
1

Tartu University

Faculty of Science and Technology

Institute of Technology

Miroslav Rolko

Development and performance analysis of the Network Time Protocol Server

Master’s thesis (30 EAP)

Robotics and Computer Engineering

Supervisor(s):

MSc Viljo Allik

MSc Indrek Sünter

Tartu 2019

2

Resümee/Abstract

Võrguaja protokolli serveri arenduse ja toimivuse analüüs

Käesolev magistritöö kirjeldab lihtsa võrguaja protokolli (NTP) serveri ehitamist

monoplaatarvutisse Tartu Observatooriumi aatomikella tarbeks. See selgitab NTP-protokolli

terminoloogiat ja on loodud NTP-serveri ja kliendi jaoks. Mõõtmise eesmärgil kirjeldatakse

ka seda, kuidas ehitatatakse NTP-klienti, mis genereerib impulssi sekundis, mis põhineb NTP-

kellaajale. Selle kasutamise tulemusi võrreldakse NTP plotteri testitulemustega. Seejärel

hinnatakse NTP-serveri eksperimentaalset konfiguratsiooni, millele järgneb arutelu võimalike

paranduste ja tulevaste projektide üle.

CERCS: T120 Süsteemitehnoloogia, arvutitehnoloogia, T125 Automatiseerimine, robootika,

control engineering, T170 Elektroonika, T190 Elektrotehnika

Marksõnad: mikrokontroller, aatomkell, monoplaatarvuti, aeg, protokoll, tarkvara, satelliit, pulss

Development and performance analysis of the Network Time Protocol Server

This Master thesis describes the process of building a simple network time protocol (NTP)

server on a single-board computer for the Atomic clock at Tartu Observatory. It explains the

terminology of NTP protocol and set up for the NTP server. It also describes how to build a

NTP client which generates pulse per second by its own script for the measurement purposes.

This new pulse is synchronized with the NTP timestamp. Results of its use are compared

against the test results from NTP plotter. The experimental configuration of the NTP server is

then evaluated which is followed by a discussion regarding possible improvements and future

projects.

CERCS: T120 Systems engineering, computer technology, T125 Automation, robotics, control

engineering, T170 Electronics, T190 Electrical engineering

Keywords: microcontroller, atomic clock, single-board computer, time, protocol, software,

satellite, pulse

3

Contents

Terms and abbreviations .. 5

1. Introduction .. 8

2. NTP server and client requirement, design and installation ... 10

2.1 Requirements for NTP Server and Client .. 10

2.1.1 Microcontroller .. 10

2.1.2 Measurements .. 10

2.1.3 Communication ... 10

2.1.4 Price ... 10

2.1.5 Memory ... 10

2.1.6 Protocols .. 10

2.1.7 Power ... 10

2.1.8 Software .. 10

2.1.9 NTP client ... 11

2.2 Server Design and Atomic Clock Description ... 11

2.2.1 Components selection ... 11

2.2.2 NTP server simple diagram ... 11

2.2.3 Schematic design software .. 12

2.2.4 Single board computer selection for the server ... 12

2.2.5 GPS module with TSIP and NMEA protocols selection ... 12

2.2.6 Raspberry Pi+ GPS Expansion Board ... 13

2.2.7 NTP NanoPi NEO2 server connection diagram .. 13

2.2.8 NTP Raspberry PI B server and client simple schematics 14

2.2.9. Comparing hardware specification of single-board computers 16

2.2.10 Atomic Clock .. 16

2.3 Assembly .. 17

3. NTP protocol .. 17

3.1 NTP levels .. 17

3.2 Global Positioning System ... 18

3.2.1 Leap second .. 18

3.3 Protocols ... 19

3.3.1 NMEA protocol ... 19

3.3.2 TSIP protocol .. 19

3.3.3 NTP Packet header structure ... 20

3.3.4 NTP server packet diagram ... 21

4

3.3.5 NTP packet data traffic. .. 22

3.3.6 NTP Reference timestamp .. 22

3.3.7 UNIX timestamp ... 22

4. NTP Daemon .. 23

4.1 Reference Clock Driver .. 23

4.2. PPS and Interface and driver ... 24

4.3. GPSD and SHM driver .. 25

4.4 Network time protocol configuration “ntp.conf” ... 25

4.4.1 PPS API NMEA .. 25

4.4.2 SHM NMEA GPSD reference clock ... 26

4.4.3. SHM TSIP GPSD reference clock ... 26

4.4 NTP Stats .. 26

4.4.2 NTP plotter beta V1.0.32.075 ... 28

5. Experiments and a new method of measuring the accuracy of an NTP server. 28

5.1 Experiment phases .. 29

5.2 Experiment result ... 31

5.2.1. NanoPi NEO2 NTP server and Raspberry Pi 3B NTP client 31

5.2.2 Raspberry Pi 3B NTP server and client enhanced setting 34

5.2.3 Two Raspberry Pi 3B NTP servers ... 38

6. Evaluation Potential and Improvements .. 39

7. Applications ... 40

8. Conclusion .. 40

9. Acknowledgements .. 41

10. Kokkuvõte .. 41

Bibliography ... 41

Appendices ... 43

Appendix A GPS External Board PCB Layout .. 43

Appendix B NanoPI NEO2 Server Installation .. 44

Appendix C NTP Client PPS driver generator installation .. 48

Recompiling kernel .. 48

Appendix D Single-computer board performance optimization .. 49

NanoPi NEO2 CPU isolation and taskset .. 49

Raspberry Pi 3B CPU isolation and ROOT user .. 49

CPU frequency adjustment ... 50

Appendix E Traffic test [33] .. 50

Appendix F Sample code ... 51

Appendix G Displayed result of two NTP servers through PUTTY interface 52

5

Terms and abbreviations

AC Alternating current

ADC Analog-to-digital converter

AMP Amplifier

ARM Advanced RISC machine

ASCII American Standard Code for Information

Interchange

BDS The BeiDou Navigation Satellite System

BNC Bayonet Neill–Concelman

CCIR International Radio Consultative Committee

CMOS Complementary metal–oxide–semiconductor

COM-port (communication port) Serial port interface

CPU A central processing unit

CS Current sense

CTS Clear to send

DC Direct current

DCD Data Carrier Detect

DDR Double Data Rate

DTSS Digital Time Synchronization Service

ESA European Space Agency

GGA Global Positioning System Fix Data

GLONASS Global Navigation Satellite System

GPIO General purpose input / output

GPS Global Positioning System

GPSD Global Positioning System daemon

GNSS Global Navigation Satellite System

HDMI High-Definition Multimedia Interface

6

ID Identifier

IP Internet protocol

I
2
C Inter-integrated circuit

IAU International Astronomical Union

ITU International Telecommunication Union

IRS Interrupt service routine

LAN Local Area Network

LED Light emitting diode

LEO Low-Earth orbit

MCU Microcontroller unit

NASA The National Aeronautics and Space

Administration

NTP Network time protocol

NMEA National Marine Electronics Association

OS Operation system

OSC Crystal oscillator

PC Personal computer

PCB Printed circuit board

PPM Parts per million

PPS Pulse per second

PPSAPI Pulse per second application programming

interface

PuTTY Open-source terminal emulator, serial console

and network file transfer application

RAM Random-access memory

RS-232 Serial standard

RTC Real time clock

RTS Request to send

SCIP software for mixed-integer programs

7

SD Solid drive

SDA Serial data line

SDC Serial data clock

SPI The Serial Peripheral Interface

RTC Real Time Clock

TAI International Atomic Time

TCP Transmission Control Protocol

TSIP Trimble Standard Interface Protocol

TTL Transistor-transistor logic

UART Universal asynchronous receiver/transmitter

UNIX Multitasking, multiuser computer operating

systems

UDP User Datagram Protocol

USB Universal serial bus

UTC Coordinated Universal Time

VCO Voltage control oscillator

VMS Virtual machines server

VFO Variable-frequency oscillator

WAN Wide Area Network

8

1. Introduction

The Network Time Protocol (NTP) is one of the oldest internet protocols still in use. It has

been operational since before 1985 and was invented by David L. Mills. It is a widely

accepted method for synchronizing time in computer networks. [1].

The benefits of building NTP servers have never been as important. Internet technologies

continue to change the shape of everyday life while network demands and data flow are

constantly increasing. The interest in, and use of space technologies is also rapidly growing.

Space agencies around the world continue to launch satellites into orbit for various reasons.

Efficient and effective inter-satellite communication and ranging systems are essential to keep

these satellites and their services functioning.

Small, dedicated NTP servers can be set up at almost no cost. These servers can then be used

to monitor private and business networks as well as to calibrate network products after

assembly. NTP servers may also be included as an additional system for atomic clocks which

possess a highly precise output of one pulse per second.

This thesis project has been undertaken at the Space Technology Department of Tartu

Observatory. The observatory has its own atomic clock installed but, at the time of writing, a

10 MHz output was only being used to synchronize the frequency of the ground station and

the devices in the laboratory. The atomic clock GPS-89 was also transmitting at a frequency

of one pulse per second (PPS) with 60ns precision through a BNC cable. The clock was not

connected to any external system and its highly accurate PPS was not being used.

The idea of this project was to build a simple NTP server for the existing ground station.

Tartu Observatory is likely to use this new NTP server for spacecraft ranging in future

projects like ESTCube-2 [2]. Such a server can provide an accurate timestamp and frequency

range for packets transferred between a spacecraft and a Ground Station and can also provide

accurate time in the observatory’s local network. The new NTP server can also be also used to

create accurate timestamps of astronomical observations.

There are many NTP servers available today which provide a time precision in microseconds

but whether this is precise enough for all applications remains questionable. An imprecise

NTP server can be a potential hazard for clients on that NTP server. For example, if brokers

are trading shares on financial market and their timestamp polled from an NTP server is less

precise than that of the market then this can result in financial losses. One of the objectives of

this thesis is to introduce a novel approach to determining the accuracy of a timestamp

provided by an NTP server. .

This thesis is divided into the following sections; firstly, the requirements for building an

NTP server are investigated. Secondly, discussions on what technologies were available for

its construction as well as descriptions of existing solutions. Thirdly, the NTP protocol will be

described followed by the fourth part of the thesis which describes the network protocol

daemon. The fifth part of the thesis describes a new method for analyzing the accuracy of an

NTP server and how it differs from other published solutions. In the same section, the results

of measurements will be analyzed and discussed. Finally, the experimental NTP server will be

evaluated followed by a discussion of possible improvements and future projects.

9

The objectives of this Master thesis for the construction of a new NTP server for atomic clock

GPS-89 are as follows:

● Gather information about requirements for the new NTP server;

● Select components, design and draw a block diagram and integrate available hardware

into a working NTP server and client system based on a single-board Linux computer

with ARM architecture;

● Introduce network time protocol and daemon software,

● Install and connect the newly built NTP server to an existing GPS-89 rubidium clock;

● Improve system performance by optimizing the ARM multicore architecture;

● Undertake NTP server and client load testing. Analyze the system performance and

time accuracy by comparison of NMEA and TSIP protocols and measurements with

other time servers, and;

● Compare performance of LAN speed at 100 megabits per second (Mbps) and one

gigabit per second (Gbps).

