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Resümee/Abstract 

 
Võrguaja protokolli serveri arenduse ja toimivuse analüüs 

 

Käesolev magistritöö kirjeldab lihtsa võrguaja protokolli (NTP) serveri ehitamist  

monoplaatarvutisse Tartu Observatooriumi aatomikella tarbeks. See selgitab NTP-protokolli 

terminoloogiat ja on loodud NTP-serveri ja kliendi jaoks. Mõõtmise eesmärgil kirjeldatakse 

ka seda, kuidas ehitatatakse NTP-klienti, mis genereerib impulssi sekundis, mis põhineb NTP-

kellaajale. Selle kasutamise tulemusi võrreldakse NTP plotteri testitulemustega. Seejärel 

hinnatakse NTP-serveri eksperimentaalset konfiguratsiooni, millele järgneb arutelu võimalike 

paranduste ja tulevaste projektide üle. 

 

CERCS: T120 Süsteemitehnoloogia, arvutitehnoloogia, T125 Automatiseerimine, robootika, 

control engineering, T170 Elektroonika, T190 Elektrotehnika 

 
Marksõnad: mikrokontroller, aatomkell, monoplaatarvuti, aeg, protokoll, tarkvara, satelliit, pulss 
 

Development and performance analysis of the Network Time Protocol Server 

                                                                                    

This Master thesis describes the process of building a simple network time protocol (NTP) 

server on a single-board computer for the Atomic clock at Tartu Observatory. It explains the 

terminology of NTP protocol and set up for the NTP server. It also describes how to build a 

NTP client which generates pulse per second by its own script for the measurement purposes. 

This new pulse is synchronized with the NTP timestamp. Results of its use are compared 

against the test results from NTP plotter. The experimental configuration of the NTP server is 

then evaluated which is followed by a discussion regarding possible improvements and future 

projects. 

 
CERCS: T120 Systems engineering, computer technology, T125 Automation, robotics, control 

engineering, T170 Electronics, T190 Electrical engineering 
 
Keywords: microcontroller, atomic clock, single-board computer, time, protocol, software, 

satellite, pulse 
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Terms and abbreviations 

AC Alternating current 

ADC Analog-to-digital converter 

AMP Amplifier 

ARM Advanced RISC machine 

ASCII American Standard Code for Information 

Interchange 

BDS The BeiDou Navigation Satellite System 

BNC  Bayonet Neill–Concelman 

CCIR International Radio Consultative Committee 

CMOS Complementary metal–oxide–semiconductor   

COM-port (communication port) Serial port interface 

CPU A central processing unit 

CS Current sense 

CTS Clear to send 

DC Direct current 

DCD  Data Carrier Detect 

DDR Double Data Rate 

DTSS Digital Time Synchronization Service 

ESA European Space Agency 

GGA Global Positioning System Fix Data 

GLONASS Global Navigation Satellite System 

GPIO General purpose input / output 

GPS Global Positioning System 

GPSD Global Positioning System daemon 

GNSS Global Navigation Satellite System 

HDMI High-Definition Multimedia Interface 
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ID Identifier 

IP Internet protocol 

I
2
C Inter-integrated circuit 

IAU International Astronomical Union 

ITU  International Telecommunication Union  

IRS Interrupt service routine 

LAN Local Area Network 

LED Light emitting diode 

LEO Low-Earth orbit 

MCU Microcontroller unit 

NASA The National Aeronautics and Space 

Administration 

NTP Network time protocol 

NMEA National Marine Electronics Association 

OS Operation system 

OSC Crystal oscillator 

PC Personal computer 

PCB Printed circuit board 

PPM Parts per million 

PPS Pulse per second 

PPSAPI Pulse per second application programming 

interface 

PuTTY Open-source terminal emulator, serial console 

and network file transfer application 

RAM Random-access memory 

RS-232  Serial standard 

RTC Real time clock 

RTS Request to send 

SCIP software for mixed-integer programs 
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SD Solid drive 

SDA Serial data line 

SDC Serial data clock 

SPI The Serial Peripheral Interface 

RTC Real Time Clock 

TAI  International Atomic Time 

TCP Transmission Control Protocol 

TSIP Trimble Standard Interface Protocol 

TTL Transistor-transistor logic 

UART Universal asynchronous receiver/transmitter 

UNIX Multitasking, multiuser computer operating 

systems 

UDP User Datagram Protocol 

USB Universal serial bus 

UTC Coordinated Universal Time 

VCO Voltage control oscillator 

VMS  Virtual machines server 

VFO Variable-frequency oscillator 

WAN Wide Area Network 
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1. Introduction 

The Network Time Protocol (NTP) is one of the oldest internet protocols still in use. It has 

been operational since before 1985 and was invented by David L. Mills. It is a widely 

accepted method for synchronizing time in computer networks. [1]. 

 

The benefits of building NTP servers have never been as important. Internet technologies 

continue to change the shape of everyday life while network demands and data flow are 

constantly increasing. The interest in, and use of space technologies is also rapidly growing. 

Space agencies around the world continue to launch satellites into orbit for various reasons. 

Efficient and effective inter-satellite communication and ranging systems are essential to keep 

these satellites and their services functioning. 

 

Small, dedicated NTP servers can be set up at almost no cost. These servers can then be used 

to monitor private and business networks as well as to calibrate network products after 

assembly. NTP servers may also be included as an additional system for atomic clocks which 

possess a highly precise output of one pulse per second. 

 

This thesis project has been undertaken at the Space Technology Department of Tartu 

Observatory. The observatory has its own atomic clock installed but, at the time of writing, a 

10 MHz output was only being used to synchronize the frequency of the ground station and 

the devices in the laboratory. The atomic clock GPS-89 was also transmitting at a frequency 

of one pulse per second (PPS) with 60ns precision through a BNC cable. The clock was not 

connected to any external system and its highly accurate PPS was not being used. 

 

The idea of this project was to build a simple NTP server for the existing ground station. 

Tartu Observatory is likely to use this new NTP server for spacecraft ranging in future 

projects like ESTCube-2 [2].  Such a server can provide an accurate timestamp and frequency 

range for packets transferred between a spacecraft and a Ground Station and can also provide 

accurate time in the observatory’s local network. The new NTP server can also be also used to 

create accurate timestamps of astronomical observations. 

    

There are many NTP servers available today which provide a time precision in microseconds 

but whether this is precise enough for all applications remains questionable. An imprecise 

NTP server can be a potential hazard for clients on that NTP server. For example, if brokers 

are trading shares on financial market and their timestamp polled from an NTP server is less 

precise than that of the market then this can result in financial losses. One of the objectives of 

this thesis is to introduce a novel approach to determining the accuracy of a timestamp 

provided by an NTP server. .  

 

This thesis is divided into the following sections; firstly, the requirements for building an 

NTP server are investigated. Secondly, discussions on what technologies were available for 

its construction as well as descriptions of existing solutions. Thirdly, the NTP protocol will be 

described followed by the fourth part of the thesis which describes the network protocol 

daemon. The fifth part of the thesis describes a new method for analyzing the accuracy of an 

NTP server and how it differs from other published solutions. In the same section, the results 

of measurements will be analyzed and discussed. Finally, the experimental NTP server will be 

evaluated followed by a discussion of possible improvements and future projects. 
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The objectives of this Master thesis for the construction of a new NTP server for atomic clock 

GPS-89 are as follows: 

  

● Gather information about requirements for the new NTP server; 

● Select components, design and draw a block diagram and integrate available hardware 

into a working NTP server and client system based on a single-board Linux computer 

with ARM architecture; 

● Introduce network time protocol and daemon software, 

● Install and connect the newly built NTP server to an existing GPS-89 rubidium clock; 

● Improve system performance by optimizing the ARM multicore architecture; 

● Undertake NTP server and client load testing. Analyze the system performance and 

time accuracy by comparison of NMEA and TSIP protocols and measurements with 

other time servers, and; 

● Compare performance of LAN speed at 100 megabits per second (Mbps) and one 

gigabit per second (Gbps). 

  

A more detailed list of these procedures is provided in section 2.1. 
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2. NTP server and client requirement, design and 

installation 

The development of NTP server has been divided into following sections: 

  

 Build requirements; 

 Design, and; 

 Assembly. 

2.1 Requirements for NTP Server and Client 

2.1.1 Microcontroller 
The microcontroller should be from the Advanced RISC Machine (ARM) family and include 

the optimum number of pins for this project. Also, it should have enough processing power so 

as to obtain reasonable results for the experiment. The MCU is preferable because it has low 

power consumption, a small foot print, and good reliability and uses open source software. 

2.1.2 Measurements 
The PPS output from the atomic clock will be the main reference for the NTP server and will 

be connected to an oscilloscope for the purposes of this study. The NTP server should be able 

to synchronize time in a local area network (LAN) within 50µs accuracy in relation to a UTC 

timestamp.  

2.1.3 Communication 
Communication between the NTP server, client and computer has to be established via an 

Ethernet socket using the TCP or UDP protocol and will be controlled using Putty or WinSCP 

command lines. Ethernet sockets should support speeds of one Gbps or more. 

2.1.4 Price 
Both the NTP server and client should be of low cost while providing maximum efficiency. 

2.1.5 Memory 
NTP servers and clients produce NTP statistics as per their internal protocols. There should be 

enough memory on the server to store this data for a period of more than one year. 

2.1.6 Protocols 
The NTP server needs to be able to support the National Marine Electronics Association 

(NMEA) and Trimble Standard Interface Protocol (TSIP). 

2.1.7 Power  
The NTP server should have a low demand on electricity consumption. 

2.1.8 Software  
For this purpose, a network time software daemon (ntpd) should be used and for simplicity, 

the system should also be able to run on LINUX architecture.  
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2.1.9 NTP client   
Network time protocol client should be built on individual single-board computer and 

generate pulse per second by script written in any program language. Generate pulse has to be 

synchronized with UTC timestamp provided by network time protocol daemon. 

2.2 Server Design and Atomic Clock Description 

The optimal design for this project is to build the NTP server on a single-board computer with 

a GPS module attached that supports all the required protocols.   

