest for unsupervised
exploration. In addition, under- and oversampling is performed with the help of the random
undersampling method, SMOTE and SMOTENN algorithms. Moreover, data is visually ex-
plored for overall fit to the Benford’s law, and transaction amounts distribution is indeed very
close to the expected one, but money laundering cases follow the law to a lesser degree.

The classifier built with supervised learning achieved much better performance in com-
parison to the rule-based approach, having the area under precision-recall curve 0.1799. It can
be used by any financial institution, is simple and requires only information about transaction
amounts. In addition, clusters containing money laundering are identified.

The paper contributes to the literature in three ways. First, it shows that Benford’s law is
helpful for money laundering detection on the micro level in the banking field. Such approach
was not yet used for banking transaction data, but just once in a legal area by Badal-Valero
et al. (2018), where it has proven its value. Second, it implements latest developments in
data science and demonstrates their superiority to the algorithms, used by Patil et al. (2018),
Jurgovsky et al. (2018) and Bhattacharyya et al. (2011), showing that boosting in addition
to bagging outperforms bagging alone due to sequential tree building and errors correction.
In addition, this analysis is based on high-quality real-world data, compared to Patil et al.
(2018), whose dataset consisted of just 1,000 transactions and Fiore et al. (2017), who used
a publicly available dataset with features, which are the principal components resulting from
principal components analysis applied to the original features.

The rest of the paper is organized as follows: Section 2 reviews fraud detection ap-
proaches and the use of Benford’s law in the literature, Section 3 focuses on methodological
issues. In Section 4 one can find a descriptive analysis of the dataset and finally, Section 5
discusses the empirical results of training machine learning models. Section 6 concludes the
paper.

2 Literature review

2.1 Money laundering and anti-money laundering regulations

Money laundering is an act of concealing the identity or source of money obtained in an
illegal way in order to make them look like they are legally obtained so it can be used without
suspicion. Criminal activity includes illegal arms selling, smuggling, human trafficking, drug
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trafficking, terrorist activity, bribery, embezzlement, financial crimes, etc.
There are 3 stages of money laundering1:

1. Placement, when the criminal introduces the income from illegal activity to the finan-
cial system. This is done by dividing the large sum of money into smaller amounts and
depositing them into bank accounts or by buying financial instruments.

2. Layering, when the money introduced in the economy is then covered by a number
of fund conversions, changing its form and making it difficult to find out the original
source of the money.

3. Integration, in which the funds reenter the legitimate economy. The launderer might
choose to invest the funds into real estate, luxury assets, or business ventures.

During the placement stage, these criminals are the most vulnerable to being caught be-
cause placing large amounts of cash in the legitimate financial system can raise officials’
suspicions. Sometimes it is also the case during the layering stage when the account is very
active, but the activity itself doesn’t make much sense in the eyes of the official. Hence, it is
crucial to understand the specific patterns used for money laundering as it will help to build
strategies to identify the occurrence of such patterns.

Some of the patterns that have been identified by Palshikar et al. (2014) as suspicious
include very regular ATM withdrawals, bursts of activities in a short period of time (especially
in previously inactive accounts), many cash deposits that are broken down to sums below
the reporting threshold and deposited in multiple banks under different names, as well as
cash withdrawals from a bank in one place, re-depositing it in a bank in another place and
then transferring it to a third location. Similarly, suspicious are various bank transfers from
country to country, where transfers are protected by secrecy law. Some schemes imply using
casinos when money is transferred from the criminal’s offshore bank account to a casino in
some tourist centre abroad. The casino pays the money in chips, the chips are then cashed in
and the money is sent back to the criminal’s domestic bank account where it can be explained
as the result of good luck. If a firm launders money, that might be with over-invoicing, when
goods and services are charged at a much higher rate and funds are transferred legitimately to
a different company, or shell corporations that look like legitimate businesses accept money
for goods and services which might not have been delivered. When the company involved in
international trade of goods and services deposits large sums of cash in its domestic accounts,
it should be a signal as well.

1Read more about money laundering on the website of The Financial Action Task Force: http://www.fatf-
gafi.org/faq/moneylaundering/
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Typically states as security providers are the most interested in effective anti-money laun-
dering, so banking is one of the most regulated fields. Looking from the banks perspec-
tive, banks want to obtain and maintain their licence and to have a good reputation as a
safe institution. The most important AML compliance laws are The Financial Action Task
Force’s (FATF) Recommendations, The United States’ Bank Secrecy Act (BSA), European
Union’s Fourth and Fifth Anti-Money Laundering Directives, Hong Kong Monetary Author-
ity’s (HKMA) Guideline on Anti-Money Laundering and Counter-Financing of Terrorism
and Monetary Authority of Singapore’s (MAS) Notices on the Prevention of Money Laun-
dering and Countering the Financing of Terrorism. According to all of them, financial in-
stitutions are obliged to establish AML compliance programs that must include the develop-
ment of internal controls, designation of an AML compliance officer, an ongoing employee
training program and scheduled independent audits. Internal controls should at least include
requesting and verifying the client’s proof of identity when establishing a business relation-
ship, monitoring transactions made by agents under sanctions, from high-risk countries and
politically exposed persons. The FATF recommendations require carrying out due diligence
procedures when transaction amount exceeds 15,000 USD/EUR or international transactions
exceeding 1,000 USD/EUR, while BSA obliges to report every transaction in the sum of USD
10,000 or more to the US authorities. Failure to comply with AML regulations may result in
monetary fines or criminal charges.2

The approach by which transactions above a certain threshold are flagged is called ‘rule-
based approach’. Banks are free to implement some other rules, for instance, based on the
number of cash withdrawals within some period of time. The problem with this approach is
that it is extremely inefficient as it generates massive amounts of false positives. All flagged
transactions then have to be reviewed manually, which is quite expensive, catches only a
relatively small fraction of fraud cases and is not able to detect more complex fraudulent
patterns. That is why some banks are looking towards modern approaches, such as Advanced
Analytics and Machine Learning.

To understand the inefficiency discussed above, one can look at the rule-based statistics
from Danske Bank, which is generally relevant for the whole industry. According to it,
99.5% of all cases the bank was investigating were not fraud related, the number of false
alerts, generated per day is up to 1200 and the fraud detection rate is 40%.3

2For example, in the UK, failure to disclose suspicious transactions is an offense that could result in a
maximum prison term of 5 years in addition to fines. Also, in 2018 Estonian police arrested 10 in connection
with Danske money laundering case.

3Read more how Danske Bank fights fraud with deep learning and AI on:
http://assets.teradata.com/resourceCenter/downloads/CaseStudies/CaseStudy EB9821 Danske Bank Fights Fraud.pdf
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The closest to money laundering detection on micro level scientific literature available is
studies that focus on credit-card fraud (credit-card fraud occurs when criminals steal credit
cards or use a lost or stolen one for online or offline payments), such at Patil et al. (2018),
Jurgovsky et al. (2018), Bhattacharyya et al. (2011), Nami and Shajari (2018), Fiore et al.
(2017). The key pattern of such type of scam is the normal card activity changing to a
suspicious one. Obviously, a criminal tries to make use of the card as soon and possible before
the victim realizes and blocks it. It makes sense to take a closer look at the methodology and
results of these articles, in order to grasp similarities in behavioural patterns.

