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ABSTRACT 

Wetlands are transitional lands between terrestrial and aquatic systems that 

provide many benefits, including: floodwater retention, non-point pollution treatment, 

wildlife habitat, and soil-erosion control. Wetlands in Iowa have decreased over 95% in 

the last 200 years. Therefore, there is a need to map and monitor these resources, as well 

as to determine potential sites for wetland restoration. In Black Hawk County, wetland 

maps are outdated, and ground surveys have proved to be too time-consuming and 

expensive. Traditional pixel-based automated classifiers of remotely-sensed imagery 

have also proven to be inaccurate in classifying wetlands because of spectral confusion. 

This study tests multispectral data, hybrid data, hyperspectral data, a seasonal matrix, and 

a new object-oriented classifier. These are tested against traditional multispectral, pixel

based (ISODATA and Maximum-Likelihood) classifiers both to see if wetland 

classification accuracies from remotely-sensed imagery can be increased and to produce 

an updated wetlands map for Black Hawk County. A hyperspectral image of Eddyville, 

Iowa is tested to evaluate how well wetlands are classified when a hyperspectral image is 

used with an object-oriented classifier and a hyperspectral pixel-based (Spectral Angle 

Mapper or SAM) classifier. A GIS-based wetland restoration model is developed to 

identify potential wetland restoration sites in Black Hawk County. 

This study shows that the object-oriented classifier is more accurate in identifying 

wetlands and overall land-cover than pixel-based ones (ISO DA TA, Maximum

Likelihood, SAM) in both multispectral, hybrid-multispectral, and hyperspectral imagery. 

The summer/fall seasonal matrix produced unacceptable accuracies. Wetlands in Black 



Hawk County decreased by 1500 acres (plus or minus an error margin of 375 acres) from 

1983 to 2003. The restoration model identified 2,971 acres in Black Hawk County as 

being highly suitable, 34,307 acres as being moderately suitable, and 121,271 acres as 

having low suitability for wetland restoration. The results are available at http://gisrl-

9 .geog. uni. edu/wetland. 

Limitations of the study include file size when using the object-oriented classifier, 

image availability for the seasonal matrix, and the number of variables employed in the 

GIS-based restoration model. The future direction of the study lies in obtaining 

hyperspectral data for Black Hawk County, more current Landsat multispectral imagery 

for the seasonal matrix, and testing of more non-parametric classifiers, such as the CART 

algorithm. 
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CHAPTER 1 

INTRODUCTION 

Wetlands are an important ecosystem. Cowardin, Carter, Golet, and LaRoe 

(I 979) provide the official federal definition of wetlands: "Wetlands are lands transitional 

between terrestrial and aquatic systems where the water table is usually at or near the 

surface or the land is covered by shallow water" (p.1 ). Other definitions include 

"Wetlands are a mix of characteristics from terrestrial or upland areas and the 

characteristics of aquatic or water environments" (Lyon, 1993, p. 7), " ... places where 

plants and animals live amid standing water or saturated soils, also called swamps, 

sloughs, marshes, bogs, fens, seeps, oxbows, shallow ponds, or wet meadows" (Cohen, 

2001, p. 1 ), and the US Army Corp of Engineers Wetlands Delineation manual: "Those 

areas that are inundated or saturated by surface or ground water at a frequency and 

duration sufficient to support and that under normal circumstances do support, a 

prevalence of vegetation typically adapted for life in saturated soil conditions" 

(Environmental Laboratory, 1987, p. 9). 

There are several wetland classifications available in the literature. One of the 

most important is defined by the U.S. Fish and Wildlife Service which classifies wetlands 

into five types: Palustrine (non-tidal freshwater habitats and open water less than 20 

acres), Estuarine ( deep water tidal habitats), Marine, Lacustrine ( open water greater than 

20 acres), and Riverine, defined as freshwater rivers and streams; (Dahl, 2000). All of 

these wetland categories must have one or more of the following three attributes: (a) at 

least periodically, the land supports predominately hydrophytes; (b) the substrate is 



predominantly undrained and hydric (soil that has developed anaerobic conditions); and 

( c) the substrate is nonsoil and is saturated with water or covered by shallow water at 

some time during the growing season of each year. A pictorial representation of two 

typical freshwater inland wetlands is given in Figure 1. 

Terrestrial 
system 

Hydrology 

Wetland Deepwater 
aquatrc system 

• Dry----.i<lf- Intermittently to ~14---Permanently flooded • 
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Figure 1. Ecology of Wetland Systems. 
(Source: Mitsch & Gosselink, 2000) 
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The Importance and Status of Wetlands 

Wetlands compromise only 3 to 6% of the earth's land surface area, but they 

provide human populations with a host of goods and services, including food storage, 

water quality maintenance, agricultural production, fisheries, and recreation (Acreman & 

Hollis, 1996). They are critical to flood protection, and act like sponges to soak up water 

and release it slowly. Although most wetlands store an average of approximately three 

feet of water, a single acre of wetland can store up to five feet, or 1.66 million gallons of 

flood water (Sierra Club, 2000). Wetlands are also believed to play a significant role in 

global climate change by acting as a source of atmospheric greenhouse gases such as 

methane and a sink for both carbon (wetlands contain 15-22% of the world's soil carbon 

pool), nitrogen, and methane (Takeuchi, Tamura, & Yasuoka, 2003; Trettin, Song, 

Jurgensen, & Li, 2001). Global biodiversity is also enhanced by wetlands because they 

are vital for the survival of a disproportionately large number of threatened and 

endangered species (Mitch & Gosselink, 2000). Wetlands have become a popular way 

for treating contaminated surface and wastewaters, and are particularly suited for treating 

non-point pollution, such as agricultural and urban runoff (Dierberg, DeBusk, Jackson, 

Chimeny, & Pietro, 2002). They can also lessen soil erosion, and moderate stream 

temperature ( critical for certain species survival like trout, Budlong, 2002). Lastly, 

wetlands have been found to preserve archeological remains (Chapman & Cheetham, 

2002). 

Despite these proven advantages, wetland conversion to other land uses has been 

a problem historically and continues to the present day. However, the last few decades 
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have witnessed an enormous rise in awareness of the importance of wetlands. Nationally, 

at the time of European settlement, the continental United States contained an estimated 

221 million acres (89 .5 million hectares) of wetlands, or 9% of the total surface area. 

Over time, wetlands have been drained, dredged, filled, leveled, and flooded to the extent 

that less than half of the original acreage remains (Dahl, 1990; Whittecar & Daniels, 

1999). 

Within the state of Iowa, wetlands were viewed as a hindrance to land 

development and agriculture. In less than 150 years, these rich resources were drained, 

filled, or otherwise altered, drastically changing the face of Iowa's land. Similar 

percentages are given concerning the amount of wetland losses in Iowa. One study 

places the loss at 95% (Arbuckle & Pease, 1999) and another 90%-95% (Cohen, 2001). 

In a mandated report to Congress by the U.S. Fish and Wildlife Service, only two other 

states showed higher wetlands losses than Iowa: California and Ohio (Dahl, 1990). 

According to the Iowa Department of Land Stewardship [IDALS] ( 1998), the amount of 

wetlands six years ago covered only 1.2% of Iowa's surface area, compared to 11% two

hundred years ago (Figure 2). 



1.20% 

11% 

01803 

@J 1997 

Figure 2. Iowa Surface Area Covered By Wetlands. 
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This is a loss of approximately 3.5 million acres, or an area approximately the size 

of the state of Connecticut. The reduction of wetlands in Iowa has also contributed to the 

fact that Black Hawk, Hamilton, Johnson, Linn, Story, and Tama counties were 

designated federal (flood) disaster areas five times from 1989-1998 (Sierra Club, 2000) 

and all of Iowa's 99 counties were designated federal (flood) disaster areas at least once 

during that time. 

The loss of these critical resources (wetlands) in Iowa with some 92% of the land 

being used for agriculture (Dung, 2003), and their documented value, shows an urgent 

need to monitor these resources, measure their changes, and provide a method for 

identifying potential wetland restoration areas. Traditionally, wetlands are delineated 

using ground surveys. However, these surveys are difficult and time-consuming (Lyon, 

1993; Yasuoka et al., 1995). Geospatial technologies, such as remote sensing, 

Geographical Information Systems (GIS), and Global Positioning Systems (GPS) can 

provide an alternative and possibly better solution to mitigate the before-mentioned 

problems (Goldberg, 1998). In addition, remote sensing data can be used for the 
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following: (a) to detennine the extent of wetlands, (b) to identify the type of wetland 

resource, ( c) to characterize the general wetland land cover type, ( d) to identify 

submergent and emergent wetlands, and (e) to supply details about the resource (Lyon & 

McCarthy, 1995). Geographical Infonnation Systems and GPS can be used effectively 

for natural resource management, conservation, and restoration (Konecny, 2003). This 

includes inventorying and updating wetlands (Houhoulis & Michener, 2000). The need 

to update the last wetlands survey undertaken for Black Hawk County ( completed by the 

National Wetland Inventory and Iowa Department of Natural Resources and based upon 

aerial photos taken in 1983 and 1984), is the justification for this research. 

According to the Iowa Department of Natural Resources (2004), "Wetlands are 

one of the easiest and most quickly restored elements of natural landscape, and they can 

provide nearly instantaneous wildlife habitat. The Wildlife Bureau offers technical 

assistance to landowners interested in restoring wetlands on their properties." The Iowa 

Natural Resource Conservation Service (NRCS) administers the Wetland Reserve 

Program aimed at returning fonner wetland areas that have been cropped. The 

Emergency Wetland Reserve Program also works to place pennanent easements on land 

that has a flood history, returning it to wetland conditions. Wetland detennination and 

mitigation assistance is provided for United States Department of Agriculture wetland 

compliance programs. 