2.2.1 Components selection  
Most of the components and single board-computers were ordered from various online 

suppliers  and some older GPS modules with TSIP protocol were provided by Tartu 

Observatory. A Raspberry Pi Expansion Board was ordered from the electronics supplier 

Uputronics. [3]  

2.2.2 NTP server simple diagram  
The atomic clock GPS-89 was the main reference for the NTP server. The server was 

connected to a GPS module which transmitted the GPS timestamp for the PPS that was 

produced by the atomic clock. The entire system was connected to one local switch. The pulse 

that is transmitted by the clock is sent to the bridge and then on to the oscilloscope for pulse 

analysis. This can be seen in Figure 1. 

 

 
 

Figure 1: Simple diagram of the proposed NTP server for an atomic clock. 
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2.2.3 Schematic design software 
DesignSpark PCB 6.1 was the PCB layout drawing program chosen for this project as an 

additional external board for an older GPS module was used. This design software was 

recommended by an engineer at Tartu Observatory [4]. 

 2.2.4 Single board computer selection for the server 
After conducting research on the internet about existing NTP server setups [5]it seemed that 

one of the best choices for building an NTP server and client was to buy single-board 

computers such as NanoPi NEO2 or Raspberry Pi 3B. They both seemed to possess the 

suitable architecture and efficiency for such a system.  

 

NanoPi NEO2 [6] has a one Gbps ethernet socket for LAN, making it the preferable device as 

the Raspberry Pi 3B [7] can support a maximum of only 100 Mbps. It is also possible to order 

Raspberry Pi 3B+ which is already equipped with a one Gbps ethernet socket, but it can 

support a maximum of only 300 Mbps. The NanoPi NEO2 with a one Gbps ethernet socket 

seemed to provide the ideal environment for stress testing procedures as well as providing 

enough bandwidth for potentially larger demands. The software for both NanoPi and 

Raspberry Pi computers is listed in Table 1. 

2.2.4.1 NTP servers for LINUX operating systems 

 

NanopiNEO2 Armbian_5.65_Nanopineo2_Ubuntu_bionic_next_4.14.78 

Raspberry Pi 3B Linux raspberrypi 4.19.23-v7 

 

Table 1.  NTP servers for LINUX operating systems 

2.2.5 GPS module with TSIP and NMEA protocols selection  
For this project, Tartu Observatory provided the Trimble  

GPS module SMT360™. This module operates with both NMEA and TSIP protocols. The 

RES SMT360™ Timing Module is used on the carrier board. This makes available the 

concurrent reception of GNSS (GPS, Galileo, GLONASS, BeiDou) with a PPS pulse that has 

a 15ns accuracy. The main power supply requires 3V for the Trimble chip and 5V for the 

antenna. [8] 

2.2.5.1 External PCB board design 

The GPS module has been attached to a small PCB board which was previously designed by a 

Tartu Observatory engineer. The external PCB board contains a separate power supply for the 

antenna and the Trimble chip and also has an additional RS-232 driver - so it is possible to 

connect the GPS module directly through a serial USB converter to a PC. Once the GPS 

module is connected to a PC, the Trimble GPS can be set up using GUI Trimble Visual 

Timing Studio software. [9]The external PCB board design can be seen in Figure 2.  
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Figure 2: External PCB board interface for GPS SMT360 [ Author: Viljo Allik  

Tartu Observatory] Appendix A 
 

2.2.6 Raspberry Pi+ GPS Expansion Board  
Following research online, it was decided to order the GPS Expansion Board (Product code: 

HAB-GPSPI-NAN) from the electronics supplier Uputronics. This module generates a PPS 

pulse with a length of 100ms and also supports the NMEA protocol. [10]   

  

It is a solderless design and is easy to install on top of the Raspberry Pi 40- pin header. Its 

design will also reduce signal noise as cabling is not required. This expansion board includes 

the advanced u-blox MAX-M8Q [11] [12]chip revision 04 (released on January 2019), which 

possesses concurrent reception of up to four GNSS (GPS, Galileo, GLONASS, BeiDou) and 

provides a 60ns time pulse accuracy similar to that of the atomic clock. 

2.2.7 NTP NanoPi NEO2 server connection diagram  
As the atomic clock produces a 5V, PPS output, it is necessary to design a small PCB board 

with a voltage divider in order to protect the GPIOs on the single-board computer. The divider 

formula is shown in Figure 3. It is assumed that each pin can theoretically handle a maximum 

of 4V. After the PPS is voltage level adjusted to the suitable 3.3V level, then the signal will be 

connected to the NanoPi NEO2 on pin PA6 on the twenty four pin header of the NanoPi 

NEO2. Serial interface pins are connected according to Table 2 and shown in Figure 4. For 

the analyses of the PPS signal from the atomic clock, it is also bridged to the oscilloscope. An 

external power supply of 3.3V and 5V is connected to the external GPS board. 

2.2.7.1 Divider for both single-boards and NanoPi NEO2 pin settings  

𝑉𝑜𝑢𝑡  = (
Z2

Z1+Z2
)* 𝑉𝑖𝑛       3.3 V = (

1 kΩ

1 kΩ+1 kΩ
)* 5 V 

 
Figure 3: Divider formula
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NanoPiNEO 

pins 

Encoders 

interface pins 

 

PG6 TXD 

PG7 RXD 

PA6 1 PPS 

 

Table 2. 

 

 

 

 

NanoPi NEO2 right pinheader 

3.3V OUT 1 2 5V IN 

SDA 3 4 5V OUT 

SCL 5 6 GND 

PG11 7 8 PG6 

GND 9 10 PG7 

PA0 11 12 PA6 

PA2 13 14 GND 

PA3 15 16 PG8 

3.3V OUT 17 18 PG9 

PC0 19 20 GND 

PC1 21 22 PA1 

PC2 23 24 PC3 

 

Table 3. 

2.2.7.2 NanopiNEO2 based interface block diagram 

 

 
Figure 4: Block diagram of NTP server for Atomic clock 

2.2.8 NTP Raspberry PI B server and client simple schematics  
The Raspberry Pi 3B computer was also used to construct an NTP server so as to compare its 

performance with the NanoPi NEO2 computer. Both of these single-board computers have a 

very similar ARM architecture. As with the NanoPi NEO2 server, the Raspberry Pi 3B server 

adjusted signal from the atomic clock will be sent to pin 18 on the GPIO (Table 4). The 

Raspberry Pi 3B was also used for the NTP client.  On the left in Figure 5 is shown the forty-

pin header of the GPS expansion board that includes a real time clock (RTC) and serial 

interface. This is connected to the forty-pin header of the NTP server interface which can be 

seen in the middle of Figure 5. On the right-hand side of Figure 5 is a diagram of the forty-pin 

header of the client with PPS Client interface which is connected to oscilloscope channel one.  
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On the bottom of Figure 5 is a block diagram of the PPS interface from the atomic clock with 

a small voltage divider connected to channel two of the oscilloscope. 

 

Raspberry pins PPS, RS232 

interface pins 

 

GPIO14 TXD 

GPIO15 RXD 

GPIO18 1 PPS 

 

Table 4. 

 

 

 

 

 

 

 

 

Raspberry 3B Pinout 

3.3V 1 2 5V 

SDA 3 4 5V 

SCL 5 6 GND 

GPIO4 7 8 GPIO14 

GND 9 10 GPIO15 

GPIO17 11 12 GPIO18 

GPIO27 13 14 GND 

GPIO22 15 16 GPIO23 

3.3V 17 18 GPIO24 

GPIO10 19 20 GND 

GPIO9 21 22 GPIO25 

GPIO11 23 24 GPIO8 

GND 25 26 GPIO7 

DNC 27 28 DNC 

GPIO5 29 30 GND 

GPIO6 31 32 GPIO12 

GPIO13 33 34 GND 

GPIO19 35 36 GPIO16 

GPIO26 37 38 GPIO20 

GND 39 40 GPIO21 

Table 5. 

2.2.8.1 Raspberry Pi 3B based interface NTP Server and Client block diagram 

 
Figure 5: Block diagram of NTP server for Atomic clock 
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2.2.9. Comparing hardware specification of single-board computers 
A comparison of NanoPi NEO2 and Rasberry Pi 3B single-board computers is presented in 

Table 6. 

 

Table 6. 

2.2.10 Atomic Clock 
Most atomic clocks utilize atomic isotopes Caesium -133 or Rubidium -87. Count pulses of time 

are measured from microwaves emitted by the electrons around those atoms. These electrons 

move from a lower to a higher orbit under the influence of lasers and the electrons become 

excited as they absorb energy from these lasers. While returning to a lower energy level, the 

electrons radiate the excessive energy as microwaves. 

 

High and low energy atoms are separated by magnets. The separated low energy atoms are 

bombarded by an appropriate wavelength of radiation which converts them to high energy 

atoms. They are then moved by a second magnet to a detector which in turn, produces a 

current. This current is tied to an oscillator, which creates a feedback loop for the process. If 

low energy atoms predominate then the oscillator slows down, and the current stops. This loss 

of current is registered and extra voltage is applied to the system to compensate for this 

change in frequency. [13] 

 

 

 

 

 

 

NANOPI NEO2 Raspberry Pi 3 B 

4x CPU: Allwinner H5, Quad-core 1.2 GHz 64-bit 

high-performance Cortex A53 

4x CPU: Broadcom BCM2837 chipset running at 1.2 

GHz 64-bit quad-core ARM Cortex-A53 

DDR3 RAM 1GB RAM 1 GB LPDDR2 memory 

Connectivity: 10/100/1000M Ethernet, RTL8211E-

VB-CG chip 

1 x 10/100 M Ethernet port, 802.11 b/g/n Wireless 

LAN, Bluetooth 4.1 (Classic & Low Energy) 

USB Host: USB Type A x 1 and USB pin header x 

2 

4 x USB 2.0 port 

MicroSD Slot: MicroSD x 1 for system boot and 

storage 

MicroSD Slot: MicroSD x 1 for system boot and 

storage 

LED: Power LED x 1, System LED x 1 LED: Power LED x 1, System LED x 1 

GPIO1: 2.54mm pitch 24 pin-header, compatible 

with Raspberry Pi's GPIO pin1 - pin 24. It includes 

UART, SPI, I2C, IO etc. 