The most popular method among them is definitely random forest classifier, implemented
by Patil et al. (2018), Jurgovsky et al. (2018), Bhattacharyya et al. (2011), Nami and Shajari
(2018) and it is the case not only in fraud detection but in various fields since it usually
performs the best way, is simple and efficient. Jurgovsky et al. (2018) use it as a baseline
and compares to long-short term memory (LSTM) neural network. A second most popular
method is logistic regression, used by Patil et al. (2018) and Bhattacharyya et al. (2011),
which is also not a surprise since logistic regression is a well developed and well-performing
model widely used in economics and other fields. The other methods are support vector
machine, as in Bhattacharyya et al. (2011) and k-nearest neighbourhood classifier as in Nami
and Shajari (2018). For fraud detection in slightly different fields, such as communications,
also deep convolutional neural networks were used by Chouiekh and Ibn-Elhaj (2018).

Another dimension where methodology should be discussed is dealing with imbalanced
datasets varying from 0.172% of fraudulent transactions in Fiore et al. (2017) to 30% in Patil
et al. (2018). An imbalanced dataset is one where the number of observations belonging to
one group or class is significantly higher than those belonging to the other classes. In this
case classic machine learning algorithms tend to treat the minority group as noise and thus
to show a bias for the majority class. Solutions in the literature are cost-sensitive learning
proposed by Badal-Valero et al. (2018), random undersampling by Jurgovsky et al. (2018),
Bhattacharyya et al. (2011), synthetic minority over-sampling technique (SMOTE) and gen-
erative adversarial network (GAN) by Fiore et al. (2017).

As far as empirical results are concerned, in order to measure how well the classifier
performs, diagnostic tools such as accuracy, precision and recall are widely used. Descrip-
tion and explanation of all these terms and also other quality assessment methods can be
found in the section that describes the methodology. The best result in identifying credit card
fraud, such as recall at the level 77% and 93% precision are obtained by Patil et al. (2018)
with the help of random forest algorithm, but too little information is provided about the
dataset, for example by how many accounts were all 1000 transactions made (account spe-
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cific variables are used), also no methods to prevent overfitting applied. Fiore et al. (2017)
also did not specify by how many cardholders transactions were made and whether variables
are cardholder-related since the features are the principal components resulting from principal
components analysis. They report recall at the level 72% and precision varying between 91%
and 97%. Nami and Shajari (2018) report 96% accuracy (with 93% baseline accuracy) after
using KNN along with the dynamic random forest. In case of interesting use of convolutional
neural networks by Chouiekh and Ibn-Elhaj (2018) in telecommunications, accuracy 82% is
reported but was not specified how many fraudulent events are in the dataset. LSTM network
by Jurgovsky et al. (2018) results in the area under precision-recall curve 0.242 for offline
transactions and 0.4 for online transactions, which suggests the reverse dependence between
precision and recall and is in accordance with Bhattacharyya et al. (2011), who manage o
report precision 7%-61% and recall 24%-81% for different models, but always in reverse
dependence.

2.2 Benford’s law and its applications in various fields

This paper studies a relatively new approach, based on Benford’s law, which has defi-
nite advantages over the above-mentioned methods, such as universality, simplicity and little
information required.

In 1881 Canadian–American astronomer and mathematician Simon Newcomb published
the ‘Note on the Frequency of Use of the Different Digits in Natural Numbers’, where he
states that the fact that ‘the ten digits do not occur with equal frequency’ must be evident
to those who make ‘much use of logarithmic tables, and notice how much faster the first
pages wear out than the last ones.’ He states, that in naturally occurring numbers ‘the first
significant figure is oftener 1 than any other digit, and the frequency diminishes up to 9’
(Newcomb, 1881). 57 years later American electrical engineer and physicist Frank Albert
Benford rediscovered it in his article ‘The law of anomalous numbers’, where he states that
‘the frequency of first digits follows closely the logarithmic relation:

Fa = log(
a+1

a
), (1)

where Fa is the frequency of the digit a in the first place of used numbers. This relationship
results in the digit frequencies, summarized in Table 1.

Benford (1938) performs the digital analysis on the lengths of rivers, U.S. populations,
physical constants, molecular weights, entries from a mathematical handbook, the street ad-
dresses of the first 342 persons listed in American Men of Science, death rates etc and con-
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Table 1: Frequency of Digits in First and Second Places

Digit First Place Second Place

0 0.000 0.120
1 0.301 0.114
2 0.176 0.108
3 0.125 0.104
4 0.097 0.100
5 0.079 0.097
6 0.067 0.093
7 0.058 0.090
8 0.051 0.088
9 0.046 0.085

Source: Benford, 1938

cluded the validity of the logarithmic relation. Of course, not all the datasets exactly followed
the given frequencies, but at least they all followed the pattern of monotonic decline.

Since the ’rediscovery’ different scientists tried to explain the law mathematically and
intuitively and there are several probable versions of why the law makes sense. Whyman
et al. (2016) suggests, that the higher is the integer, the longer the sequence is needed to get a
specific frequency of this integer. For instance, in order to meet ‘one’ as a first significant digit
111 times the sequence from 1 to 999 is needed. In order to get 111 ‘fives’, one would need
a sequence of 1, . . . ,4999 and in order to have 111 ‘nines’, the sequence of 8999 numbers
should be taken. And obviously naturally occurring numbers tend to have a rather lower
upper limit for practical reasons. Another explanation by Chang (2017), that does not really
contradict the previous one states that a process which grows at a constant rate tends to stay
longer at lower digits. For instance, if the price increases from 10$ to 20$ it is 100% growth,
but from 80$ to 90$ is just 12,5%, which explains the intensive use of Benford’s law in
finance and accounting. One more proof is given by Hill (1995). He found, that if one grabs
random numbers from random distributions, the digits of these numbers will conform closely
to Benford’s distribution. Hill names it a ‘distribution of distributions’. It was also shown
that Benford’s law is scale-invariant and base-invariant, which means that it equally holds for
different kinds of measurement units, even if one is converted to the other.

Since then Benford’s law is widely used and there are many examples of its application.
For examples, some studies aim to confirm its validity, like Nigrini (2015), who shows that
daily stock returns have a near-perfect fit to Benford’s Law or Hickman and Rice (2010), who
prove that US crime statistics follow the law at national and state level, but do not follow at
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local level and different types of crime shows different conformity. According to Hindls and
Hronova (2015), digits of national accounts data of the Czech Republic in 2013 follow very
well, and so does reported financial data of 10 industries across 6 countries in 2000-2014,
except for some issues with first significant digit 1, as shown by Shi et al. (2017). Likewise,
Castellano et al. (2016) demonstrate that the first digit of financial annual single reports in the
year 2012 is Benford distributed, with revenues violating it the most, as well as daily changes
in sovereign credit default swaps quotes, that overall show much evidence of conformity, but
the Law is rather systematically violated in the case of most liquid products, according to
Henselmann et al. (2012).