Goal and Objectives 

The main research goal is to map and identify potential wetland restoration areas 

in Black Hawk County, Iowa using remote sensing and GIS technologies. To achieve 

this goal, the following four objectives are presented: 

1. Extract up-to-date and accurate wetland areas from multispectral and 

hyperspectral images; 

2. Evaluate different image classifiers, specifically object-oriented, Maximum

Likelihood, ISODATA, and Spectral Angle Mapper (SAM); 

3. Analyze different GIS wetland restoration models from the literature and 

create such a model for use in Black Hawk County; 
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4. Disseminate the final results through the Internet via Arc Internet Map Server 

(ArcIMS). 

Research Questions 

On the basis of the goal and objectives of the study, the research questions are as 

follows: 

1. How well does the object-oriented classifier perform in comparison to 

traditional ones, such as Maximum-Likelihood and ISODATA, for the delineation of 

wetlands using multispectral imagery in Black Hawk County?; 

2. Can data fusion, specifically between Landsat Enhanced Thematic Mapper 

(ETM) multispectral and ETM panchromatic images, improve wetland classification? 

3. Is the object-oriented classifier more accurate than SAM in high resolution 

hyperspectral image classification of wetlands? 



4. What role does summer and fall seasonality play in wetland classification 

when using remote sensing data? 
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5. What are the most important factors in a GIS-based wetland restoration model 

for Black Hawk County? 



CHAPTER2 

LITERATURE REVIEW 

The value of wetlands and their contributions to a healthy ecosystem have been 

gaining increasing recognition over the past few decades as have the spectral and spatial 

resolution ofremote-sensing satellites since Landsat was first launched in 1972. Along 

with the increased power of geographical information systems, mapping and monitoring 

wetlands and other ecosystems with remotely-sensed imagery is proving to be an 

indispensable tool for understanding these valuable resources and keeping wetland 

inventories current. In Iowa 92% of the land is in agricultural use (the highest in the 

nation) and Iowa ranks in the top three states in wetland losses (Dahl, 1990). Therefore, 

there is a need to update decades-old inventories and research potential wetland 

restoration areas. 

9 

The literature compiled for this study is broken down into classification 

techniques of wetlands from remotely-sensed imagery and GIS-based wetland restoration 

models. The review is based on the most current studies published. Although the 

literature gives an excellent, solid foundation in multispectral assessment of wetlands, 

recent software introductions (Benz, Hofmann, Willhauck, Lingenfelder, & Heynen, 

2004) and availability of hyperspectral data give the chance to further research methods 

of wetland classification. Lastly, wetland restoration models are reviewed to develop a 

model that can be applied to the landforms of the study area. 



10 

Traditional Multispectral Classification of Wetlands 

Traditionally, Landsat Multispectral Scanner (MSS), Landsat Thematic Mapper 

(TM), and the French Systeme Pour !'Observation de la Terre (SPOT) satellite systems 

have been used to study wetlands (Lunetta & Balogh, 1999; Shaikh, Green, & Cross, 

2001; Shepard, Wilkinson, & Thompson, 2000; Toyra, Pietroniro, & Martz, 2000). Other 

studies have included the moderate-resolution remote-sensing platforms of the National 

Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer 

(A VHRR), the Indian Remote Sensing Program (IRS), the Japanese Earth Resources 

Satellite (JERS-1), the European Remote-Sensing Satellite (ERS-1), the Shuttle Imaging 

Radar (SIR-C), and lastly, the Canadian Radio Detection and Ranging Satellite, 

RADARSAT (Alsdorf, Smith, & Melack, 2001; Bourgeau-Chavez et al., 2001; Chopra, 

Verma, & Sharma, 2001). Some of the earliest work included visual interpretation of 

aerial photographs. Unsupervised classification or clustering is the most commonly used 

classification to map wetlands and maximum-likelihood is the most common supervised 

method (Ozemi, 2000). To aid in the low wetland accuracy percentages that usually 

accompany these classification methods (30 - 60% accuracies), multi-temporal and 

ancillary data are often used along with various models to improve classification 

accuracies. Ancillary data provide a practical solution to help solve the problem of 

distinguishing among spectral similarities in wetlands, agricultural fields, and forests 

(Houhoulis & Michener, 2000). 

However, there are limitations in delineating wetlands using traditional, optical, 

multispectral techniques. One limitation on the use of optical data for wetland mapping 
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is their inability to penetrate vegetation canopies, and thus their inability to remotely 

sense flooding beneath a closed canopy (Bourgeau-Chavez et al., 2001). There has been 

some research done on wetlands using radar data (Alsdorf et al., 2001; Bourgeau-Chavez 

et al., 2001; Rio & Lozano-Garcia, 2000) as well as LIDAR (MacKinnon, 2001), but the 

majority has been concentrated on Landsat TM, MSS, SPOT, and airborne Color Infrared 

(CIR) photos. 

Previous studies for classification of wetlands using rule-based classifiers have 

shown mixed results. Jenssen and Middelkoop (1992) showed improvements of six to 

twenty percent accuracies for crop cover classification of Landsat TM images over the 

maximum-likelihood classifier. Halid (1997) had a decrease in accuracy of land cover 

changes using a knowledge-based classifier compared to a maximum-likelihood one 

(78% overall accuracy decreasing to 44%). However, he noted that rule-based 

classification had the advantages of being quicker and requiring less field work. Sader, 

Ahl, and Liou (1995) reported overall accuracies of 80% and 82% for wetlands in Maine 

(in Orono and Acadia National Parks, respectively). Wetland producers accuracy in 

Acadia National Park was determined to be 77% and wetlands users accuracy 62%. In 

Orono National Park, wetlands producers accuracy was determined to be 66% and 

wetland users accuracy 82%. Forested wetlands were emphasized in the study. Ozemi 

(2000) noted that rule-based classifiers generally provide more accurate classification 

results than the traditional maximum-likelihood method, but not always. In addition, she 

noted that classification accuracies were much greater using two dates of imagery for 

Landsat TM (leaf-on and leaf-off). This indicates that seasonal comparison of images for 
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wetland classification is probably needed. Hodgson, Jensen, Mackey, and Coulter (1987) 

also indicated wetlands could be better defined on imagery acquired in spring when the 

water table was high. 

Houhoulis and Michener (2000) created a rule-based method of wetland change 

detection using National Wetlands Inventory and SPOT data for a study area in the Flint 

River Basin in south-west Georgia. Their utilization of the modulus to reduce data 

volume and provide spectral variability was added to the attribute table of the wetland 

polygons along with majority land-cover attributes to determine the change criteria 

(within one standard deviation). They also used a custom Arc Macro Language (AML) 

script to determine thresholds and provided an accuracy assessment of over 10% of the 

12,000 wetland polygons used in the study. The overall accuracy of the study was an 

impressive 96%, with 90% accuracy for changed wetlands and 8% of the wetlands 

showing a conversion to other land uses. The reasoning behind the study was that the 

National Wetland Inventory (NWI) coverages were two decades old and needed to be 

updated. Limitations of the study include the fact that since only previously surveyed 

wetlands were monitored for change, the accuracies were artificially high compared to 

wetlands delineation from scratch. Also, no ground-trothing was performed, accuracy 

was limited to the 20-meter resolution of the SPOT data, and no allowance was made for 

created or mitigated wetlands that could have been created within the past twenty years. 

Other work has been done using multi-sensor assessment (Toyra et al., 2001) and neural 

networks (Han, Cheng, & Meng, 2003; Ozemi, 2000). 



13 

Hyperspectral Classification of Wetlands 

Hyperspectral classification of wetlands is relatively new and the literature not yet 

fully developed. Recently, only a few researchers have reported the use of hyperspectral 

images for wetland mapping. Relevant studies include Anderson, Garono, and Robinson 

(2003), Bakker and Schmidt (2002), Carter, Wells, and Lewis (2004), Juan, Jordan, and 

Tan (2000), and Schmidt and Skidmore (2002). This dearth of studies exists perhaps 

because hyperspectral imagery requires more complex software and more powerful 

computers for processing than multispectral imagery. It is also more expensive, but 

according to the following research, has yielded more accurate results than traditional 

multi spectral imagery classification. The following sections provide a brief background 

and summarize the available literature. 

Studies using pixel classifiers, such as SAM, Minimum Noise Fraction, and 

Matched Filter, in conjunction with hyperspectral imagery include Marcus, Legleiter, 

Aspinall, Boardman, and Crabtree (2003), Salem and Kafatos (2001), and Underwood, 

Ustin, and DiPietro (2003). 

The Spectral Angle Mapper (SAM) algorithm is a physically-based spectral 

classifier that uses an n-dimensional angle to match pixels to reference spectra (ENVI, 

2002). The mathematical formula for SAM is as follows: 

a= cos ·1 LXY 
✓L(X)2L(Y)2 

Where in Equation 1; 

a = angle formed between reference spectrum and image spectrum 
X = image spectrum 
Y = reference spectrum 

(1) 



The advantage of the Spectral Angle Mapper technique over traditional 

Maximum-Likelihood and ISODATA techniques is that the illumination differences 

across landscapes (e.g., different aspects) do not create false differences between pixels 

of the same composition (ERDAS, 2002). For a detailed description of the SAM 

technique see Salem and Kafatos (2001) and ENVI (2002). 
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Carter, Wells, and Lewis (2004) evaluated the potential ofITD VNIR IOE (a type 

of sensor) hyperspectral imagery to detect invasive wetland plant species in northern 

Mobile Bay, Alabama, in September of 2003. Ground resolution was one meter, and the 

wavelengths captured were in the 400 to 1000 nm range. They were successful in 

detecting Chinese tallow tree (Tridica sebifera), and water hyacinth (Eichhornia 

crassipes), as well as mapping native wetland plants. The researchers continue to 

evaluate different algorithms for use in coastal wetlands. 