40-pin 2.54 mm (100 mil) expansion header: 2x20 

strip providing ,27 GPIO pins as well as +3.3 V, +5 

V and GND supply lines, UART, I2C, SPI 

GPIO2: 2.54mm pitch 12 pin-header. It includes 

USB, IR receiver, I2S, IO etc. 

1 x HDMI video/audio connector 

Serial Debug Port: 2.54mm pitch 4pin-header Serial Debug Port: 2.54mm pitch 4pin-header 

Audio In/Out: 2.54mm pitch 4 pin-header 1 x RCA video/audio connector 

MicroUSB: Power input(5V/2A) and OTG MicroUSB: Power input(5V/2.5A) and OTG 

PCB Dimension: 40 x 40mm PCB Dimension: 85 x 56mm 

Working Temperature: -30℃ to 70℃ Working Temperature: -25℃ to 80℃ 

Weight: 13g(WITHOUT Pin-headers) Weight:  39.45g 

OS/Software:  Ubuntu bionic next 4.14.78 OS/Software: Linux raspberrypi 4.19.23-v7 
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Clocks today are based around a frequency source generally called oscillators and come in a 

variety of types: 

 
Quartz Oscillators 

TCXO – Temperature Compensated Crystal Oscillator 

OCXO – Oven Controlled Crystal Oscillator 

 

 Atomic Oscillators 

Rb – Rubidium Oscillator 

Cesium – Cesium Atomic Oscillator 

H-Maser – Hydrogen Atomic Oscillator 

2.2.10.1 Atomic Clock Pendulum-GPS-89  

The NTP server was built for the local atomic clock Pendulum-GPS-89 

The  GPS-controlled   frequency   standards,   Pendulum   GPS-88   and  GPS-89,  deliver  a  

precision  frequency  and  time  reference  with a PPS signal output of 5V DC, pulse 

frequency Sine wave.  Atomic clock possess frequency stability locked to GPS frequency 

offset (24 h mean):1x10
-12

 (at temperature 20°C to 26°C) [14]. 

2.3 Assembly 

The final, working design has not been decided yet, but according to Tartu Observatory they 

would use a 90 inch rack-mount module to house all necessary equipment once the NTP 

server has been built and proven to work. 

3. NTP protocol 

The Network Time Protocol (NTP) is a protocol used to synchronize computer clock times in 

a network, such as for radio or satellite receivers and mobile phone network. It provides a 

time accuracy of less than a millisecond on a LAN and up to a few milliseconds on a WAN. 

The NTP protocol synchronizes and calibrates local and external NTP servers on diverse 

network paths so as to provide local time with the highest accuracy. NTP is based on the 

Internet Protocol (IP) and the User Datagram Protocol (UDP) on port 123. [1] 

NTP has the following four synchronization modes, a client mode, a server mode, a peer 

mode and a broadcast mode. There are differences in how they measure offsets and network 

delays. For this thesis, we will focus on the first two. Both client and server modes are built in 

a hierarchical structure divided into stratum levels. 

NTP aligns the system clocks in participating computers to Coordinated Universal Time 

(UTC). UTC is based on the solar day, which depends on the rotation of Earth about its axis 

[15]and which was also defined as part of the Gregorian calendar introduced by Pope Gregory 

XIII in October 1582. 

3.1 NTP levels 
At the top level of NTP is Stratum 0. In this stratum, there are not many machines. Typically 

they are ground-based cesium clocks or the cesium clocks on satellites of geographical 

navigation systems such as the Global Positioning System (GPS) which was launched by the 

U.S. Department of Defense in 1978.  
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There is also the Galileo Global Navigation Satellite System (GNSS) launched by the 

European nations, the BeiDou Navigation Satellite System (BDS) launched by China and 

GLONASS which is owned by the Russian Federation. Devices connected with Stratum 0 

cesium clocks and satellites are on the next level at Stratum For example, according to ntp.org 

there were approximately 2000 NTP servers in Stratum 1 across Europe at the time of writing 

this thesis. Following this are Stratum 2 servers which are clients of Stratum 1 and then 

according to the servers on stratum N+1 are clients to servers on Stratum N. The maximum 

stratum level is 16. This system of strata is presented in Figure 6. 

  

Figure 6: NTP server Stratums hierarchy 

3.2 Global Positioning System 

The Global Positioning System, commonly known as GPS, provides satellite navigation for 

vehicles and much more. Each navigation system connects with a group of satellites that have 

a fixed constellation. These systems use trilateration [16] or other techniques to determine the 

position of the GPS receiver. They also determine absolute time using the UTC format and 

broadcast the UTC timestamp for synchronization. [17] 

Each GPS satellite carries: 

 Stabilized stratum 0 atomic clock hardware 

 Advanced location tracking circuitry 

 Transmitters that constantly broadcast their position and clock time 

3.2.1 Leap second 

The speed of the Earth’s rotation is slowing down over time due to many complex factors. 

This means that the solar day increases in length by approximately 0.001 seconds per solar 

day. [18] 
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The rate at which the earth slows down however is not uniform. There are complex factors 

behind this such as massive sea currents causing tidal acceleration, the movement of the fluid 

metallic core inside the Earth or changing atmospheric currents the result of these dynamic 

factors is that the need for leap seconds isn’t predictable. 

 

Once the difference between UTC and UTC1 reaches 0.9 seconds, then 1s is added to UTC to 

compensate for this difference.  

GPS time is eighteen seconds ahead of UTC, because GPS time was set to match UTC in 

1980, but has since diverged. Since the UTC format was implemented earlier than the GPS 

format there was already added 9 leaps- second to UTC before GPS was equal, so if nine 

seconds is subtracted from twenty seven we get an offset of eighteen seconds. 

3.3 Protocols 

3.3.1 NMEA protocol 
The NMEA standard has been in use since 1983 and most GPS receivers use the standard call 

0183 version which can support 4800 or 9600 b/s on the serial interface RS232. USB 

converters also can be used but they can possibly introduce unnecessary latencies in 

communication between a PC and a GPS receiver. NMEA consist of sentences in American 

Standard Code for Information Interchange (ASCII) format like in figure. ASCII format. [19] 
 
$--GGA,hhmmss.ss,llll.ll,a,yyyyy.yy,a,x,xx,x.x,x.x, M,x.x,M,x.x, xxxx*hh<CR><LF>  

 
 GGA - Global Positioning System Fix Data 

1 $--: Talker identifier 

2 GGA: Sentence formatter* 

3 hhmmss.ss: UTC of position* 

4 llll.ll, a: Latitude North/South (N/S)* 

5 yyyyy.yy, a: Longitude East/West (E/W)* 

6 x: GPS quality indicator 

7 xx: Number of satellites in use (00-12) 

8 x.x: Horizontal dilution of precision 

9 x.x, M: Antenna altitude above/below mean 

sea level (geoid), meters* 

10 x.x, M: Geoidal separation, meters 

11 x.x: Age of differential GPS data 

12 xxxx: Differential reference station ID 

13 *hh: Cheksum* 

 

Table7: NMEA protocol in ASCII format 

 

3.3.2 TSIP protocol 
The TSIP is a binary packet protocol option for the user to maximize control over the 

configuration of a GPS receiver which can also optimize performance. TSIP supports over 20 

commands associated with response packets. GPS receivers with the TSIP protocol can also 

correct an offset of PPS if it reaches a critical threshold - it switches to recovery mode and 

automatically synchronizes PPS with the GPS. TSIP packet structure is the same for both 

commands and reports. [20] The packet format is: 
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<DLE> <id> <data string bytes> <DLE> <ETX> 

 

 <DLE> is the byte 0x10 

 <ETX> is the byte 0x03 

 <id> is a packet identifier byte, which can have any value excepting <ETX> and 

<DLE>. 

 

An example packet: 

0x10,  

0x8F, 0xAB,  

0x00, 0x03, 0xE5, 0x1F, 0x06, 0x88, 0x00, 0x00,  

0x0C, 0x17, 0x36, 0x16, 0x18, 0x01, 0x07, 0xDC, 

0x10, 0x03 

Figure 7: TSIP protocol in binary format 

3.3.3 NTP Packet header structure 

The NTP server is stateless and responds to each received client NTP packet in a simple 

transactional manner by adding fields to the received packet and passing the packet back to 

the original sender, without reference to preceding NTP transactions. Upon receipt of a client 

NTP packet, the receiver timestamps the receipt of the packet as soon as possible within the 

packet assembly logic of the server. The packet is then passed to the NTP server for 

processing. 

  

The NTP packets sent by the client to the server and the responses from the server to the 

client use a common format, as shown in table 8. [21] 

 

0-1 3-4 5-7 8-15 16-23 24-31 bit 

LI VN MODE STRATUM POLL PRECISIOM 

ROOT DELAY (32-bit) 

ROOT DISPERSION (32-bit) 

REFERENCE IDENTIFIER (64-bit) 

REFERENCE TIMESTAMP (64-bit) 

ORIGIN TIMESTAMP (64-bit) 

RECEIVE TIMESTAMP (64-bit) 

TRANSMIT TIMESTAMP (64-bit) 

 

Table 8: NTP Packet structure  
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Packet header overview 

LI Leap Indicator (2 bits). 

VN NTP Version Number (3 bits). 

MODE NTP packet mode 

STRATUM Stratum level of the time source (8 bits). 

POLL The log2 value of the maximum interval between successive 

NTP messages in seconds. 

PRECISION Clock precision (8-bit signed integer) The precision of the 

system clock, in log2 seconds. 

ROOT DELAY The total round-trip delay from the server to the primary 

reference. 

ROOT DISPERION The maximum error due to clock, only in server messages. 

REFERENCE ID For stratum 1 servers this value is a four-character ASCII 

code that describes the external reference source. 

REFERENCE 

TIMESTAMP 

System clock was last set or corrected, in 64-bit time-stamp 

format. 