Other researchers use it for investigating the quality of the data, testing it for abnormal-
ities and identifying fraud or manipulations, for example, de Marchi and Hamilton (2006)
detect problems in survey data about the emission of different chemicals by comparing them
with measurement data reported by the environmental protection agency and Benford’s dis-
tribution. Such analysis shows that monitored chemical concentrations follow a monotoni-
cally decreasing distribution, as well as self-reported data, except for lead and nitric acid -
two heavily regulated chemical plants. While checking survey data from rural households,
Judge and Schechter (2007) discover that data from the United States seems to conform better
than the data from developing countries and such information as income, number of animals
owned and hectares of land owned follows the Law closer than crop data, which is less im-
portant to know exact amounts by heart.

According to the initial scrutiny of electoral data on vote counts in officially published
voting units in USA, Puerto Rico and Venezuela, performed by Pericchi and Torres (2012),
the second digit law is compellingly rejected only in the Venezuelan referendum and only for
electronic voting units, all the manual elections show support for the second digit of the Law.
Moreover, the USA 2004 elections show a remarkable fit to the first digit of Benford’s law.
The law was also used by Rauch et al. (2011) for investigating the quality of deficit data re-
ported to Eurostat by EU member states, which shows that the aggregate data conforms well
with Benford’s law, but Greece having the highest deviation. Analysis of European micro in-
come data by Villas-Boas et al. (2017) demonstrates overall conformity, but central European
countries conform better than eastern European, Austria is the closest to Benford’s law and
Greece the furthest, followed by Ireland and Slovakia and it makes sense because all three of
them have been facing economic-financial problems recently. As shown by Castellano et al.
(2016), one of the findings of monitoring daily changes in sovereign credit default swaps
quotes is that Greece again follows a different path compared to the other European countries
and the data may have been objects of “manipulation” after 2010.
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Analysis of municipal income tax size distributions in Italy by Ausloos et al. (2017) show
rather questionable concordance between income taxes of Italian regions and the theoreti-
cal statement of Benford’s law, but there are discrepancies at a regional level, which are in
line with the heterogeneous nature of Italian regions under a socio-economic point of view.
Grammatikos and Papanikolaou (2016) test the presence of fraudulent practices in the U.S.
banking industry by analyzing various variables from financial reports and reveal the largest
deviations only between the expected and the actual ROA and ROE occur in the crisis period.
Check for anomalies in yearly aggregated tax income data of all the Italian municipalities
by Mir et al. (2014) surprisingly for authors shows excellent aggregated compliance with
Benford’s law. Diekmann (2007) demonstrates published regression coefficients to be ap-
proximately Benford distributed or at least follow a pattern of monotonic decline, but the first
digits of fake data also exhibit a pattern of monotonic decline, while second, third, and fourth
digits are distributed less in accordance with Benford’s law. Cho and Gaines (2007) also
apply the Benford’s law for investigating statistics of political campaign financing, whose fit
gets worse over the years.

All the above-mentioned datasets allow to generally predict whether data manipulation
took place or not, but do not allow to identify the exact manipulator since one agent is basi-
cally one data point in the whole dataset. There is only one study aiming at catching money
laundering by analyzing operations of the Spanish firm and its suppliers, some of which are
proven to be money launderers. Badal-Valero et al. (2018) achieve the area under the ROC
curve at the level of 0.789.

As far as methodology is concerned, one obviously starts with calculating the frequencies
and comparing them to the expected ones visually or in a tabular form. The next step is
statistically measuring conformity of the observed distribution to the ’expected’ according
to Benford. χ2 goodness of fit test is often widely used for this purpose, for instance by
Diekmann (2007), de Marchi and Hamilton (2006), Judge and Schechter (2007), Pericchi
and Torres (2012), Durtschi et al. (2004), Rauch et al. (2011), Hindls and Hronova (2015),
Shi et al. (2017), Villas-Boas et al. (2017), Castellano et al. (2016), Ausloos et al. (2017),
Henselmann et al. (2012), Grammatikos and Papanikolaou (2016), Mir et al. (2014). Test
statistics is calculated by the formula (2) and accordinate p-value is taken for 8 degrees of
freedom.

χ
2(Pe,Po) =

9

∑
i=1

(pi
o− pi

e)
2

pi
e

, (2)

where pi
o is the observed proportion of a particular digit in the dataset and pi

e is the expected
proportion of a particular digit according to Benford’s law.
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This test is very sensitive to slight divergences from the Benford’s distribution and tends
to reject the null hypothesis that two datasets come from the same distribution even if they are
fairly similar. Even Benford’s calculations show a different level of convergence for different
datasets and this is the reason why some researchers, like Torres et al. (2007) and Hickman
and Rice (2010), are just satisfied with just observing a pattern of monotonic decline. How-
ever, one can also find a decent amount of other methods of measuring the distance between
the observed and Benford’s distributions in the literature. For instance, χ2 - statistics divided
by sample size, calculated by Rauch et al. (2011) and Grammatikos and Papanikolaou (2016).
Many authors, such as Hickman and Rice (2010), Hindls and Hronova (2015), Henselmann
et al. (2012), Grammatikos and Papanikolaou (2016) and Badal-Valero et al. (2018) instead
of just frequencies, used a so-called digital Z-test, outlined by Nigrini, which takes into con-
sideration sample size:

Zi =
|pi

o− pi
e|− ( 1

2n)√
pi

e
1−pi

e
n

. (3)

Denominator indicates the standard deviation for a particular digit, n is the number of obser-
vations and the term 1

2n is a continuity correction factor and is used only when it is smaller
than the absolute value term.

Other methods are Kolmogorov-Smirnov test by de Marchi and Hamilton (2006) and
Rauch et al. (2011), Kuiper’s modified Kolmogorov-Smirnov goodness-of-fit test by Judge
and Schechter (2007) and Rauch et al. (2011), Chebyshev’s distance or maximum absolute
difference by Judge and Schechter (2007), Shi et al. (2017) and Castellano et al. (2016),
which helps to spot extreme deviations and is calculated the following way:

dc(Po,Pe) = max
i=1...9

|pi
o− pi

e|. (4)

Castellano et al. (2016) measured Kullback and Leibler’s divergence:

dKL(Po,Pe) =
9

∑
i=1

pi
oln(

pi
o

pi
e
), (5)

which is the expectation of the log difference between the probability of data in the origi-
nal distribution with the approximating distribution. In other words, it measures how much
information is lost while approximating two distributions.