Schmidt and Skidmore (2003) studied 27 salt marsh vegetation types in a coastal 

Dutch wetland and concluded that statistical variation of wetland vegetation reflectance 

spectra is possible in the visible to short-wave range. They used a three step analysis to 

test difference between type classes, used continuum removal as a normalization 

technique in the visible range (although it failed in the infrared range), and measured the 

distance of the vegetation types in spectral space using the Bhattacharyya and Jeffries

Matusita distance measures. S-Plus software was used to process the 579 bands between 

400 and 2500 nm with a gap between 1820 to 1940 nm for atmospheric water absorption. 

A GER spectrometer was used to measure the in situ reflectance on 132 vegetation plots. 

The bands found to be the most useful for discriminating wetland vegetation types were 
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between 740-1820 nm in the shortwave infrared and between 400 to 700 nm in the visible 

spectrum. Six wavelength bands were then selected out of the above mentioned bands 

based on their higher frequency of statistically different median reflectance and their 

more-or-less spacing across the whole spectrum. Those bands are: 404, 628, 771, 1398, 

1803, and 2183 nm. This study provides a foundation for other researchers wishing to 

test those specific bands for their own wetland study areas. 

Bakker and Schmidt (2003) concentrate on edge filtering for hyperspectral images 

in agriculture and salt marsh test areas. They conclude that hyperspectral edge filters can 

assist in image interpretations. Lastly, Juan et al. (2000) flew a hyperspectral mission 

over Fort Drum Marsh in Florida using an unspecified hyperspectral sensor that collected 

64 wavebands in the 399.2 to 920.5 nm range. They were successful in delineating the 

wetland species from the airborne hyperspectral imagery, but did not release what 

wavebands were most sensitive for different plant species. 

Anderson, Garono, and Robinson (2003) used Compact Airborne Spectrographic 

Imager (CASI) Imagery along with Landsat 7 ETM+ images to map wetlands along the 

Columbia River. They originally wanted to map the entire area with CASI, but ran into 

time and budget issues. Their configuration for the CASI imagery was 19 bands from 

459.3 nm to 819.8 nm, and 1.5 meter spatial resolution. They masked out the urban areas 

and used National Wetland Inventory maps along with ground truthing to create the 

classification. They were able to determine over 80 different classes with the CASI 

imagery, 20 of which were purely spectrally determined. They also used ERDAS 

Imagine software and the ISODATA unsupervised classification algorithm, where 6-7 
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major habitat types were identified and then continuously cut from the originally 19-band 

mosaic until all spectral classes fit their criteria of narrowness. Their accuracy 

assessment has still not been completed. 

Lastly, Underwood et al. (2003) mapped iceplant (Carpobrotus edulis) 

successfully in a southern California coastal habitat using the Minimum Noise Fraction 

algorithm and band-ratio indices. Salem and Kafatos (2001) used the SAM algorithm 

along with hyperspectral imagery to detect oil spills in Chesapeake Bay, and concluded 

such a method minimized the limitations of conventional remote-sensing techniques (i.e., 

multispectral and aerial photographs). Marcus et al. (2003) evaluated one meter, 128 

band hyperspectral imagery for mapping in-stream habitats, depths, and woody debris in 

Yellowstone National Park. They concluded that clear water was necessary to measure 

depth, and that tree canopy cover was also a problem. They accomplished high overall 

accuracies ranging from 69 to 99%. One method ( classifier) not seen in the hyperspectral 

and wetlands literature is the object-oriented one, discussed in the next section. 

Object-Oriented Classification of Wetlands 

Object-oriented classification is relatively new to the field ofremote sensing and 

most of the studies completed have taken advantage of high-resolution imagery 

(IKON OS, QuickBird, etc.) for land-cover classification. Of particular interest to many 

researchers is urban area classification due to the functions associated with eCognition 

software. However, other research has focused on natural resource and wetland 

classification, as shown by many studies (Antunes, Lingnau, & Da Silva, 2003; Civco, 
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Hurd, Wilson, Song, & Zhang, 2002; Gomes & Marcal, 2003; Ivits & Koch, 2002; Kaya, 

Pultz, Mbogo, Beier, & Mushinzimana, 2002; van der Sande, de Jong, & de Roo, 2004). 

van der Sande et al. (2004) divided one meter, four-band IKONOS-2 imagery into 

different land cover segments with an overall accuracy of 74%, and then used that 

thematic map as an input for a flood-simulation model. They were able to then 

successfully estimate flood damage for local land-use planners and insurance companies. 

Gomes and Marcal (2003) used 9-band 15-meter Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) imagery to revise a 1995 land-cover data 

set for the Vale do Sousa region in northwest Portugal. Their overall accuracy was 

71.5%; forested areas, which were emphasized in the study, had an average accuracy of 

46.3%. 

Antunes et al. (2003) segmented a 4 band IKONOS image to identify riparian 

areas that could not be spectrally differentiated in the northern part of the state of Parana 

in southern Brazil. They needed to map declining wetland areas for resource 

management because of increased agricultural activities. Their accuracies were 75.4% 

for riparian vegetation and 78.6% for swamp vegetation. They also ran a Bayesian 

Maximum Likelihood classifier for the same areas and came up with 56.0% for riparian 

areas and 45.3% for swamp vegetation. Although they showed promising results, there 

was a disappointing lack of detail in their exact pre-processing and methodology steps. 

Civco et al. (2002) compared knowledge-based and object-oriented techniques 

(among others) for land cover change detection in the Stony Brook Millstone River 

watershed in New Jersey using Landsat ETM+ data. They concluded that no single 
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method was superior for their study data and area. However, they admitted "The image 

segmentation and object-oriented classification holds much promise." and "The image 

segmentation and object-oriented classification and change detection appeared to have 

produced better overall results, especially in terms not only detecting and characterizing 

the nature of change, but also in minimizing the salt-and-pepper effect caused by isolated 

and non-contiguous pixels" (p. 8). Ivits and Koch (2002) used six European test sites and 

IRS panchromatic and Landsat ETM imagery along with object-oriented classification to 

develop a preliminary landscape habitat ecological analysis. 

Kaya et al. (2002) acquired RADARSAT-1 data to map wetlands and other land 

cover types in coastal Kenya to assess malarial risk. Their object-oriented approach 

resulted in 85.5% overall accuracy and 65.3% accuracy for wetlands. They tested 

Synthetic Aperture Radar (SAR) data because of lack of availability of multi-spectral 

cloud free images for coastal, tropical regions. Some problems they encountered with the 

data included backscattering returns being classified as wetlands, as well as certain forest 

types (mangrove) also being wrongly classified as wetlands. Harken and Sugumaran 

(2004) found that an object-oriented classifier had a high degree of accuracy in 

classifying freshwater wetlands using 60 cm CASI hyperspectral imagery in a study area 

in Eddyville, Iowa. 

Wetland Restoration Models Using GIS 

As Hey and Philippi (1999) note, wetlands can be restored to provide functions 

that have been lost. They also note that wetland restorations are most effective when they 

currently occupy less than 10% of the area to be restored. There are no standard models 



19 

for restoring wetlands as there are for determining and mapping wetlands (which in itself 

is a complex, time-consuming procedure). However, there have been five studies 

completed where remotely-sensed I GIS-based wetland restoration models have been 

created and implemented. Berman, Rudnicky, Berquist, and Hershner (2002) worked in 

Virginia and the Lower Mississippi River Conservation Committee (2001) completed a 

study in the Mississippi Alluvial Valley in Missouri. Sader et al. (1995) worked in 

Maine, Braster and Radish (1996) in western Iowa, and Riverlink (2000) in North 

Carolina. 

Other useful studies include wetland hydrological modeling (Brown, Johnston, & 

Cahow, 2003; Loiselle, Bracchini, Bonechi, & Rossi, 2001; Tsihrintzis, John, & 

Tremblay, 1998; Whittecar & Daniels, 1999) as well as wetland nutrient modeling (Wang 

& Mitsch, 2000), wetland soil carbon modeling (Trettin, Song, Jurgensen, & Li, 2001), 

wetland habitat modeling (Wakeley, 1988) and wetland buffer modeling (Budlong, 

2002). The end product of the Lower Mississippi River Conservation Committee (2001) 

model is a raster map, where each 30-meter cell has a arbitrary weighted value of 7 to 75, 

which is to be interpreted as an indicator of relative probability of a given grid cell to 

deliver water quality benefits ifrestored. The model's purpose was to prioritize areas for 

forested wetland areas on private land next to the Mississippi River in south-east 

Missouri. They used ARC/INFO and Arc View Grid Analyst software, as well as State 

Soil Geographic Database (STATSGO) soil coverages, a Digital Elevation Model 

(DEM), and geomorphology coverages. Hydrology (flooding, topography) was given 



73.33% of the total model weight, and reforestation (soils) 26.67%. The reasoning 

behind the weighting was not given. 
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Riverlink (2000) developed three disparate mountain wetland restoration models; 

one for a general need assessment that identified 94 watersheds, a second to identify 

high-probability wetland restoration areas that identified 140,000 acres of land, and a 

third to identify large parcels of land, 25 acres or more, that identified 4 77 potential sites, 

and 78 high potential sites. Hydrologic units were determined to have too coarse a 

resolution for the study needs so small management units were created in Arc View based 

on a flow accumulation of 5,000 grid cells or approximately 1,148 acres. Grid cells in 

each layer of the model (wetlands, building starts, agriculture, roads, elevation, sewer, 

and conservation/natural resource areas) were ranked on their presence or absence, their 

linear distance from each other, and what percent of the grid cell they covered. The cells 

were then scored and regrouped into three natural break categories of restoration 

potential, high need, medium need, and low need. They also used another natural break 

(Jenks) regrouping based on final parcel size; i.e., their need was to develop wetland 

restoration areas in the largest tracts possible. 

