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Abstract 

 During the first month of a human pregnancy folic acid (FA) is vital to the closing of the 

neural tube. However, overconsumption of FA has been linked to the rise of Autism Spectrum 

Disorder (ASD), although this linkage is still under debate and testing. It has been hypothesized 

that the glutamate (GA) portion of FA may compete for binding to the N-methyl-d-aspartate 

receptor (NMDA-R) with the neurotransmitter glutamate, causing inhibited growth cone activity. 

In order to test this hypothesis, we cultured eight-day chick dorsal root ganglia (DRGs) and 

assessed parameters of neural development in the presence of FA, GA, or both and compared 

these to controls. We found that neurite number was initially inhibited by both FA and GA, 

though the GA was no longer inhibitory in the more advanced DRGs. Furthermore, when the two 

were combined the GA partly overcame the FA’s inhibition. We found no consistent effects on 

neurite length, or on dynamic activity of neurites and growth cones. We found that both agents 

inhibited synaptogenesis. Additionally, we found that synaptogenic area was increased as the 

DRGs advanced. 
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Introduction 

 Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects an 

individual’s ability to interact socially (Mayo Clinic, 2018). In the United States approximately 

one in 88 children is affected by ASD. More males are affected by ASD with one in 54 males 

and one in 252 females being diagnosed with ASD (Centers for Disease Control and Prevention, 

2012). The average cost of needs throughout the entire life of an individual affected by ASD is 

$2.4 million (Buescher et al., 2014). The high cost can place a strain on families so, in order to 

minimize costs, researchers are looking for effective therapies for the individuals who may need 

them. In order to find effective therapies, it would be beneficial to understand what factors may 

lead to ASD, which have led to many studies such as this one investigating a potential cause for 

ASD. 

 ASD is considered a spectrum due to the range of differing effects and the severity of 

these effects. Some differences in individuals affected by ASD can include difficulty interacting 

with others, difficulty communicating, sensitivity to light or sound, fixations on different objects, 

and repetitive behaviors. Children affected by ASD may not exhibit these behaviors initially, but 

most individuals show symptoms by the time they are two years old (Mayo Clinic, 2018). The 

reason that some children are born with ASD is not fully understood and many supplements and 

genetic factors are being tested in order to determine potential causality. One supplement being 

investigated is folic acid (FA). 

 FA is a B9 vitamin utilized for many DNA processes including methylation, repair, and 

synthesis (Shane, 2010). It has been found to be important in preventing major birth defects 

during the first month of pregnancy. The current recommendation is for women to take FA 
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during pregnancy and while she is trying to conceive (Folic Acid, 2017). One portion of FA is 

glutamate, which is a form of glutamic acid that contains one less hydrogen. 

 

 

Figure 1. Folic acid with glutamic acid section labeled.  

 

Glutamic acid (GA) is a commonly found neurotransmitter and binds to the N-methyl-D-

aspartate receptor (NMDA-R) during development in utero (Ebert and Greenburg, 2013). The 

NMDA-R controls the channels of ions such as Na+, K+, and Ca2+ (Ebert and Greenburg, 2013).  

When GA binds to the NMDA-R the concentrations of these ions change on either side of the 

channel. Changes in Ca2+concentrations are particularly important as they affect the formation of 

connections in the brain (Gill et al., 2015). Different connections may change how the brain 

functions, potentially leading to conditions such as ASD. This means that a decreased or 

increased occurrence of binding to the NMDA-R may change how the brain develops. 

Furthermore, if FA is competing with GA then the amount of binding may change, potentially 

leading to the aforementioned connectivity differences. 

 A model system for neural development is required to test for differences in connectivity. 

Chicken embryos have been previously used as such a model (Cohen et al., 1954; Levi-

Montalcini, 1964; Letourneau, 1975), and so chicken dorsal root ganglion (DRGs) were selected 

as the model for this study. DRGs are found along the spinal column and eight-day old chicken 
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embryos provide a viable source of these. The DRGs can be cultured and the process of 

synaptogenesis can be observed as growth cones lead the neurites to extend and retract. 

Typically, after the DRG innervates the spinal cord to connect it to the peripheral receptors it 

begins the aforementioned process of neurogenesis in order to establish synaptic networks 

(Wiens et al., 2016).  

Purpose 

 The overconsumption of an important maternal supplement, FA, has been potentially 

linked to a rise in the occurrence of ASD (Beard et al, 2011; Barua et al, 2015). FA is known to 

be structurally similar to the neurotransmitter glutamic acid, which is important to brain 

development. It has been suggested that this structural similarity may cause competition to bind 

to a receptor in the brain, which would change concentrations of chemicals during brain 

development, potentially causing ASD (Wiens, 2016). The competition between FA and the 

structurally similar neurotransmitter, glutamic acid, will be investigated in this study. 
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Literature Review 

Folic Acid Supplementation 

Nervous system formation begins with the thickening of the ectoderm of an embryo. The 

thickened ectoderm will become the neural plate, which will fold up, forming the neural groove. 

The groove will extend down length of the embryo and close, forming the neural tube. The 

neural tube will become the brain and spinal cord as development progresses. Without closure of 

the neural tube, the brain and spinal cord will not correctly develop (see Figure 2), leading to a 

variety of birth defects such as spina bifida and anencephaly (Greene & Copp, 2009). 