Judge and Schechter (2007), Shi et al. (2017) and Villas-Boas et al. (2017) calculate well-
known and intuitive Pearson correlation coefficient between the empirical proportions of first
digits in the data and those predicted by Benford. There are a few different approaches with
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Euclidean distance, which is one of the most basic and widely used distance measures:

de(Po,Pe) =

√√√√ 9

∑
i=1

(pi
o− pi

e)
2, (6)

as calculated by Judge and Schechter (2007). Normalized Euclidean distance by Rauch et al.
(2011) looks like following:

d∗(Po,Pe) =

√
∑

9
i=1(pi

o− pi
e)

2√
∑

8
i=1(pi

e)
2 +(1− p9

e)
2
. (7)

It is euclidean distance divided by the maximum possible distance, which is also in the studies
of Judge and Schechter (2007), Cho and Gaines (2007) and Shi et al. (2017). Advantage of
such approach is that division by the maximum value converts the distance to a score bounded
by 0 and 1. Mean Absolute Difference (MAD) was measured by Hindls and Hronova (2015)
and Henselmann et al. (2012):

dmad(Po,Pe) =
∑

9
i=1 |pi

o− pi
e|

9
, (8)

which is intuitive and interpretive, since shows how far on average each digit is from expected
distribution. According to Judge and Schechter (2007), Rauch et al. (2011), and Shi et al.
(2017), one can calculate the absolute value of the difference between the average of the
empirical FSD distribution µo and the average of Benford’s FSD distribution (µe = 3.4402)
divided by the maximum possible difference:

da(Po,Pe) =
|µo−µe|

9−µe
, (9)

which is most often in disagreement with other measures and tests. Entropy measure might
be used as by Villas-Boas et al. (2017):

E(Po) =
1
9

9

∑
i=1

ln(pi
o), (10)

which does not take into account expected distribution, but only measures the entropy of
observed one.

Diekmann (2007) conducted an experiment in which subjects were asked to fabricate data
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and compared the real reported and fake data conformity to Benford’s law and Badal-Valero
et al. (2018) even made an empirical test based on simulation, which calculates the degree of
global fit of the data eliminating the sample size effect. The idea is to draw B samples from
the Benford’s distribution with the same size as our actual sample. Secondly to compute
for each of these new samples the χ2-distance to the expected distribution. And finally to
calculate the p-value as the proportion of times the sample B distances computed exceeds the
χ2-distance obtained from the observed sample. A huge advantage of such approach is that
it accounts for sample size and randomness when the sample is relatively small.

Some of these distance metrics are adopted in the empirical part (see Sections 3 and 5)
of this study and verified whether they make any use for money laundering detection. The
hypothesis to be tested in practice is that money laundering activity is not naturally originated
and thus is not distributed in accordance with Benford’s law.

3 Methodology

In this Section, I discuss methodological questions: how to measure the conformity to
Benford’s law in our case, what computational methods to use for classification and how to
deal with the high imbalance of the dataset.

3.1 Distance measures

As seen above, there is plenty of different distance measures in the literature. Taking
into account computational constraints, we chose the basic distance from each ’block’, that
resulted in the following distances between observed and ’expected’ distribution to be mea-
sured for each customer:

• χ2- distance, as in Equation 2;

• Euclidean distance, as in Equation 6;

• mean absolute distance, as in Equation 4;

• maximum absolute difference, as in Equation 8;

• Pearson correlation coefficient ;

• Kullback and Leibler’s divergence, as in Equation 5.
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All the distances are measured for first and second digit distributions separately. Worth
mentioning, that standardization or normalization is not required here, since all the numbers
are fractions, that belong to an interval from zero to one.

3.2 Machine learning methods

Machine learning is a field of artificial intelligence describing algorithms which are able
to learn from data and therefore adapt their behaviour. The beauty of machine learning is that
it is able to learn without being explicitly programmed. Based on the methodology there are
2 main groups of algorithms in machine learning field: traditional machine learning and deep
learning. Deep learning is a subset of machine learning, in which artificial neural networks
adapt and learn from vast amounts of data.

With respect to the type of task, machine learning algorithms are divided into three cat-
egories: supervised learning, unsupervised learning and reinforcement learning. Supervised
learning algorithms build a model during a training phase in which they receive the input data
and the corresponding output data. Datasets that contain information one is trying to predict
are called labelled. Once they have been trained, those algorithms should subsequently be
able to predict accurate outputs using unseen input data only. Thus, the aim of those algo-
rithms is to learn an accurate way to match input data to output data. Linear regressions,
logistic regressions, decision trees are examples of supervised learning. Unsupervised learn-
ing, on the contrary, makes use of unlabelled data by trying to achieve various goals. One
may look for hidden patterns, try to cluster similar data points together or seek outliers in a
dataset. Reinforcement learning is somewhat different from the two - it targets the learning
of a decision process by presenting to the algorithm an environment in which it can perform
a set of actions leading to a final reward. The agent is learning by trial and error (minimizes
the cost function) using feedback from its own actions and experiences.

For this study the data is labelled, meaning that each customer is marked as genuine or
fraudulent, so I am going to apply traditional supervised machine learning. Nonetheless, the
labels might be biased towards the majority class (see data description in Section 4), so it
also makes sense to discover internal patterns and similarities with the help of unsupervised
learning in order to find criminals who might not have been caught yet.

Among supervised methods logistic regression, random forest and XGBoost algorithms
are going to be implemented. Logistic regression and random forest were selected because
they are widely in use in similar literature (see Section 2) and XGBoost is proven in practice
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to be the best performing classifier for different data science problems.4

Taking a closer look at them, one can notice that logistic regression is based on the con-
cept of probability while random forest and XGBoost are tree-based algorithms. So, logistic
regression is a linear model for classification that aims to find such weight vector w that max-
imizes the likelihood of a heuristic model to be the ’real’ one. It measures the relationship
between dependent and independent variables by estimating probabilities using a logistic
function (cumulative logistic distribution). The log-likelihood function of logistic regression
is as below:

logL(x,y;w) =
n

∑
i=1

[yilog(p(xi;w))+(1− yi)log(1− p(xi;w))], (11)

where xi - predictors
w - coefficients
p(xi;w) - prediction
yi - observed label ∈ {0,1}.
The cost function we want to minimize is the opposite of the log-likelihood function:

J =
n

∑
i=1

log(exp(−yi(XT
i w+ c))+1), (12)

where now yi ∈ {−1,1} and c is the intercept.
It might be used with regularization term to prevent overfitting by making the coefficients

smaller (overfitting is the case where the the model fits perfectly on the training examples,
but does badly on the test examples. The reason behind is that the model is too complicated
and learns noisy patterns in training data):

• L1 penalty:

min
w,c
||w||1 +C(

n

∑
i=1

log(exp(−yi(XT
i w+ c))+1))

• L2 penalty:

min
w,c

1
2

wT w+C(
n

∑
i=1

log(exp(−yi(XT
i w+ c))+1))

where C is inverse of regularization strength. Regularization 5 adds an additional cost to our

4Read why does XGBoost win “every” machine learning competition on http://tiny.cc/o7m46y
5A regression model that uses L1 regularization technique is called ”lasso regression” and model which uses

L2 is called ”ridge regression”.
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cost function that increases as the value of the parameter weights w increase. One can think
of it as adding bias if the model suffers from high variance (overfits the training data).