Budlong (2002) used three factors in determining potential riparian habitat buffers 

in the Whitewater River Watershed in south-eastern Minnesota. They were: proximity 

of row crops to streams and rivers, slope, and proximity of feedlots to rivers and streams 

of the watershed. It should be noted that in most of the restoration models reviewed, 

proximity to a hydrological feature (usually a river or stream) and slope were always used 

as model factors. Hydric soils were also found to be important in ranking potential 
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wetland restoration areas, and these areas were always preferred to be agricultural. 

Budlong's ranking system divided subwatersheds into high, moderate-high, moderate, or 

low restoration potential. To achieve this goal of ranking, percentages were used for 

land-cover types within the 50-meter stream buffer (>65% row crop area meant high 

potential, etc.), mean slope value within 300 meters of all hydrological features, and total 

areas of feedlots within the 50-meter stream buffers. The final equation was: (x = row 

crop land-cover%, y = slope, and z = feedlot areas) RESTORATION POTENTIAL= (x 

* 0.65) + (y * 0.25) + (z * 0.10). One of the most important conclusions from this study 

was that riparian stream buffers should be adjacent to the headwater streams of a 

watershed for maximum ecological effect. 

Berman et al. (2002) used ARC/INFO software, a land-cover layer derived from 

30-meter Landsat United States Geological Survey (USGS) imagery, a digital Soil 

Survey Geographic Database (SSURGO) layer, a hydrology layer, a National Wetlands 

Inventory (NWI) layer, and conservation-area layers. They based their analysis on 

wetland functions. Polygons were ranked as good, high, or excellent according to water 

quality, flood control, sediment control, erosion control, and wildlife habitat. Landscape 

position and surrounding land-cover was also used to assign rankings. Agricultural areas 

were again favored in the ranking schema. 

Lastly, Braster and Radish (1996) wanted to identify current land uses and offer 

alternatives to land managers of floodplain areas. They wanted to do this by using GIS, 

strengthening relationships with local organizations and landowners, and providing 

informed development strategies. Chi-square values were developed for the variables of 
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depth of water table, number ofNWI wetlands, presence ofNWI wetlands, position of 

soil mapping units, com-suitability ratings, presence of hydric and non-hydric soils, and 

proximity to levees. Lo git modeling was used and weights and ratings for the variables 

were based on the chi-square for the first model (Model 1) and field experience for the 

second model (Model 2). The formula for the composite score was= (W1 * R1
) + (W2 * 

R2) + ... + (WA7 * R"7) where W1 is the weight for the variable mapped data layer 1 and 

RI was the rating assigned to the category on data layer 1. Weightings were based on a 

GIS map arithmetic approach, after Anderson (1992). After applying the models to the 

312 selected study sites frequency statistics were generated. Both models showed a high 

improvement over chance (83.0 and 82.1 % respectively) in predicting high-probability 

locations of wetland restorations. 

All of these studies in both wetland classification and restoration methods have 

been important in the fields of wetland delineation and restoration research. Their 

limitations include not bringing together updated wetland classification and restoration 

models and unacceptable accuracies. This study will attempt to address some of those 

issues through the use of a new classifier ( object-oriented), up-to-date data sets, and a 

unique site context (the Iowan Surface and Southern Iowa Drift Plain landforms, more 

specifically Black Hawk County and Eddyville) in which to apply the methods and 

potential wetland area restoration model. Also, in the literature the majority of 

hyperspectral mapping of wetlands has been concentrated in coastal and estuarine areas, 

and not in freshwater inland areas. 
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METHODS 
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Two study areas were used in this research: Black Hawk County, located in the 

northeastern part of the state and encompassing 567 square miles, and 50 acres near 

Eddyville, in south-east Iowa. The imagery used included 30-m Landsat ETM+ for 

Black Hawk County and 60 cm CASI for Eddyville, discussed further in the next section. 

The two study areas were chosen for the following reasons: (a) Black Hawk County 

because imagery was available at no cost, and local experts could critique the 

methodology along the way; and (b) Eddyville because it is the only portion of the state 

with a hyperspectral dataset where wetlands are present. 

Data Used 

Black Hawk County Multispectral Images 

Black Hawk County, Iowa is the fourth most populous county in the state and is 

located at 42.491N Latitude and 92.367W Longitude. The multispectral imagery used for 

classification is as follows: An April 2002, I-meter resolution Color Infrared Photo 

mosaic (Figure 3, left), obtained from the Iowa Geographic Image Server, a September 

2000, 30-m Landsat ETM+, and a July 1999, 30-m Landsat ETM+ obtained from the 

University of Northern Iowa's STORM Project (Figure 3, right). Two hybrid data sets 

were created by pan-sharpening the Landsat images with their 15-m panchromatic band, 

Principal Components Analysis and a Matrix of the two seasonal Landsat images. The 

choice of the data sets was based on their no cost availability and their temporal 
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applicability (all three within the last four years). This is pertinent because one of the 

project goals was to create an updated wetlands map for the county using the most up-to

date imagery available. As stated previously, the current wetlands map, created by the 

Iowa Department of Natural Resources (IDNR) and the NWI, is based on aerial 

photograph interpretation and field surveys done almost twenty years ago. The vector 

ancillary data used for cross checking the multispectral imagery, classification accuracy 

assessments, and as direct inputs into the restoration model (wetland areas, hydrology, 

soils, and conservation areas) were obtained from various sources, including the USGS, 

NRCS, IDNR, NWI, and Iowa Geographic Map Server. Additionally, data were acquired 

from the Black Hawk County GIS office. The software used with the multispectral 

imagery was ERDAS Imagine 8.6, eCognition 3.0, and ArcGIS 8.2. 

Figure 3. Black Hawk County, Iowa. One meter CIR image (left) 
and 15 m Landsat ETM image (right). 
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Eddyville Hyperspectral Image 

Eddyville, Iowa is a small town located in the south-central part of the state along 

the Des Moines River at 41.160N Latitude and 92.631W Longitude. The hyperspectral 

image used for classification was flown with the CASI sensor in July of 200 I for a Iowa 

Department of Transportation & National Consortium on Remote Sensing in 

Transportation - Environmental Group project (Iowa Department of Transportation & 

National Consortium on Remote Sensing in Transportation - Environmental Group 

[NCRST-E], 2002). The 2001 image is a mosaic of seven flight lines and has a spatial 

resolution of 60 cm with 25 contiguous spectral bands, each of which is approximately 

0.018 micrometers with a range of 350 to approximately 2500 nanometers (Figure 2). In 

addition, a I-meter Color Infrared Image from the IDNR, SSURGO maps and NWI data 

were used for training and accuracy assessment. The software used to process and 

classify the hyperspectral image was ENVI 3.6 and eCognition 3.0. 

The 60-centimeter 2001 Eddyville image encompasses approximately 969 acres 

and contains unique ecological habitats. The Iowa Department of Transportation 

discovered this when they planned a highway bypass northeast of the city and citizens 

informed the IDOT of the protected species and habitats (NCRST-E, 2002). However, 

only a SO-acre test portion of the study area was classified in this research (See Figure 4). 

Wetland vascular plant species in the area include such species as: Festuca rubra L. (red 

fescue), Pycnanthemum tenuifolium (Slender mountain mint), Polygonum persicaria 

(Spotted ladysthumb), Conyza sp., Phalaris arundinacea (Reed canarygrass), Galium 

aparine (Goose-grass), Utica dioica (nettles), and Marus alba (White mulberry). All of 
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the before mentioned species occur on the 1996 National List of Vascular Plant Species 

that Occur in Wetlands, published by the U.S. Fish and Wildlife Service (United States 

Fish and Wildlife Service, 1996). 

Figure 4. Hyperspectral Image 50 Acre Study Area. 
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Image Analysis and Classification 

The following sections provide an overview of object-oriented classification and 

the processing behind the multispectral and hyperspectral images. Figures 5 and 6 

demonstrate the overall flow of the multispectral and hyperspectral image analysis 

process. 

Multispectral Data 

30 m Landsat ETM+ 

Data Fusion 

Seasonal Matrix 
July+ Sept. 

Pan-sharpened 

Object-Oriented 
Classifier 

Final Output 
Seasonal Matrix 

Training Areas Identified 

!SODA TA Unsupervised 
Classifier 

Accuracy Assessment 

Final Output 
Landsat 

I mCIR 

Maximum Likelihood 
Classifier 

Final Output 
CIR 

Figure 5. Multispectral Imagery Processing Flowchart. 



CASI Data 

Pre-Processing (Minimum Noise 
Fraction Algorithm) 

Band Selection 

Training Areas Identified 
(RO!s) 

Spectral Angle Mapper 
(SAM) Classifier 

Multiresolution 
Segmentation 

Output Rule Images 

Final Output 
SAM 

Accuracy Assessment 

00 Classification 

Training Areas 
Retrained 

Final Output 
00 

Figure 6. Hyperspectral Image Processing Flowchart. 

Object-Oriented Classification 
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In contrast to traditional image-processing methods, the basic processing units of 

object-oriented analysis are image objects or segments, and not single pixels (Baatz & 

Schape, 2001 ). The reasoning behind this is the expected result of many image-analysis 

tasks is the extraction of real-world objects. Representation of image information is 

based on the networking of these image objects, which must be explicitly worked out in 

contrast to implicit neighbor objects on the pixel scale. Scale is an important 
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consideration in object-oriented analysis because it determines the occurrence or 

nonoccurrence of a certain object class, i.e., a house or a subdivision, or a field or an 

ecosystem. This is achieved by a strict hierarchical structure that allows relations 

between objects and their sub-objects and super-objects. Single pixel objects represent 

the smallest possible processing scale. Other information used in object-oriented analysis 

includes tone, shape, texture, context, and information from other object layers. 