A more detailed list of these procedures is provided in section 2.1.

10

2. NTP server and client requirement, design and

installation

The development of NTP server has been divided into following sections:

 Build requirements;

 Design, and;

 Assembly.

2.1 Requirements for NTP Server and Client

2.1.1 Microcontroller
The microcontroller should be from the Advanced RISC Machine (ARM) family and include

the optimum number of pins for this project. Also, it should have enough processing power so

as to obtain reasonable results for the experiment. The MCU is preferable because it has low

power consumption, a small foot print, and good reliability and uses open source software.

2.1.2 Measurements
The PPS output from the atomic clock will be the main reference for the NTP server and will

be connected to an oscilloscope for the purposes of this study. The NTP server should be able

to synchronize time in a local area network (LAN) within 50µs accuracy in relation to a UTC

timestamp.

2.1.3 Communication
Communication between the NTP server, client and computer has to be established via an

Ethernet socket using the TCP or UDP protocol and will be controlled using Putty or WinSCP

command lines. Ethernet sockets should support speeds of one Gbps or more.

2.1.4 Price
Both the NTP server and client should be of low cost while providing maximum efficiency.

2.1.5 Memory
NTP servers and clients produce NTP statistics as per their internal protocols. There should be

enough memory on the server to store this data for a period of more than one year.

2.1.6 Protocols
The NTP server needs to be able to support the National Marine Electronics Association

(NMEA) and Trimble Standard Interface Protocol (TSIP).

2.1.7 Power
The NTP server should have a low demand on electricity consumption.

2.1.8 Software
For this purpose, a network time software daemon (ntpd) should be used and for simplicity,

the system should also be able to run on LINUX architecture.

11

2.1.9 NTP client
Network time protocol client should be built on individual single-board computer and

generate pulse per second by script written in any program language. Generate pulse has to be

synchronized with UTC timestamp provided by network time protocol daemon.

2.2 Server Design and Atomic Clock Description

The optimal design for this project is to build the NTP server on a single-board computer with

a GPS module attached that supports all the required protocols.

2.2.1 Components selection
Most of the components and single board-computers were ordered from various online

suppliers and some older GPS modules with TSIP protocol were provided by Tartu

Observatory. A Raspberry Pi Expansion Board was ordered from the electronics supplier

Uputronics. [3]

2.2.2 NTP server simple diagram
The atomic clock GPS-89 was the main reference for the NTP server. The server was

connected to a GPS module which transmitted the GPS timestamp for the PPS that was

produced by the atomic clock. The entire system was connected to one local switch. The pulse

that is transmitted by the clock is sent to the bridge and then on to the oscilloscope for pulse

analysis. This can be seen in Figure 1.

Figure 1: Simple diagram of the proposed NTP server for an atomic clock.

12

2.2.3 Schematic design software
DesignSpark PCB 6.1 was the PCB layout drawing program chosen for this project as an

additional external board for an older GPS module was used. This design software was

recommended by an engineer at Tartu Observatory [4].

 2.2.4 Single board computer selection for the server
After conducting research on the internet about existing NTP server setups [5]it seemed that

one of the best choices for building an NTP server and client was to buy single-board

computers such as NanoPi NEO2 or Raspberry Pi 3B. They both seemed to possess the

suitable architecture and efficiency for such a system.

NanoPi NEO2 [6] has a one Gbps ethernet socket for LAN, making it the preferable device as

the Raspberry Pi 3B [7] can support a maximum of only 100 Mbps. It is also possible to order

Raspberry Pi 3B+ which is already equipped with a one Gbps ethernet socket, but it can

support a maximum of only 300 Mbps. The NanoPi NEO2 with a one Gbps ethernet socket

seemed to provide the ideal environment for stress testing procedures as well as providing

enough bandwidth for potentially larger demands. The software for both NanoPi and

Raspberry Pi computers is listed in Table 1.

2.2.4.1 NTP servers for LINUX operating systems

NanopiNEO2 Armbian_5.65_Nanopineo2_Ubuntu_bionic_next_4.14.78

Raspberry Pi 3B Linux raspberrypi 4.19.23-v7

Table 1. NTP servers for LINUX operating systems

2.2.5 GPS module with TSIP and NMEA protocols selection
For this project, Tartu Observatory provided the Trimble

GPS module SMT360™. This module operates with both NMEA and TSIP protocols. The

RES SMT360™ Timing Module is used on the carrier board. This makes available the

concurrent reception of GNSS (GPS, Galileo, GLONASS, BeiDou) with a PPS pulse that has

a 15ns accuracy. The main power supply requires 3V for the Trimble chip and 5V for the

antenna. [8]

2.2.5.1 External PCB board design

The GPS module has been attached to a small PCB board which was previously designed by a

Tartu Observatory engineer. The external PCB board contains a separate power supply for the

antenna and the Trimble chip and also has an additional RS-232 driver - so it is possible to

connect the GPS module directly through a serial USB converter to a PC. Once the GPS

module is connected to a PC, the Trimble GPS can be set up using GUI Trimble Visual

Timing Studio software. [9]The external PCB board design can be seen in Figure 2.

13

Figure 2: External PCB board interface for GPS SMT360 [Author: Viljo Allik

Tartu Observatory] Appendix A

2.2.6 Raspberry Pi+ GPS Expansion Board
Following research online, it was decided to order the GPS Expansion Board (Product code:

HAB-GPSPI-NAN) from the electronics supplier Uputronics. This module generates a PPS

pulse with a length of 100ms and also supports the NMEA protocol. [10]

It is a solderless design and is easy to install on top of the Raspberry Pi 40- pin header. Its

design will also reduce signal noise as cabling is not required. This expansion board includes

the advanced u-blox MAX-M8Q [11] [12]chip revision 04 (released on January 2019), which

possesses concurrent reception of up to four GNSS (GPS, Galileo, GLONASS, BeiDou) and

provides a 60ns time pulse accuracy similar to that of the atomic clock.

2.2.7 NTP NanoPi NEO2 server connection diagram
As the atomic clock produces a 5V, PPS output, it is necessary to design a small PCB board

with a voltage divider in order to protect the GPIOs on the single-board computer. The divider

formula is shown in Figure 3. It is assumed that each pin can theoretically handle a maximum

of 4V. After the PPS is voltage level adjusted to the suitable 3.3V level, then the signal will be

connected to the NanoPi NEO2 on pin PA6 on the twenty four pin header of the NanoPi

NEO2. Serial interface pins are connected according to Table 2 and shown in Figure 4. For

the analyses of the PPS signal from the atomic clock, it is also bridged to the oscilloscope. An

external power supply of 3.3V and 5V is connected to the external GPS board.

2.2.7.1 Divider for both single-boards and NanoPi NEO2 pin settings

𝑉𝑜𝑢𝑡 = (
Z2

Z1+Z2
)* 𝑉𝑖𝑛 3.3 V = (

1 kΩ

1 kΩ+1 kΩ
)* 5 V

Figure 3: Divider formula

14

NanoPiNEO

pins

Encoders

interface pins

PG6 TXD

PG7 RXD

PA6 1 PPS

Table 2.

NanoPi NEO2 right pinheader

3.3V OUT 1 2 5V IN

SDA 3 4 5V OUT

SCL 5 6 GND

PG11 7 8 PG6

GND 9 10 PG7

PA0 11 12 PA6

PA2 13 14 GND

PA3 15 16 PG8

3.3V OUT 17 18 PG9

PC0 19 20 GND

PC1 21 22 PA1

PC2 23 24 PC3

Table 3.

2.2.7.2 NanopiNEO2 based interface block diagram

Figure 4: Block diagram of NTP server for Atomic clock

2.2.8 NTP Raspberry PI B server and client simple schematics
The Raspberry Pi 3B computer was also used to construct an NTP server so as to compare its

performance with the NanoPi NEO2 computer. Both of these single-board computers have a

very similar ARM architecture. As with the NanoPi NEO2 server, the Raspberry Pi 3B server

adjusted signal from the atomic clock will be sent to pin 18 on the GPIO (Table 4). The

Raspberry Pi 3B was also used for the NTP client. On the left in Figure 5 is shown the forty-

pin header of the GPS expansion board that includes a real time clock (RTC) and serial

interface. This is connected to the forty-pin header of the NTP server interface which can be

seen in the middle of Figure 5. On the right-hand side of Figure 5 is a diagram of the forty-pin

header of the client with PPS Client interface which is connected to oscilloscope channel one.

15

On the bottom of Figure 5 is a block diagram of the PPS interface from the atomic clock with

a small voltage divider connected to channel two of the oscilloscope.

Raspberry pins PPS, RS232

interface pins

GPIO14 TXD

GPIO15 RXD

GPIO18 1 PPS

Table 4.

Raspberry 3B Pinout

3.3V 1 2 5V

SDA 3 4 5V

SCL 5 6 GND

GPIO4 7 8 GPIO14

GND 9 10 GPIO15

GPIO17 11 12 GPIO18

GPIO27 13 14 GND

GPIO22 15 16 GPIO23

3.3V 17 18 GPIO24

GPIO10 19 20 GND

GPIO9 21 22 GPIO25

GPIO11 23 24 GPIO8

GND 25 26 GPIO7

DNC 27 28 DNC

GPIO5 29 30 GND

GPIO6 31 32 GPIO12

GPIO13 33 34 GND

GPIO19 35 36 GPIO16

GPIO26 37 38 GPIO20

GND 39 40 GPIO21

Table 5.

2.2.8.1 Raspberry Pi 3B based interface NTP Server and Client block diagram

Figure 5: Block diagram of NTP server for Atomic clock

16

2.2.9. Comparing hardware specification of single-board computers
A comparison of NanoPi NEO2 and Rasberry Pi 3B single-board computers is presented in

Table 6.

Table 6.

2.2.10 Atomic Clock
Most atomic clocks utilize atomic isotopes Caesium -133 or Rubidium -87. Count pulses of time

are measured from microwaves emitted by the electrons around those atoms. These electrons

move from a lower to a higher orbit under the influence of lasers and the electrons become

excited as they absorb energy from these lasers. While returning to a lower energy level, the

electrons radiate the excessive energy as microwaves.