 
Figure 2. Neural tube closure defects 

 

During the first month of a human pregnancy a multivitamin supplement including FA is 

vital to the closing of the neural tube (Källén, 2017).  While the reason for the necessity of FA in 

this process is not yet completely understood, it is known that the intake of multivitamin 

supplements that include FA during the first month of pregnancy decreases the likelihood of 

birth defects such as spina bifida and anencephaly. Spina bifida is due to a failure of a caudal 

portion of the neural tube to close and can lead to issues such as partial paralysis (Mayo Clinic, 

2018). Anencephaly is caused by the failure of a cranial portion of the neural tube to close which 

leads to incomplete skull and brain development, usually resulting in the infant’s death (Centers 
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for Disease Control and Prevention, 2017). While vitamin supplements that include FA are 

necessary in preventing these defects and can be found in many foods such as leafy green 

vegetables, meats, nuts and dairy products, many people are unable to afford or access some of 

these food items (Wiens et al., 2016). FA is additionally important in the human body’s 

metabolic methylation process. Methylation is a process where a methyl group is added on to a 

strand of DNA, where the methyl group then helps with gene regulation and protection of the 

DNA molecule. FA provides the necessary methyl groups for this process. It can also add methyl 

groups to homocysteine to synthesize methionine, an amino acid that is important for growth and 

development and will prevent the accumulation of homocysteine, which can cause 

malformations in embryos and lead to vascular disease in adults (Rosenquist, 2013).  In 1998, the 

government decided to add FA to many grain and cereal products in order to supplement the 

diets of those unable to purchase foods rich in FA (US Food and Drug Administration, 1996). 

 The ample access to foods containing FA, the physician-recommended vitamin 

supplementation, as well as the often-repeated knowledge of the importance of FA to the diet of 

pregnant women has led to an overconsumption of FA. The overconsumption of FA has been 

noted due to its excessive presence in maternal plasma (Sweeney et al., 2006) and even umbilical 

cord blood (Obeid et al., 2010).  Excessive FA has been linked to the rise of ASD (Beard et al. 

2011), although this linkage is still under debate and testing (Choi et al., 2014). 

Potential Competition at NMDA-R 

  It has been found by Wiens et al. (2016) that FA inhibits growth cone activity, synapse 

formation, and neurite extension, and the effects increase with increased concentration of FA, 

(Wiens et al., 2016). It is not yet known how FA causes these changes, but it is suspected to be 

related to the glutamate structure located at one end (Wiens, 2016).  GA is one of the most 
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common excitatory neurotransmitters and is associated with the receptor NMDA-R. The NMDA 

receptor can be found in presynaptic neurons and it serves to regulate neurotransmitters. The 

NMDA-R is involved in synaptogenesis, or connectivity in the brain, though the extent of this is 

not yet fully understood. Additionally, the NMDA-R may regulate cortical brain development by 

affecting some of the changes of brain-derived neurotrophic 

factor (BDNF) (Gill et al. 2015).  

 As seen in Figure 3, GA is released by the presynaptic 

terminal and enters the synapse, which lies between the pre 

and post synaptic terminals. Some of the GA in the synapse 

binds to the NMDA-R, which then allows Ca2+ to flow into the 

postsynaptic terminal and Mg2+ to flow out of the postsynaptic 

terminal. When the concentrations of Ca2+ and Mg2+ change 

then a signal is sent along the neuron, triggering the next 

presynaptic terminal to initiate the same reaction. 

  NMDA-R is furthermore important because it 

controls the channels which allow changes in concentrations 

of Na+, K+, and Ca2+ (Ebert & Greenburg, 2013). When GA 

binds to the receptor, the channels allow these ions to flow 

through, changing the concentrations on either side of the channel. The effects on the change of 

Ca2+ levels are of particular interest in this study because the concentrations of Ca2+ affect the 

formation of synapses. It is known that Ca affects the synaptogenesis and therefore connectivity 

of the neural networks in the brain (Gill et al., 2015). 

Figure 3. N-methyl-d-aspartate 
receptor 
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 If the glutamate portion of FA competes with the GA already found in the developing 

brain, it could change the concentration of Ca2+ available to affect synapse formation. The 

different concentration would change how the synapses form and alter brain development. One 

difference in brain development that may occur is inhibition of connectivity in the brain. If 

underconnectivity is occurring, it would be consistent with previous findings of Wiens et. al 

(2016) that inhibited growth cone activity and synaptogenesis are present in FA treated DRGs.  

Underconnectivity 

 Research done by Wiens et al. (2016) reported that FA in vitro to cause inhibition of 

growth cone activity and synaptogenesis. The inhibition is consistent with the idea that 

underconnectivity in the brain is linked to an individual being affected by ASD. It has been 

shown that children affected by ASD have larger brains than those of their peers. However, there 

has also been a large amount of evidence found supporting the idea that certain areas of the brain 

important to social interaction and language may be underconnected (Lewis et al. 2012). 

Furthermore, those affected by ASD may have less activation in Wernike’s and Broca’s areas, 

which are related to language and speech.  The overall underconnectivity, especially in these 

areas, could explain some social difficulties experienced by those affected by ASD (Just et al. 

2004).  

Hypotheses to be Tested 

 FA may be competing with GA to bind to a receptor that is important to brain 

development. It is hypothesized that the FA will be competing with GA at the NMDA-R (Wiens, 

2016).  Competition would be seen when treated DRGs will be compared to DRGs that simply 

contain control levels of FA and GA from the culture medium and fetal calf serum supplement. 
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The DRGs cultured in excess FA supplemented dishes are expected to show an inhibition of 

synaptogenesis while dishes that are treated with both FA and GA should overcome this 

inhibition.  
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Methods and Materials 

 In order to test the hypothesis, I dissected eight-day 

old chicken embryos (as seen in Figure 4) to obtain DRGs. 