While logistic regression fits a single line to divide the space into two, a decision tree
bisects the space into smaller and smaller regions. So, when two classes are separated by a
non-linear boundary, the trees can capture the division better. A decision tree is a flowchart,
where each internal node denotes a test on an attribute, each branch represents an outcome
of the test, and each leaf node holds a class label. A tree is built by splitting the dataset into
subsets based on attribute values. This process is repeated on each derived subset and when
all the data points in subset at a node have the same value of the target variable the recursion
is completed. Decision trees have a nice “if . . . then . . . else . . . ” construction which makes
it fit easily into a programmatic structure. Example of a decision tree is depicted in Figure
A-1 in Appendix A. Decision tree based algorithms are considered to be one of the best and
mostly used supervised learning methods. Methods like random forest and gradient boosting
tree-based algorithms are being popularly used in all kinds of data science problems.

The problem with a decision tree is vulnerability to overfitting and random forest, pro-
posed by Breiman (2001), was designed to solve it. Random forest builds multiple deci-
sion trees in parallel and merges them together to get a more accurate and stable prediction.
Combined with bagging, developed by Breiman (1996), it randomly selects observations and
features for each decision tree, which helps to reduce overfitting significantly. A schematic
illustration of random forest classifier is in Figure A-2 of Appendix A. Yet, nowadays, the
most popular method is random forest combined with bagging and boosting (for example
XGBoost). Gradient boosting was first proposed by Freund and Schapire (1996) and the idea
is to train a classifier sequentially, each trying to correct its predecessor and then also merge
them together. After each iteration the residuals are calculated and those data points that have
high residuals are assigned a higher probability to be selected for the next tree.

Among unsupervised methods k-means clustering, proposed by Lloyd (1982), DBSCAN,
proposed by Ling (1972), and isolation forest, proposed by Liu et al. (2009), are going to be
implemented. K-means is chosen since being quite popular in the literature and success-
fully used by Nami and Shajari (2018), while Isolation forest and DBSCAN are relatively
new techniques, gaining attention. Advantage of DBSCAN is that it does not require one to
specify the number of clusters, it can even find a cluster surrounded by a different cluster.
K-means tends to find clusters of similar density, so we would expect it to not be very precise
while DBSCAN might work in ’high precision’ areas. Isolation forest was introduced quite
recently and seems to be promising in anomaly detection.6

6See the presentation at PyData London 2018 conference: http://tiny.cc/30f56y

20



Looking closely at them, one can see that the k-means clustering algorithm attempts to
split a given data set into a fixed number (k) of clusters. Initially, k number or so-called
centroids are chosen. Each centroid is an existing data point in the given input data set,
picked at random, such that all centroids are unique. Then it assigns each data point to the
closest corresponding centroid, using the standard Euclidean distance. After that for each
centroid, the mean of the values of all the points belonging to it is calculated and the mean
value becomes the new value of the centroid. The process of classification and centroid
adjustment is repeated until the values of the centroids stabilize. The final centroids will be
used to produce the final clustering of the input data.

DBSCAN stands for density-based spatial clustering of applications with noise and works
in a completely different way: first the user chooses two parameters, a positive number ep-
silon and a natural number minPoints. The algorithm begins by picking an arbitrary point in
the dataset. If there are more than minPoints points within a distance of epsilon from that
point, (including the original point itself), it considers all of them to be part of a ”cluster”.
It then expands that cluster by checking all of the new points and seeing if they too have
more than minPoints points within a distance of epsilon, growing the cluster recursively if
so. Eventually, it runs out of points to add to the cluster. Then it picks a new arbitrary point
and repeats the process. Now, it’s entirely possible that a point that is picked has fewer than
minPoints points in its epsilon ball, and is also not a part of any other cluster. If that is the
case, it’s considered a ”noise point” not belonging to any cluster.

Isolation forest is completely different from k-means and DBSCSAN and is built on the
basis of decision trees. In the tree, each split is based on selecting a random variable, and
a random value of that variable. Then each observation is given an anomaly score based on
how long ‘path’ through the tree it takes for this observation to travel. The shorter the path
- the more likely it to be an anomaly. The parameter to be arbitrarily chosen is the number
of trees to build and contamination - the proportion of outliers in the data set, which is used
when fitting to define the threshold on the decision function.

Before moving on and applying chosen machine learning algorithms one has to bear in
mind that almost all datasets containing fraud are highly imbalanced and there is a need to do
something about it.

3.3 Imbalanced dataset

Almost all supervised machine learning methods, when trained on a highly imbalanced
dataset, have a natural tendency to pick up the patterns in the popular classes and ignore the
minor ones, since it’s the easiest way to achieve the requested metric. That is why under-
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sampling and oversampling techniques are in use. Following the literature in the field we are
going to apply:

• cost-sensitive learning

• random undersampling

• synthetic minority oversampling technique (SMOTE)

• SMOTEENN (SMOTE and edited nearest neighbours (ENN))

To explain briefly, cost-sensitive learning means that in the loss function higher value
is assigned to data points from minor class. Hence, the loss becomes a weighted average,
where the weight of each sample is specified. According to X Ling and Sheng (2010), this
technique is expected to improve model performance. Random Undersampling does not
make any changes in the loss function but balances the dataset by reducing the size of the
major class. By keeping all samples in the rare class and randomly selecting a number of
samples in the major class, a balanced new dataset can be used for further modelling. For
instance, Jurgovsky et al. (2018) implied selecting a random subsample from a major class
with 0.9 probability to be picked and 0.1 from minor class, which worked out well.

Synthetic minority oversampling technique (SMOTE) works the other way around: it
creates new data points from a minor class. In order to create a synthetic data point, it takes
the vector between one of its k neighbours, and the current data point and then multiplies
this vector by a random number which lies between 0, and 1. Then the synthetic data point
is obtained by adding this to the current data point. The performance of these two sampling
methods is compared by Mishra (2007), who shows that random undersampling gives the
most balanced results with a good tradeoff between specificity and sensitivity. The issue with
SMOTE is that it can generate noisy samples by interpolating new points between marginal
outliers and inliers. This problem can be solved by cleaning the space derived from over-
sampling and results in SMOTEENN algorithm.

SMOTEENN performs over-sampling using SMOTE and under-sampling using edited
nearest neighbours (ENN). The ENN method removes the instances of the majority class
whose prediction made by KNN (K-nearest neighbourhood) method is different from the
majority class. ENN method can remove both the noisy examples as borderline examples,
providing a smoother decision surface. Mduma et al. (2019) conduct their experiment using
SMOTEEN and random undersampling and show the superiority of the latter.
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3.4 Quality assessment metrics

Several evaluation metrics are widely used for quality assessment, such as accuracy, area
under the ROC (Receiver Operating Characteristic) curve, and area under the precision-recall
curve. One of the most universal metrics is accuracy. It simply measures the number of
correctly predicted samples over the total number of samples. Using the same notations as
Juba and Le (2017):

Accuracy =
T P+T N

T P+T N +FP+FN
, (13)

where True Positive (T P) predicts an event when there was an event, True Negative (T N)
predicts no event when in fact there was no event, False Positive (FP) predicts an event when
there was no event and False Negative (FN) predicts no event when in fact there was an event.