High and low energy atoms are separated by magnets. The separated low energy atoms are

bombarded by an appropriate wavelength of radiation which converts them to high energy

atoms. They are then moved by a second magnet to a detector which in turn, produces a

current. This current is tied to an oscillator, which creates a feedback loop for the process. If

low energy atoms predominate then the oscillator slows down, and the current stops. This loss

of current is registered and extra voltage is applied to the system to compensate for this

change in frequency. [13]

NANOPI NEO2 Raspberry Pi 3 B

4x CPU: Allwinner H5, Quad-core 1.2 GHz 64-bit

high-performance Cortex A53

4x CPU: Broadcom BCM2837 chipset running at 1.2

GHz 64-bit quad-core ARM Cortex-A53

DDR3 RAM 1GB RAM 1 GB LPDDR2 memory

Connectivity: 10/100/1000M Ethernet, RTL8211E-

VB-CG chip

1 x 10/100 M Ethernet port, 802.11 b/g/n Wireless

LAN, Bluetooth 4.1 (Classic & Low Energy)

USB Host: USB Type A x 1 and USB pin header x

2

4 x USB 2.0 port

MicroSD Slot: MicroSD x 1 for system boot and

storage

MicroSD Slot: MicroSD x 1 for system boot and

storage

LED: Power LED x 1, System LED x 1 LED: Power LED x 1, System LED x 1

GPIO1: 2.54mm pitch 24 pin-header, compatible

with Raspberry Pi's GPIO pin1 - pin 24. It includes

UART, SPI, I2C, IO etc.

40-pin 2.54 mm (100 mil) expansion header: 2x20

strip providing ,27 GPIO pins as well as +3.3 V, +5

V and GND supply lines, UART, I2C, SPI

GPIO2: 2.54mm pitch 12 pin-header. It includes

USB, IR receiver, I2S, IO etc.

1 x HDMI video/audio connector

Serial Debug Port: 2.54mm pitch 4pin-header Serial Debug Port: 2.54mm pitch 4pin-header

Audio In/Out: 2.54mm pitch 4 pin-header 1 x RCA video/audio connector

MicroUSB: Power input(5V/2A) and OTG MicroUSB: Power input(5V/2.5A) and OTG

PCB Dimension: 40 x 40mm PCB Dimension: 85 x 56mm

Working Temperature: -30℃ to 70℃ Working Temperature: -25℃ to 80℃

Weight: 13g(WITHOUT Pin-headers) Weight: 39.45g

OS/Software: Ubuntu bionic next 4.14.78 OS/Software: Linux raspberrypi 4.19.23-v7

17

Clocks today are based around a frequency source generally called oscillators and come in a

variety of types:

Quartz Oscillators

TCXO – Temperature Compensated Crystal Oscillator

OCXO – Oven Controlled Crystal Oscillator

 Atomic Oscillators

Rb – Rubidium Oscillator

Cesium – Cesium Atomic Oscillator

H-Maser – Hydrogen Atomic Oscillator

2.2.10.1 Atomic Clock Pendulum-GPS-89

The NTP server was built for the local atomic clock Pendulum-GPS-89

The GPS-controlled frequency standards, Pendulum GPS-88 and GPS-89, deliver a

precision frequency and time reference with a PPS signal output of 5V DC, pulse

frequency Sine wave. Atomic clock possess frequency stability locked to GPS frequency

offset (24 h mean):1x10
-12

 (at temperature 20°C to 26°C) [14].

2.3 Assembly

The final, working design has not been decided yet, but according to Tartu Observatory they

would use a 90 inch rack-mount module to house all necessary equipment once the NTP

server has been built and proven to work.

3. NTP protocol

The Network Time Protocol (NTP) is a protocol used to synchronize computer clock times in

a network, such as for radio or satellite receivers and mobile phone network. It provides a

time accuracy of less than a millisecond on a LAN and up to a few milliseconds on a WAN.

The NTP protocol synchronizes and calibrates local and external NTP servers on diverse

network paths so as to provide local time with the highest accuracy. NTP is based on the

Internet Protocol (IP) and the User Datagram Protocol (UDP) on port 123. [1]

NTP has the following four synchronization modes, a client mode, a server mode, a peer

mode and a broadcast mode. There are differences in how they measure offsets and network

delays. For this thesis, we will focus on the first two. Both client and server modes are built in

a hierarchical structure divided into stratum levels.

NTP aligns the system clocks in participating computers to Coordinated Universal Time

(UTC). UTC is based on the solar day, which depends on the rotation of Earth about its axis

[15]and which was also defined as part of the Gregorian calendar introduced by Pope Gregory

XIII in October 1582.

3.1 NTP levels
At the top level of NTP is Stratum 0. In this stratum, there are not many machines. Typically

they are ground-based cesium clocks or the cesium clocks on satellites of geographical

navigation systems such as the Global Positioning System (GPS) which was launched by the

U.S. Department of Defense in 1978.

18

There is also the Galileo Global Navigation Satellite System (GNSS) launched by the

European nations, the BeiDou Navigation Satellite System (BDS) launched by China and

GLONASS which is owned by the Russian Federation. Devices connected with Stratum 0

cesium clocks and satellites are on the next level at Stratum For example, according to ntp.org

there were approximately 2000 NTP servers in Stratum 1 across Europe at the time of writing

this thesis. Following this are Stratum 2 servers which are clients of Stratum 1 and then

according to the servers on stratum N+1 are clients to servers on Stratum N. The maximum

stratum level is 16. This system of strata is presented in Figure 6.

Figure 6: NTP server Stratums hierarchy

3.2 Global Positioning System

The Global Positioning System, commonly known as GPS, provides satellite navigation for

vehicles and much more. Each navigation system connects with a group of satellites that have

a fixed constellation. These systems use trilateration [16] or other techniques to determine the

position of the GPS receiver. They also determine absolute time using the UTC format and

broadcast the UTC timestamp for synchronization. [17]

Each GPS satellite carries:

 Stabilized stratum 0 atomic clock hardware

 Advanced location tracking circuitry

 Transmitters that constantly broadcast their position and clock time

3.2.1 Leap second

The speed of the Earth’s rotation is slowing down over time due to many complex factors.

This means that the solar day increases in length by approximately 0.001 seconds per solar

day. [18]

19

The rate at which the earth slows down however is not uniform. There are complex factors

behind this such as massive sea currents causing tidal acceleration, the movement of the fluid

metallic core inside the Earth or changing atmospheric currents the result of these dynamic

factors is that the need for leap seconds isn’t predictable.

Once the difference between UTC and UTC1 reaches 0.9 seconds, then 1s is added to UTC to

compensate for this difference.

GPS time is eighteen seconds ahead of UTC, because GPS time was set to match UTC in

1980, but has since diverged. Since the UTC format was implemented earlier than the GPS

format there was already added 9 leaps- second to UTC before GPS was equal, so if nine

seconds is subtracted from twenty seven we get an offset of eighteen seconds.

3.3 Protocols

3.3.1 NMEA protocol
The NMEA standard has been in use since 1983 and most GPS receivers use the standard call

0183 version which can support 4800 or 9600 b/s on the serial interface RS232. USB

converters also can be used but they can possibly introduce unnecessary latencies in

communication between a PC and a GPS receiver. NMEA consist of sentences in American

Standard Code for Information Interchange (ASCII) format like in figure. ASCII format. [19]

$--GGA,hhmmss.ss,llll.ll,a,yyyyy.yy,a,x,xx,x.x,x.x, M,x.x,M,x.x, xxxx*hh<CR><LF>

 GGA - Global Positioning System Fix Data

1 $--: Talker identifier

2 GGA: Sentence formatter*

3 hhmmss.ss: UTC of position*

4 llll.ll, a: Latitude North/South (N/S)*

5 yyyyy.yy, a: Longitude East/West (E/W)*

6 x: GPS quality indicator

7 xx: Number of satellites in use (00-12)

8 x.x: Horizontal dilution of precision

9 x.x, M: Antenna altitude above/below mean

sea level (geoid), meters*

10 x.x, M: Geoidal separation, meters

11 x.x: Age of differential GPS data

12 xxxx: Differential reference station ID

13 *hh: Cheksum*

Table7: NMEA protocol in ASCII format

3.3.2 TSIP protocol
The TSIP is a binary packet protocol option for the user to maximize control over the

configuration of a GPS receiver which can also optimize performance. TSIP supports over 20

commands associated with response packets. GPS receivers with the TSIP protocol can also

correct an offset of PPS if it reaches a critical threshold - it switches to recovery mode and

automatically synchronizes PPS with the GPS. TSIP packet structure is the same for both

commands and reports. [20] The packet format is:

20

<DLE> <id> <data string bytes> <DLE> <ETX>

 <DLE> is the byte 0x10

 <ETX> is the byte 0x03

 <id> is a packet identifier byte, which can have any value excepting <ETX> and

<DLE>.

An example packet:

0x10,

0x8F, 0xAB,

0x00, 0x03, 0xE5, 0x1F, 0x06, 0x88, 0x00, 0x00,

0x0C, 0x17, 0x36, 0x16, 0x18, 0x01, 0x07, 0xDC,

0x10, 0x03

Figure 7: TSIP protocol in binary format

3.3.3 NTP Packet header structure

The NTP server is stateless and responds to each received client NTP packet in a simple

transactional manner by adding fields to the received packet and passing the packet back to

the original sender, without reference to preceding NTP transactions. Upon receipt of a client

NTP packet, the receiver timestamps the receipt of the packet as soon as possible within the

packet assembly logic of the server. The packet is then passed to the NTP server for

processing.

The NTP packets sent by the client to the server and the responses from the server to the

client use a common format, as shown in table 8. [21]

0-1 3-4 5-7 8-15 16-23 24-31 bit

LI VN MODE STRATUM POLL PRECISIOM

ROOT DELAY (32-bit)

ROOT DISPERSION (32-bit)

REFERENCE IDENTIFIER (64-bit)

REFERENCE TIMESTAMP (64-bit)

ORIGIN TIMESTAMP (64-bit)

RECEIVE TIMESTAMP (64-bit)

TRANSMIT TIMESTAMP (64-bit)

Table 8: NTP Packet structure

21

Packet header overview

LI Leap Indicator (2 bits).

VN NTP Version Number (3 bits).

MODE NTP packet mode

STRATUM Stratum level of the time source (8 bits).

POLL The log2 value of the maximum interval between successive

NTP messages in seconds.

PRECISION Clock precision (8-bit signed integer) The precision of the

system clock, in log2 seconds.

ROOT DELAY The total round-trip delay from the server to the primary

reference.

ROOT DISPERION The maximum error due to clock, only in server messages.

REFERENCE ID For stratum 1 servers this value is a four-character ASCII

code that describes the external reference source.

REFERENCE

TIMESTAMP

System clock was last set or corrected, in 64-bit time-stamp

format.

ORIGIN TIMESTAMP Time at which the request departed the client for the server.

RECEIVE TIMESTAMP The time at which the client request arrived at the server.

TRANSMIT TIMESTAMP The time at which the server reply departed the server.

Table 9: NTP Packet structure description [21]

3.3.4 NTP server packet diagram

Basic operating principles of network time protocol are described below. These four

parameters are passed into the client timekeeping function to drive the clock synchronization

function. [22]

 T2 T3

NTP Server Time

NTP Client Time

 T1 T4

Figure 8: NTP server packet diagram

NTP protocol principles

T2-T1 The Client requests NTP server to

provide NTP service (including network

transmission time).