These DRGs were cultured and their neuronal development 

was assessed microscopically as neurites extend, led by 

growth cones. For each experiment, I obtained five to six 

DRGs, placed them in culture dishes containing two-

milliliters of culture medium, and waited 48 hours for them 

to attach and then extend outward in all directions.  After 48 

hours I captured images and used image analysis software 

to record the dynamic behavior of a single neuron’s 

growth cone.  The growth cones were recorded using ImagePro™ software in conjunction with a 

Leica DMIRE-2 inverted microscope and Q-Imaging CCD camera.  The growth cone activity 

was recorded by capturing digital images at the rate of one image per minute for half an hour.  

Then a stock solution containing either 6µl of 5mM FA, 6µl of 5mM GA, or 6µl of both FA and 

GA was added and the growth cone behavior was recorded for another half an hour as described.  

ImagePro Premier™ software was used on the time-lapse videos to compare the area change per 

minute and net extension/retraction of several treated DRG control neurons to the same 

parameters of growth cone behavior before treatment (controls).  

 To another set of dishes had medium containing the excess FA, GA, or combined FA and 

GA was added to them before they were placed in the incubator.  Once the DRGs had been thus 

incubated 48 hours, they were fixed and taken through a process of immunostaining to produce 

red color wherever synaptogenic areas had developed (as seen in Figure 5). A monoclonal 

Figure 4. eight-day old chicken embryo 
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antibody that specifically recognizes and binds synaptic vesicles (SV2, obtained from the 

Developmental Studies Hybridoma Bank, Iowa City, IA) was employed for this staining together 

with a biotinylated secondary antibody and a streptavidin-peroxidase conjugate (Vector 

Laboratories, Inc., Burlingame, CA). Development of a red-brown color was achieved through 

incubation in 1% 3-amino-9-ethylcarbazole in 1 M acetate buffer. Multiple high-resolution 

images of the DRGs were then taken and tiled together (as seen in Figure 5) using Image-Pro 

Premier into one high resolution aggregate image. This software was then used to determine the 

number of neurites and their lengths. This was done by drawing lines through each image (as can 

be seen in Figure 6). Any neurites which crossed the lines were measured and counted in order to 

obtain a random sample size of each DRG. Another program, ImageJ (free software available 

through the NIH), was used to quantitatively access the synaptogenic (stained) area of each 

DRG.  This was measured in square microns after calibration, and using the color thresholding 

feature in the program. The treated DRGs could then be compared to controls. 

 DRGs used varied in size and each DRG contained a large amount of synaptogenic area. 

Therefore, the difference in size of DRGs could alter any conclusions based upon the results. In 

order to avoid this issue, the DRGs were removed (as can be seen in Figure 6). This allowed the 

results to be strictly related to the synaptogenic area of the outgrowth for each DRG. 
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Figure 5. Tiled image of a control DRG 
with the DRG present 

 

Figure 6. Tiled image of a control DRG 
with the DRG removed 
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Results 

 The DRGs in culture would begin to adhere to the dishes within a few hours (as can be 

seen in section A of Figure 7 below). Some of the DRGs would not attach to the dishes and were 

therefore not used in this study. As time went on, flat migratory cells were found to extend out 

from the edge of the 3-D DRG explants (as can be seen beginning in section A of Figure 7 

below). Eventually, a layer of flat fibroblastic cells would form around the DRGs with fewer 

cells found the farther away from the DRG. Some of the cells developed rounded cell bodies and 

extending out thin neurites (as shown in section C of Figure 7). 

 As research was conducted, it was observed that as the DRGs were incubated, the 

neurites of some of the DRGs began to bundle together to form nerves. It was determined that 

the DRGs with nerves could be more developmentally advanced, therefore changing results if the 

developmental stage was not taken into account. This led to the dividing of the data, based on the 

developmental stage of the DRG. When the data was collected for the immunostained DRGs, 

each one was carefully looked at and it was determined whether nerves were present. This led to 

the collection of two separate data sets for each test type done on each treatment type. Figure 7 

shows the progressive change in appearance of a DRD at successive hours of culture. 
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Figure 7. DRGs in culture at different times A. At 9 hours in culture, the DRG has attached and 
cells began to migrate outward. B. At 21 hours in culture, more cells have migrated outward, 
creating an epithelial pavement and clusters. C. At 33 hours in culture the epithelium had 
expanded outward in all directions, and neurites were more visible and numerous. An example of 
a neurite is indicated by an arrow. D. Edge of a 48-hour DRG after it had been immunostained 
with TAG-1, an antibody that stained neural and glial cells red. A lower magnification was used 
for this image. Many neurites bundled into nerves were positively stained and these extended out 
on top of a flat substrait of non-neural epithelial and other cells which remained unstained by 
TAG-1. DRGs which exhibited nerves were considered to be more advanced than DRGs with 
only neurites. 
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Immunostained Neurite Length 

 As a recognizable parameter of neurogenesis, the lengths of neurites and the thicker 

bundled nerves present were measured and averaged for each DRG and averaged for each DRG. 