The method of segmentation of the image objects is important, as there are an 

almost infinite number of solutions. They can be roughly grouped into two categories: 

knowledge-driven (top down) and data-driven (bottom up). Examples of data-driven 

segmentation include unsupervised spectral classification, region-growing algorithms 

from seed pixels, and texture-segmentation algorithms. According to the eCognition 

User Guide (Baatz & Schape, 2001), image segmentation in the eCognition software is 

essentially a heuristic optimization procedure which locally minimizes the average 

heterogeneity of image objects for a given resolution over the whole scene. The 

parameters that must be set for image segmentation in eCognition include: (a) aliases, (b) 

layer weights, (c) image-object level, (d) scale parameter, (e) segmentation mode, (f) 

composition of homogeneity criterion, and (g) type of neighborhood. 

Classification is based on fuzzy systems which use a degree of probability to 

express an object's assignment to a class. Please refer to Figure 7 for a graphical example 

of a fuzzy function. The membership value lies between 1.0 and 0.0, where 1.0 expresses 

full membership/probability and 0.0 expresses absolute non-membership/improbability. 
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In eCognition, the software used for this project, supervised classification was 

used to create training areas to classify the data, and ultimately, to see how well wetlands 

were classified. 

µ = 0.5 

µ = 0.0 

Figure 7. Example of a Fuzzy Function. A crisp set M (rectangle) and the fuzzy sets 
A and C (triangles) over a feature range X. 

Multispectral CIR Image Classification 

The unsupervised classification of the CIR I-meter (4.6 GB file size) was 

completed using ERDAS Imagine's ISODATA algorithm with the following parameters: 

120 classes with a convergence threshold of .95 and 30 maximum iterations. To identify 

separable clusters in the histogram, 120 classes were selected. Classes were then 

identified by visual interpretation based on the original false-color image and recoded 

(merged) into 6 general classes based on the Anderson, Hardy, Roach, and Witmer 

(1976) USGS classification system: Wetland (includes Woody and non-Woody 

Wetlands), Mixed Forest, Artificial Surface, Fallow/Bare Soil, Mixed Grasses (includes 

Mixed and Herbaceous Grasses), and Open Water. The supervised classification of the 

CIR was completed with ERDAS Imagine's Maximum-Likelihood Classifier, using a 



created signature file of polygon AO I's by visual interpretation and NWI ancillary data 

and grouped into the same six general classes used in the unsupervised classification: 
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Wetland, Mixed Forest, Artificial Surface, Fallow/Bare Soil, Mixed Grasses, and Open 

Water. The accuracy assessment for the CIR was performed by generating 300 random 

stratified points or 50 points per class. The points were then visually interpreted on an 

unclassified 2002 CIR image. 

For the object-oriented classification of the 1-m CIR image, a 2,881-acre subset 

was classified, due to file size restraints within the software. This specific limitation is 

discussed in greater detail in Chapters 4 and 5. Layer 3 of the CIR image was given a 

slightly higher weighting (1.0 versus 0.8 for layers 1 and 2) based on its proven 

vegetation sensitivity characteristics (Lillesand & Kiefer, 2000). For the accuracy 

assessment of the subset image, GPS ground trothing was performed for 35 areas during 

June of 2003. 

Multispectral Landsat ETM Image Classification 

The unsupervised classification of the Landsat ETM+ 15-m image of Black Hawk 

County was done using the same parameters as the other unsupervised classification 

(CIR) to insure statistically comparable results. The ISODATA algorithm was used to 

separate the image into 120 classes with a convergence of 0.95 and 20 maximum 

iterations. Classes were identified by visual interpretation, histogram separability, and 

ancillary data and then grouped into six classes. A Row Crop class was substituted for 

Fallow/Bare Soil for this classification because the image was captured in September and 

much more planted vegetation was present than in the April CIR. The other five classes 
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remained the same. The supervised classification of the Landsat image was completed 

using the ERDAS' Maximum-Likelihood Classifier, using a created signature file of 

polygon AO I's based on visual interpretation and NWI ancillary data and grouped into 

the same six classes as the unsupervised Landsat classifications. The accuracy assessment 

was performed by generating 240-300 random stratified points or 40-50 points per class 

depending on pixels-per-class availability and visually interpreted using both an aerial 

photo and an unclassified TM image. 

For the object-oriented classifier in eCognition, Layers 3, 4 and 5 on the Landsat 

Image as well as layer 3 (SWIR) on the CIR were given slightly higher weightings (1.0 

compared to 0.8) during the initial segmentation based on their proven vegetation 

sensitivity characteristics. Each data set in eCognition was classified according to an 

average of 185 objects per class and 50 samples per class were tested (6 classes) for a 

total of 300 random sample points for the accuracy assessment ( except for the Landsat 

ETM 30-m where lack of objects kept the points down to 20 per class). Objects generally 

ranged from 5-15 pixels in size for the CIR and 94-95 pixels for the Landsat image. 

A seasonal matrix (Landsat summer/fall images) was created in ERDAS 

Imagine's interpreter function under GIS analysis to address the third research question 

and followed the same classification and accuracy assessment procedures as mentioned 

above. Figure 5 shows the overall multispectral processing flow for both the CIR and 

Landsat ETM+ data. 
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Hyperspectral Image Classification 

The Spectral Angle Mapping Wizard was run in ENVI against the subset 

Eddyville hyperspectral image. The wizard is composed of 10 steps, however only 4 of 

the most pertinent steps are shown in the flowchart in Figure 6. The first step in the 

image analyses was to select suitable bands and to reduce noise. A Minimum Noise 

Fraction (MNF) algorithm was run to determine the inherent dimensionality of image 

data, segregate noise, and to reduce the computational requirements for subsequent 

processing (Boardman & Kruse, 1994). The MNF is a linear transformation that consists 

of two separate principle component analysis (PCA) rotations, separating noise from 

signal and compressing spectral information to a few bands (Green, Berman, Switzer, & 

Craig, 1988). Based on the MNF output graph of eigenvectors and by visually inspecting 

the new bands, 16 of the 25 bands were selected as inputs for the classification. The next 

step in the flow chart is the identification of training areas or RO I's (Regions oflnterest), 

or supplying spectral endmembers as stated in the SAM wizard. Regions of Interest were 

selected from ground control points and augmented with visual interpretation. For the 

entire 969 acre image, 82 ground truth points were available, 41 of which were used to 

develop training areas and 41 of which were used to develop ROI's for accuracy 

assessment purposes. Training and accuracy areas were also grown from seed pixels and 

manually delineated into polygons based on visual interpretation of a I-meter Color 

Infrared Image along with corresponding digital SSURGO soil maps and National 

Wetlands Inventory data. The Spectral Angle Classifier was then run using a maximum 

angle of O .10. Output rule images were also generated to see if any of the classes were 



poorly identified. A comparison between the classified image and validation areas was 

generated using standard post-classification techniques, resulting in a confusion matrix 

(see Table 14). For more information on post-classification techniques using ENVI and 

hyperspectral images, refer to Underwood, Ustin and DiPietro (2003). 
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Nine classes were chosen to represent all wetland types present as well as 

additional aggregated land cover types. Wetland types were based on ground truth 

assessments and other land cover types were based on the Anderson Level classification 

(Anderson et al., 1976). The classes include three classes of wetland: Open Water, 

Aquatic Vegetation, and Flooded Forest, and the other land cover classes include: 

Floodplain Crop, Upland Crop, Artificial Surface, Herbaceous Cover, Shadow, and 

Mixed Forest. These are shown in the final output maps (Figure 10). 

For the object-oriented classifier, the same procedures were followed for steps 

one through four of the flowchart shown in Figure 5. The same 16 bands used for the 

SAM classifier were exported to an ERDAS Imagine format (.img), and then subset into 

a smaller file size (because of eCognition's file size limitation), and lastly imported into 

eCognition. The hyperspectral image was segmented using the following parameters: 

33-pixel average object-size (derived from a segmentation parameter of 10 pixels), equal 

weighting given to each of the 16 bands or layers, and standard nearest-neighbor 

relationship for the class hierarchy. For more information on object-oriented 

classification see Benz (2001), Baatz and Schape (1999), and Darwish, Leukert, and 

Reinhardt (2003). 
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A standard accuracy assessment was also run in eCognition, using ground truth 

points and visually interpreted areas, resulting in a confusion matrix output analogous to 

ENVI's: overall accuracy, wetland users accuracy, wetland producers accuracy, and the 

kappa statistic. 

GIS-Based Restoration Model 

A restoration model for Black Hawk County was developed to identify areas that 

cannot be defined as current legal wetlands, but due to their nature of soil properties, 

distance to surface hydrological features, and elevation, were most likely wetlands in the 

past. It was also created to reveal what areas that would provide the most benefit for the 

least cost and time when planning conservation within the county. 

The model shown in Figure 8 is based on Berman et al. (2002), Braster and 

Hadish (1996), Budlong (2002), Cowardin et al. (1979), Lower Mississippi River 

Conservation Committee (2001), Riverlink (2000), Sader et al. (1995), and the US Army 

Corp of Engineers Wetland Delineation Manual (Environmental Laboratory, 1987). 

These authors found hydric soil, low slope, and distance to hydrological features and 

existing wetlands as the most important variables. Those variables were weighted in this 

model accordingly except for low slope, as the entire county study area is flat enough to 

disregard that as a factor. Other variables included in the literature but not deemed 

applicable to the study area of Black Hawk County were defining hydrological basins, 

distance to levees, and amount of forest cover. Since this study is focused on wetland 

restoration sites and not current delineation and mapping of wetlands, criteria one of the 
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federal wetland definition (hydrophytic vegetation) was not used. Significant land cover 

changes (mostly conversion to agriculture) in the study area during the last 150 years 

have resulted in destruction of most hydrophytic vegetation. 