T3-T2 NTP server processing time

T4-T3 the NTP server replies to Client with

NTP service information (including

network transmission time

T4-T1 total spending time

T4-T3 to T4-T2 The time delay from Client to NTP server

is between

Table 10.

22

3.3.5 NTP packet data traffic.

From the NTP server packet diagram we can estimate an approximate delay between the

client and the server. NTP client polls data using a polling frequency algorithm from the NTP

server. The NTP clock algorithm selects the best server with best sample data with smallest

delay and offset. These values are calculated from last four timestamps. [1]:

Round-trip delay during NTP exchange of packets between client and server can be

represented as [1]:

θ = ½ [(T2 – T1) + (T3 – T4)] and δ = (T4 – T1) – (T3 – T2)

Figure 9: NTP clock offset (θ) round trip delay (δ) formula

3.3.6 NTP Reference timestamp

The reference timestamp is stored as a 64-bit unsigned integer. The first part of N bits

contains the number of seconds and the next M bits contain the number of milliseconds. So,

the timestamp is composed of 32 bits for representation of seconds passed since 0 hours on 1

January 1900 and 32 bits to represent fractions of seconds, as is shown in Figure 10. The

multipliers to the right of the point are 1/2, 1/4, 1/8, 1/16, etc. [23].

Seconds

Seconds Fraction

 0 31

Figure 10: Reference timestamp structure

Many OSs are operating with this time format; therefore this may cause problems on January

1, 2036. At that moment the 64-bit unsigned integer will overflow and a new epoch will start.

The user will face two problems. They will receive the date 1900-01-01 00:00:00 UTC, not

2036-02-07 06:28:15 as the new time. As a result of this, UNIX time will fail to start. [24]

3.3.7 UNIX timestamp

UNIX timestamp is a single a signed 32-bit number which increments every second in most of

our Unix OS and started from since 00:00:00 Thursday, 1 January 1970. UNIX time stamp is

calculated and calibrated from NTP reference time stamp UTC by LINUX kernel [25].

The UNIX timestamp has a 70 year offset from the NTP timestamp as it started later in 1970.

The UNIX timestamp calculation from NTP timestamp:

NTP offset = (year offset*365 days + 17 leaps seconds)*86400s = 2208988800s

 UNIX timestamp seconds = NTP timestamp – NTP offset

UNIX timestamp seconds fraction = (NTP timestamp fraction * 1000000)/ 2
32

Figure 11: UNIX timestamp calculation formula.

23

4. NTP Daemon

NTP daemon software is operating in Unix, VMS and Windows systems and others under

NTP service using selected Reference clock drivers for synchronizing system clock. It is

simple application running in the background and using UDP protocol and port 123 [1].

At the time of writing, the most recent NTP version was NTP release 4.2.8 p12. The

command ntpq transfer to simple command, insert –help all option will display.

4.1 Reference Clock Driver

A reference clock driver requires reference a GPS signal which is transferred to the clock

hardware and I/O interface processed by serial ASCII timecode [26] to NMEA or binary TSIP

output.

Then driver performs certain filtering and grooming functions. The entire suite of NTP

algorithms is available to filter the received data, select the best clocks or servers, and

combine their offsets to synchronize the system clock [1].

The system clock timestamp is captured at a designated on-time character in the timecode.

The difference between the driver timestamp and system timestamp represents the clock

offset. [1] page 133.

Figure 12: Device driver. [1] page 133

Each specific driver to each reference clock must be compiled in the kernel modules, but most

common clocks like NMEA, TSIP drivers are included already by default. Drivers have

address in “/etc/ntp.conf “in the form “127.127.t.u”. (-t driver type, -u unite number 0-3) List

of most common drivers is provided on web [27].

In this project, with selected standard serial RS-232 protocol for communication with each

specific device. A symbolic link must be created for each driver and device combination that

is used.

The “server” command in the first line of figure 13 configures a “reference clock” and

“fudge” command in second line provides additional information like address argument

specifies the clock address, the refid and stratum options control can be used to override the

defaults for the device. The NMEA sample of the setting is analyzed below and each

parameter is described in table 14.

24

server 127.127.20.0 mode 16 minpoll 4 maxpoll 4 iburst prefer

fudge 127.127.20.0 refid NMEA time1 + 0.105 flag2 0 refid NMEA stratum 1

Figure 13: Reference clock driver configuration example

Mode Specific mode number which in figure presents NMEA clock driver

serial port communication speed of 9600 baud(9600 bit per

seconds.

minpoll and maxpoll Specify the min. and max. polling interval for reference clock

messages in log2

Prefer Marks the reference clock as preferred.

iburst Iburst mode sends up ten queries within the first minute to the NTP

server otherwise by default 1 per second.

time1 Driver specific constant added to the time offset produced by

driver, a fixed-point decimal number in second.

flag2 Flags customizing the clock driver specifies the PPS signal on-time

edge: 0 – rising edge

Refid Specifies and ASCII string from one four characters.

Stratum Specifies stratum number assigned to the driver in the range 0 to 15

driftfile Record frequency of local clock oscillator, updated one per hour.

Table 11: Reference clock driver configuration example

4.2. PPS and Interface and driver

A pulse per second (PPS) is produced usually by 10 MHz signal like Cesium, Rubidium clock

or quartz oscillators or any other laboratory equipment. This 10MHz signal is processed by

divider and then by the end of divider is obtained 1 pulse per second. The PPS signal is

aligned to the roll-over of seconds and synchronized with UTC as shown in figure 14. The

PPS output is transferred into data carried control(DCD) line RS232 interface to provide a

hardware interrupt input for synchronization and DCD RS232 pin is utilized as a PPS input

from the GPS receiver. The combination of GPS timing data and PPS output we can achieve

highly accurate timing reference. [28]

The NMEA or any other reference clock driver associated with the PPS signal calls the

PPSAPI application programming interface to measure difference between the system clock

and PPS signal and process it in median filter. In our case PPSAPI calls kernel case to process

the PPS signal directly, PPS is consider being valid only if the offset produced by clock filter,

selected cluster and combine algorithm less than 400ms. Please see figure 14 [1].

25

 Figure 14: Pulse per second (PPS)

4.3. GPSD and SHM driver

Global Position Daemon driver (GPSD) is a daemon that receives data from a GPS receiver

and then transmitting these data to share memory (SHM) driver of ntpd. SHM driver receives

its reference clock info from a shared memory-segment function in ntpd per every second

interval [27].

4.4 Network time protocol configuration “ntp.conf”

This section describes set up of reference clock drivers used in our experiment. We have

tested PPS API NMEA, SHM NMEA GPSD, and SHM TSIP GPSD reference drivers.

4.4.1 PPS API NMEA
The NMEA messages are connected to the system via a serial port interface named gps0 and

PPS signal is wired through the DCD pin and get process in serial port interface gpspps0.

GPSD service must be stopped, otherwise driver will not work correctly.

ln -sf /dev/ttyAMA0 /dev/gps0

ln -sf /dev/pps0 /dev/gpspps0

server 127.127.20.0 mode 18 minpoll 4 maxpoll 4 prefer

fudge 127.127.20.0 flag1 1

fudge 127.127.20.0 flag2 0

fudge 127.127.20.0 flag3 1

fudge 127.127.20.0 time2 0.470

Figure 15: PPS API NMEA driver

26

4.4.2 SHM NMEA GPSD reference clock

The NMEA messages connected to the system via a serial port gps0 using GPSD service and

time stamp obtained from the share memory driver.

#ln -sf /dev/ttyAMA0 /dev/gps0

Kernel-mode PPS reference-clock for the precise seconds

server 127.127.22.0 minpoll 4 maxpoll 4

fudge 127.127.22.0 refid kPPS

Coarse time reference-clock - nearest second

server 127.127.28.0 minpoll 4 maxpoll 4 iburst prefer

fudge 127.127.28.0 time1 +0.105 flag1 1 refid GPSD stratum 1

Figure 16: SHM NMEA reference clock

4.4.3. SHM TSIP GPSD reference clock
The TSIP messages connected to the system via a serial port palisade0 using GPSD service

and time stamp obtained from the shared memory driver.

ln -sf /dev/ttyAMA0 /dev/palisade0

Kernel-mode PPS reference-clock for the precise seconds

server 127.127.22.0 minpoll 4 maxpoll 4

fudge 127.127.22.0 refid kPPS

Coarse time reference-clock - nearest second

server 127.127.28.0 minpoll 4 maxpoll 4 iburst prefer

Figure 17: SHM TSIP reference clock

4.4 NTP Stats

The network time protocol daemon stores statistics in local file system /var/log/ntpstats. The

file contains following parameters: loopstats, peerstat,clockstats. [29]

To collect statistics, add the directory path to the configuration file “ntp.cong”

statsdir /var/log/ntpstats/

statistics loopstats peerstats clockstats

Peerstats file contains clock offset and jitter data for every valid clock filter update for the

server, peer and clock driver.

27

Row data in peerstat file
48773 10847.650 127.127.4.1 9714 -0.001605376 0.000000000 0.001424877

0.000958674

Item Units Description

48773 MJD Date

10847.650 S Time past midnight

127.127.4.1 IP Reference clock address

9714 Hex status word

-0.001605376 S clock offset

0.000000000 S roundtrip delay

0.001424877 S Dispersion

0.000958674 S RMS jitter

Table 12.

The "loopstats" log lists offset and jitter values for every valid discipline algorithm [1] update.

The delay and clock offset counted by formula provided in 2.3.3.

Row data in loopstats
50935 75440.031 0.000006019 13.778190 0.000351733 0.0133806 6

Item Units Description

50935 MJD Date

75440.031 S Time past midnight

0.000006019 S Clock offset

13.778 PPM Frequency offset

0.000351733 S RMS jitter

0.013380 PPM RMS frequency jitter

6 Log2 s Clock discipline loop time constant

Table 13.

4.4.1 Modifies version of the Julian date (MJD)

A modified version of the Julian date, denoted as MJD, can be obtained by subtracting

2,400,000.5 days from the Julian date JD. The MJD therefore gives the number of days since

midnight on November 17, 1858. [30]

MJD ≡ JD – 20400000.5

Figure 18: Modified version of the Julian date

The Julian Day number (JD) is the count of the number days that have elapsed since

Greenwich Mean Noon on 1 January -4712 (4713 BC) in the Julian Proleptic Calendar.

The Julian start date is calculated from three following cycles Solar, Lunar and Roman

Indication from the last time these three events have been coincident. This time format

provides astronomers measure secular time differences over long time.

28

The number 20400000.5 where 0.5 days is subtracted so as to have MJD start a midnight and

the 2400000 is used to reduce the 7-digit day number of JD to a more tractable 5 digits format

for the logs and statistics.

The both time format MJD and JD are reference to UTC which is time format used as primary

time standard in the words and it is recognized by the IAU, ITU and CCIR [31].