ORIGIN TIMESTAMP Time at which the request departed the client for the server. 

RECEIVE TIMESTAMP The time at which the client request arrived at the server. 

TRANSMIT TIMESTAMP The time at which the server reply departed the server. 

 

Table 9: NTP Packet structure description [21] 

3.3.4 NTP server packet diagram 

Basic operating principles of network time protocol are described below. These four 

parameters are passed into the client timekeeping function to drive the clock synchronization 

function.  [22] 

                                     T2         T3 
  

NTP Server                                                 Time 

 

 

 

 

NTP Client           Time 

  T1               T4 

Figure 8: NTP server packet diagram 

 

NTP protocol principles 

T2-T1 The Client requests NTP server to 

provide NTP service (including network 

transmission time). 

T3-T2 NTP server processing time 

T4-T3 the NTP server replies to Client with 

NTP service information (including 

network transmission time 

T4-T1 total spending time 

T4-T3 to T4-T2 The time delay from Client to NTP server 

is between 

Table 10. 
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3.3.5 NTP packet data traffic. 

From the NTP server packet diagram we can estimate an approximate delay between the 

client and the server. NTP client polls data using a polling frequency algorithm from the NTP 

server.  The NTP clock algorithm selects the best server with best sample data with smallest 

delay and offset. These values are calculated from last four timestamps. [1]:  

 

Round-trip delay during NTP exchange of packets between client and server can be 

represented as [1]: 

 

θ = ½ [(T2 – T1) + (T3 – T4)] and δ = (T4 – T1) – (T3 – T2) 

 

Figure 9: NTP clock offset (θ) round trip delay (δ) formula 

3.3.6 NTP Reference timestamp 

The reference timestamp is stored as a 64-bit unsigned integer. The first part of N bits 

contains the number of seconds and the next M bits contain the number of milliseconds.  So, 

the timestamp is composed of 32 bits for representation of seconds passed since 0 hours on 1 

January 1900 and 32 bits to represent fractions of seconds, as is shown in Figure 10. The 

multipliers to the right of the point are 1/2, 1/4, 1/8, 1/16, etc. [23]. 

 

 

 

 

Seconds 

 

Seconds Fraction 

 

 

 0                                  31     

Figure 10: Reference timestamp structure 

 

Many OSs are operating with this time format; therefore this may cause problems on January 

1, 2036. At that moment the 64-bit unsigned integer will overflow and a new epoch will start. 

The user will face two problems. They will receive the date 1900-01-01 00:00:00 UTC, not 

2036-02-07 06:28:15 as the new time. As a result of this, UNIX time will fail to start. [24] 

3.3.7 UNIX timestamp 

UNIX timestamp is a single a signed 32-bit number which increments every second in most of 

our Unix OS and started from since 00:00:00 Thursday, 1 January 1970. UNIX time stamp is 

calculated and calibrated from NTP reference time stamp UTC by LINUX kernel [25].  

 

The UNIX timestamp has a 70 year offset from the NTP timestamp as it started later in 1970. 

The UNIX timestamp calculation from NTP timestamp: 

 

NTP offset = (year offset*365 days + 17 leaps seconds)*86400s = 2208988800s 

 UNIX timestamp seconds = NTP timestamp – NTP offset 

UNIX timestamp seconds fraction = (NTP timestamp fraction * 1000000)/ 2
32 

 

Figure 11: UNIX timestamp calculation formula.  
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4. NTP Daemon 

NTP daemon software is operating in Unix, VMS and Windows systems and others under 

NTP service using selected Reference clock drivers for synchronizing system clock. It is 

simple application running in the background and using UDP protocol and port 123 [1].   

 

At the time of writing, the most recent NTP version was NTP release 4.2.8 p12. The 

command ntpq transfer to simple command, insert –help all option will display.  

4.1 Reference Clock Driver  

A reference clock driver requires reference a GPS signal which is transferred to the clock 

hardware and I/O interface processed by serial ASCII timecode [26] to NMEA or binary TSIP 

output.  

Then driver performs certain filtering and grooming functions. The entire suite of NTP 

algorithms is available to filter the received data, select the best clocks or servers, and 

combine their offsets to synchronize the system clock [1].  

 

The system clock timestamp is captured at a designated on-time character in the timecode. 

The difference between the driver timestamp and system timestamp represents the clock 

offset. [1] page 133. 

 
 

Figure 12: Device driver. [1] page 133 

 

Each specific driver to each reference clock must be compiled in the kernel modules, but most 

common clocks like NMEA, TSIP drivers are included already by default. Drivers have 

address in “/etc/ntp.conf “in the form “127.127.t.u”. (-t driver type, -u unite number 0-3) List 

of most common drivers is provided on web [27]. 

 

In this project, with selected standard serial RS-232 protocol for communication with each 

specific device. A symbolic link must be created for each driver and device combination that 

is used. 

 

The “server” command in the first line of figure 13 configures a “reference clock” and 

“fudge” command in second line provides additional information like address argument 

specifies the clock address, the refid and stratum options control can be used to override the 

defaults for the device. The NMEA sample of the setting is analyzed below and each 

parameter is described in table 14. 
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server 127.127.20.0 mode 16 minpoll 4 maxpoll 4 iburst prefer 

fudge  127.127.20.0 refid NMEA time1 + 0.105 flag2 0 refid NMEA stratum 1 

 

Figure 13: Reference clock driver configuration example 

 

Mode Specific mode number which in figure presents NMEA clock driver 

serial port communication speed of 9600 baud(9600 bit per 

seconds.   

minpoll and maxpoll Specify the min. and max. polling interval for reference clock 

messages in log2  

Prefer Marks the reference clock as preferred. 

iburst  Iburst mode sends up ten queries within the first minute to the NTP 

server otherwise by default 1 per second.  

time1 Driver specific constant added to the time offset produced by 

driver, a fixed-point decimal number in second. 

flag2 Flags customizing the clock driver specifies the PPS signal on-time 

edge: 0 – rising edge 

Refid Specifies and ASCII string from one four characters.  

Stratum Specifies stratum number assigned to the driver in the range 0 to 15 

driftfile  Record frequency of local clock oscillator, updated one per hour. 

 

Table 11: Reference clock driver configuration example  

4.2. PPS and Interface and driver 

A pulse per second (PPS) is produced usually by 10 MHz signal like Cesium, Rubidium clock 

or quartz oscillators or any other laboratory equipment. This 10MHz signal is processed by 

divider and then by the end of divider is obtained 1 pulse per second.  The PPS signal is 

aligned to the roll-over of seconds and synchronized with UTC as shown in figure 14. The 

PPS output is transferred into data carried control(DCD) line RS232 interface to provide a 

hardware interrupt input for synchronization and DCD RS232 pin is utilized as a PPS input 

from the GPS receiver. The combination of GPS timing data and PPS output we can achieve 

highly accurate timing reference. [28] 

 

The NMEA or any other reference clock driver associated with the PPS signal calls the 

PPSAPI application programming interface to measure difference between the system clock 

and PPS signal and process it in median filter. In our case PPSAPI calls kernel case to process 

the PPS signal directly, PPS is consider being valid only if the offset produced by clock filter, 

selected cluster and combine algorithm less than 400ms. Please see figure 14 [1]. 
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            Figure 14: Pulse per second (PPS) 

 

4.3. GPSD and SHM driver 

Global Position Daemon driver (GPSD) is a daemon that receives data from a GPS receiver 

and then transmitting these data to share memory (SHM) driver of ntpd. SHM driver receives 

its reference clock info from a shared memory-segment function in ntpd per every second 

interval [27]. 

4.4 Network time protocol configuration “ntp.conf” 

This section describes set up of reference clock drivers used in our experiment. We have 

tested PPS API NMEA, SHM NMEA GPSD, and SHM TSIP GPSD reference drivers. 

4.4.1 PPS API NMEA 
The NMEA messages are connected to the system via a serial port interface named gps0 and 

PPS signal is wired through the DCD pin and get process in serial port interface gpspps0. 

GPSD service must be stopped, otherwise driver will not work correctly. 

 

ln -sf /dev/ttyAMA0 /dev/gps0 

ln -sf /dev/pps0 /dev/gpspps0 

server 127.127.20.0 mode 18 minpoll 4 maxpoll 4 prefer 

fudge 127.127.20.0 flag1 1 

fudge 127.127.20.0 flag2 0 

fudge 127.127.20.0 flag3 1 

fudge 127.127.20.0 time2 0.470 
 

 
Figure 15: PPS API NMEA driver 
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4.4.2 SHM NMEA GPSD reference clock 

The NMEA messages connected to the system via a serial port gps0 using GPSD service and 

time stamp obtained from the share memory driver. 
 

#ln -sf /dev/ttyAMA0 /dev/gps0 

# Kernel-mode PPS reference-clock for the precise seconds 

server 127.127.22.0 minpoll 4 maxpoll 4 

fudge 127.127.22.0 refid kPPS 

# Coarse time reference-clock - nearest second 

server 127.127.28.0 minpoll 4 maxpoll 4 iburst prefer 

fudge 127.127.28.0 time1 +0.105 flag1 1 refid GPSD stratum 1 
 

 

Figure 16: SHM NMEA reference clock 

4.4.3. SHM TSIP GPSD reference clock 
The TSIP messages connected to the system via a serial port palisade0 using GPSD service 

and time stamp obtained from the shared memory driver. 
 

ln -sf /dev/ttyAMA0 /dev/palisade0 

 

# Kernel-mode PPS reference-clock for the precise seconds 

server 127.127.22.0 minpoll 4 maxpoll 4 

fudge 127.127.22.0 refid kPPS 

 

# Coarse time reference-clock - nearest second 

server 127.127.28.0 minpoll 4 maxpoll 4 iburst prefer 

 

Figure 17: SHM TSIP reference clock 

4.4 NTP Stats  

The network time protocol daemon stores statistics in local file system /var/log/ntpstats. The 

file contains following parameters: loopstats, peerstat,clockstats. [29] 

 

To collect statistics, add the directory path to the configuration file “ntp.cong” 

 

statsdir /var/log/ntpstats/ 

statistics loopstats peerstats clockstats 

 

Peerstats file contains clock offset and jitter data for every valid clock filter update for the 

server, peer and clock driver.  
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Row data in peerstat file 
48773   10847.650   127.127.4.1   9714   -0.001605376   0.000000000   0.001424877   

0.000958674 
 

Item Units Description 

48773 MJD Date 

10847.650 S Time past midnight 

127.127.4.1 IP  Reference clock address 

9714 Hex status word 

-0.001605376 S clock offset 

0.000000000 S roundtrip delay 

0.001424877 S Dispersion 

0.000958674 S RMS jitter 

Table 12. 