Then, the average lengths of each treatment type were averaged together but were categorized as 

either more developmentally advanced or less developmentally advanced DRGs, depending on 

the presence of nerves. Next, the average lengths of both neurites and nerves in the 

developmentally advanced DRGs of each type were compared to using a t-test. The average 

lengths of neurites in the less developmentally DRGs were compared in the same way. For both 

sets of data an α=0.05 was used. No significant difference in neurite lengths was found in these 

tests. 

 
Figure 8. Average Neurite Length. The lengths of more developmentally advanced DRGs are 
shown in blue and less developmentally advanced DRGs are shown in red. The sample size of 
each DRG type is equal to the n value shown above that bar. Error bars were calculated and 
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DRGs were compared to other DRGs of the same developmental advancement. A value of 
α=0.05 was used to determine significance. The number of samples are indicated by “n”. 

  

Immunostained Neurite Number 

 As another fundamental parameter of neurogenesis, neurites and nerves were counted in 

each DRG, and the average number of neurites were found for each treatment, keeping in 

consideration the presence of nerves. DRG treatments of the same developmental stage were 

compared using t-tests with 0.05 as the chosen α value. When treatments of each developmental 

stage were compared, it was found that both FA and GA initially inhibited the number of 

neurites. However, in the more advanced DRGs, the GA no longer inhibited the number, of 

neurites formed whereas FA did still inhibit the number of neurites that formed. When the FA 

and GA were combined in more advanced DRGs, GA overcame the FA inhibitory effect. 

 

  

 Figure 9. Average Neurite Number. The lengths of more developmentally 
advanced DRGs are shown in blue and less developmentally advanced DRGs are shown 
in red.  The sample size of each DRG type is equal to the n value shown above that bar. 
Error bars were calculated and DRGs were compared to other DRGs of the same 
developmental advancement. A value of α=0.05 was used to determine significance. The 
number of samples are indicated my “n”. *Significantly less than control, p=0.02 for folic 
acid and p=0.02 for glutamic acid. †Significantly less than folic acid treatment DRGs, a 
value of p=0.02 was used. 
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Immunostained Synaptogenic Area 

 Synapses are the spaces between neurons through which signals can be sent. In order to 

form more connections to share information and signals, neurons search for other neural growth 

so they can form more synapses, a process called synaptogenesis. When the DRGs were 

immunostained, any areas where synaptogenesis was occurring were stained red. Using ImageJ 

the amount of stained areas were found, giving a total synaptogenic area as seen in Tables 1 and 

2 below. The median and mean synaptogenic areas were found using a measurement of 

thousands of square microns and compared across the different treatments.      

 In less advanced DRGs, the control group of 8 DRGs showed an unusually low median 

and a great range of synaptogenesis, making comparisons difficult. However, there is shown to 

be an inhibitory effect occurring in GA. 

 
Table 1. Synaptogenic Area of Only Less Advanced DRGs without Developed Nerves. 
Compared utilizing t-tests with an α=0.05 used to determine significance. The number of 
samples are indicated by “n”. *Significantly less than area of more advanced DRGs 

 

 In more advanced DRGs that had bundled nerves, FA and GA inhibited synaptogenic 

area development, especially GA, and when FA and GA were combined the FA appeared to 
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moderate the strong effect of GA. The data were not normally distributed.         

  

Table 2. Synaptogenic Area of Only Advanced DRGs with Developed Nerves. Compared 
utilizing t-tests with an α=0.05 used to determine significance. The number of samples are 
indicated by “n”. *Significantly less than control 

 

Videos Data of Neurite Length Change 

  As neurites search to make connections with other neural growth they extend and retract. 

An inhibition of this exploratory behavior would be represented by more retraction or less 

extension occurring. In order to test whether an inhibitory effect was occurring with any 

treatment the lengths of neurites were measured were measured during 40-minute time lapse 

image videos. The first 20 minutes of the video were of an untreated (control) neurite. Then, the 

DRG was treated with FA and recorded for another 20 minutes. Average change was found for 

the advancement, retraction, net change, and median length change. A t-test with a α=0.05 was 

done comparing the length changes of FA-treated neurites to those observed prior to adding FA 

to the dish. As seen in Table 3, FA at this concentration did not have any significant effect on the 

dynamic neurite length change. 
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Neurite Length Change for Folic Acid Treated DRGs in microns per minute 

  Control (n=5) Folic Acid (n=5) 

Average of Net Advancement 11 12 

Average of Net Retraction -15 -20 

Average of Net Change -4 -7 

Average of Median Length 

Change -0.3 -0.09 

Table 3. Neurite Length Change for Folic Acid Treated DRGs in microns per minute. Compared 
utilizing t-tests with an α=0.05 used to determine significance. The number of samples are 
indicated by “n”. 

  

 The process was completed in the same way with GA treated DRGs. As seen in Table 4, 

GA at this concentration did not have any significant effect on the dynamic neurite length 

change.  

Neurite Length Change for Glutamic Acid Treated DRGs in microns per minute 

  Control (n=6) Glutamic Acid (n=6) 

Average of Net Advancement 17 15 

Average of Net Retraction -17 -22 

Average of Net Change 0.7 -7 

Average of Median Length 

Change 0.2 0.01 

Table 4. Neurite Length Change for Glutamic Acid Treated DRGs in microns per minute. 

Compared utilizing t-tests with an α=0.05 used to determine significance. The number of 
samples are indicated by “n”. 
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 The process was completed once more with DRGs that were treated with both FA and 

GA. As seen in Table 5, when combined, GA and FA at this concentration did not have any 

significant effect.  

