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REVIEW

Mechanisms of Action and Clinical Development
of Elotuzumab

David Ritchie1,∗ and Marco Colonna2

INTRODUCTION

Multiple myeloma (MM) is a malignant disease of plasma
cells, with a 5-year relative survival rate lower than 50%.1 In
recent years, the introduction of proteasome inhibitors (PIs)
and immunomodulatory drugs has improved treatment out-
comes, leading to the standard of care consisting largely of
immunomodulatory drug- and PI-based regimens, or triplet
therapy involving a combination of both.2 Nonetheless, MM
remains largely incurable and there is an unmet need for addi-
tional therapies.
Immunotherapy is a rapidly emerging area in cancer treat-

ment. Immuno-oncology (I-O) agents (such as the anti-
signaling lymphocytic activationmolecule F7 (SLAMF7)mon-
oclonal antibody elotuzumab) enhance the immune response
against cancer cells, either by directly stimulating the activ-
ity of immune cells or by targeting specific cell surface tumor
antigens.3

Until recently, use of immunotherapy in MM has faced
two major hurdles. First, suitable targets on plasma cells
have been elusive. Second, the immune system in patients
with MM is significantly impaired (e.g., functional defects in
T cells, B cells, natural killer (NK) cells, and dendritic cells),4

resulting in defective endogenous immune responses, partic-
ularly in adaptive immunity. Despite these limitations, recent
clinical data suggest that immune effectors retain sufficient
functionality in MM to mediate significant clinical benefit
when I-O agents targeted to appropriately expressed anti-
gens are given.5

In addition to elotuzumab, the anti-CD38 antibodies
daratumumab, isatuximab, and MOR202, and the antikiller
cell immunoglobulin-like receptor (KIR) 2DL1/2/3 antibody
lirilumab, are examples of immunostimulatory antibodies
approved or in development for the treatment of MM.6–10

Daratumumab (in patients who have received at least three
prior treatments) and elotuzumab (combined with lenalido-
mide and dexamethasone (Ld) in patients who have received
one to three prior therapies) were approved in November
2015 by the US Food and Drug Administration (FDA) for MM
treatment.7,8 In May 2016, this combination of elotuzumab
with Ld was approved for use in Europe in adult patients with
MM who had received at least one prior therapy.11 Daratu-
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mumab received FDA approval in November 2016, for use
in combination with Ld, or with bortezomib and dexametha-
sone, in patients who had received at least one prior ther-
apy. In June 2017, it was approved for use, in combination
with pomalidomide and dexamethasone, in patients who had
received at least two prior therapies, including lenalidomide
and a PI.12–14

The introduction of immunotherapies may lead to improve-
ments in MM treatment outcomes, as agents such as elo-
tuzumab have the potential to induce a long-term immune
response coupled with a durable clinical benefit,15 which
reflects amechanism of action and response kinetics that dif-
fer from that of conventional chemotherapeutic regimens.16

This review discusses the novel dual immunotherapeutic
mechanism of action of elotuzumab and its associated clini-
cal outcomes.

PATHOPHYSIOLOGY OF MM AND RELATIONSHIP
WITH SLAMF7
SLAMF7 structure and expression
SLAMF7 is a member of the SLAM family of receptors, which
are involved in cytotoxicity, humoral immunity, autoimmunity,
cell survival, cell adhesion, and lymphocyte development.17

SLAMF7 is a cell surface transmembrane molecule
(Figure 1).18–20 The extracellular region consists of two
immunoglobulin (Ig) superfamily domains containing several
N-glycosylation sites. The hydrophobic transmembrane
region is followed by a cytoplasmic region containing
four tyrosine-based motifs, two of which recruit signaling
proteins.18–20 Using gene expression profiling or anti-
SLAMF7 antibody, SLAMF7 was found to be expressed
in malignant hematopoietic cells, normal NK cells, CD8+

T cells, a subset of CD4+ T cells, plasmacytoid dendritic
cells, B cells,18,21 activated monocytes, and mature dendritic
cells.21 Normal nonlymphoid tissues tested negative for
SLAMF7 expression.21

SLAMF7 is highly expressed in myeloma plasma cell sam-
ples and in plasma cells from patients with asymptomatic
MM (smoldering MM and monoclonal gammopathy of unde-
termined significance).21 Expression is also maintained in
patients who have received prior MM treatment—SLAMF7
gene expression was found to be comparable in previously
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Figure 1 Signaling lymphocytic activation molecule F7 (SLAMF7) structure and signaling mechanism. SLAMF7 is a self-ligand that recog-
nizes and binds to SLAMF7 on other cells (e.g., myeloma cells can bind to other myeloma cells via SLAMF7 coupling). Natural killer (NK)
cell activation after SLAMF7 coupling is dependent on Ewing’s sarcoma-associated transcript 2 (EAT-2) signaling. Ig, immunoglobulin;
ITSM, immunoreceptor tyrosine-based switch motif; SH2, Src homology 2.