 

The "loopstats" log lists offset and jitter values for every valid discipline algorithm [1] update. 

The delay and clock offset counted by formula provided in 2.3.3.  

   

Row data in loopstats 
50935   75440.031   0.000006019   13.778190   0.000351733   0.0133806 6  

 

Item Units Description 

50935 MJD Date 

75440.031 S Time past midnight 

0.000006019 S Clock offset 

13.778 PPM Frequency offset 

0.000351733 S RMS jitter 

0.013380 PPM RMS frequency jitter 

6 Log2 s Clock discipline loop time constant 

Table 13. 

4.4.1 Modifies version of the Julian date (MJD) 

A modified version of the Julian date, denoted as MJD, can be obtained by subtracting 

2,400,000.5 days from the Julian date JD. The MJD therefore gives the number of days since 

midnight on November 17, 1858. [30] 

 

MJD ≡ JD – 20400000.5 

 

Figure 18: Modified version of the Julian date 

 

The Julian Day number (JD) is the count of the number days that have elapsed since 

Greenwich Mean Noon on 1 January -4712 (4713 BC) in the Julian Proleptic Calendar. 

 

The Julian start date is calculated from three following cycles Solar, Lunar and Roman 

Indication from the last time these three events have been coincident. This time format 

provides astronomers measure secular time differences over long time.  
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The number 20400000.5 where 0.5 days is subtracted so as to have MJD start a midnight and 

the 2400000 is used to reduce the 7-digit day number of JD to a more tractable 5 digits format 

for the logs and statistics.  

 

The both time format MJD and JD are reference to UTC which is time format used as primary 

time standard in the words and it is recognized by the IAU, ITU and CCIR [31].  

4.4.2 NTP plotter beta V1.0.32.075 

NTP Plotter is a freeware program for the plotting of graphs for the NMEA/PPS ref-clock 

driver. It produces graphs of offset, frequency error and jitter from loopstat log files which 

ntpd produces. [32] 

5. Experiments and a new method of measuring the 

accuracy of an NTP server. 

For these experiments, it was assumed that an atomic clock was precise enough and so it was 

used as an absolute reference for time synchronization. For this purpose, the atomic clock 

GPS-89 Rubidium, located at Tartu Observatory, was used. This atomic clock provides for 

this purpose 10 MHz: Sine wave, > 0.6 Vrms in 50 Ω.  It generates PPS approximately 5V in 

open output in 50 Ω duty cycle 20% with 60 nanosecond precision relative to UTC.  

 

In ideal conditions, an atomic clock can provide a theoretical precision of 10
-11

 per second. By 

ideal conditions, it is meant that all oscillation frequencies of the oscillators on the build 

platform are synchronized and are kept in a constant environment. In such conditions, this 

system can possibly measure at even higher levels of PPS precision if required.   

 

If it is considered that the atomic clock with 60 nanosecond accuracy is reasonable for a PPS 

signal output. This precise output is sufficient input for the NTP protocol as NTP software 

ntpd can support higher accuracy than 1µs. For networks, a timestamp of 1µs accuracy is 

appropriate as signals travel long distances through cables and routers and a higher accuracy 

cannot be expected.  

  

NTP daemon programs are often used to provide higher accuracy timestamps for local 

networks. NTP statistics software is often used for generating statistics for variables such as 

clock offset and jitter. 

  

How can these be used to verify the accuracy of an NTP system? Using statistics software we 

can use loopstat or peerstat files to assess variables such as offset and jitter between the 

system timestamp and device driver stamp that have been produced from reference clocks like 

GPS and PPS pulses. The question still remains though how accurate are these data, and are 

there any alternatives for assessing the time accuracy of an NTP server? 

  

One possible method of verifying the accuracy of PPS pulses is published on the internet. The 

suggestion is to create the NTP Client and then generate PPS pulses on the parallel port of a 

GPIO pin. In this scenario, one single-board computer is used which is sharing all the 

resources for both the NTP server and client while also running two different NTP protocols 

at the same time.  This is not the best approach as each program is consuming a lot of 
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CPU/MCU resources on both the server and client. Such a system would almost certainly be 

influencing any given results.     

  

The method proposed in this thesis is to build a separate client and server on separate single-

board computers and assign them each a single core for the ntpd service in order to achieve a 

higher level of accuracy of the NTP timestamp. The NTP client will generate a new PPS by 

the script introduce in appendix C and capture the system timestamp. Then new generated 

PPS will be compared to the original physical PPS produced by the atomic clock on the 

oscilloscope. These signals will be connected to separate channels and will give us the 

possibility to analyze differences between them. The original PPS produced by the GPS 

module will not be taken into account as it is assumed that a PPS provided from an atomic 

clock is the most precise reference. 

  

An addition to this, physical PPS signals from an atomic clock and an additional NTP server 

was also examined in our LAN. 

  

Using this novel method, the author will attempt to verify how well an NTP server is 

operating and how accurate a timestamp it can provide. 

5.1 Experiment phases  
Firstly, an NTP server was built. Connected to the GPIO input of this server was a highly 

accurate PPS output from a GPS-98 atomic clock with a PPS accuracy of 60ns. The GPS 

receiver then delivered data in ASCII or BINARY format for the reference clock driver 

through the serial port on the single-board computer. The combination of these devices was 

expected to result in a highly accurate timestamp generated by this device driver.  

  

The second stage was to build an NTP client connected to a 1Gbps ethernet LAN switch. 

  

Thirdly, PPS driver software was developed that could be added to the LINUX kernel as a 

custom module. This driver software executes a function of  “gettimeofday()” via a system 

call to the kernel. The function obtains the current time, expressed as seconds and 

microseconds synchronized with UTC, and stores it in the “timeval structure” pointed to by 

“tp” variable. 

  

Following this, simple C++ script was created that initiates the driver module. The rising edge 

of the new second occurs while the reading and writing on the device “callback function” is 

triggered. A pulse of 500us length is generated and then delivered to the GPIO output of the 

NTP client.  

  

Once this has been established, then both PPS outputs will be connected to the Rohde and 

Schwarz oscilloscope on Channel 1 and Channel 2. The mathematical channel will be set up 

for collecting statistics and drawing graphs. A simple overview of this experimental setup can 

be seen in Figure 19. 
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Figure 19: Simple overview of experiment 

 

Finally, three different configurations will be tested and analyzed for performance:  

1. In first set up a NanoPi NEO2 acts as the NTP server as per requirement was to set up 

speed of one Giga bit per second over the LAN. A PPS pulse is generated from the 

atomic clock and GPS receiver SMT360™ was connected to transmit the NMEA data 

through a serial interface order to lock PPS. Raspberry Pi 3B acts as the NTP client 

which synchronizes with the NTP server. It will generate its own PPS by the script and 

it’s synchronized with UTC timestamp. The first setup has been running over the one 

common switch connected in LAN. Both PPS signals generated from the following 

configurations and analyzed on the oscilloscope on the separated channels: 

a. Raspberry and NanoPi NEO has default setup, no enhanced parameters are 

applied.   

b. Raspberry and NanoPi NEO has optimized setup. One separate core was 

utilized only for ntpd running task and CPU was set up to higher frequency.  

 

2) In second setup a Raspberry Pi 3B acts as the NTP server with 1 PPS generated from 

Atomic clock and new module GPS receiver U-blox MAX-M8Q was installed to 

transmit NMEA data through serial interface to lock PPS. Raspberry Pi acts as NTP 

client synchronize with NTP server and generating its own PPS by script synchronized 

with UTC timestamp. Now onwards only enhanced setup will be used as in test 1.b. 

Both PPS signal from NTP server and client are compared on the oscilloscope on the 

separate channels for further analysis: 

a. Both Raspberries Pi’s setup up over the single switch in LAN. 

b. Both Raspberries Pi’s setup up over the multiply switches in LAN 

c. Raspberries Pi NTP server set up under stress of data traffic. 

d. Test over the WLAN 4G 
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3) Additional NTP server NanoPi NEO2 with TSIP protocol will be added to the existing 

NTP server running on the Raspberries Pi with NMEA protocol for comparing of 

TSIP and NMEA protocols. Both PPS are connected to separate channels on the 

oscilloscope and offset is observer on mathematical channel.  

  

5.2 Experiment result 

The Rohde and Schwarz RTO 1014 oscilloscope from Tartu Observatory was used to produce 

histograms and statistics. The PPS signal from an atomic clock was installed on channel 1 

(CH1) of the oscilloscope and the signal from the NTP client was installed on channel 2 

(CH2). A mathematical channel was also set up and the formula shown in Figure 19 was 

applied. The time recorded from the positive edge of the PPS on CH1 was subtracted from the 

time of the PPS’s positive edge recorded from CH2. This configuration makes it possible to 

observe the time difference between the client and server PPSs. This reveals how well the 

NTP client is synchronized with the NTP server. This method provides the opportunity to 

verify data produced by ntpd and determine the accuracy of the NTP server on the 

oscilloscope. Most of the measurements were conducted in ten hours window. 

 

Oscilloscope settings: 

Mode Run continuously 

Horizontal resolution 200ps 5GSa/s 

Trigger set up to 2.4 V 

Horizontal scale 20us/div 

Vertical scale CH1 4V/div 

Vertical scale CH2 1.62V/div 

 

 

 

Measure Result = |CH1 –CH2| 

On the positive edge of PPS 
 

 

Table 14.                                                                      Figure 20: Oscilloscope formula 

5.2.1. NanoPi NEO2 NTP server and Raspberry Pi 3B NTP client  
The following result was obtained from the NTP client. The PPS pulse was generated by a 

pulse generator driver and a 100µs offset was deducted from the positive time edge of the PPS 

pulse. This adjustment is optional but it was used to keep the oscilloscope on the 20µs scale.  