Neurite Length Change for Glutamic Acid and Folic Acid Treated DRGs in microns per minute 

  Control (n=8) Glutamic Acid and Folic Acid (n=8) 

Average of Net Advancement 19 20 

Average of Net Retraction -17 -16 

Average of Net Change 4 -1 

Average of Median Length 

Change 0.1 -0.4 

Table 5. Neurite Length Change for Glutamic Acid and Folic Acid Treated DRGs in microns per 
minute. Compared utilizing t-tests with an α=0.05 used to determine significance. The number of 
samples are indicated by “n”. 

 

Video Data of Growth Cone Area Change 

 Neurites utilize growth cones to search for other neural growth. The growth cones change 

area due to the extension and retraction of their microspikes. The growth cone area change can 

indicate the potential for connectivity. The area of each growth cones was measured throughout 

the 40-minute videos. The first 20 minutes of the video were of the dynamic change of an 

untreated DRG while the final 20 minutes were of a FA treated DRG. The data found for all of 

the DRGs was not normally distributed so minimum, maximum, and median lengths of treated 

DRGs were compared to the controls for each type of growth cone. As seen in Table 6, FA 
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increased the median area change, however this difference did not show significance when 

tested. 

 
Table 6. Average Growth Cone Area Change per Minute for Folic Acid Treated DRGs. 

Compared utilizing t-tests with an α=0.05 used to determine significance. The number of 
samples are indicated by “n”. 

 

 The same tests were run with GA treated DRGs. Table 7 shows that GA did not affect 

dynamic area change of the growth cones.  

Average Growth Cone Area Change per Minute for Folic Acid Treated DRGs 
(in square microns) 
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Table 7. Average Growth Cone Area Change per Minute for Glutamic Acid Treated DRGs. 

Compared utilizing t-tests with an α=0.05 used to determine significance. The number of 
samples are indicated by “n”. 

 

 The same tests were run once more for the combined FA and GA treated DRGs. Table 8 

illustrates the fact that, when combined, GA and FA did not affect dynamic area change of the 

growth cones.  

Average Growth Cone Area Change per Minute for Glutamic Acid Treated 
DRGs (in square microns) 
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Table 8. Average Growth Cone Area Change per Minute for Glutamic Acid and Folic Acid 
Treated DRGs. Compared utilizing t-tests with an α=0.05 used to determine significance. The 
number of samples are indicated by “n”. 

  

Average Growth Cone Area Change per Minute for Glutamic Acid and Folic 
Acid Treated DRGs (in square microns) 
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Discussion 

This study of neurogenesis, has described a developmental process in vitro encompassing 

initiation and outgrowth of neurites, and differentiation of synaptic networks as described 

previously (Wiens et al., 2016). In addition, the assembly of neurites and glial cells into nerve 

bundles has been described. This last event occurs between 36 and 48 hours. Results for the 

effect of FA on neurite length, dynamic length activity, and growth cone dynamic activity did 

not show the same inhibitory effect found by Wiens et al. (2016). There was additionally found 

to be an inhibitory effect of both FA and GA on the number of neurites formed by the DRG 

neurons, whereas Wiens et al. (2016) did not report this effect. This is likely because the DRGs 

are no longer forming many new neurites, but instead bundling neurites into nerves which are 

growing longer.  

 It was found that that FA inhibited the development of synaptogenic areas, confirming 

some of the findings of Wiens et al. (2016), but this effect was only seen on the developmentally 

more advanced DRGs and the data was not reliable and robust enough to allow assessment in the 

less advanced DRGs. The contradictions were unexpected. 

 A likely explanation is that the DRG cultures in the previous study were less advanced. 

Inhibition due to FA was found when the measurements of developmental events were made 

after 36 hours in culture, while this study used DRGs that were in culture for 48 hours. Thus, 

sensitivity to FA may be high early as neurites are becoming established, but then diminishes as 

DRGs become more advanced. We also found differing effects of GA. Again, age and culture 

may have been important factors. 
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 Concentrations of the supplements and in the medium were slightly different than in the 

previous study done by Wiens et al. (2016) which could have caused an unforeseen difference in 

results. First of all, the fetal bovine serum supplementation used in the medium was 10% rather 

than the 12% that we used. Another difference was that higher concentrations of both FA and 

GA were used than the amounts used in previous studies. The different concentrations could 

have affected the NMDA-R differently. Future studies will have to take all of these factors into 

account.  

Future studies should be done to determine the effect of FA on DRGs of different culture 

times or stages of development. DRGs could be cultured for differing periods of time and 

separated depending upon the appearance of nerves. This would serve to determine specific 

effects of FA at different stages of development. 

Additional research was done utilizing human M-17 neuroblastoma cells in culture. They 

were tested in similar ways to those stated previously. The cells were placed in culture and had 

retinoic acid added to begin neurite growth. Control dishes and dishes containing neurons treated 

with 5 µM FA were cultured for 48 hours. Then, the dishes were immunostained and neurite 

numbers, neurite lengths, and synaptogenic areas were calculated for each dish. It was found that 

while synaptogenic area and neurite lengths were unchanged, the average number of neurites 

increased by a significant amount. This differs from Wiens et al.’s previous findings with chick 

embryo DRGs. The difference may be due to the glial cells and fibroblasts that are present in the 

chick embryo DRGs but lacking in the human neuron cultures. Additionally, the chick DRGs 

have a more 3-dimensional morphology that the human neuron cultures do not. Overall, the M-

17 data shows that over growth, or too many neural connections may be occurring. This 

contradicts previous findings by Wiens et al. (2016) as well as the results from the rest of this 
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study. However, it still supports the idea that excessive FA supplementation may lead to autism. 