untreated patients both before and after a single dose of
bortezomib.22

ELOTUZUMAB: AN I-O AGENT THAT DIRECTLY
ACTIVATES NK CELLS AND INDUCES
ANTIBODY-DEPENDENT CELLULAR CYTOTOXICITY

Elotuzumab is a humanized, IgG1 anti-SLAMF7 monoclonal
antibody that elicits its effect via a dual mechanism of action:
direct activation of NK cells and antibody-dependent cellular
cytotoxicity (ADCC; Figure 223). Using a cytotoxicity assay
thatmeasures granzymeB secretion, coupling of elotuzumab
to SLAMF7 on NK cells has been shown to cause granzyme
B release targeted against myeloma cells,24 a process that is
independent from CD16-mediated ADCC.
Although NK cell activation and ADCC are the most

researched mechanisms of action for elotuzumab, it is
likely that elotuzumab exerts additional effects on the
immune system via other SLAMF7-positive cells (e.g., CD8+

T cells, monocytes, and dendritic cells).17,18,21,25 For exam-
ple, SLAMF7 expression on dendritic cells21 may trigger
antitumor cellular immunity. Treatment with elotuzumab has
been shown to reduce myeloma tumor burden in a xenograft
model with defective NK cells in a CD16-dependent man-
ner, suggesting that mechanisms other than ADCC and direct
activation of NK cells may mediate the antitumor effect
of elotuzumab.26 Other hypotheses include the possibility
that elotuzumab may inhibit plasmacytoid dendritic cells,
which have been implicated in myeloma cell growth and
survival.18,21,25 Taken together, further preclinical research
is warranted to establish whether elotuzumab elicits an
effect via mechanisms other than NK cell activation and
ADCC.

NK cell

EAT-2
CD16

SLAMF7

B

A

Elotuzumab SLAMF7

Myeloma
cell

Figure 2 Elotuzumab mechanism of action. Elotuzumab primar-
ily acts by activating natural killer (NK) cell–mediated killing
of myeloma cells via antibody-dependent cellular cytotoxicity
(A). Elotuzumab also directly activates NK cells to kill myeloma
cells (B). EAT-2, Ewing’s sarcoma-associated transcript 2;
SLAMF7, signaling lymphocytic activation molecule F7. Figure
from Lonial, S. et al. Expert Opin. Biol. Ther. 16, 1291–1301 (2016).
Reprinted with permission from Taylor & Francis C© 2016.

ELOTUZUMAB MECHANISM OF ACTION
DOWNSTREAM OF SLAMF7 SIGNALING

SLAMF7 is a homotypic receptor that recognizes and binds
to SLAMF7 on other cells, thus allowing myeloma cells to
adhere to other myeloma cells or to conjugate with NK cells.
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Figure 3 Kaplan–Meier curves showing progression-free survival (PFS) in patients with relapsed or refractory multiple myeloma receiving
elotuzumab plus lenalidomide and dexamethasone (“Elotuzumab”) or lenalidomide and dexamethasone (“Control”). Figure from Lonial,
S. et al. Elotuzumab therapy for relapsed or refractory multiple myeloma. N. Engl. J. Med. 373, 621–631. C©2015 Massachusetts Medical
Society. Reprinted with permission from Massachusetts Medical Society.

NK cells are involved in the immune defense against trans-
formed cells,27 such as myeloma cells. This process is regu-
lated by their expression of inhibitory or activating receptors.
However, in patients with MM, changes in NK cell receptors
may enablemyeloma cells to evade immunosurveillance.28–30

Activation of NK cells following SLAMF7 coupling is
dependent on the SLAM-associated protein Ewing’s
sarcoma-associated transcript 2 (EAT-2), which binds
to the cytoplasmic domain of SLAMF7 (Figure 1).18–20 EAT-2
expression is high in NK cells freshly isolated from blood
or cultured in interleukin-2, and in NK cell lines,20 but it
is not expressed by CD4+ T cells, B cells, dendritic cells,
or myeloma cells; hence, these cells are not activated by
SLAMF7–SLAMF7 coupling.19,20

The importance of SLAMF7 in mouse NK cell activation
has been demonstrated.31 In SLAMF7-deficient mice, NK
cells lacked all cell surface expression of SLAMF7 (con-
firmed by immunoblot analysis), whereas other SLAM fam-
ily receptors and SLAM-associated protein-related adaptors
were unchanged.31 These mice failed to show cytotoxicity
towards target cells expressing SLAMF7. EAT-2 involvement
was established by examining the effects of the absence of
EAT-2 on the NK cell-activating function of SLAMF7. Func-
tion was impaired in NK cells isolated from mice with inac-
tivating mutations in EAT-2.31 Taken together in the pres-
ence of EAT-2, SLAMF7 coupling activates NK cells, but in
its absence this activation is lost and NK cell function is
inhibited.31