Accuracy can be misleading if the number of samples per class in the data is unbalanced.
For example, for a dataset with two classes, where the first class is 90% of the data, and the
second completes the remaining 10%, if the classifier predicts all dataset as belonging to the
first class, the accuracy reported will be of 90% while this classifier is in practice useless.
So, measuring accuracy makes sense only when the class labels are uniformly distributed and
sometimes accuracy just does not give enough insight about the model performance. In this
case, such metric as the area under the ROC curve to be considered.

Receiver operating characteristic (ROC) curve is a plot of false positive rate:

FPR =
FP

FP+T N
, (14)

on the x-axis versus the true positive rate:

T PR =
T P

T P+FN
, (15)

on the y-axis for a number of different threshold values. This metrics also works well for
balanced datasets, since it gives equal value for both classes, as shown by Fawcett (2006).

In contrary, for highly imbalanced datasets, according to Davis and Goadrich (2006), the
precision-recall curve is the most relevant metric. Precision is the fraction of instances of
interest among the retrieved instances:

Precision =
T P

T P+FP
, (16)

while recall is the fraction of relevant instances that have been retrieved over the total amount
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of relevant instances in the dataset:

Recall =
T P

T P+FN
. (17)

Hence, a Precision-Recall curve is a plot of the Recall on the x-axis and the Precision on the
y-axis for different thresholds, similar to the ROC curve. The fact that in computing precision
and recall there is never use of the true negatives makes it suitable for imbalanced dataset. 7

Sometimes precision, recall or combination of them, as well as sensitivity:

Sensitivity =
T P

T P+FT
, (18)

and specificity:

Speci f icity =
T N

T N +FP
, (19)

are reported separately for one threshold (usually 0.5), but areas under the curves are defi-
nitely more informative, since they take into account all possible thresholds.

4 Data

Dataset is comprised of anonymized individual customer transaction amounts data, that
was kindly provided by Monese Ltd, a British startup that offers personal bank accounts. A
large sample set consists of 31,766,662 transactions carried out by 172,260 customers that
were active in 2018 and in January of 2019. Money laundering criminals account for 0.34%
of the customers. The labels might be somewhat noisy due to the specifics of business pro-
cesses, a backlog of AML investigators or delays in crime confirmation from the authorities.
Sometimes money laundering is not discovered at all since there is no victim to report the
crime.

Before going into feature engineering and modeling, I check if the first and second digits
of all transactions are Benford distributed. The visual representation of the first significant
digit distribution is depicted in Figure 1 and of the second significant digit in Figure 2.

First of all, the first significant digit shows a monotonic decline, as predicted by Benford.
Moreover, its fit is quite close to an expected one. According to Benford, digits ‘1’,’2’ and ‘3’
should account for 30.1%, 17.6% and 12.5% respectfully and the observed numbers almost
perfectly match: 31.2%, 17.5% and 12,7%. As for the rest of the digits, it is expected that the
number should slowly decrease from ‘4’ accounting for 9.7% till 9 accounting for 4.6% while

7Read more about evaluation metrics on http://www.davidsbatista.net/blog/2018/08/19/NLP Metrics/
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Figure 1: Distribution of the first significant digit

Figure 2: Distribution of the second significant digit
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in the observed dataset fractions slightly deviate. The fact that some customers pay monthly
fee 4.95 or 14.95 EUR/GBP might explain why fractions of digits 1 and 4 are a little bit
higher than expected. Fractions of higher digits 6-9, on the contrary, are less than expected.
That might be due to the fact that 2.2% of transactions start with zero, while Benford did not
account for such case. Overall visual inspection of the first significant digit suggests close
conformity to Benford’s law.

As for the second significant digit, its conformity is less obvious, due to a high amount
of transaction with second digit 0. Most likely these are all customers who use the account
for savings or cash withdrawal and round the amounts due to practical or technical reasons.
The same explanation might be also valid for the second significant digit 5, which exceeds
the expected amount as well. And due to the higher amount of zeros and fives in the dataset,
all other digits account for smaller frequencies than according to Benford.

Then, the obtained dataset was processed further. First of all, for each customer the share
of transactions that have first digit 0,1, . . . ,9 was calculated. Similarly, for each customer the
share of transactions that have second digit 0,1, . . . ,9 was calculated the same way, as well
as fraction of transactions that are less than 10 EUR/GBP. Then, the number of transactions
by each customer, the sum of transaction amounts and several types of distances between
expected Benford’s and observed distribution were calculated for both first and second dig-
its: χ2-distance, maximum absolute difference, Euclidean distance, mean absolute distance,
Pearson correlation and Kullback and Leibler’s divergence. All the customers that made less
than 22 transactions were removed from the dataset, following the logic that according to
Benford’s distribution in order to have at least one transaction with first digit 9 (the least fre-
quent digit according to Benford’s law, that accounts for 4.6 % of a dataset), the data for each
customer should consist of at least 22 transactions. It makes distances calculations more rel-
evant. Customers with the small number of transactions account for around 33% of a dataset.
Detailed variables description and their distributions can be found in Tables B-1 and B-2 in
Appendix B.

To explore the predictive power of each variable, boxplots on Figures 3 and 4 exhibit
differences in distributions for genuine customers and money laundering criminals.

Feature names are coded as following:

• p FD - share of all transaction that start with D

• p SD - share of all transaction that have second digit D (p S-1 - share of transactions
that are less than 10)

• N - number of transactions
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Figure 3: Distributions of Benford related variables
Note: all Benford related features mostly have narrow boxes, which means that half of all data is located within some narrow interval.

Whiskers are not wide as well, so the data is not very scattered. Mostly all feature values are within interval 0 - 0.1, except p F1, p F2 and

p S0, that have wider distribution and higher median values, compared to other variables. Black dots above or below whiskers are outliers.

There is a significant amount of outliers for each variable.
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Figure 4: Distributions of secondary variables
Note: values of features, that are derived during data analysis, are more scattered, with different medians and deviations: Kullback distances

mostly have low values, while Pearson correlation - high. Other distance measures have middle values. Conclusions, that can be made are

that criminals, compared to genuine customers, make less one-digit transactions. Also, all distance measures for them are higher, while the

correlation with Benford’s distribution is lower. Overall the obtained result exactly matches what one would logically expect.

• sum - sum of transaction amounts

• ml - labels (stands for money laundering)

• all others indicate specific type of distances between distributions.
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As demonstrated, distributions of some variables are indeed different. Among the most
significant are variables p F2, p S0, p S1, p S-1, and such distances as maximum absolute
difference, Euclidean distance and mean absolute distance. p S0 suggests that money laun-
dering criminals do use rounds number more than genuine customers. On the contrary, the
average number of one-digit transactions for criminals is much less, which makes perfect
sense, as it would require too much effort and cost to break the amounts into such small
pieces. Differences in distributions of distances suggest that the overall fit to Benford’s law
for money launderers is worse.