4.4.2 NTP plotter beta V1.0.32.075

NTP Plotter is a freeware program for the plotting of graphs for the NMEA/PPS ref-clock

driver. It produces graphs of offset, frequency error and jitter from loopstat log files which

ntpd produces. [32]

5. Experiments and a new method of measuring the

accuracy of an NTP server.

For these experiments, it was assumed that an atomic clock was precise enough and so it was

used as an absolute reference for time synchronization. For this purpose, the atomic clock

GPS-89 Rubidium, located at Tartu Observatory, was used. This atomic clock provides for

this purpose 10 MHz: Sine wave, > 0.6 Vrms in 50 Ω. It generates PPS approximately 5V in

open output in 50 Ω duty cycle 20% with 60 nanosecond precision relative to UTC.

In ideal conditions, an atomic clock can provide a theoretical precision of 10
-11

 per second. By

ideal conditions, it is meant that all oscillation frequencies of the oscillators on the build

platform are synchronized and are kept in a constant environment. In such conditions, this

system can possibly measure at even higher levels of PPS precision if required.

If it is considered that the atomic clock with 60 nanosecond accuracy is reasonable for a PPS

signal output. This precise output is sufficient input for the NTP protocol as NTP software

ntpd can support higher accuracy than 1µs. For networks, a timestamp of 1µs accuracy is

appropriate as signals travel long distances through cables and routers and a higher accuracy

cannot be expected.

NTP daemon programs are often used to provide higher accuracy timestamps for local

networks. NTP statistics software is often used for generating statistics for variables such as

clock offset and jitter.

How can these be used to verify the accuracy of an NTP system? Using statistics software we

can use loopstat or peerstat files to assess variables such as offset and jitter between the

system timestamp and device driver stamp that have been produced from reference clocks like

GPS and PPS pulses. The question still remains though how accurate are these data, and are

there any alternatives for assessing the time accuracy of an NTP server?

One possible method of verifying the accuracy of PPS pulses is published on the internet. The

suggestion is to create the NTP Client and then generate PPS pulses on the parallel port of a

GPIO pin. In this scenario, one single-board computer is used which is sharing all the

resources for both the NTP server and client while also running two different NTP protocols

at the same time. This is not the best approach as each program is consuming a lot of

29

CPU/MCU resources on both the server and client. Such a system would almost certainly be

influencing any given results.

The method proposed in this thesis is to build a separate client and server on separate single-

board computers and assign them each a single core for the ntpd service in order to achieve a

higher level of accuracy of the NTP timestamp. The NTP client will generate a new PPS by

the script introduce in appendix C and capture the system timestamp. Then new generated

PPS will be compared to the original physical PPS produced by the atomic clock on the

oscilloscope. These signals will be connected to separate channels and will give us the

possibility to analyze differences between them. The original PPS produced by the GPS

module will not be taken into account as it is assumed that a PPS provided from an atomic

clock is the most precise reference.

An addition to this, physical PPS signals from an atomic clock and an additional NTP server

was also examined in our LAN.

Using this novel method, the author will attempt to verify how well an NTP server is

operating and how accurate a timestamp it can provide.

5.1 Experiment phases
Firstly, an NTP server was built. Connected to the GPIO input of this server was a highly

accurate PPS output from a GPS-98 atomic clock with a PPS accuracy of 60ns. The GPS

receiver then delivered data in ASCII or BINARY format for the reference clock driver

through the serial port on the single-board computer. The combination of these devices was

expected to result in a highly accurate timestamp generated by this device driver.

The second stage was to build an NTP client connected to a 1Gbps ethernet LAN switch.

Thirdly, PPS driver software was developed that could be added to the LINUX kernel as a

custom module. This driver software executes a function of “gettimeofday()” via a system

call to the kernel. The function obtains the current time, expressed as seconds and

microseconds synchronized with UTC, and stores it in the “timeval structure” pointed to by

“tp” variable.

Following this, simple C++ script was created that initiates the driver module. The rising edge

of the new second occurs while the reading and writing on the device “callback function” is

triggered. A pulse of 500us length is generated and then delivered to the GPIO output of the

NTP client.

Once this has been established, then both PPS outputs will be connected to the Rohde and

Schwarz oscilloscope on Channel 1 and Channel 2. The mathematical channel will be set up

for collecting statistics and drawing graphs. A simple overview of this experimental setup can

be seen in Figure 19.

30

Figure 19: Simple overview of experiment

Finally, three different configurations will be tested and analyzed for performance:

1. In first set up a NanoPi NEO2 acts as the NTP server as per requirement was to set up

speed of one Giga bit per second over the LAN. A PPS pulse is generated from the

atomic clock and GPS receiver SMT360™ was connected to transmit the NMEA data

through a serial interface order to lock PPS. Raspberry Pi 3B acts as the NTP client

which synchronizes with the NTP server. It will generate its own PPS by the script and

it’s synchronized with UTC timestamp. The first setup has been running over the one

common switch connected in LAN. Both PPS signals generated from the following

configurations and analyzed on the oscilloscope on the separated channels:

a. Raspberry and NanoPi NEO has default setup, no enhanced parameters are

applied.

b. Raspberry and NanoPi NEO has optimized setup. One separate core was

utilized only for ntpd running task and CPU was set up to higher frequency.

2) In second setup a Raspberry Pi 3B acts as the NTP server with 1 PPS generated from

Atomic clock and new module GPS receiver U-blox MAX-M8Q was installed to

transmit NMEA data through serial interface to lock PPS. Raspberry Pi acts as NTP

client synchronize with NTP server and generating its own PPS by script synchronized

with UTC timestamp. Now onwards only enhanced setup will be used as in test 1.b.

Both PPS signal from NTP server and client are compared on the oscilloscope on the

separate channels for further analysis:

a. Both Raspberries Pi’s setup up over the single switch in LAN.

b. Both Raspberries Pi’s setup up over the multiply switches in LAN

c. Raspberries Pi NTP server set up under stress of data traffic.

d. Test over the WLAN 4G

31

3) Additional NTP server NanoPi NEO2 with TSIP protocol will be added to the existing

NTP server running on the Raspberries Pi with NMEA protocol for comparing of

TSIP and NMEA protocols. Both PPS are connected to separate channels on the

oscilloscope and offset is observer on mathematical channel.

5.2 Experiment result

The Rohde and Schwarz RTO 1014 oscilloscope from Tartu Observatory was used to produce

histograms and statistics. The PPS signal from an atomic clock was installed on channel 1

(CH1) of the oscilloscope and the signal from the NTP client was installed on channel 2

(CH2). A mathematical channel was also set up and the formula shown in Figure 19 was

applied. The time recorded from the positive edge of the PPS on CH1 was subtracted from the

time of the PPS’s positive edge recorded from CH2. This configuration makes it possible to

observe the time difference between the client and server PPSs. This reveals how well the

NTP client is synchronized with the NTP server. This method provides the opportunity to

verify data produced by ntpd and determine the accuracy of the NTP server on the

oscilloscope. Most of the measurements were conducted in ten hours window.

Oscilloscope settings:

Mode Run continuously

Horizontal resolution 200ps 5GSa/s

Trigger set up to 2.4 V

Horizontal scale 20us/div

Vertical scale CH1 4V/div

Vertical scale CH2 1.62V/div

Measure Result = |CH1 –CH2|

On the positive edge of PPS

Table 14. Figure 20: Oscilloscope formula

5.2.1. NanoPi NEO2 NTP server and Raspberry Pi 3B NTP client
The following result was obtained from the NTP client. The PPS pulse was generated by a

pulse generator driver and a 100µs offset was deducted from the positive time edge of the PPS

pulse. This adjustment is optional but it was used to keep the oscilloscope on the 20µs scale.

5.2.1.1

1 a) Measurement by NTP plotter NTP server Nanopi NEO2

From the loopstats produced by NTP plotter we can conclude that the clock offset between the

system timestamp and the driver timestamp on the NTP client was approximately 1µs (Figure

20). In this case, the NTP client has provided an average of 1µs accuracy on the NTP

timestamp.

32

Figure 21: NTP plotter NTP client peer offset

5.2.1.2

1 a) Measurement by the new technique NTP server Nanopi NEO2

The experimental configuration however requires a different approach to measurement. The

PPS generated by the NTP client from the timestamp of the experimental system is compared

to a PPS produced directly from an atomic clock. The time offset recorded by this approach

was on average 58 µs. This included the 100µs which was mentioned in section 5.2.1.

Using the oscilloscope, it was seen that the difference between the system timestamp and the

moment a new PPS was generated was 58 µs. If an estimated small pulse delay of 4 µs is

taken into account then this is an unexpected result. Small delay comes from time when the

script is executed to generate pulse till the time when pin is set up high on the GPIO.

 Figure 22: Nanopi NEO2 and SMT360 default settings with 100us adjustment.

5.2.1.3

1 b) Measurement by the NTP plotter NTP server Nanopi NEO2

The same scenario was tested with modified settings where ntpd had its own dedicated core

and the frequency of the CPU was set to 816MHz. Results presented on the NTP plotter

(Figure 22) show that in this case, the NTP client has an average offset of 2µs compared with

the NTP timestamp.

33

Figure 23: NTP plotter NTP client peer offset

5.2.1.4

1 b) Measurement by the new technique NTP server Nanopi NEO2

In the modified configuration, we can see there is a 7µs improvement. The normal distribution

curve improved slightly too. However, from the results it can be concluded that NTP data are

not as accurate as was expected.

This is because NTP data reflect different types of data to those we are generating with the

experimental technique. The NTP plotter software provides average offset and jitter data of

the NTP client based on the system timestamp and driver timestamp. The experimental

method compares instead the system timestamp of the NTP client with the PPS generated by

an atomic clock. However, this should not have as significant an impact on the results as has

been observed.

One of the main reasons why results differ is that NTP plotter is getting data from log files

generated by ntpd which contains samples only per minute, therefore it is not best tool to

measure data for the short period of the time. By proposed method we analyse samples

produced per second. This makes measurement by this new technique much more accurate.

34

 Figure 24: Nanopi NEO2 and SMT360 enhanced settings with 100us adjustment.

5.2.2 Raspberry Pi 3B NTP server and client enhanced setting

5.2.2.1

2 a) Measurement by the NTP plotter

Results from the NTP plotter show that the time precision of the NTP client has improved

significantly. But it is not immediately clear that they have improved by more than two times.

Statistics reveal again that the NTP client has an average accuracy of 1µs compared with the

NTP timestamp and from the graphic (Figure 24) we can observe that the scale offset on the

clock has decreased.

Figure 25: NTP plotter NTP client peer offset

35

5.2.2.2

2 a) Measurement by the new technique

Using this configuration, large improvements in accuracy were recorded. In fact, the NTP

client’s accuracy improved so much that the 100µs offset from the script had to be removed.

This is likely to be because the clock offset and jitters are minimized meaning that more

accurate results are able to be captured. If the pulse delay of 4µs is subtracted from the

average result of 18µs then an accuracy of 14 µs was achieved when compared to the atomic

clock reference (Figure 25).