Four data layers were incorporated into the model shown in Figure 8: (a) a 

SSURGO soil type layer from the NRCS, (b) a hydrology layer (rivers and streams) from 

the IDNR, ( c) an existing wetlands layer from the NWI, and ( d) a shapefile of Black 

Hawk County Conservation Areas obtained from the Black Hawk County GIS office. All 

shapefiles were converted into coverages in ArcGIS 8.2 to build topology and converted 

to the same projection, Universal Transverse Mercator Zone 15 North, North American 

Datum 27. The four coverages were then converted into raster (grid) format in ArcGIS 

Spatial Analyst to facilitate weighting and ensure uniform cell size between layers. A 30-

meter cell size was chosen as this was the lowest resolution of confidence according to 

the accuracy assessments included in the layers' metadata. Also, a 1992 30-meter USGS 

Landcover map was used to initially mask out areas unsuitable for restoration (urban, 

bare rock and sand, open water, existing wetlands) and a 1996 county roads map from the 

IDNR was used to mask out a 30-m buffer along roadsides (see Berman et al., 2002). 
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Figure 8. GIS-Based Wetland Restoration Model for Black Hawk County. 
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Weighting was accomplished by evaluating which criteria were the most 

important for the study area of Black Hawk County. The Existing Areas Index was 

evaluated to be the most important, with areas adjacent or contained in an existing county 

conservation area ranked as a one ( on a scale of one through four, one being the highest), 

and the adjacent to existing wetlands factor ranked as a three. The reasoning behind this 

is that wetlands have a greater chance of being restored and are easier to manage if they 

are to be located in land already owned or adjacent to county conservation land (S. 

Finegan, personal communication, May, 2003). The Soils Index was ranked as the next 

in importance, because to meet the federal definition of a wetland, the wetland must 

contain hydric soil (Cowardin et al., 1979). Therefore poorly-drained, hydric soil was 

given a ranking of two. Lastly, proximity next to a surface hydrological feature was 

ranked at four, because of the importance given this variable in previous studies 
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(Budlong, 2002). All cells in each layer were reclassified using Spatial Analyst's 

Reclassify function by adding a column in the attribute table (RANK) and providing a 

score. The final equation, adapted from Budlong (2002), was: (x = existing area index 

total, y = soil index total, z = hydrology index total) RESTORATION POTENTIAL= [(x 

* 0.85) + (y * 0.65) + (z * 0.40)]. 
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The classification results can be thought of as a binary tree, as shown in Figure 8. 

Multispectral classification results for Black Hawk County include three classifiers for 

the CIR imagery, and three classifiers for the Landsat ETM imagery. Hyperspectral 

classification results for Eddyville include two classifiers for the CASI imagery. 

Wetlands Mapping Products 

Multispectral Hyperspectral 

CIR Landsat ETM CASI 

ISODATA 

Figure 9. Research mapping results. 

Multispectral CIR Image Classification 

Figure 9 depicts the CIR image classification with three classifiers: ISODATA, 

supervised Maximum-Likelihood, and Object-Oriented. In Figure 8, light/white areas 

represent wetlands, black, water, and gray tones other land-cover classes. For full-color 

results of the CIR classification, see Appendix: Maps 1 through 3. 
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Figure 10. Results from Multispectral One Meter CIR Image Classification. 
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The object-oriented method gave the highest overall accuracy when classifying 

the CIR (73.2%) while the Maximum-Likelihood classifier gave the highest wetland 

producers accuracy (75.0%) while the object-oriented classifier gave the best wetland 

users accuracy (50%; see Table 13). The object-oriented classifier in general performed 

worse than expected, and in contrast to previous studies in which high-resolution imagery 

(four meter IKONOS) had been used to identify wetlands (Antunes et al., 2003). Two 

possible reasons include incorrect scale parameters used in the segmentation step and 

poor spectral resolution. The eCognition ( object-oriented) software consistently 

performed better the more layers present there were to segment (see Table 6, 12, and 17). 

However, the one-meter CIR was very useful as an ancillary data source and wetlands 

could be manually (visually) delineated. Thus, CIR imagery is a cost-effective solution 

to agencies seeking to define wetlands from remotely-sensed imagery. Also, the entire 

county was not classified with the object-oriented classifier and the CIR image, because 

of file limitations in the eCognition software, a problem that also surfaced with the 

Eddyville hyperspectral image. For more information, refer to Chapter 5, Conclusion. 
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The ISODATA unsupervised algorithm differentiated artificial surfaces, tree 

canopies and wetland areas better than the Maximum-Likelihood supervised method; it 

was also slightly more accurate overall. Strangely, the supervised method identified the 

open-water class more effectively. 

Table 1 provides the error matrix for the CIR Maximum-Likelihood supervised 

classification, and Table 2 shows the various accuracy percentages for different types of 

land-cover classes. Similarly, Table 3 displays the error ( or confusion) matrix for the 

CIR unsupervised ISODATA algorithm classification, and Table 4 lists the class 

accuracy percentages for the before mentioned method. Lastly, Table 5 represents the 

confusion matrix for the object-oriented classification method, again using the 2002 

Color Infrared one meter aerial photo. Table 6 illustrates the class accuracy percentages 

for the CIR object-oriented method. One random point for the CIR supervised 

classification accuracy assessment had to be discarded since it fell out ofrange of the 

image; similarly 16 points had to be discarded for the unsupervised classification 

accuracy assessment. 
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Table 1 

Error Matrix CIR Supervised Classification 

Class Artificial Open Fallow/Bare Mixed 
Wetland Mixed 

Total 
Surface Water Soil Grasses Forest 

Artificial 
II 3 34 2 0 0 50 

Surface 
Open Water 49 0 0 0 0 50 
Fallow/Bare 0 48 0 0 50 
Soil 
Mixed 

0 0 45 3 50 
Grasses 
Wetland 4 0 7 12 18 9 50 
Mixed 43 0 2 2 49 
Forest 
Total 19 53 132 59 24 12 299 

Table 2 

Accuracy Percentages CIR Supervised Classification 

Class Producers Users 
Kappa 

Accurac~ Accurac~ 
Artificial Surface 57.89 22.00 0.1671 
Open Water 92.45 98.00 0.9757 
Fallow/Bare Soil 36.36 96.00 0.9284 
Mixed Grasses 76.27 90.00 0.8754 
Wetland 75.00 36.00 0.3041 
Mixed Forest 16.67 4.08 0.0007 

Note. Overall Accuracy 57.86%, Overall Kappa 0.4941. 

Table 3 

Error Matrix CIR Unsupervised Classification 

Class Artificial Open Fallow/Bare Mixed 
Wetland Mixed 

Total Surface Water Soil Grasses Forest 
Artificial 

36 12 0 0 50 Surface 
Open Water 7 12 25 0 2 4 50 
Fallow/Bare 

0 48 0 0 50 Soil 
Mixed 

0 0 0 50 0 0 50 Grasses 
Wetland 2 0 30 2 II 5 50 
Mixed 

0 5 16 6 22 50 
Forest 
Total 47 13 120 69 20 3 I 300 
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Table 4 

Accuracy Percentages CIR Unsupervised Classification 

Class Producers Users Kappa 
Accurac:i::: Accurac:i::: 

Artificial Surface 76.70% 72.00% 0.6457 
Open Water 92.31% 24.00% 0.2056 
Fallow/Bare Soil 40.00% 96.00% 0.9333 
Mixed Grasses 72.46% 100.00% 1.0000 
Wetland 55.00% 22.00% 0.1643 
Mixed Forest 70.97% 44.00% 0.3755 

Note. Overall Accuracy: 59.67%, Overall Kappa: 0.5160. 

Table 5 

Error Matrix CIR Object Oriented Classification (GPS ground truth points) 

Class Artificial Open Fallow/Bare Mixed Wetland Mixed Total 
Surface Water Soil Grasses Forest 

Artificial 
4 0 0 0 0 0 4 Surface 

Open Water 5 0 0 0 0 6 
Fallow/Bare 

0 0 4 0 0 0 4 
Soil 
Mixed 

0 0 5 2 0 8 Grasses 
Wetland 0 0 0 0 6 4 10 
Mixed 

0 0 0 0 2 3 Forest 
Total 5 5 5 5 10 5 35 

Table 6 

Accuracy Percentages CIR Object Oriented Classification 

Class Producers Users Kappa 
Accurac;r Accurac:i::: 

Artificial Surface 100.0 80.0 0.778 
Open Water 83.3 100.0 1.00 
Fallow/Bare Soil 100.0 80.0 0.778 
Mixed Grasses 62.5 100.0 1.00 
Wetland 68.75 50.0 0.5 I 7 
Mixed Forest 33.3 20.0 0.135 

Note. Overall Accuracy: 73.2%, Overall Kappa: 0.701. 
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Multispectral Landsat ETM Image Classification 

The object-oriented classifier outperformed the pixel-based methods (ISODATA 

& ML) when classifying the September 2000 Landsat imagery. Overall accuracy was 

higher in both the 30 m (73.9%) and 15 m (90.7%) images (Table 13). However, wetland 

identification accuracy was only better than the pixel-based methods when spatial 

resolution was increased (73.7% producers accuracy, 66.7% users accuracy). 

Segmentation parameters were taken from previous studies (Antunes et al., 2003; Fisher, 

Gustafson, & Redmond, 2002; Gomes & Marcal, 2003; Meinel, Neubert, & Reder, 2001; 

Schiewe, 2001) who also used multispectral satellite imagery and reported generally 

similar accuracies for different land cover types using the object-oriented classifier. In 

Figure 11, the results of the Landsat ETM image classification are shown side by side for 

comparison. For full color maps of the classifications refer to Appendix: Maps. 