5.2.1.1 

1 a) Measurement by NTP plotter NTP server Nanopi NEO2 

From the loopstats produced by NTP plotter we can conclude that the clock offset between the 

system timestamp and the driver timestamp on the NTP client was approximately 1µs (Figure 

20). In this case, the NTP client has provided an average of 1µs accuracy on the NTP 

timestamp.  
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Figure 21: NTP plotter NTP client peer offset 

5.2.1.2 

1 a) Measurement by the new technique NTP server Nanopi NEO2 

The experimental configuration however requires a different approach to measurement. The 

PPS generated by the NTP client from the timestamp of the experimental system is compared 

to a PPS produced directly from an atomic clock. The time offset recorded by this approach 

was on average 58 µs. This included the 100µs which was mentioned in section 5.2.1. 

  

Using the oscilloscope, it was seen that the difference between the system timestamp and the 

moment a new PPS was generated was 58 µs. If an estimated small pulse delay of 4 µs is 

taken into account then this is an unexpected result. Small delay comes from time when the 

script is executed to generate pulse till the time when pin is set up high on the GPIO.    

 

 
     

         Figure 22: Nanopi NEO2 and SMT360 default settings with 100us adjustment. 

 

5.2.1.3 

1 b) Measurement by the NTP plotter NTP server Nanopi NEO2 

 

The same scenario was tested with modified settings where ntpd had its own dedicated core 

and the frequency of the CPU was set to 816MHz. Results presented on the NTP plotter 

(Figure 22) show that in this case, the NTP client has an average offset of 2µs compared with 

the NTP timestamp. 

 



33 

 

 
 

 
Figure 23: NTP plotter NTP client peer offset 

5.2.1.4 

1 b) Measurement by the new technique NTP server Nanopi NEO2 

In the modified configuration, we can see there is a 7µs improvement. The normal distribution 

curve improved slightly too. However, from the results it can be concluded that NTP data are 

not as accurate as was expected.  

 

This is because NTP data reflect different types of data to those we are generating with the 

experimental technique. The NTP plotter software provides average offset and jitter data of 

the NTP client based on the system timestamp and driver timestamp. The experimental 

method compares instead the system timestamp of the NTP client with the PPS generated by 

an atomic clock. However, this should not have as significant an impact on the results as has 

been observed.  

 

One of the main reasons why results differ is that NTP plotter is getting data from log files 

generated by ntpd which contains samples only per minute, therefore it is not best tool to 

measure data for the short period of the time. By proposed method we analyse samples 

produced per second.  This makes measurement by this new technique much more accurate. 
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         Figure 24: Nanopi NEO2 and SMT360 enhanced settings with 100us adjustment. 

5.2.2 Raspberry Pi 3B NTP server and client enhanced setting 

5.2.2.1 

2 a) Measurement by the NTP plotter 

Results from the NTP plotter show that the time precision of the NTP client has improved 

significantly. But it is not immediately clear that they have improved by more than two times. 

Statistics reveal again that the NTP client has an average accuracy of 1µs compared with the 

NTP timestamp and from the graphic (Figure 24) we can observe that the scale offset on the 

clock has decreased. 

 

 
 

 
Figure 25: NTP plotter NTP client peer offset 
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5.2.2.2 

2 a) Measurement by the new technique 

 

Using this configuration, large improvements in accuracy were recorded.  In fact, the NTP 

client’s accuracy improved so much that the 100µs offset from the script had to be removed. 

This is likely to be because the clock offset and jitters are minimized meaning that more 

accurate results are able to be captured. If the pulse delay of 4µs is subtracted from the 

average result of 18µs then an accuracy of 14 µs was achieved when compared to the atomic 

clock reference (Figure 25).  

 

 
Figure 26: Raspberry Pi 3B and GPS Expansion Board with 4us adjustment and enhanced 

performance.   

5.2.2.3 

2 b) Measurement by the NTP plotter & by the new technique 

The results recorded when using multiple LAN switches were not very different to those 

obtained in previous tests and did not bring any new information.   

5.2.2.4 

2 c) Measurement by the NTP plotter under stress test  

The stress test was set up as follows. Random amounts of packets, in the range between 2000-

3000 and with a set up polling rate of 6, were transmitted from the NTP client to the NTP 

server. The formula in figure 26 estimates approximately 15 000 clients served on the NTP 

server. The variable can be changed inside of the program, detail stated in Appendix E. The 

NTP server’s performance did not drop and its accuracy did not decrease as this would require 

stronger load (see Figure 28), However, NTP client accuracy was impacted quite a lot as you 

can observe in Figure 27. Measurements of the NTP client were not affected by the generation 
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of packets to the NTP server as the task of packet generation was assigned to an additional 

NTP client running on a separate unit in LAN.   

 (Number of Packets per Second) x (Polling Rate) = Number of Clients.   

Test stress formula 

Figure 27: Number of the clients formula 
 

 

 
Figure 28: NTP plotter NTP client peer offset 

 

 
Figure 29: NTP plotter NTP server peer offset after 10 hours 

 

 
 

 
 

Figure 30: NTP plotter NTP server peer offset after 100 hours 

 

 

 



37 

 

5.2.2.5 

2 c) Measurement by the new technique under stress test 

 

Looking at the measurement obtained by the new technique under stress test it is obvious that 

accuracy has suffered. Normal distribution curve has on both sides from the average some 

unexplained peak spikes. It could be explained by UDP packets got loss on the NTP client 

side once client tried to pull data from NTP server on the port 123. Accuracy of the individual 

client has reduced from 18 µs to 52 µs. Results show that if the NTP server is under a large 

stress, accuracy on the NTP timestamp is reduced. This can however be solved by setup in 

“ntp.conf” file by setting up different parameters which control traffic data.   

  
Figure 31:  Raspberry Pi 3B and GPS Expansion Board with 4us adjustment and enhanced 

performance under stress.   

5.2.2.6 

2 d) Measurement by the NTP plotter & by the new technique 

This measurement was not possible to conduct using a 4G WLAN connected through a 

mobile Huawei p20. The delay between the client and server fluctuated between 20ms and 

150ms. As a result of this, ntpd could not lock onto the signal and the NTP client did not 

synchronize with the NTP server. Unfortunately, measurement data were therefore corrupted 

and did not provide any usable results.  It seems that a 4G network has difficulty 

synchronizing with ntpd. The ntpd reported around 40ms offset over a short period of time but 

after an hour of testing, the time offset began changing in a volatile manner, so it was decided 

to end this test. It is possible that devices connected via a 4G mobile network have a generally 

poor UTC timestamp. Further testing outside the scope of this thesis would be required to 

assess this, however. 
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5.2.3 Two Raspberry Pi 3B NTP servers 

The purpose of this test was to reveal how two PPS signals from separate NTP servers will 

perform in the same LAN. The setting on the oscilloscope was the same as in previous tests. 

The Raspberry Pi 3B computer received the PPS signal from the atomic clock and the GPS 

receiver U-blox MAX-M8Q transmitted the NMEA data. Previous testing revealed that of the 

two computers tested, the Raspberry Pi 3B has a better NTP timestamp accuracy. For the 

following test, it was decided to connect a second Raspberry Pi 3B to the GPS receiver 

SMT360 with TSIP protocol and so use this as the second NTP server. The second PPS was 

produced by this older GPS module. The NanoPi NEO2 was used as the NTP client, but 

didn’t generate any PPS output. Display output of this test from the PuTTY interface is 

included in Appendix G. 

  

5.2.3.1 

Measurement by the NTP plotter  

This result shown in Figure 29 display client synchronization with two different NTP servers 

in a local LAN. The pink line (172.17.72.229) represents results from the NTP server using an 

NMEA input and connected with the atomic clock.  The blue line (172.17.72.186) represents 

the results of an NTP server using a TSIP protocol timestamp. From the results, we can 

conclude that the NMEA module had a slightly better accuracy. The results also show 

however that when the TSIP time offset reaches a critical threshold, the PPS corrects itself by 

GPS receiver as it has been designed to do. Outside of these periods of long delays however, 

the TSIP module generally performed better than the NMEA protocol as it has binary format 

which is better for data processing and also it can be observed that some section of the graph 

has better curve than NMEA. But the as it can be observe from figure 29 new NMEA module 

has very good performance too. One reason why these new GPS module with u-blox 

performing so good is that they have also implemented quantization error on the PPS.   

  

  

 
Figure 32:  Peer offset of two physical NTP servers 
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5.2.3.2 

3) Measurement of two physicial PPS by oscilloscope 

Results of these tests revealed that the two NTP servers installed on the same LAN had very 

similar levels of time accuracy (Figure 30). The resulting offset on average was 17ns while 

the average jitter was 13ns when compared with the atomic clock PPS as the reference. That 

is actually quite a good result for an old GPS module which has a guaranteed precision of 

16ns for a PPS signal. 

 

 
 

Figure 33: TWO Raspberry Pi 3B NTP servers with two separates physical PPS .   

6. Evaluation Potential and Improvements 

Once testing was complete it could be clearly seen that Raspberry Pi 3B is a better choice for 

building an NTP server. NanoPi NEO2 has difficulties in processing the signal from a GPS 

module. One possible reason is that it is not built for such complex tasks as being an NTP 

server. It seems NanoPi NEO2 also has some limitations due to power saving. This is because 

it has no heating or cooling mechanism and it has been manufactured for the completion of 

medium level tasks. This therefore creates a possibly limitation on the GPIO frequency and 

this in turn could explain why the offset was fluctuating and causing jitter to be unstable on 

the PPS and clock driver. With a few enhancements and the right setup, NanoPi NEO2 is 

likely able to perform in the role of an NTP server as well as Raspberry Pi3.  