Figure 26: Raspberry Pi 3B and GPS Expansion Board with 4us adjustment and enhanced

performance.

5.2.2.3

2 b) Measurement by the NTP plotter & by the new technique

The results recorded when using multiple LAN switches were not very different to those

obtained in previous tests and did not bring any new information.

5.2.2.4

2 c) Measurement by the NTP plotter under stress test

The stress test was set up as follows. Random amounts of packets, in the range between 2000-

3000 and with a set up polling rate of 6, were transmitted from the NTP client to the NTP

server. The formula in figure 26 estimates approximately 15 000 clients served on the NTP

server. The variable can be changed inside of the program, detail stated in Appendix E. The

NTP server’s performance did not drop and its accuracy did not decrease as this would require

stronger load (see Figure 28), However, NTP client accuracy was impacted quite a lot as you

can observe in Figure 27. Measurements of the NTP client were not affected by the generation

36

of packets to the NTP server as the task of packet generation was assigned to an additional

NTP client running on a separate unit in LAN.

 (Number of Packets per Second) x (Polling Rate) = Number of Clients.

Test stress formula

Figure 27: Number of the clients formula

Figure 28: NTP plotter NTP client peer offset

Figure 29: NTP plotter NTP server peer offset after 10 hours

Figure 30: NTP plotter NTP server peer offset after 100 hours

37

5.2.2.5

2 c) Measurement by the new technique under stress test

Looking at the measurement obtained by the new technique under stress test it is obvious that

accuracy has suffered. Normal distribution curve has on both sides from the average some

unexplained peak spikes. It could be explained by UDP packets got loss on the NTP client

side once client tried to pull data from NTP server on the port 123. Accuracy of the individual

client has reduced from 18 µs to 52 µs. Results show that if the NTP server is under a large

stress, accuracy on the NTP timestamp is reduced. This can however be solved by setup in

“ntp.conf” file by setting up different parameters which control traffic data.

Figure 31: Raspberry Pi 3B and GPS Expansion Board with 4us adjustment and enhanced

performance under stress.

5.2.2.6

2 d) Measurement by the NTP plotter & by the new technique

This measurement was not possible to conduct using a 4G WLAN connected through a

mobile Huawei p20. The delay between the client and server fluctuated between 20ms and

150ms. As a result of this, ntpd could not lock onto the signal and the NTP client did not

synchronize with the NTP server. Unfortunately, measurement data were therefore corrupted

and did not provide any usable results. It seems that a 4G network has difficulty

synchronizing with ntpd. The ntpd reported around 40ms offset over a short period of time but

after an hour of testing, the time offset began changing in a volatile manner, so it was decided

to end this test. It is possible that devices connected via a 4G mobile network have a generally

poor UTC timestamp. Further testing outside the scope of this thesis would be required to

assess this, however.

38

5.2.3 Two Raspberry Pi 3B NTP servers

The purpose of this test was to reveal how two PPS signals from separate NTP servers will

perform in the same LAN. The setting on the oscilloscope was the same as in previous tests.

The Raspberry Pi 3B computer received the PPS signal from the atomic clock and the GPS

receiver U-blox MAX-M8Q transmitted the NMEA data. Previous testing revealed that of the

two computers tested, the Raspberry Pi 3B has a better NTP timestamp accuracy. For the

following test, it was decided to connect a second Raspberry Pi 3B to the GPS receiver

SMT360 with TSIP protocol and so use this as the second NTP server. The second PPS was

produced by this older GPS module. The NanoPi NEO2 was used as the NTP client, but

didn’t generate any PPS output. Display output of this test from the PuTTY interface is

included in Appendix G.

5.2.3.1

Measurement by the NTP plotter

This result shown in Figure 29 display client synchronization with two different NTP servers

in a local LAN. The pink line (172.17.72.229) represents results from the NTP server using an

NMEA input and connected with the atomic clock. The blue line (172.17.72.186) represents

the results of an NTP server using a TSIP protocol timestamp. From the results, we can

conclude that the NMEA module had a slightly better accuracy. The results also show

however that when the TSIP time offset reaches a critical threshold, the PPS corrects itself by

GPS receiver as it has been designed to do. Outside of these periods of long delays however,

the TSIP module generally performed better than the NMEA protocol as it has binary format

which is better for data processing and also it can be observed that some section of the graph

has better curve than NMEA. But the as it can be observe from figure 29 new NMEA module

has very good performance too. One reason why these new GPS module with u-blox

performing so good is that they have also implemented quantization error on the PPS.

Figure 32: Peer offset of two physical NTP servers

39

5.2.3.2

3) Measurement of two physicial PPS by oscilloscope

Results of these tests revealed that the two NTP servers installed on the same LAN had very

similar levels of time accuracy (Figure 30). The resulting offset on average was 17ns while

the average jitter was 13ns when compared with the atomic clock PPS as the reference. That

is actually quite a good result for an old GPS module which has a guaranteed precision of

16ns for a PPS signal.

Figure 33: TWO Raspberry Pi 3B NTP servers with two separates physical PPS .

6. Evaluation Potential and Improvements

Once testing was complete it could be clearly seen that Raspberry Pi 3B is a better choice for

building an NTP server. NanoPi NEO2 has difficulties in processing the signal from a GPS

module. One possible reason is that it is not built for such complex tasks as being an NTP

server. It seems NanoPi NEO2 also has some limitations due to power saving. This is because

it has no heating or cooling mechanism and it has been manufactured for the completion of

medium level tasks. This therefore creates a possibly limitation on the GPIO frequency and

this in turn could explain why the offset was fluctuating and causing jitter to be unstable on

the PPS and clock driver. With a few enhancements and the right setup, NanoPi NEO2 is

likely able to perform in the role of an NTP server as well as Raspberry Pi3.

During this project, it was discovered that the PPS which is coming from the atomic clock is

not synchronized with the rubidium clock. Only 10MHz output is synchronized to the

rubidium standard. The atomic clock has its own GPS module similar to what is used in this

40

thesis and from GPS module comes the PPS signal straight to PPS out. This could possibly be

solved by using 10MHz as the MCU clock PLL frequency on the STM32F4 discovery board.

Then it would be possible to use the timer EXT TRIG input to start counting from the PPS

timing edge and generate a pulse which would synchronize by the rubidium clock and then it

provide even better precision on the PPS than achieve now.

Another possibility how to improve slightly the accuracy of NTP server would be to run

software on the atomic clock and set up the length of the cable of GPS antenna.

On the measurement obtain from the experiment it is obvious that data from NTP stats and

plotter are not reflecting accuracy of the NTP server in the best manner. There could be added

some additional component to NTP software which would compensate observed offset

between the atomic clock and NTP client and therefore get more an accurate improvement on

the timestamp on the client side.

Also, one more missing measurement could be completed, if the client is connected through

the general WLAN. From the unofficial result it was observed by the proposed measurement

following offset of 450µs when delay between client and server was approximately 7-8ms.

7. Applications

This stable NTP server was built for use with the atomic clock at Tartu Observatory and is

already in use there. The NTP server developed through this project distributes a UTC

timestamp with a maximum accuracy of 1-2µs on the NTP server side and for local device

synchronization within 15-50µs accuracy as was assign per requirements.

8. Conclusion

The NTP server built for Atomic Clock at Tartu Observatory has almost fulfilled all the

objectives of this master thesis. The performance was studied by conducting experimental

measurements. During the process, it was discovered that Raspberry Pi3 B is a more suitable

option for an NTP server than NanoPi NEO2. The new NTP server is able to synchronize all

NTP clients in a LAN within 50µs accuracy of the UTC timestamp as per the stated

requirements. Following these experiments, it is better understood how these NTP servers can

be improved for better performance. Stress tests could be performed in a variety of ways to

ensure that the system can serve many clients at the same time. The question also remains

why the accuracy on the timestamp for the NanoPi NEO2 was less efficient than Raspberry

Pi3 B. Further analyses need to be undertaken in order to discover the cause. The current NTP

server computer at Tartu Observatory will be replaced with a more powerful Raspberry Pi3

B+ as it provides a better bandwidth, supporting 300 Mbps, and will be able to serve more

clients. Finally, once proper housing will be received, it is necessary to install NTP server unit

according to standard safety rules for electronic devices and also network security should

carefully be set up.

41

9. Acknowledgements

I would like to thank my supervisors Viljo Allik and Indrek Sünter for all their support and

knowledge they shared with me. They truly demonstrated their professionality in their field

and they were guiding me through the whole project at all the time. Thank you to whole Tartu

Observatory for gaining new knowledge about space and technology. Many thanks to Ilmar

Ansko for helping me with Linux commands and giving me useful tips, information and

support. Big thanks to Geoffrey Longhurst for checking the English grammar and his interest

in these analyses. Huge thanks to my family and friends for the support during this master

thesis.

10. Kokkuvõte

Tartu observatooriumis aatomi kella jaoks ehitatud NTP-server on osaliselt täitnud selle

projekti eesmärgid. Töö käigus avastati, et Raspberry Pi3 B on sobivam valik NTP serverile

kui NanoPi NEO2. Uus NTP server suutis sünkroniseerida LAN-i seadmete UTC

ajastandardiga täpsusega 50 μs, nagu nõutud. Pärast tehtud mõõtmisi on parem mõista, kuidas

antud NTP-servereid parema jõudluse saavutamiseks parandada. Stressteste saab läbi viia

mitmel viisil, et tagada süsteemi samaaegne teenindamine paljudele klientidele. Töö käigus

ilmnes, et NanoPi NEO2 aja täpsus oli kehvem võrreldes Raspberry Pi3 B-ga ja seetõttu ei

olnud võimalik tagada 1 Gbit / s Etherneti võrgu võimekust. Põhjuse avastamiseks tuleb teha

täiendavaid analüüse. Tartu observatooriumi praegune NTP-serverarvuti asendatakse

võimsama Raspberry Pi3 B + -ga, kuna see tagab parema kohaliku Etherneti võrgu

võimekuse, toetades kuni 300 Mbit / s, millega saab teenindada rohkem kliente. Lõpetuseks,

kui nõuetekohane seadme korpus on teostatud, on vajalik paigaldada NTP-server vastavalt

standardtingimustele ja võrgu turvalisus tuleb hoolikalt seadistada.

Bibliography

[1] D. L. Mills, "The Network Time protocol on the earth and in space," in COMPUTER NETWORK

TIME SYNCHRONIZATION, 6000 Broken Sound Parkway NW, Suite 300, CRC Press is an imprint

of Taylor & Francis Group, an Informa business, 2011, p. 438.

[2] H. E. ,. S. ,. K. S. I. ,. O. ,. K. J. T. E. Iaroslav Iakubivskyi, "ESTCube-2 plasma brake payload for

effective deorbiting," in 7th European Conference on Space Debris, 2017.