Due to a large number of outliers in Figure 3, it is not straightforward to see how different
are the Benford related features for two groups of customers. Hence, it is reasonable to further
explore it with the help of correlation matrix (see Figure 5), which helps to quickly identify
incidence patterns and to recognize anomalies. Correlation heatmaps are perfectly suitable
for comparing the measurement for each pair of dimension values. In the figure, red colours
indicate a positive correlation, blue colours - negative and white - an absence of correlations.

Following the logic of Benford’s law, fractions of first digits should be slightly positively
correlated between themselves, fractions of second digits should be more correlated between
themselves, since, according to Benford, they are all expected to be around 10%. Thus, the
correlation matrix should be reddish and smooth. And for genuine customers, it is indeed
much smoother than for money launderers, which is rather motley.

Based on the matrix, rows under such features as p F2, p F4,p F8, p S4, p S9 are very
different for genuine and fraudulent customers and thus are expected to give the biggest
predictive power. Interesting, that one of the darkest cells in Figure 5(b) is the one, showing
a relatively high negative correlation between transactions with second digit zero and second
digit nine, which might indicate two different patterns, probably used by different types of
criminals. One of them just uses round numbers for practical reasons, while others need to
make high transfers below the threshold, which usually looks like a lot of 9,999 EUR/GBP
transactions.

So, based on visual analysis, it can be concluded that the dataset supports the hypothe-
sis that money laundering transactions do not conform with Benford’s law and thus are not
naturally originated.

5 Results

Visual exploration helped to get some insights about the data. Now, the aim of the mod-
eling part is to build an actual classifier. For supervised learning, the whole dataset was split
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(a) for genuine customers

(b) for money launderers

Figure 5: Correlation between variables
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into train and test set in the following proportions: random 70% to train set and 30% as a test
set.

I use the 4-fold cross-validation technique on the train set in order to choose parameters
of the models and to prevent overfitting. K-fold cross-validation is a technique, where the
data is divided into k subsets, the holdout method is repeated k times, such that each time,
one of the k subsets is used as the validation set and the other k-1 subsets are put together to
form a training set. The error estimation is averaged over all k trials to get total effectiveness
of the model. Logistic regression (labeled as LR), random forest classifier (labeled as RF)
and XGBoost classifier (labeled as XGB) are trained this way. At this stage, I also apply cost-
sensitive learning. Based on a random search of parameters and cross-validation results, the
best parameters are chosen and the model trained on all the train set. Then, each algorithm is
tested on test data. Test results are displayed in Figure 6.

Figure 6: Precision-recall curves for three classifiers

The precision-recall curves are not very smooth due to very few positive cases. One
fraudulent customer accounts for a significant part of the recall, so just one or several incor-
rectly classified customers look significant. At the same time, there are no huge spikes, which
means that the classifiers are pretty stable.

Comparing different algorithms between themselves, as expected, XGBoost performs the
best way with the area under precision-recall curve 0.1799. This is due to the sequential tree
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building. XGBoost is followed by random forest and then by logistic regression, that fails to
perform well in high-precision areas, but does its job when the high recall is needed.

To compare XGBoost to the real-world data one can take Danske Banks rule-based per-
formance statistics, described in section 2 as a baseline. As can be seen, the superiority of
machine learning methods is obvious. For example, according to Danske bank, it faces 0.5%
precision and 40% recall. In contrast, machine learning model would achieve the same 40%
recall with around 20 times higher precision at the level 10% and 100% recall with around
the same 0.5% precision.

The feature importance according to XGBoost is depicted in Figure 7. The most signif-
icant variable turns out to be the cumulative sum of all transaction amounts per customer,
which is logical, since more likely for amounts to be laundered. The fact that the sum of
transactions is followed by the number of transactions is in accordance to money-laundering
specific patterns, such as short bursts of activities, many cash withdrawals, deposits and a
lot of money transfers. The other most significant features are all Benford related. It might
mean that the classifier is ’intelligent’ enough to find linear and non-linear relations between
the features on its own and does not need much of ’additional help’ in the form of distances.
These features are p F2, p F3, p F4, p F5, p F8 from the bunch of first significant digits and
p S-1, p S5, p S9 from second significant digit basket, which are almost exactly the same as
were predicted based on correlation matrix in the previous subsection.

In order to improve the performance of XGBoost classifier, I then apply over- and un-
dersampling techniques. The parameters for under- and oversampling methods together with
parameters for XGBoost are tuned based on 4-fold cross-validation on train data with the
help of Pipeline method that is offered by scikit− learn library for Python. The results are
displayed in Figure 8. Among these three techniques, the best one is random undersampling
with the area under precision-recall curve 0.1581, followed by SMOTE method and then by
SMOTEEN. However, not applying any of them is still preferable. The possible reason is that
better performance of the classifier cannot be achieved by just balancing the dataset since the
classifier already learned existing samples well, but by improving the quality of labels. Yet,
one might consider using random undersampling for the area with small precision and high
recall, since it decreases computational time without loss in performance.

The reason why labels might confuse algorithms is due to the absence of victims. In
most cases, money laundering activities are not reported, so some fraudulent customers in
the dataset are labelled as genuine. If improving the labels is not on the table, then it makes
sense to apply also unsupervised techniques in order to find possible clusters. And as some
labels are available, their presence in the discovered clusters might indicate that the rest of
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Figure 7: Feature importance according to XGBoost
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Figure 8: Over-under sampling techniques together with XGBoost

the observations from the same cluster might be similar and worth investigating.
Widely used clustering and anomaly detection methods that handle large amounts of data

are k-means clustering, DBSCAN and isolation forest. Since no overfitting is possible, due to
no labels required, they were applied to the whole dataset. Moreover, since labels are avail-
able, it is also possible to approximately estimate their performance measuring precision and
recall. Varying different parameters specific for each algorithm and considering all observa-
tions from all minor clusters as ’model alerts’, precision and recall for each combination of
parameters can be calculated and plotted, as in Figure 9.

Precisely, in case of k-means clustering, all observations from all clusters but a major one
are treated as ‘model alerts’, since all the clusters are relatively same size except one. In
case of DBSCAN, ’model alerts’ are all observations from all clusters but a major one and all
observations from all clusters but two major ones, since the common result of DBSCAN were
many clusters: the biggest one, one that is 1,5 - 3 times smaller than the biggest and many tiny
clusters with couple dozens of observations. And it often is the case when money laundering
counted for 50-90% of these tiny clusters, so in fact, there could be DBSCAN’s point on the
figure indicating even higher precision. It is done this way in order to keep it simple and avoid
bias, but in practice, banks might want to investigate not all minor clusters, but only those
with the highest rate of money laundering labels in them. And indeed, a random check of
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Figure 9: Unsupervised alhorithms performance

customers, that are labelled as genuine, but happened to be in the same cluster with fraudsters
suggest that many of them are definitely worth investigation and might change their status in
the future.

Overall, the clustering results are rather interesting. A comparative advantage of different
methods is visible in different situations: DBSCAN works well mostly in the areas of high
precision, k-means clustering may be used for high recall and isolation forest shows low
precision and low recall, which makes it ’lose this competition’. DBSCAN looks like the
most universal method: varying parameters one can achieve different goals. It definitely
makes sense for financial institutions add clustering to the agenda.