ETM- IS0DATA classified 
image 

ETM-ML 
classified image 

ETM - 00 image 
classified image 

Figure 11. Results from Multispectral 15 Meter Landsat ETM Image Classification. 
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In Figure 11, light areas represent wetlands, black, water, and gray tones other 

land cover types. Table 7 illustrates the confusion matrix for the pan-sharpened Landsat 

and Maximum-Likelihood supervised classification. Table 8 then gives the accuracy 

percentages for the before mentioned method according to class. Similarly, Table 9 

represents the error matrix for the ISO DAT A unsupervised classification of the Landsat 

image in ERDAS Imagine and Table 10 explains the class producer and users accuracy 

for the ISODATA method. Lastly, Table 10 shows the object-oriented classification 

error matrix for the classified Landsat ETM+ and Table 11 the object-oriented class 

producer and user accuracies. 

Table 7 

Error Matrix Landsat ETM 15 m Supervised Classification 

Class Artificial Open Row Crop Mixed Wetland Mixed Total Surface Water Grasses Forest 
Artificial 51 3 42 30 3 9 138 Surface 
Open Water 0 15 0 0 0 0 15 
Row Crop 0 0 39 0 0 0 39 
Mixed 

0 0 0 60 0 0 60 Grasses 
Wetland 0 3 0 6 21 3 33 
Mixed 0 0 0 3 6 6 15 Forest 
Total 51 21 81 99 30 18 300 
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Table 8 

Accuracy Percentages Landsat ETM I 5 m Supervised Classification 

Class Producers Users Kappa 
Accurac:r Acrnraci'. 

Artificial Surface 100.00 36.96 0.2404 
Open Water 71.43 100.00 1.0000 
Row Crop 48.15 100.00 1.0000 
Mixed Grasses 60.61 100.00 1.0000 
Wetland 70.00 63.64 0.5960 
Mixed Forest 33.33 40.00 0.3617 

Note. Overall Accuracy: 64.0%, Overall Kappa: 0.552. 

Table 9 

Error Matrix Landsat ETM I 5 m Unsupervised Classification 

Class Artificial Open Row Crop Mixed Wetland Mixed 
Total Surface Water Grasses Forest 

Artificial 
38 0 0 2 0 0 40 

Surface 
Open Water 0 38 0 2 0 0 40 
Row Crop 0 0 38 0 2 0 40 
Mixed 

0 0 0 40 0 0 40 Grasses 
Wetland 0 0 6 12 16 6 40 
Mixed 

0 0 8 2 10 20 40 Forest 
Total 38 38 52 58 28 26 240 

Table 10 

Accuracy Percentages Landsat ETM I 5 m Unsupervised Classification 

Class Producers Users Kappa 
Accuraci'. Accuracl'. 

Artificial Surface 100.00 95.00 0.9406 
Open Water 100.00 95.00 0.9406 
Row Crop 73.08 95.00 0.9362 
Mixed Grasses 68.97 100.00 1.000 
Wetland 57.14 40.00 0.3208 
Mixed Forest 76.92 50.00 0.4393 

Note. Overall Accuracy: 79.17%, Overall Kappa: 0.75. 
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Table 11 

Error Matrix Landsat ETM 15 m Object Oriented Classification 

Class Artificial Open Row Crop Mixed Wetland Mixed Total 
Surface Water Grasses Forest 

Artificial 
19 0 0 0 0 0 19 

Surface 
Open Water 0 20 0 0 0 0 20 
Row Crop 0 0 23 0 0 0 23 
Mixed 

0 0 33 2 0 36 
Grasses 
Wetland 2 0 0 14 2 19 
Mixed 

0 0 0 0 5 18 23 
Forest 
Total 20 22 24 33 21 20 140 

Table 12 

Accuracy Percentages Landsat ETM 15 m Object Oriented Classification 

Class Producers Users Kappa 
Accuracz: Accuracz: 

Artificial Surface 100.0 95.0 0.942 
Open Water 100.0 90.9 0.894 
Row Crop 100.0 95.8 0.95 
Mixed Grasses 91.7 100.0 1.0 
Wetland 73.7 66.7 0.614 
Mixed Forest 78.3 90.0 0.837 

Note. Overall Accuracy: 90.7%, Overall Kappa: 0.888. 

For the Landsat imagery, the ISODATA classifier performed as well as the 

object-oriented one for classifying land-cover types other than Wetland and Mixed Forest 

types. Overall accuracy for the unsupervised classifier was superior to the supervised 

classifier in both the Landsat and CIR imagery, suggesting that a "cluster-busting" 

method of determining land-cover classes is more accurate than traditional Maximum

Likelihood classification. Also, the above results (Tables 7 through 12) and the overall 

Landsat results (in Table 17) are based on classification of a partial September 2000 

Landsat ETM+ image. A full scene for Black Hawk County was available for July of 



1999, and was used for the seasonal matrix and used for the final Black Hawk County 

wetlands map (see Appendix A: Map 7), but not for classifier comparison due to the 

large amount of flooding present on the Landsat ETM+ July 1999 image. 

Hyperspectral CASI Classification 
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Figure 11 and Tables 13 through 16 show the classified outputs and accuracy 

assessment for the object-oriented and SAM classifiers for the CASI image. Average 

wetland producers accuracy for the Spectral Angle Mapper classifier was 79.3%, 

somewhat higher than in other comparable studies, such as Garono, Schooler, and 

Robinson (2003). They achieved 74% accuracy with the ERDAS ISODATA 

unsupervised algorithm to map tidal wetlands along the lower Columbia River with CASI 

imagery. The greatest confusion between wetland classes for the SAM classifier was 

between the flooded forest and mixed (upland forest) categories, and also with the 

emergent (herbaceous) land cover class. This has also been found in many other studies, 

due to the inability of the wavelengths to penetrate the vegetation canopies. Possible 

solutions to this problem include RADAR (Bourgeau-Chavez et al., 2001) and LIDAR 

(MacKinnon, 2001) to penetrate dense vegetation canopies. Confusion between 

emergent herbaceous vegetative cover and wetland classes is also fairly well documented 

(Ozemi, 2000). A workable solution to this problem is the extraction of individual plant 

species from the hyperspectral imagery, which was not completed in this study due to 

time constraints. 

In the object-oriented classification, average wetland producers accuracy for the 

object-oriented classifier was 97.6%. Object-oriented classifiers have been shown to 
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increase accuracy of wetland classification in multispectral imagery (Antunes et al., 

2003). The results of this classification appear to be valid also for hyperspectral imagery. 

Wetland users accuracy for the object-oriented classifier (86.7%) was lower than 

producers accuracy, mirroring the SAM classifier. Confusion between classes was 

mainly limited to forested wetland and forested upland, which was also a problem with 

the SAM classifier. The accuracy assessment is based on the 50-acre study area. The 

comparison between these two classifiers revealed some interesting results. The object

oriented classifier produced better overall accuracy (92.3% vs. 68.2%) and better wetland 

class accuracy (97.6% vs. 79.3%) than the SAM classifier. Wetland Users Accuracy was 

lower than Producers Accuracy in both classifiers, suggesting that these two methods are 

more suited to detecting wetlands than for managing them from a users standpoint. 

The last wetlands survey completed for Mahaska, Wapello, and Monroe counties 

was conducted by the Iowa Department of Natural Resources in 1996 and is based upon 

National High Altitude Program Color Infrared Photographs taken in 1983 and 1984. 

The total wetland acreage for the entire hyperspectral image area according to that 

information is 53 acres. For the 50-acre study area that was classified in this research, 

2.6 acres of wetlands were identified from the last wetlands survey. Comparison of the 

1996 wetlands survey against the 2002 1-m CIR aerial photo clearly shows that many 

wetland areas have been developed or farmed or have shifted, necessitating an updated 

survey. The SAM classifier for the 50-acre study area identified 4.1 wetland acres, 0.2 of 

which were Open Water, 0.6 acres of Aquatic Vegetation, and approximately 3.3 acres of 

Flooded Forest. The object-oriented classifier for this study identified 3.9 acres, 0.3 of 
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which were Open Water, 0.6 acres of Aquatic Vegetation, and approximately 3 acres of 

Flooded Forest. 

There are also issues with these two classifiers for wetland classification. Known 

sources of bias include the fact that pixel-based classifiers such as SAM in hyperspectral 

imagery tend to perform best when extracting individual spectra of individual plant 

species (ERDAS, 2002; ENVI, 2002) and this study grouped different species of wetland 

vegetation into generic land-cover classes, a fact that might have favored the object

oriented classifier, which inherently classifies such object-based primitives. Other studies 

have shown higher accuracies using hyperspectral imagery and pixel-based methods 

(such as MNF, ration indices, etc.) to extract individual plant species spectra (Garono et 

al., 2003; Underwood, 2003). File size in eCognition is also another limitation. The 

version of eCognition that was used, 3.0, was unable to segment and classify files larger 

than 100 MB, which in this study represented 15-20 acres of the total 969 acre image. 

Therefore, the CASI image had to be divided into 60 different tiles. Definiens Imaging, 

the parent of eCognition software, has told the researchers that this file size limitation 

will be corrected in the release of eCognition 4.0. In Figure 12, the results of the 

hyperspectral classification are shown. 
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0 40 80 160 Meters 0 40 80 160 Meters 

Figure 12. Results from CASI Hyperspectral Image Classification. The left-hand image 
was classified using the eCognition Object-Oriented Classifier and the right-hand image, 

the ENVI Spectral Angle Mapper classifier. In the left-hand ( object-oriented 
classification) image, the dark tones represent open water, saturated soil, and upland 

(non-wetland) forest. The lighter areas are aquatic vegetation and herbaceous cover. The 
gray-tone classes represent dry bare soil and flooded (wetland) forest. On the right-hand 

side image (Spectral Angle Mapper classification), dark tones represent open water, 
saturated soil, and aquatic vegetation. Lighter areas represent upland and flooded forests, 

and gray-tones herbaceous cover and dry bare soil. 