[3] N. C. Limited., "UPUTRONICS," Nevis Computers Limited, 2012. [Online]. Available:

https://store.uputronics.com/.

[4] "DesignSpark PCB is a free-of-charge schematic capture and PCB layout tool for electronics design

automation," RS Components is a trading brand of Electrocomponents PLC, 2010," A. E. &. R.

components, 2010. [Online]. Available: https://www.rs-online.com/designspark/home.

[5] E. David Taylor, "Welcome to David & Cecilia Taylor's Web pages," 2019. [Online]. Available:

https://www.satsignal.eu/ntp/Raspberry-Pi-NTP.html.

[6] "NanoPi NEO2 Armbian," 2019. [Online]. Available:

wiki.friendlyarm.com/wiki/index.php/NanoPi_NEO2.

[7] J. L. P. L. A. M. R. M. E. U. David Braben, "Raspberry Pi 3 Model B," Raspberry Pi Foundation,

2016. [Online]. Available: https://www.raspberrypi.org/products/raspberry-pi-3-model-b.

[8] Trimble, "https://www.trimble.com," Trimble, 1978. [Online]. Available:

42

http://trl.trimble.com/docushare/dsweb/Get/Document-733639/.

[9] Trimble, "www.trimble.com," Trimble, [Online]. Available:

http://trl.trimble.com/docushare/dsweb/Get/Document-550718/GPSStudioUG_1B_August2011.pdf.

[10] UPUTRONICS, "UPUTRONICS," Limited., Nevis Computers, 2012. [Online]. Available:

https://store.uputronics.com/files/HAB-GPSPI+-ASSY.pdf.

[11] u.-b. i. a. S. company, "https://www.u-blox.com/en," u-blox is a Swiss company, 1997. [Online].

Available: https://www.u-blox.com/sites/default/files/MAX-M8-FW3_DataSheet_%28UBX-

15031506%29.pdf.

[12] u.-b. i. a. S. company, "u-blox.com," u-blox is a Swiss company, 1997. [Online]. Available:

https://www.u-blox.com/sites/default/files/products/documents/u-blox8-

M8_ReceiverDescrProtSpec_(UBX-13003221)_Public.pdf.

[13] C. Lisdat, "The most precise atomic clock ever made is a cube of quantum gas," New Scientist

Mazine, no. DOI: 10.1126/science.aam5538, 5 10 2017.

[14] Spectracom, "manuals.spectracom.com," Spectracom, 1972. [Online]. Available:

https://spectracom.com/sites/default/files/document-files/pendulum-gps-88_89_gps-controlled-

frequency-standards.pdf.

[15] David W. Allan Neil Ashby Clifford C. Hodge, "The Science of Timekeeping," in Application Note

1289, USA, Hewlett-Packard Company, 2019, p. 88.

[16] Lifewire, "What Is Trilateration," Lifewire, 10 2016. [Online]. Available:

https://www.lifewire.com/trilateration-in-gps-1683341.

[17] Masterclock, "www.masterclock.com," Masterclock, 2019. [Online]. Available:

https://www.masterclock.com/support/library/gps-network-time-synchronization.

[18] R. A. Nelson, D. D. McCarthy, S. Malys J. Levine, B. Guinot, H. F. Fliegel, R. L. Beard and T. R.

Bartholomew, "The leap second: its history and possible future," metrologia, no. Metrologia, 2001,

38, 509-529, p. 21, 1 5 2019.

[19] Marport, "www.marport.com," Marport, 2019. [Online]. Available:

http://www.marport.com/doc_web/PSY/topics/r-WinchNMEA.html.

[20] T. N. Limited, "www2.etown.edu/," Trimble Navigation Limited, 1999. [Online]. Available:

http://www2.etown.edu/wunderbot/DOWNLOAD/AgGPS114/TSIP%20Reference%20Manual%20-

%20Rev%20C.pdf.

[21] CISCO, "www.cisco.com," CISCO, 6 2012. [Online]. Available:

https://www.cisco.com/c/en/us/about/press/internet-protocol-journal/back-issues/table-contents-

58/154-ntp.html.

[22] N. T. University, "ccnet.ntu.edu.tw," National Taiwan University, 2003. [Online]. Available:

https://ccnet.ntu.edu.tw/english/ntp.html.

[23] D. Payette, "www.ntp.org," Network Time Protocol, [Online]. Available:

http://www.ntp.org/ntpfaq/NTP-s-algo.htm.

[24] t. f. e. From Wikipedia, "en.wikipedia.org," 4 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Year_2038_problem.

[25] L. Colorado, "stackoverflow.com," Luis Colorado, 2015. [Online]. Available:

https://stackoverflow.com/questions/29112071/how-to-convert-ntp-time-to-unix-epoch-time-in-c-

language-linux/29138806.

[26] T. C. C. f. S. D. Systems, "public.ccsds.org," The Consultative Committee for Space Data Systems,

10 2010. [Online]. Available: https://public.ccsds.org/Pubs/301x0b4e1.pdf.

[27] D. L. Mills, "www.ntp.org," Network Time Protocol, [Online]. Available:

http://doc.ntp.org/4.1.2/refclock.htm.

43

[28] D. Evans, "www.aplu.ch," [Online]. Available: http://www.aplu.ch/home/gpsclock.html.

[29] N. T. Protocol, "www.nwtime.org," Network Time Protocol, 7 9 2015. [Online]. Available:

https://www.nwtime.org/wp-content/uploads/2016/04/NTP-Handbook.pdf.

[30] t. f. e. From Wikipedia, "en.wikipedia.org," Wikipedia, 11 5 2019. [Online]. Available:

https://en.wikipedia.org/wiki/Julian_day.

[31] S. Allen, "www.astronomy.ohio-state.edu," 2011. [Online]. Available: http://www.astronomy.ohio-

state.edu/~pogge/Ast350/timesys.html.

[32] D. Taylor, "www.satsignal.eu," 1 1 2014. [Online]. Available:

https://www.satsignal.eu/software/net.htm.

[33] R. S. Connell, "github.com," 2016. [Online]. Available: https://github.com/rascol/Raspberry-Pi-

PPS-Client.

[34] H. Bruun, "www.ntp.567.dk," 24 1 2018. [Online]. Available:

http://www.ntp.567.dk/index.php?link=guides&link2=NTPtesttools.

Appendices

Appendix A GPS External Board PCB Layout

Figure 34: External GPS PCB board

44

Appendix B NanoPI NEO2 Server Installation
Please follow instructions below for installation:

1) SD card Formatter https://www.sdcard.org/downloads/formatter_4/

2) Win32 Disk Imager https://www.askvg.com/win32-disk-imager-write-any-bootable-

image-to-usb-drive-in-windows/

3) Download Armbian_5.65_Nanopineo2_Ubuntu_bionic_next_4.14.78 from

https://dl.armbian.com/nanopineo2/archive/

4) Format and install this image to Sandisk SD card min 16GB

5) Install Putty https://www.putty.org/

6) Connect to NEO2 as user: root, password 1234 , new username: miroNEO2

7) Install “WINscp” https://winscp.net/eng/download.php

8) # nano /boot/armbianEnv.txt

9) Add additional lines in line 4,5 into armbianEnv.txt bold:

i. verbosity=1

ii. console=both

iii. overlay_prefix=sun50i-h5

iv. overlays=uart1 pps-gpio

v. param_pps_pin=PA6

vi. rootdev=UUID=ee092379-cddf-4aff-beb3-7cc62d0fe9bd

vii. rootfstype=ext4

viii. usbstoragequirks=0x2537:0x1066:u,0x2537:0x1068:u

10) # sudo reboot

11) Check if PPS is registered in Kernel:

root@nanopineo2:~# dmesg | grep pps

[0.349310] pps_core: LinuxPPS API ver. 1 registered

[0.349314] pps_core: Software ver. 5.3.6 - Copyright 2005-2007 Rodolfo Giometti

<giometti@linux.it>

[4.185158] pps pps0: new PPS source pps@0.-1

[4.185226] pps pps0: Registered IRQ 63 as PPS source

root@nanopineo2:~# ls -l /dev | grep pps

crw------- 1 root root 252, 0 Jan 9 17:19 pps0

12) Install pps-tools for PPS verification

root@nanopineo2:~# apt install pps-tools

root@nanopineo2:~# ppstest /dev/pps0

13) Install Libpcap provides a portable framework for low-level network monitoring. Libpcap

can provide network statistics collection, security monitoring and network debugging:

root@nanopineo2:~# apt-get install libcap-dev

14) Now standard NTP package requires to be removed from the system.

root@nanopineo2:~# /etc/init.d/ntp stop

[ok] Stopping ntp (via systemctl): ntp.service.

root@nanopineo2:~# apt remove ntp

https://www.sdcard.org/downloads/formatter_4/
https://www.askvg.com/win32-disk-imager-write-any-bootable-image-to-usb-drive-in-windows/
https://www.askvg.com/win32-disk-imager-write-any-bootable-image-to-usb-drive-in-windows/
https://dl.armbian.com/nanopineo2/archive/
https://www.putty.org/
https://winscp.net/eng/download.php

45

15) Download and unpacked latest NTP daemon in our case ntp-4.2.8p12

root@nanopineo2:~# cd ~

root@nanopineo2:~# wget get http://archive.ntp.org/ntp4/ntp-4.2/ntp-4.2.8p12.tar.gz

root@nanopineo2:~# tar zxvf ntp-4.2.8p12.tar.gz

root@nanopineo2:~# cd ntp-4.2.8p12

16) New NTP daemon compiling procedure, now it is important that all necessary flags are

selected during compiling. In our scenario we need NMEA and TSIP(PALISADE) flags

for selected protocols and we compile with setting –j4 as nanopi has 4 cores.

root@nanopineo2:~/ntp-4.2.8p12# ./configure --enable-linuxcaps --enable-ATOM --

enable-NMEA --enable-ipv6 --enable-PALISADE --enable-all-clocks

root@nanopineo2:~/ntp-4.2.8p12# make –j4

root@nanopineo2:~/ntp-4.2.8p12# make install

17) Finally custom build of NTPD is was installed into /usr/local/sbin/ntpd, but default

location of NTPD is usr/sbin/ntpd, so order to run ntp service correctly we need to create

following links:

root@nanopineo2:~/ntp-4.2.8p12# ln -s /usr/local/bin/ntpd /usr/sbin/ntpd

root@nanopineo2:~/ntp-4.2.8p12# ln -s /usr/local/bin/ntpdc /usr/bin/ntpdc

root@nanopineo2:~/ntp-4.2.8p12# ln -s /usr/local/bin/ntpq /usr/bin/ntpq

root@nanopineo2:~/ntp-4.2.8p12# ln -s /usr/local/bin/ntpsweep /usr/bin/ntpsweep

root@nanopineo2:~/ntp-4.2.8p12# ln -s /usr/local/bin/ntptrace /usr/bin/ntptrace

18) Linux UBUNTU this specific build requires to activate the service as it is still inactive

after installation of this custom NTPD build, maybe not needed in Debian version.

root@nanopineo2:~# service ntp status

● ntp.service

 Loaded: masked (/dev/null; bad)

 Active: inactive (dead) ntpq -p

root@nanopineo2:~# systemctl unmask ntp.service

root@nanopineo2:~# service ntp enable

root@nanopineo2:~# service ntp start

root@nanopineo2:~# /etc/init.d/ntp restart

root@nanopineo2:~# ntpq -crv –pn

19) Custom installation NTP daemon has created ntp.conf in following directory

/run/ntp.conf.dhcp, this file has to be deleted as it is causing problem. Router is assigning

NTP information in DHCP which pi using over /etc/ntp.conf. The file in /etc/init.d/ntp file

will also require some small adjustments.

root@nanopineo2:~# rm /run/ntp.conf.dhcp

root@nanopineo2:~# rm /etc/dhcp/dhclient-exit-hooks.d/ntp

20) Firstly we modify etc/init.d/ntp so that after every reboot ntp service will initialize from

/etc/ntp.conf.

http://archive.ntp.org/ntp4/ntp-4.2/ntp-4.2.8p12.tar.gz

46

Secondly we create symlink for NMEA or TSIP protocol so that after every restart of

system symlink will be created automatically.