A difference in the connectivity in the brain, be it too many connections or too few, still suggests 

that the transmission of signals will be different. Any type of abnormal connectivity in the brain 

may still lead to ASD in that individual. 
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Conclusion 

 Autism spectrum disorder has a higher prevalence in society today and despite research 

being conducted, the specific differences in the brain as well as the underlying causes are still not 

fully known. One potential cause for ASD is underconnectivity in the brain. This study set out to 

investigate the potential inhibitory effects of FA on neural growth and connectivity, which could 

lead to underconnectivity. Competition between FA with already present GA at the NMDA-R 

was the suggested mechanism for FA’s inhibitory effects. This study did not reveal evidence of 

competition between FA and GA. Furthermore, this study did not find the inhibitory effects of 

FA that were previously found, except in a few cases. The unexpected disparity between this 

study and the previous study done by Wiens et al. (2016) was that the DRGs were found to be 

affected by FA and GA differently, depending upon the presence of nerves, which indicate 

further developmental advancement. This difference could be a reason why studies have found 

divergent effects of FA. While many studies may find inhibition, some find no effect, and others 

find promotion of growth. Future studies could look into the variable effects of FA that may 

depend upon the developmental advancement of the neural growth. These studies should work to 

determine what amount of FA is needed to change DRGs and how FA effects DRGs at 

successive developmental stages. 
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Appendix 

Immunostained neurite length raw data 
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Immunostaining Synaptogenic Area Raw Data 
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Video Raw Data 

Folic Acid Control 

EXP 1 (5-26)      

  GC area ABS GC area diff NL NL 
diff 

ABS NL diff 

 Average 12.756 3.794 25.743 -0.182 1.217 

 Standard Deviation 3.729 3.033 1.694 1.511 0.89 

 Median 12.279 3.652 25.733 -0.457 0.935 

 Maximum 23.13 14.45 28.513 2.944 2.995 

 Minimum 7.357 0 21.116 -2.995 0.022 

EXP2 (6-16 1)      

  GC area ABS GC area diff NL NL 
diff 

ABS NL diff 

 Average 2.417 0.605 26.983 -0.671 1.218 

 Standard Deviation 1.385 0.581 5.114 1.74 1.394 

 Median 1.957 0.346 29.13 -0.64 0.778 

 Maximum 5.765 1.744 34.868 1.692 6.403 

 Minimum 0.799 0.013 18.877 -6.403 0.049 

EXP3 (6-16 2)      
  GC area ABS GC area diff NL NL 

diff 
ABS NL diff 

 Average 205.508 0.336 29.037 0.11 0.742 

 Standard Deviation 3.284 0.446 1.657 0.918 0.527 

 Median 205.333 0.146 29.296 0.144 0.768 

 Maximum 212.667 1.624 32.331 1.596 1.797 

 Minimum 198.333 0 26.216 -1.797 0.052 
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Folic Acid Treated 

      

EXP 1 (5-26) ABS GC area diff NL NL diff ABS NL diff 

  3.314 21.584 -0.157 1.629 

 Average 3.058 1.99 2.146 1.372 

 Standard Deviation 2.462 22.067 0.222 1.352 

 Median 11.539 24.096 4.601 5.53 

 Maximum 0.265 15.504 -5.53 0.203 

 Net Change     

EXP2 (6-16 1) ABS GC area diff NL NL diff ABS NL diff 

  0.383 14.75 -0.706 1.323 

 Average 0.327 3.807 1.874 1.48 

 Standard Deviation 0.293 14.598 -0.295 0.834 

 Median 0.945 21.109 1.827 5.746 

 Maximum 0.04 7.345 -5.746 0.009 

 Net Change     

EXP3 (6-16 2) ABS GC area diff NL NL diff ABS NL diff 

  0.226 31.835 -0.014 1.271 

 Average 0.189 1.398 1.667 1.035 

 Standard Deviation 0.213 31.789 0.011 1.1 

 Median 0.785 36.276 2.765 3.834 

 Maximum 0.013 29.782 -3.834 0.011 
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Glutamic Acid Control 

EXP 1 (6-16)      
  GC area ABS GC area diff NL NL 

diff 
ABS NL diff 

 Average 163.862 0.655 64.495 -
0.476 

1.206 

 Standard 
Deviation 

5.973 0.558 2.486 1.487 0.960 

 Median 164.073 0.612 63.822 -
0.545 

0.915 

 Maximum 174.000 2.449 71.162 1.841 4.161 

 Minimum 154.667 0.054 61.346 -
4.161 

0.095 

EXP2 (6-21)      
  GC area ABS GC area diff NL NL 

diff 
ABS NL diff 

 Average 16.733 5.608 189.694 0.273 2.220 

 Standard 
Deviation 

6.622 4.569 2.429 3.262 2.354 

 Median 15.508 4.975 189.6 0.359 1.278 

 Maximum 32.445 14.344 194.173 8.428 8.428 

 Minimum 8.204 0.529 185.738 -
6.608 

0.005 

EXP3 (6-29)      
  GC area ABS GC area diff NL NL 

diff 
ABS NL diff 

 Average 8.777 2.143 61.723 0.232 0.860 

 Standard 
Deviation 

3.563 1.486 1.294 0.962 0.451 

 Median 8.305 1.554 61.921 0.490 0.790 

 Maximum 16.985 4.447 63.340 1.601 1.601 

 Minimum 4.126 0.267 58.783 -
1.591 

0.088 

EXP 4 (7-5 1)      
  GC area ABS GC area diff NL NL 

diff 
ABS NL diff 

 Average 13.101 3.897 79.127 -
0.020 

2.612 

 Standard 
Deviation 

3.522 3.694 3.723 3.170 1.693 

 Median 12.015 2.699 78.954 0.895 2.458 
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 Maximum 20.007 12.226 86.390 4.519 5.895 