In ADCC, the Fab portion of elotuzumab binds to SLAMF7
on myeloma cells and the Fc portion binds to the Fc recep-
tor CD16 (FcγRIII) on NK cells,31,32 tagging myeloma cells
for ADCC and myeloma cell death via the release of cyto-
toxic granules.24 ADCC occurs in a dose-dependent man-
ner against SLAMF7-expressing cell lines, and in patients
with newly diagnosed MM as well as in patients resis-
tant to conventional therapies.33 Blocking the Fc recep-

tor on NK cells with an anti-CD16 antibody inhibits this
action.21

ELOTUZUMAB CLINICAL OUTCOMES
Efficacy
In addition to the preclinical studies on elotuzumab and
SLAMF7 described above, the efficacy of elotuzumab in
combination with approved agents has been assessed
in a number of clinical trials: in combination with Ld
(ELd) in the ELOQUENT-2 study (NCT01239797) and in
combination with bortezomib and dexamethasone (EBd)
in study 009 (NCT01478048).5,15,34,35 Other ongoing elo-
tuzumab clinical trials are using alternative combinations,
such as pomalidomide and dexamethasone (EPd),36,37 and
there are immunotherapies currently in development—for
example, elotuzumab in combination with the anti-KIR anti-
body lirilumab.6

The phase III ELOQUENT-2 study assessed ELd vs. Ld
alone in patients with relapsed or refractorymultiplemyeloma
(RRMM).5 In the primary analysis, ELd reduced the risk of dis-
ease progression or death by 30% vs. Ld (hazard ratio (HR)
0.70; 95% confidence interval (CI) 0.57, 0.85; P< 0.001), with
an early separation between the Kaplan–Meier progression-
free survival (PFS) curves that was maintained over time
(Figure 3).5 The observed early curve separation may be
attributed to the conventional therapy backbone (Figure 4).38

Median PFS was 19.4 months with ELd vs. 14.9 months with
Ld; PFS at 1 year was 68% in the ELd arm vs. 57% in the
Ld arm; at 2 years, it was 41% vs. 27%, respectively.5 The
overall response rate (ORR) was 79% in the ELd arm vs. 66%
in the Ld arm (P < 0.001).5

I-O agents exhibit response kinetics defined by the build-
ing of a cellular immune response, followed by tumor
regression. This is associated with durable clinical benefit
thatmay persist after the therapy is discontinued,16,39–41 lead-
ing to long-term survival benefits. Thus, an immunotherapy-

www.cts-journal.com
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Figure 4 Kaplan–Meier curves showing (A) progression-free
survival (PFS) and (B) overall survival (OS) in patients with
relapsed or refractory multiple myeloma receiving lenalidomide (L)
and/or dexamethasone (d/Dex). Reprinted with permission from
Macmillan Publishers: Dimopoulos, M.A. et al. Leukemia 23, 2147–
2152 (2009), C©2009.

specific approach with end points that reflect the increased
durability of response is required for assessment of I-O
therapy outcomes. Such end points may include long-term
follow-up, timepoint analyses of survival, and HRs over the
study duration.16

Extended 3-year follow-up of ELOQUENT-2 demonstrated
that ELd reduced the risk of disease progression or death by
27% (HR 0.73; 95% CI 0.60, 0.89; P = 0.0014).15 The sep-
aration between the Kaplan–Meier curves for PFS in the pri-
mary analysis was maintained in the 3-year follow-up, show-
ing long-term durability of response with ELd vs. Ld alone.5,15

The 3-year PFS was 26% and 18% in the ELd vs. Ld arm,
respectively, indicating a relative improvement in PFS of 44%
at 3 years, while ORR was 79% with ELd and 66% with Ld
(P = 0.0002).15 An interim overall survival (OS) analysis
demonstrated a strong trend in favor of ELd (HR 0.77; 95%
CI 0.61, 0.97; P = 0.0257), in which there was a clear sepa-
ration in the tail end of the Kaplan–Meier curves (Figure 5).15

Median (95% CI) OS was 43.7 months (40.3, not estimable
(NE)) in the ELd arm and 39.6 months (33.3, NE) in the Ld
arm.15 The 4-year PFS data support a sustained durable PFS
benefit with ELd in comparison with Ld, showing a relative
improvement in PFS of 50% (PFS rates of 21% vs. 14%)
and a reduction in the risk of progression or death of 29%
(HR 0.71; 95% CI 0.59, 0.86) consistent with prior follow-
up analysis.42 The OS trend in favor of ELd was also sus-
tained at the 4-year follow-up (HR 0.78; 95% CI 0.63, 0.96;
non-prespecified OS analysis), with a median (95% CI) OS
of 48 months (40.3, 54.4) and 40 months (33.3, 45.4) for ELd
and Ld, respectively.42 Long-term survival follow-up is still
ongoing.