Time can updated time after every reboot by command ntpdate -u and

hwclock –w.

root@nanopineo2:~# nano /etc/init.d/ntp

Modify lines 25 and 26 as follows:

if [-e /run/ntp.conf.dhcp]; then

if [-e /etc/ntp.conf]; then

NTPD_OPTS="$NTPD_OPTS -c /run/ntp.conf.dhcp"

NTPD_OPTS="$NTPD_OPTS -c /etc/ntp.conf"

Add these lines into structure case$1 in ntp and close the file

log_daemon_msg "Initializing SMLINK" "ntpd"

ln -s /dev/ttyS1 /dev/gps0 #NMEA

#ln –s /dev/ttyS1 /dev/palisade0 #TSIP

#stty -F /dev/ttyS1 9600 cs8 -cstopb parodd parenb raw #TSIP

#stty -F /dev/ttyS1 9600 cs8 -cstopb parodd parenb #NMEA

log_daemon_msg "Pre-synchronizing time" "ntpd"

ntpdate -u ee.pool.ntp.org

hwclock -w

log_daemon_msg "Starting NTP server" "ntpd"

root@nanopineo2:~# reboot

21) The next is setting of ntp.conf file for NMEA, TSIP and SHM these lines have to be added

into etc/ntp.conf.

#Pulse Per Second ATOM clock

server 127.127.22.0 minpoll 4 maxpoll 4

fudge 127.127.22.0 refid PPS

TSIP (PALISADE) The Primary reference direct setting without GPSD service

server 127.127.29.0 # Trimble Palisade GPS (Stratum 1).

Set packet delay

fudge 127.127.29.0 time1 0.020

and set flag2 to turn off event polling.

fudge 127.127.29.0 flag2 1

#NMEA direct setting without GPSD service

server 127.127.20.0 mode 16 minpoll 4 maxpoll 4 prefer

fudge 127.127.20.0 refid NMEA

SHM(share memory driver) time reference-clock - nearest second supported by

GPSD service

server 127.127.28.0 minpoll 4 maxpoll 4 iburst prefer

fudge 127.127.28.0 time1 +0.535 flag1 1 refid GPSD stratum 1

47

#Server for the reference

server 2.ee.pool.ntp.org

server 2.europe.pool.ntp.org

server 0.europe.pool.ntp.org

#Additional logging for debugging

logfile /var/log/ntp

logconfig =all

22) GPSD service installation

root@nanopineo2:~# apt-get update

root@nanopineo2:~# apt-get install gpsd

root@nanopineo2:~# apt-get install gpsd-clients

root@nanopineo2:~# nano /etc/default/gpsd

START_DAEMON="true"

USBAUTO="false"

DEVICES="/dev/ttyS1"

GPSD_OPTIONS="-n"

root@nanopineo2:~# reboot

23) Optionally, the aforementioned symlinks can be created using udev rules. For example,

the following creates a symlink /dev/gps0 that points to /dev/ttyS1 with read-write access

to all users:

root@nanopineo2:sudo nano /etc/udev/rules.d/10-gps.rules

KERNEL=="ttyS1",SYMLINK+="gps0",MODE="0666"

KERNEL=="pps0",MODE="0666"

24) Useful command, GPSD service helps for diagnosis:

root@nanopineo2:~# service gpsd stop

root@nanopineo2:~# gpsd -N -n -D 3 /dev/palisade0

 root@nanopineo2:~# gpsd -n -N -D4 /dev/palisade0

25) Other Useful command for debugging using GPSD service

root@nanopineo2:~# ls –lah

root@nanopineo2:~# ls –lah /dev/gps0

root@nanopineo2:~# sudo stty -a -F /dev/ttyS1

root@nanopineo2:~# chown ntp:ntp /var/lib/ntp/

root@nanopineo2:~# ntptime

48

Appendix C NTP Client PPS driver generator installation

When NTP server is ready next task would be establish PPS client by adding kernel module to

the kernel. This requires solving some few points.

1. Order to use system function of kernel it is necessary to install custom kernel image.

2. Once done client PPS driver generator will be programmed in C and added as module

to custom kernel.

3. When driver added to kernel small script in C++ requires to be programmed to execute

driver in command line.

4.

Recompiling kernel

1) First before we recompile kernel, let’s check if the system is up to date. Custom kernel

build was tested with Linux raspberrypi 4.14.98-v7+ [33]

~ $ sudo apt-get update

~ $ sudo reboot

2) Let’s setup builder folder in home file

~ $ mkdir rpi

~ $ cd rpi

3) Get missing decencies

~ /rpi $ sudo apt-get install bc

4) Check if you have installed git:

~ $ sudo apt-get install git

5) For retrieving the Linux source get the rpi-source script:

~/rpi $ sudo wget https://raw.githubusercontent.com/notro/rpi-source/master/rpi-source -O

/usr/bin/rpi-source && sudo chmod +x /usr/bin/rpi-source && /usr/bin/rpi-source -q --tag-

update

6) Run the script to download the Linux source that matches the installed version of Linux on

your RPi:

~/rpi $ rpi-source -d ./ --nomake –delete

7) On the RPi,

~/rpi $ cd linux

~/rpi/linux $ KERNEL=kernel7

~/rpi/linux $ make bcm2709_defconfig

8) Recompile kernel

 ~/rpi/linux $ make -j4 zImage

9) Download PPS driver with scrip from https://github.com/ryzic/IMPULSE.git and follow

instruction for installation.

https://github.com/ryzic/IMPULSE.git

49

Appendix D Single-computer board performance optimization

NanoPi NEO2 CPU isolation and taskset

1) For the NanoPi NEO2 requires “isolcpus” command to be added at the very end of

/boot/boot.cmd , isolating of fourth core can be done with argument isolcpus=3.

setenv bootargs "root=${rootdev} rootwait rootfstype=${rootfstype} ${consoleargs}

hdmi.audio=EDID:0 disp.screen0_output_mode=${disp_mode} panic=10 consoleblank=0

loglevel=${verbosity} ubootpart=${partuuid} ubootsource=${devtype} usb-

storage.quirks=${usbstoragequirks} ${extraargs} ${extraboardargs} isolcpus=3"

2) Then the boot script has to be recompiled by following command:

root@nanopineo2:~# mkimage -C none -A arm -T script -d /boot/boot.cmd /boot/boot.scr

root@nanopineo2:~# reboot

3) Checking if isolation command of core was successful:

root@nanopineo2:~# sudo cat /sys/devices/system/cpu/isolated

4) Taskset function to assing isolated to core to NTP PID displayed in top command.

root@nanopineo2:~# sudo taskset -pc 3 714

5) For displaying CPU ID launch htop from the command line. Press <F2> key, go to

"Columns", and add PROCESSOR under "Available Columns.

Raspberry Pi 3B CPU isolation and ROOT user

1) For the NanoPi NEO2 requires “isolcpus” command to be added at the very end of

/boot/cmdline.txt, isolating of fourth core can be done with argument isolcpus=3

pi@raspberrypi:~ $ sudo nano /boot/cmdline.txt

wc_otg.lpm_enable=0 console=serial0,115200 console=tty1 root=/dev/mmcblk0p7

rootfstype=ext4 elevator=deadline fsck.repair=yes rootwait splash plymouth.ignore-serial-

consoles isolcpus=3

pi@raspberrypi:~ $ sudo reboot

2) Repeat step 3,4,5 as in NanoPi NEO2 in section 3.5.1.

3) Adding user root on Raspberry you have to change password and add “PermitRootLogin

yes” at the end of the file /etc/ssh/sshd_config and reboot

pi@raspberrypi:~ $ sudo passwd root

pi@raspberrypi:~ $ sudo nano /etc/ssh/sshd_config

50

CPU frequency adjustment

Adjust serial connection latency and set up the highest frequency of the CPU. []

echo "performance" > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

setserial /dev/ttyAMA0 low_latency

echo FREQ > /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq

Appendix E Traffic test [34]

1) Install TCP dump for NTP packets monitoring .

pi@raspberrypi:~ $ sudo apt-get install tcpdump

pi@raspberrypi:~ $ tcpdump udp port 123

2) Download little c program ntpload3.c

pi@raspberrypi:~ $ gcc ntpload3.c -o ntpload3

pi@raspberrypi:~ $./ntpload3 192.xxx.x.xxx

3) These lines below has to be commented out in ntp.conf for allowing traffic to go through.

#restrict -4 default kod notrap nomodify nopeer noquery

#restrict -6 default kod notrap nomodify nopeer noquery

51

Appendix F Sample code

C function, the PPS driver generates 1 PPS 500 µs length at the each fractional second by

timeout on defined GPIO output on the single board computer through system call function in

kernel gettimeofday(&tv).

Figure 35:PPS driver generator code sample

52

Appendix G Displayes example of two NTP servers and one NTP

client through PUTTY interface

Figure 36: On the top NanoPI NEO2 NTP client in the middle NTP TSIP server and on the

bottom NTP NMEA server.

53

I, Miroslav Rolko,

1. here with grant the University of Tartu a free permit (non-exclusive licence) to reproduce,

for the purpose of preservation, including for adding to the DSpace digital archives until

the expiry of the term of copyright,

“Development and performance analysis of the Network Time Protocol Server”

supervised by Viljo Allik and Indrek Sünter.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available to

the public via the web environment of the University of Tartu, including via the DSpace

digital archives, under the Creative Commons license CC BY NC ND 3.0, which allows,

by giving appropriate credit to the author, to reproduce, distribute the work and communicate

it to the public, and prohibits the creation of derivative works and any commercial

use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive license does not infringe other persons’ intellectual

property rights or rights arising from the personal data protection legislation.

Miroslav Rolko

21.05.2019