 

During this project, it was discovered that the PPS which is coming from the atomic clock is 

not synchronized with the rubidium clock. Only 10MHz output is synchronized to the 

rubidium standard. The atomic clock has its own GPS module similar to what is used in this 
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thesis and from GPS module comes the PPS signal straight to PPS out. This could possibly be 

solved by using 10MHz as the MCU clock PLL frequency on the STM32F4 discovery board. 

Then it would be possible to use the timer EXT TRIG input to start counting from the PPS 

timing edge and generate a pulse which would synchronize by the rubidium clock and then it 

provide even better precision on the PPS than achieve now.  

 

Another possibility how to improve slightly the accuracy of NTP server would be to run 

software on the atomic clock and set up the length of the cable of GPS antenna.    

 

On the measurement obtain from the experiment it is obvious that data from NTP stats and 

plotter are not reflecting accuracy of the NTP server in the best manner. There could be added 

some additional component to NTP software which would compensate observed offset 

between the atomic clock and NTP client and therefore get more an accurate improvement on 

the timestamp on the client side.  

 

Also, one more missing measurement could be completed, if the client is connected through 

the general WLAN. From the unofficial result it was observed by the proposed measurement 

following offset of 450µs when delay between client and server was approximately 7-8ms.  

7. Applications 

This stable NTP server was built for use with the atomic clock at Tartu Observatory and is 

already in use there. The NTP server developed through this project distributes a UTC 

timestamp with a maximum accuracy of 1-2µs on the NTP server side and for local device 

synchronization within 15-50µs accuracy as was assign per requirements.  

8. Conclusion 

The NTP server built for Atomic Clock at Tartu Observatory has almost fulfilled all the 

objectives of this master thesis. The performance was studied by conducting experimental 

measurements. During the process, it was discovered that Raspberry Pi3 B is a more suitable 

option for an NTP server than NanoPi NEO2. The new NTP server is able to synchronize all 

NTP clients in a LAN within 50µs accuracy of the UTC timestamp as per the stated 

requirements. Following these experiments, it is better understood how these NTP servers can 

be improved for better performance. Stress tests could be performed in a variety of ways to 

ensure that the system can serve many clients at the same time. The question also remains 

why the accuracy on the timestamp for the NanoPi NEO2 was less efficient than Raspberry 

Pi3 B. Further analyses need to be undertaken in order to discover the cause. The current NTP 

server computer at Tartu Observatory will be replaced with a more powerful Raspberry Pi3 

B+ as it provides a better bandwidth, supporting 300 Mbps, and will be able to serve more 

clients. Finally, once proper housing will be received, it is necessary to install NTP server unit 

according to standard safety rules for electronic devices and also network security should 

carefully be set up.  
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10. Kokkuvõte 

Tartu observatooriumis aatomi kella jaoks ehitatud NTP-server on osaliselt täitnud selle 

projekti eesmärgid. Töö käigus avastati, et Raspberry Pi3 B on sobivam valik NTP serverile 

kui NanoPi NEO2. Uus NTP server suutis sünkroniseerida LAN-i seadmete UTC 

ajastandardiga täpsusega 50 μs, nagu nõutud. Pärast tehtud mõõtmisi on parem mõista, kuidas 

antud NTP-servereid parema jõudluse saavutamiseks parandada. Stressteste saab läbi viia 

mitmel viisil, et tagada süsteemi samaaegne teenindamine paljudele klientidele. Töö käigus 

ilmnes, et NanoPi NEO2 aja täpsus oli kehvem võrreldes Raspberry Pi3 B-ga ja seetõttu ei 

olnud võimalik tagada 1 Gbit / s Etherneti võrgu võimekust. Põhjuse avastamiseks tuleb teha 

täiendavaid analüüse. Tartu observatooriumi praegune NTP-serverarvuti asendatakse 

võimsama Raspberry Pi3 B + -ga, kuna see tagab parema kohaliku Etherneti võrgu 

võimekuse, toetades kuni 300 Mbit / s, millega saab teenindada rohkem kliente. Lõpetuseks, 

kui nõuetekohane seadme korpus on teostatud, on vajalik paigaldada NTP-server vastavalt 

standardtingimustele ja võrgu turvalisus tuleb hoolikalt seadistada. 
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Appendix A GPS External Board PCB Layout 

 
 

Figure 34: External GPS PCB board 
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Appendix B NanoPI NEO2 Server Installation 
Please follow instructions below for installation: 

  

1) SD card Formatter https://www.sdcard.org/downloads/formatter_4/ 

2) Win32 Disk Imager https://www.askvg.com/win32-disk-imager-write-any-bootable-

image-to-usb-drive-in-windows/ 

3) Download Armbian_5.65_Nanopineo2_Ubuntu_bionic_next_4.14.78 from 

https://dl.armbian.com/nanopineo2/archive/ 

4) Format and install this image to Sandisk SD card min 16GB 

5) Install Putty https://www.putty.org/ 

6) Connect to NEO2 as user: root, password 1234 , new username: miroNEO2  

7) Install “WINscp” https://winscp.net/eng/download.php 

8) # nano /boot/armbianEnv.txt 

9)  Add additional lines in line 4,5 into armbianEnv.txt bold: 

 

i. verbosity=1 

ii. console=both 

iii. overlay_prefix=sun50i-h5 

iv. overlays=uart1 pps-gpio 

v. param_pps_pin=PA6 

vi. rootdev=UUID=ee092379-cddf-4aff-beb3-7cc62d0fe9bd 

vii. rootfstype=ext4 

viii. usbstoragequirks=0x2537:0x1066:u,0x2537:0x1068:u 

 

10) # sudo reboot 

 

11)  Check if PPS is registered in Kernel: 

 

root@nanopineo2:~# dmesg | grep pps 

[    0.349310] pps_core: LinuxPPS API ver. 1 registered 

[    0.349314] pps_core: Software ver. 5.3.6 - Copyright 2005-2007 Rodolfo Giometti 

<giometti@linux.it> 

[    4.185158] pps pps0: new PPS source pps@0.-1 

[    4.185226] pps pps0: Registered IRQ 63 as PPS source 

 

root@nanopineo2:~# ls -l /dev | grep pps    

crw------- 1 root root    252,   0 Jan  9 17:19 pps0 

 

12)  Install pps-tools for PPS verification 

root@nanopineo2:~# apt install pps-tools 

root@nanopineo2:~# ppstest /dev/pps0 

 

13)  Install Libpcap provides a portable framework for low-level network monitoring. Libpcap        

can provide network statistics collection, security monitoring and network debugging:   

root@nanopineo2:~# apt-get install libcap-dev    

 

14)  Now standard NTP package requires to be removed from the system.   

root@nanopineo2:~# /etc/init.d/ntp stop 

[ ok ] Stopping ntp (via systemctl): ntp.service. 

root@nanopineo2:~# apt remove ntp 

https://www.sdcard.org/downloads/formatter_4/
https://www.askvg.com/win32-disk-imager-write-any-bootable-image-to-usb-drive-in-windows/
https://www.askvg.com/win32-disk-imager-write-any-bootable-image-to-usb-drive-in-windows/
https://dl.armbian.com/nanopineo2/archive/
https://www.putty.org/
https://winscp.net/eng/download.php
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15)   Download and unpacked latest NTP daemon in our case ntp-4.2.8p12 

root@nanopineo2:~# cd ~ 

root@nanopineo2:~# wget get http://archive.ntp.org/ntp4/ntp-4.2/ntp-4.2.8p12.tar.gz 

root@nanopineo2:~# tar zxvf ntp-4.2.8p12.tar.gz 

root@nanopineo2:~# cd ntp-4.2.8p12 

 

16)   New NTP daemon compiling procedure, now it is important that all necessary flags are 

selected during compiling. In our scenario we need NMEA and TSIP(PALISADE) flags 

for selected protocols and we compile with setting –j4 as nanopi has 4 cores.  

root@nanopineo2:~/ntp-4.2.8p12# ./configure --enable-linuxcaps --enable-ATOM --

enable-NMEA --enable-ipv6 --enable-PALISADE --enable-all-clocks 

root@nanopineo2:~/ntp-4.2.8p12# make –j4  

root@nanopineo2:~/ntp-4.2.8p12# make install 

 

17)  Finally custom build of NTPD is was installed into /usr/local/sbin/ntpd, but default 

location of NTPD is usr/sbin/ntpd, so order to run ntp service correctly we need to create 

following links: 

root@nanopineo2:~/ntp-4.2.8p12# ln -s /usr/local/bin/ntpd /usr/sbin/ntpd 

root@nanopineo2:~/ntp-4.2.8p12# ln -s /usr/local/bin/ntpdc /usr/bin/ntpdc 

root@nanopineo2:~/ntp-4.2.8p12# ln -s /usr/local/bin/ntpq /usr/bin/ntpq 

root@nanopineo2:~/ntp-4.2.8p12# ln -s /usr/local/bin/ntpsweep /usr/bin/ntpsweep 

root@nanopineo2:~/ntp-4.2.8p12# ln -s /usr/local/bin/ntptrace /usr/bin/ntptrace 

 

18)  Linux UBUNTU this specific build requires to activate the service as it is still inactive 

after installation of this custom NTPD build, maybe not needed in Debian version.  

root@nanopineo2:~# service ntp status 

● ntp.service 

    Loaded: masked (/dev/null; bad) 

    Active: inactive (dead) ntpq -p 

  

root@nanopineo2:~# systemctl unmask ntp.service 

root@nanopineo2:~# service ntp enable 

root@nanopineo2:~# service ntp start 

root@nanopineo2:~# /etc/init.d/ntp restart 

root@nanopineo2:~# ntpq -crv –pn  

 

19)  Custom installation NTP daemon has created ntp.conf in following directory 

/run/ntp.conf.dhcp, this file has to be deleted as it is causing problem. Router is assigning 

NTP information in DHCP which pi using over /etc/ntp.conf. The file in /etc/init.d/ntp file 

will also require some small adjustments.  