 Minimum 7.780 0.106 72.370 -
5.895 

0.106 

EXP 5 (7-5 2)      
  GC area ABS GC area diff NL NL 

diff 
ABS NL diff 

 Average 13.461 3.154 61.000 0.325 1.940 

 Standard 
Deviation 

2.718 2.690 4.407 2.893 2.125 

 Median 13.232 2.170 59.387 -
0.112 

1.338 

 Maximum 20.430 10.956 72.498 9.584 9.584 

 Minimum 9.368 0.635 56.704 -
3.423 

0.040 

EXP 5 (7-5 3)      
  GC area ABS GC area diff NL NL 

diff 
ABS NL diff 

 Average 9.911 2.586 32.206 -
0.103 

1.187 

 Standard 
Deviation 

3.162 2.007 1.475 2.304 1.959 

 Median 9.369 2.223 31.907 0.188 0.494 

 Maximum 15.984 8.310 36.892 5.455 7.833 

 Minimum 4.711 0.000 29.059 -
7.833 

0.083 

 

Glutamic Acid Treatment 

EXP 1 (6-16) GC area ABS GC area diff NL NL diff ABS NL diff 

       

 Average 169.306 0.741 60.892 -0.090 0.838 

 Standard 
Deviation 

2.638 0.623 1.442 1.072 0.656 

 Median 170.210 0.413 60.679 -0.077 0.643 

 Maximum 173.623 2.077 63.237 1.730 2.611 

 Minimum 164.233 0.027 57.934 -2.611 0.048 

EXP2 (6-21) GC area ABS GC area diff NL NL diff ABS NL diff 

       

 Average 10.093 3.339 188.574 -1.676 2.986 

 Standard 
Deviation 

4.242 2.086 7.479 4.070 3.154 
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 Median 9.315 3.017 189.908 -0.429 1.823 

 Maximum 18.260 7.251 196.563 3.428 11.120 

 Minimum 4.287 0.635 173.461 -
11.120 

0.036 

EXP3 (6-29) GC area ABS GC area diff NL NL diff ABS NL diff 

       
 Average 14.914 2.976 62.651 -0.095 1.086 

 Standard 
Deviation 

5.873 2.410 1.318 1.679 1.260 

 Median 15.003 2.518 62.446 -0.206 0.712 

 Maximum 25.773 9.323 66.563 4.944 4.944 

 Minimum 5.412 0.000 60.992 -4.021 0.185 

EXP 4 (7-5 1) GC area ABS GC area diff NL NL diff ABS NL diff 

       

 Average 18.644 6.691 68.504 -0.847 2.496 

 Standard 
Deviation 

6.851 5.411 8.917 4.090 3.305 

 Median 15.773 2.752 62.955 0.247 0.856 

 Maximum 32.233 14.132 86.436 6.098 11.801 

 Minimum 12.862 2.170 61.324 -
11.801 

0.185 

EXP 5 (7-5 2) GC area ABS GC area diff NL NL diff ABS NL diff 

       

 Average 13.461 3.154 65.755 -0.164 2.477 

 Standard 
Deviation 

2.718 2.690 3.128 3.093 1.771 

 Median 13.232 2.170 65.715 0.463 2.057 

 Maximum 20.430 10.956 72.256 4.226 6.113 

 Minimum 9.368 0.635 59.500 -6.113 0.151 

EXP 5 (7-5 3) GC area ABS GC area diff NL NL diff ABS NL diff 

       
 Average 15.395 4.229 32.796 0.135 2.336 

 Standard 
Deviation 

7.326 4.663 3.630 3.524 2.586 

 Median 13.867 2.673 32.016 0.066 1.171 

 Maximum 39.643 19.954 41.983 9.284 9.284 

 Minimum 6.828 0.318 28.172 -7.142 0.053 
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Glutamic Acid and Folic Acid Control 

EXP 1 (6-16)      

  GC area ABS GC area diff NL NL 
diff 

ABS NL diff 

 Average 163.862 0.655 64.495 -
0.476 

1.206 

 Standard 
Deviation 

5.973 0.558 2.486 1.487 0.960 

 Median 164.073 0.612 63.822 -
0.545 

0.915 

 Maximum 174.000 2.449 71.162 1.841 4.161 

 Minimum 154.667 0.054 61.346 -
4.161 

0.095 

EXP2 (6-21)      