Nonetheless, there is a lot more to do. First of all, a qualitative analysis of false positives
with AML investigators will help understand where the classifier fails and possibly improve
the quality of labels since false positives can, in fact, be incorrectly labelled true positives.
Secondly, it might be useful to combine supervised and unsupervised techniques into one,
using both benefits of having labels and strength of unsupervised learning to look for simi-
larities. In addition, the machine learning industry is extremely wealthy. For instance, there
is plenty of supervised and unsupervised deep learning methods to try, such as multi-layer
perceptron, variational autoencoder, generative adversarial networks, self-organizing maps
and many others, that can either improve the accuracy of existing techniques or be able to
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find completely different types of criminals.
In conclusion, combined Benford’s law and machine learning approach is obviously su-

perior to a rule-based one due to different reasons. First of all, machine learning makes the
threshold adjustable, so the company can choose precision and recall. ’Benford based’ fea-
tures make feature engineering simple and cheap and having nice numeric properties. Due
to a relatively small number of features and the fact that the data for each customer is ag-
gregated, the training is also relatively fast. Since it takes quite a while in terms of time and
costs to build a more complicated machine learning model that handles all the personal in-
formation and information about transactions, the current approach would definitely work as
a starting point. Moreover, Benford’s law is not widely known and it is highly unlikely that
while laundering money, criminals will purposely fit to it, which makes the developed tool
even more valuable.

6 Conclusions

This paper explains the process and patterns of money laundering, describes real-world
anti-money laundering solutions and examines recent scientific literature on automatic fraud
detection. It also explains the concept of Benford’s law and its applications in the literature.
Then, it combines the law with supervised and unsupervised machine learning and develops
a money laundering detection tool that can be used by financial institutions. The new model
allows for a superior screening system, that is also simple and cost-effective.
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Appendices

Appendix A

Figure A-1: Example of a decision tree

Figure A-2: A schematic of a tree-based classifier
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Appendix B

Table B-1: Explanation of variable names

Variable name Explanation
N Total number of transactions for each customer

sum sum of transaction amounts
p F0 share of transactions that start with 0
p F1 share of transactions that start with 1
p F2 share of transactions that start with 2
p F3 share of transactions that start with 3
p F4 share of transactions that start with 4
p F5 share of transactions that start with 5
p F6 share of transactions that start with 6
p F7 share of transactions that start with 7
p F8 share of transactions that start with 8
p F9 share of transactions that start with 9
p S-1 share of transactions that have no second digit (are less than 10)
p S0 share of transactions that have second digit 0
p S1 share of transactions that have second digit 1
p S2 share of transactions that have second digit 2
p S3 share of transactions that have second digit 3
p S4 share of transactions that have second digit 4
p S5 share of transactions that have second digit 5
p S6 share of transactions that have second digit 6
p S7 share of transactions that have second digit 7
p S8 share of transactions that have second digit 8
p S9 share of transactions that have second digit 9

max benf F max absolute difference for the first significant digit
max benf S max absolute difference for the second significant digit

chi2 dist χ2-distance between the empirical proportions of first digits in the data and those
predicted by Benford

chi2 dist S χ2-distance between the empirical proportions of second digits in the data and those
predicted by Benford

Euclidean dist F Euclidean distance between the empirical proportions of first digits in the data and
those predicted by Benford

Euclidean dist S Euclidean distance between the empirical proportions of second digits in the data and
those predicted by Benford

MAD F mean absolute distance for first digit
MAD S mean absolute distance for second digit

Pearson F Pearson correlation coefficient between the empirical proportions of first digits in the
data and those predicted by Benford

Pearson S Pearson correlation coefficient between the empirical proportions of second digits in the
data and those predicted by Benford

Kullback dist F Kullback and Leibler’s divergence between the observed and BL frequencies of first
digit

Kullback dist S Kullback and Leibler’s divergence between the observed and BL frequencies of second
digit
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Table B-2: Distribution of all variables

Variable mean std min 0.25 0.5 0.75 max
N 270.118 342.607 22.000 62.000 144.000 338.000 8291.000
sum 19977.266 31491.049 0.230 4120.050 10310.840 24420.485 1622591.000
p F0 0.023 0.045 0.000 0.000 0.010 0.027 1.000
p F1 0.317 0.092 0.000 0.260 0.309 0.366 0.988
p F2 0.176 0.069 0.000 0.135 0.171 0.210 1.000
p F3 0.125 0.066 0.000 0.085 0.116 0.152 0.972
p F4 0.112 0.057 0.000 0.079 0.104 0.133 0.958
p F5 0.094 0.051 0.000 0.064 0.088 0.115 0.934
p F6 0.047 0.033 0.000 0.027 0.044 0.063 0.619
p F7 0.038 0.028 0.000 0.020 0.035 0.051 0.907
p F8 0.034 0.027 0.000 0.018 0.031 0.045 0.605
p F9 0.030 0.026 0.000 0.014 0.027 0.040 0.693
p S-1 0.431 0.162 0.000 0.323 0.432 0.540 1.000
p S0 0.240 0.120 0.000 0.156 0.221 0.301 1.000
p S1 0.040 0.029 0.000 0.022 0.036 0.053 0.574
p S2 0.040 0.030 0.000 0.022 0.037 0.054 0.799
p S3 0.033 0.027 0.000 0.017 0.030 0.044 0.893
p S4 0.036 0.031 0.000 0.018 0.031 0.047 0.761
p S5 0.066 0.047 0.000 0.037 0.057 0.083 0.915
p S6 0.028 0.025 0.000 0.012 0.024 0.038 0.482
p S7 0.027 0.025 0.000 0.011 0.023 0.037 0.615
p S8 0.027 0.025 0.000 0.011 0.023 0.036 0.909
p S9 0.028 0.028 0.000 0.011 0.023 0.038 0.950
max benf F 0.106 0.070 0.007 0.059 0.088 0.132 0.861
max benf S 0.152 0.096 0.029 0.091 0.114 0.184 0.880
chi2 dist 0.244 0.329 0.002 0.084 0.157 0.290 13.207
chi2 dist S 0.687 0.514 0.022 0.415 0.557 0.773 9.646
Euclidean dist F 0.149 0.080 0.014 0.093 0.131 0.184 0.936
Euclidean dist S 0.256 0.084 0.047 0.204 0.238 0.285 0.928
MAD F 0.039 0.019 0.004 0.025 0.035 0.048 0.192
MAD S 0.071 0.018 0.010 0.060 0.070 0.081 0.176
Pearson F 0.872 0.152 -0.481 0.845 0.927 0.964 0.999
Pearson S 0.592 0.162 -0.854 0.554 0.620 0.677 0.985
Kullback dist F 0.039 0.066 -0.355 0.000 0.019 0.061 2.017
Kullback dist S -0.062 0.159 -0.372 -0.180 0.000 0.000 1.507
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