The extended 3-year follow-up of ELOQUENT-2 also
demonstrated that ELd reduces the risk of starting a sub-
sequent line of therapy during follow-up by 38% (HR 0.62;
95%CI 0.50, 0.77).15 Median (95%CI) time to next treatment
(TTNT) was 33 months (26.2, 40.2) with ELd vs. 21 months
(18.1, 23.2) with Ld, revealing that ELd-treated patients had
a median delay of 1 year in TTNT vs. Ld-treated patients,15

which may be indicative of extended PFS and longer OS.
Study 009, a proof-of-concept, open-label, phase II study,

assessed EBd or bortezomib and dexamethasone (Bd) alone
in patients with RRMM.35 In the primary analysis, the study
met the primary end point of PFS: the HR was 0.72 (70% CI
0.59, 0.88; stratified log-rank P = 0.09), representing a 28%
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plus lenalidomide and dexamethasone (“Elotuzumab”) or lenalidomide and dexamethasone (“Control”). Figure from Dimopoulos, M.A.
et al. Br. J. Haematol. 178, 896–905 (2017). Reprinted with permission from John Wiley & Sons C©2017.
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reduction in the risk of disease progression or death.35 In an
updated analysis performed 1 year after the primary analysis,
ORR (95% CI) was 66% (55%, 77%) in the EBd arm and
63% (51%, 74%) in the Bd arm.35 Early OS results favored
EBd, revealing an HR of 0.61 (70% CI 0.43, 0.85).35 Although
these data suggest a survival benefit with EBd over Bd, with
a tail-end separation in the Kaplan–Meier curves35 as seen in
ELOQUENT-2,15 it is too early to draw firm conclusions and
longer-term follow-up is ongoing.

Safety and tolerability
The safety and tolerability of elotuzumab has been shown
to be consistent across clinical studies, which demonstrated
minimal incremental toxicity with the addition of elotuzumab
to established regimens. This may be due to the lack of
SLAMF7 expression in normal tissue,21 limiting the toxicity
associated with SLAMF7-targeted therapy with elotuzumab.
The most common adverse events (AEs) of any grade in

the ELOQUENT-2 study were lymphocytopenia (ELd, 99%;
Ld, 98%), anemia (ELd, 96%; Ld, 95%), and thrombocytope-
nia (ELd, 84%; Ld, 78%).5 Infusion reactions (IRs), which are
commonly associated with antibody therapy and included
pyrexia, chills, and hypertension, were reported in 10% of
patients receiving ELd, most of which were Grade 1 or 2 in
severity.5 Importantly, safety and tolerability data from the 3-
and 4-year extended follow-up of ELOQUENT-2 are consis-
tent with the primary analysis.15,42 In the 009 study, infection
(67%), diarrhea (44%), and constipation (40%) were the most
common AEs of any grade in the EBd arms, compared with
infection (53%), peripheral neuropathy (36%), and diarrhea
(33%) in the Bd arm. The rate of IRs in the 009 study was low;
only 5% of patients experienced IRs, all of which occurred in
the EBd arm and were Grade 1 or 2 in severity.35

Initial data from study 142 (NCT02612779), an ongoing,
phase II, multicenter, single-arm study of EPd in patients
with RRMM, indicated that the combination is well tolerated,
with a safety profile consistent with ELd.37 Efficacy data from
this study will inform therapeutic decisions regarding EPd for
patients who experience relapse after, or are refractory to,
lenalidomide.

SUMMARY

The data described herein indicate that the I-O agent elo-
tuzumab, when combined with Ld or Bd, provides a durable
and clinically meaningful benefit for patients with RRMM.
The clinical efficacy data presented could result from elo-
tuzumab inducing long-term effects in the immune sys-
tem, as has been shown with other immunotherapies. Mea-
surable antitumor activity may take longer to appear with
immunotherapies, as responses to such therapies may occur
after apparent disease progression, and discontinuation of
therapymay not always be appropriate.43 Taking these points
into consideration, since a clinical response can take longer
to become apparent with immunotherapies than with con-
ventional regimens, caution should be exercisedwhen decid-
ing to terminate therapy with an I-O agent. In the future, it
will be important to establish how prior treatment regimens,
which may affect immune system function, impact further
treatment decisions (i.e., elotuzumab plus anti-KIR agents

or programmed death-1 inhibitor combination therapies). It
is evident that additional analyses such as TTNT should
be considered when measuring response to treatment with
I-O agents, as current standards may not take into consid-
eration delayed clinical benefits or the durability of response
vs. the fast/deep responses seen with some regimens; these
durable responses have been demonstrated with I-O agents,
including elotuzumab.
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