 

 

root@nanopineo2:~# rm /run/ntp.conf.dhcp 

root@nanopineo2:~# rm /etc/dhcp/dhclient-exit-hooks.d/ntp 

 

 

20)  Firstly we modify etc/init.d/ntp so that after every reboot ntp service will initialize from 

/etc/ntp.conf. 

 

http://archive.ntp.org/ntp4/ntp-4.2/ntp-4.2.8p12.tar.gz
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Secondly we create symlink for NMEA or TSIP protocol so that after every restart of       

system symlink will be created automatically.  

Time can updated time after every reboot by command ntpdate -u and  

hwclock –w. 

 

root@nanopineo2:~# nano /etc/init.d/ntp 

Modify lines 25 and 26 as follows: 

 

if [ -e /run/ntp.conf.dhcp ]; then   

if [ -e /etc/ntp.conf ]; then 

 

NTPD_OPTS="$NTPD_OPTS -c /run/ntp.conf.dhcp"     

NTPD_OPTS="$NTPD_OPTS -c /etc/ntp.conf" 

 

Add these lines into structure case$1 in ntp and close the file 

 

log_daemon_msg "Initializing SMLINK" "ntpd" 

ln -s /dev/ttyS1 /dev/gps0 #NMEA 

#ln –s /dev/ttyS1 /dev/palisade0 #TSIP 

#stty -F /dev/ttyS1 9600 cs8 -cstopb parodd parenb raw #TSIP 

#stty -F /dev/ttyS1 9600 cs8 -cstopb parodd parenb  #NMEA 

log_daemon_msg "Pre-synchronizing time" "ntpd" 

ntpdate -u ee.pool.ntp.org 

hwclock -w 

log_daemon_msg "Starting NTP server" "ntpd" 

 

root@nanopineo2:~# reboot 

 

21) The next is setting of ntp.conf file for NMEA, TSIP and SHM these lines have to be added 

into etc/ntp.conf.  

 

#Pulse Per Second ATOM clock 

server 127.127.22.0 minpoll 4 maxpoll 4  

fudge 127.127.22.0 refid PPS 

 

# TSIP (PALISADE) The Primary reference direct setting without GPSD service 

server 127.127.29.0 # Trimble Palisade GPS (Stratum 1).  

# Set packet delay 

fudge 127.127.29.0 time1 0.020 

# and set flag2 to turn off event polling. 

fudge 127.127.29.0 flag2 1 

 

#NMEA direct setting without GPSD service 

server 127.127.20.0 mode 16 minpoll 4 maxpoll 4 prefer 

fudge  127.127.20.0 refid NMEA 

 

# SHM(share memory driver) time reference-clock - nearest second supported by 

GPSD service 

server 127.127.28.0 minpoll 4 maxpoll 4 iburst prefer 

fudge 127.127.28.0 time1 +0.535 flag1 1 refid GPSD stratum 1 
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#Server for the reference  

server 2.ee.pool.ntp.org  

server 2.europe.pool.ntp.org 

server 0.europe.pool.ntp.org 

 

#Additional logging for debugging 

logfile /var/log/ntp 

logconfig =all 

 

22)  GPSD service installation 

root@nanopineo2:~# apt-get update 

root@nanopineo2:~# apt-get install gpsd 

root@nanopineo2:~# apt-get install gpsd-clients 

 

root@nanopineo2:~# nano /etc/default/gpsd 

 

START_DAEMON="true" 

USBAUTO="false" 

DEVICES="/dev/ttyS1" 

GPSD_OPTIONS="-n" 
 

root@nanopineo2:~# reboot 

 

23) Optionally, the aforementioned symlinks can be created using udev rules. For example, 

the following creates a symlink /dev/gps0 that points to /dev/ttyS1 with read-write access 

to all users: 

 

root@nanopineo2:sudo nano /etc/udev/rules.d/10-gps.rules 

KERNEL=="ttyS1",SYMLINK+="gps0",MODE="0666" 

KERNEL=="pps0",MODE="0666" 

 

24) Useful command, GPSD service helps for diagnosis: 

root@nanopineo2:~# service gpsd stop 

root@nanopineo2:~# gpsd -N -n -D 3 /dev/palisade0 

      root@nanopineo2:~# gpsd -n -N -D4 /dev/palisade0 

 

25) Other Useful command for debugging using GPSD service 

root@nanopineo2:~# ls –lah  

root@nanopineo2:~# ls –lah /dev/gps0  

root@nanopineo2:~# sudo stty -a -F /dev/ttyS1  

root@nanopineo2:~# chown ntp:ntp /var/lib/ntp/ 

root@nanopineo2:~# ntptime 
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Appendix C NTP Client PPS driver generator installation 

When NTP server is ready next task would be establish PPS client by adding kernel module to 

the kernel. This requires solving some few points. 

 

1. Order to use system function of kernel it is necessary to install custom kernel image.  

2. Once done client PPS driver generator will be programmed in C and added as module 

to custom kernel.  

3. When driver added to kernel small script in C++ requires to be programmed to execute 

driver in command line.  

4.  

Recompiling kernel 

1) First before we recompile kernel, let’s check if the system is up to date. Custom kernel 

build was tested with Linux raspberrypi 4.14.98-v7+ [33] 

 

~ $ sudo apt-get update 

~ $ sudo reboot 

 

2) Let’s setup builder folder in home file 

~ $ mkdir rpi 

~ $ cd rpi 

 

3) Get missing decencies 

~ /rpi $ sudo apt-get install bc 

 

4) Check if you have installed git: 

~ $ sudo apt-get install git 

 

5) For retrieving the Linux source get the rpi-source script: 

~/rpi $ sudo wget https://raw.githubusercontent.com/notro/rpi-source/master/rpi-source -O 

/usr/bin/rpi-source && sudo chmod +x /usr/bin/rpi-source && /usr/bin/rpi-source -q --tag-

update 

 

6) Run the script to download the Linux source that matches the installed version of Linux on 

your RPi: 

~/rpi $ rpi-source -d ./ --nomake –delete 

 

7) On the RPi, 

~/rpi $ cd linux 

~/rpi/linux $ KERNEL=kernel7 

~/rpi/linux $ make bcm2709_defconfig 

 

8) Recompile kernel 

 ~/rpi/linux $ make -j4 zImage 

 

9) Download PPS driver with scrip from https://github.com/ryzic/IMPULSE.git and follow 

instruction for installation. 

https://github.com/ryzic/IMPULSE.git
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Appendix D Single-computer board performance optimization 

NanoPi NEO2 CPU isolation and taskset 

1) For the NanoPi NEO2 requires “isolcpus” command to be added at the very end of 

/boot/boot.cmd , isolating of fourth core can be done with argument isolcpus=3. 

 

setenv bootargs "root=${rootdev} rootwait rootfstype=${rootfstype} ${consoleargs} 

hdmi.audio=EDID:0 disp.screen0_output_mode=${disp_mode} panic=10 consoleblank=0 

loglevel=${verbosity} ubootpart=${partuuid} ubootsource=${devtype} usb-

storage.quirks=${usbstoragequirks} ${extraargs} ${extraboardargs} isolcpus=3" 

 

2) Then the boot script has to be recompiled by following command: 

root@nanopineo2:~# mkimage -C none -A arm -T script -d /boot/boot.cmd /boot/boot.scr 

root@nanopineo2:~# reboot 

 

3) Checking if isolation command of core was successful: 

root@nanopineo2:~# sudo cat /sys/devices/system/cpu/isolated 

 

4) Taskset function to assing isolated to core to NTP PID displayed in top command. 

root@nanopineo2:~# sudo taskset -pc 3 714 

 

5) For displaying CPU ID launch htop from the command line. Press <F2> key, go to 

"Columns", and add PROCESSOR under "Available Columns.  

Raspberry Pi 3B CPU isolation and ROOT user 

1) For the NanoPi NEO2 requires “isolcpus” command to be added at the very end of 

/boot/cmdline.txt, isolating of fourth core can be done with argument isolcpus=3 

pi@raspberrypi:~ $ sudo nano /boot/cmdline.txt 

 

wc_otg.lpm_enable=0 console=serial0,115200 console=tty1 root=/dev/mmcblk0p7 

rootfstype=ext4 elevator=deadline fsck.repair=yes rootwait splash plymouth.ignore-serial-

consoles isolcpus=3 

 

pi@raspberrypi:~ $ sudo reboot 

 

2) Repeat step 3,4,5 as in NanoPi NEO2 in section 3.5.1. 

3) Adding user root on Raspberry you have to change password and add “PermitRootLogin 

yes” at the end of the file /etc/ssh/sshd_config and reboot 

 

pi@raspberrypi:~ $ sudo passwd root 

pi@raspberrypi:~ $ sudo nano /etc/ssh/sshd_config 
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CPU frequency adjustment 

Adjust serial connection latency and set up the highest frequency of the CPU. [] 

 

# echo "performance" > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor 

setserial /dev/ttyAMA0 low_latency 

# echo FREQ > /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq 

Appendix E Traffic test [34] 

1) Install TCP dump for NTP packets monitoring .  

pi@raspberrypi:~ $ sudo apt-get install tcpdump 

pi@raspberrypi:~ $ tcpdump udp port 123 

 

2) Download little c program ntpload3.c  

pi@raspberrypi:~ $ gcc ntpload3.c -o ntpload3 

pi@raspberrypi:~ $ ./ntpload3 192.xxx.x.xxx 

 

3) These lines below has to be commented out in ntp.conf for allowing traffic to go through. 

#restrict -4 default kod notrap nomodify nopeer noquery 

#restrict -6 default kod notrap nomodify nopeer noquery 
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Appendix F Sample code 

C function, the PPS driver generates 1 PPS 500 µs length at the each fractional second by 

timeout on defined GPIO output on the single board computer through system call function in 

kernel gettimeofday(&tv). 

 
 

 

 

 

Figure 35:PPS driver generator code sample 
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Appendix G Displayes example of two NTP servers and one NTP 

client through PUTTY interface 

 
 

Figure 36: On the top NanoPI NEO2 NTP client in the middle NTP TSIP server and on the 

bottom NTP NMEA server. 
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