  GC area ABS GC area diff NL NL 
diff 

ABS NL diff 

 Average 16.733 5.608 189.694 0.273 2.220 

 Standard 
Deviation 

6.622 4.569 2.429 3.262 2.354 

 Median 15.508 4.975 189.600 0.359 1.278 

 Maximum 32.445 14.344 194.173 8.428 8.428 

 Minimum 8.204 0.529 185.738 -
6.608 

0.005 

EXP3 (6-29)      
  GC area ABS GC area diff NL NL 

diff 
ABS NL diff 

 Average 8.777 2.143 61.723 0.232 0.860 

 Standard 
Deviation 

3.563 1.486 1.294 0.962 0.451 

 Median 8.305 1.554 61.921 0.490 0.790 

 Maximum 16.985 4.447 63.340 1.601 1.601 

 Minimum 4.126 0.267 58.783 -
1.591 

0.088 

EXP 4 (7-5 1)      
  GC area ABS GC area diff NL NL 

diff 
ABS NL diff 

 Average 13.101 3.897 79.127 -
0.020 

2.612 

 Standard 
Deviation 

3.522 3.694 3.723 3.170 1.693 

 Median 12.015 2.699 78.954 0.895 2.458 
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 Maximum 20.007 12.226 86.390 4.519 5.895 

 Minimum 7.780 0.106 72.370 -
5.895 

0.106 

EXP 5 (7-5 2)      
  GC area ABS GC area diff NL NL 

diff 
ABS NL diff 

 Average 13.461 3.154 61.000 0.325 1.940 

 Standard 
Deviation 

2.718 2.690 4.407 2.893 2.125 

 Median 13.232 2.170 59.387 -
0.112 

1.338 

 Maximum 20.430 10.956 72.498 9.584 9.584 

 Minimum 9.368 0.635 56.704 -
3.423 

0.040 

EXP 6 (7-5 3)      
  GC area ABS GC area diff NL NL 

diff 
ABS NL diff 

 Average 9.911 2.586 32.206 -
0.103 

1.187 

 Standard 
Deviation 

3.162 2.007 1.475 2.304 1.959 

 Median 9.369 2.223 31.907 0.188 0.494 

 Maximum 15.984 8.310 36.892 5.455 7.833 

 Minimum 4.711 0.000 29.059 -
7.833 

0.083 

EXP 8 (6-29 2)      

  GC area ABS GC area diff NL NL 
diff 

ABS NL diff 

 Average 13.915 2.114 35.312 -
0.421 

3.102 

 Standard 
Deviation 

1.995 1.681 4.366 3.880 2.261 

 Median 13.583 1.662 36.377 -
0.929 

2.230 

 Maximum 18.754 5.412 40.688 7.265 8.275 

 Minimum 10.234 0.160 27.940 -
8.275 

0.684 
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Glutamic Acid and Folic Acid Treatment 

EXP 1 (6-16) GC area ABS GC area diff NL NL diff ABS NL diff 

       
 Average 169.306 0.741 60.892 -0.090 0.838 

 Standard 
Deviation 

2.638 0.623 1.442 1.072 0.656 

 Median 170.210 0.413 60.679 -0.077 0.643 

 Maximum 173.623 2.077 63.237 1.730 2.611 

 Minimum 164.233 0.027 57.934 -2.611 0.048 

EXP2 (6-21) GC area ABS GC area diff NL NL diff ABS NL diff 

       

 Average 10.093 3.339 188.574 -1.676 2.986 

 Standard 
Deviation 

4.242 2.086 7.479 4.070 3.154 

 Median 9.315 3.017 189.908 -0.429 1.823 

 Maximum 18.260 7.251 196.563 3.428 11.120 

 Minimum 4.287 0.635 173.461 -
11.120 

0.036 

EXP3 (6-29) GC area ABS GC area diff NL NL diff ABS NL diff 

       

 Average 14.914 2.976 62.651 -0.095 1.086 

 Standard 
Deviation 

5.873 2.410 1.318 1.679 1.260 

 Median 15.003 2.518 62.446 -0.206 0.712 

 Maximum 25.773 9.323 66.563 4.944 4.944 

 Minimum 5.412 0.000 60.992 -4.021 0.185 

EXP 4 (7-5 1) GC area ABS GC area diff NL NL diff ABS NL diff 

       
 Average 18.644 6.691 68.504 -0.847 2.496 

 Standard 
Deviation 

6.851 5.411 8.917 4.090 3.305 

 Median 15.773 2.752 62.955 0.247 0.856 

 Maximum 32.233 14.132 86.436 6.098 11.801 

 Minimum 12.862 2.170 61.324 -
11.801 

0.185 

EXP 5 (7-5 2) GC area ABS GC area diff NL NL diff ABS NL diff 

       
 Average 13.461 3.154 65.755 -0.164 2.477 

 Standard 
Deviation 

2.718 2.690 3.128 3.093 1.771 
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 Median 13.232 2.170 65.715 0.463 2.057 

 Maximum 20.430 10.956 72.256 4.226 6.113 

 Minimum 9.368 0.635 59.500 -6.113 0.151 

EXP 6 (7-5 3) GC area ABS GC area diff NL NL diff ABS NL diff 

       
 Average 15.395 4.229 32.796 0.135 2.336 

 Standard 
Deviation 

7.326 4.663 3.630 3.524 2.586 

 Median 13.867 2.673 32.016 0.066 1.171 

 Maximum 39.643 19.954 41.983 9.284 9.284 

 Minimum 6.828 0.318 28.172 -7.142 0.053 

EXP 8 (6-29 2) GC area ABS GC area diff NL NL diff ABS NL diff 

       

 Average 9.902 1.827 34.076 0.171 3.928 

 Standard 
Deviation 

1.765 1.345 7.245 5.896 4.307 

 Median 9.698 1.287 32.069 -0.882 2.023 

 Maximum 12.377 5.090 50.308 15.578 15.578 

 Minimum 6.751 0.215 25.926 -
11.597 

0.454 
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