Table 13 

Confusion Matrix for SAM Classification (Ground Validation Pixels) 

Class 
Open Aquatic Flooded Artificial Upland Flooded 
Water Vegetation Forest Surface Cro2 Cro2 

Unclassified 13 0 32 22 0 5 
Open Water 230 0 0 192 0 0 
Aquatic 

0 318 0 0 0 0 
Vegetation 
Flooded 

0 0 191 0 0 0 
Forest 
Artificial 

0 0 0 496 0 
Surface 
Upland Crop 0 0 0 35 516 62 
Flooded 

0 0 0 0 0 2 
Crop 
Herbaceous 

0 0 84 0 0 3 
Cover 
Mixed 

0 0 125 0 199 188 
Forest 
Shadow 0 0 II 0 0 13 
Total 243 318 443 745 715 274 

Table 14 

Accuracy Percentages CASI SAM Classification 

Class Prod. acc.(%) User acc.(%) 
Open Water 
Aquatic Vegetation 
Flooded Forest 
Artificial Surface 
Upland Crop 
Flooded Crop 
Herbaceous Cover 
Mixed Forest 
Shadow 
Wetland Avg. (3 classes) 

94.65 
100.00 
43.12 
66.58 
72.17 
68.61 
77.47 
55.84 
73.96 
79.3 

54.5 
100.00 
59.87 
100.00 
84.18 
45.58 
50.36 
75.04 
25.72 
71.5 

Note. Overall Accuracy: 68.22%, Overall Kappa: 0.6373. 

Herbaceous 
Cover 

3 
0 

0 

38 

0 

0 

0 

141 

0 

0 
182 
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Mixed Shadow Total Forest 
17 6 98 
0 0 422 

0 0 318 

86 3 496 

0 0 319 

0 0 613 

0 0 280 

49 4 561 

421 12 387 

181 71 276 
754 96 3770 



Table 15 

Confusion Matrix for Object-Oriented Classification (Ground Validation Objects) 

Class 
Open Aquatic Flooded Artificial Upland Flooded Herbaceous Mixed 
Water Vegetation Forest Surface Croe Croe Cover Forest 

Unclassified 0 0 0 0 0 0 0 0 
Open Water 5 0 0 0 0 0 0 0 
Aquatic 

0 19 0 0 0 0 0 0 
Vegetation 
Flooded 

0 0 13 0 0 0 0 
Forest 
Artificial 

0 0 0 10 0 0 0 0 
Surface 
Upland 

0 0 0 0 20 0 0 0 
Crop 
Flooded 

0 0 0 0 0 20 0 0 
Crop 
Herbaceous 

0 0 0 0 0 0 19 0 
Cover 
Mixed 

0 7 0 0 0 0 20 
Forest 
Shadow 0 0 0 0 0 0 0 0 
Total 5 20 20 10 20 20 20 20 

Table 16 

Accuracy Percentage Classifications CASI Object-Oriented Classification 

Class 
Open Water 
Aquatic Vegetation 
Flooded Forest 
Artificial Surface 
Upland Crop 
Fl oode<l Crop 
Herbaceous Cover 
Mixed Forest 
Shadow 
Wetland Avg. (3 classes) 

Prod. acc. (%) 
100.0 
100.0 
92.9 
100.0 
100.0 
90.9 
100.0 
71.4 
100.0 
97.6 

User acc. (%) 
100.0 
95.0 
65.0 
100.0 
100.0 
100.0 
95.0 
100.0 
75.0 
86.7 

Note. Overall Accuracy: 92.3%, Overall Kappa: 0.912. 

Overall Classifier Comparison 

Shadow 

0 
0 

0 

0 

0 

0 

2 

0 

0 

6 
8 

53 

Total 

0 
5 

19 

14 

10 

20 

22 

19 

28 

6 
143 

The overall classification accuracy for different classifiers is provided in Table 

17. Accuracy comparisons between the classifiers were completed using the same areas; 

for example, county-wide stratified random points for the CIR and Landsat images, and 

the same 50-acre subset for the hyperspectral Eddyville image. Accuracies increased 
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(both for the wetland class and the overall average) when spatial resolution of the Landsat 

imagery was sharpened with the panchromatic band; also, the unsupervised ISO DAT A 

algorithm performed better for overall accuracy than the supervised Maximum

Likelihood classifier. This is consistent with the results of other studies (Ozemi, 2000). 

The object-oriented classifier increased overall accuracy with the Landsat imagery over 

the traditional pixel-based classifiers, but did not increase wetland-identification accuracy 

until the spatial resolution was increased (see Table 13). The CIR imagery in general 

performed poorly with all automated classifiers, suggesting that even though the spatial 

resolution was very sharp, either more bands such as Landsat 4 & 5, (see Chen 2002), are 

needed to detect vegetation, or seasonality played a role because the imagery was flown 

in late April/early May of 2002 before the growing period of many wetland vascular 

plants in the northeastern part of the state. The most accurate results came from the 

hyperspectral object-oriented approach and the pan-sharpened Landsat object-oriented 

approach. 

The seasonal matrix of the pan-sharpened Landsat images produced lower 

accuracies than anticipated, especially for identifying wetland areas. It did, however, 

increase accuracies for row-crop cover and herbaceous cover. This may be due to the 

large amount of flooding present in the July 1999 Landsat image. Landsat imagery 

remains a valid choice for large-scale wetlands mapping projects, especially with the 

added capability of the panchromatic band. 
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Table 17 

Overall Classification Accuracy for Different Classifiers 

HYPER- HYPER-
CIR CIR LSAT LSAT LSAT LSAT SPECTRAL SPECTRAL 

CIR lm lm 15 m 15 m 15 m 15 m LSAT CASI 60 CASI 60 
lm ISO- Max- ISO- Max- Pan Seasonal 30m cm cm 
0-0 DATA Like DATA Like 0-0 Matrix 0-0 0-0 S.A.M. 

Overall 
Accuracy 73.2 59.7 57.9 79.17 64.0 90.7 67.3 73.9 91.7 68.2 

Wetland 
Producers 68.8 55.0 75.0 57.14 70.0 73.7 77.78 58.8 94.6 79.3 
Accuracy 

Wetland 
Users 50.0 22.0 36.0 40.0 63.6 66.7 46.67 50.0 86.7 71.5 
Accuracy 

Kaeea 0.701 0.52 0.49 0.75 0.552 0.888 0.622 0.667 0.904 0.637 

Note. 0-0: Object-Oriented Classifier, ISODATA: Unsupervised Classification, 120 Initial Classes 

Max-Like: Maximum Likelihood Algorithm, S.A.M.: Spectral Angle Mapper Algorithm. 

GIS-Based Restoration Model Results 

The results of the wetland restoration model are as follows. Black Hawk County, 

Iowa encompasses an area of 567 square miles, or 362,880 acres. From that initial 

acreage, 56,729 acres were masked out as unsuitable based on the USGS Landcover 

raster layer of the following classes: (a) Low Intensity Residential, (b) High Intensity 

Residential, ( c) Commercial/Industrial/Transportation, ( d) Bare Rock/Sand/Clay, ( e) 

Quarries/Strip Mines/Gravel Pits, (f) Urban/Recreation Grasses, (g) Open Water, (h) 

Woody Wetlands, and (i) Emergent Herbaceous Wetlands. The accuracy assessment for 

that 1992 data set was made publicly available on March 17, 2004 (United States 
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Geological Survey, 2004). The overall accuracy for Black Hawk County was only 53%, 

but for the classes masked out the accuracy was 60.4%. Urban areas were chosen as 

unsuitable restoration areas as well as bare areas and existing wetlands. Landcover 

classes left as suitable for restoration included: (a) Deciduous Forest, (b) Mixed Forest, 

(c) Grasslands/Herbaceous, (d) Pasture/Hay, (e) Row Crops, and (f) Small Grains. 

From the remaining 306,151 acres, 93 .4 acres in 10 parcels were also masked out 

as they are recognized as wetland parcels by the county assessor's office. Non-urban 

county roads along with a 30-meter buffer totaling 24,724 acres were also masked out to 

eliminate right-of-way areas owned by the Iowa Department of Transportation (see 

Berman et al., 2002). That left 281,334 acres or 440 square miles for wetland restoration 

consideration. Based on the flow chart in Figure 8 on page 36, cells classified as having 

soil that was hydric with poor drainage were given a score of 4 in the SSURGO soil data 

layer. Cells that did not meet this criterion were eliminated from consideration, as 

according to the federal definition of a wetland (see page one) a wetland must contain 

hydric soil, hydrophytic vegetation, or be in an area where the water table saturates a 

non-soil substrate or covers the area with shallow water periodically. As hydrophytic 

vegetation would not necessarily be present in a disturbed land-cover area (such as an 

agriculturally based one) and water table depth information was not available, the hydric 

soil criterion was chosen as the ranking factor or Step 2 in the flowchart. Eliminating 

cells that were not hydric resulted in narrowing the suitability area down to 121,271 

acres. The next step was determining if the potential wetland restoration area was within 

a buffer of 20 meters for a hydrological feature (stream) or 50 meters of the Cedar River, 
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as wetland areas are proven floodwater storage areas (Sierra Club, 2000) and wetlands 

restored adjacent to hydrological features moderate stream temperature and reduce 

erosion (Budlong, 2002). These cells were given a score of 1, and totaled 17,491 acres. 

Step 4 included identifying cells that were adjacent to existing wetlands. For the wetland 

areas, a 1996 Iowa Department of Natural Resources wetlands layer was used (based on 

1983/84 aerial photos) instead of the updated Black Hawk County wetlands map 

produced earlier in the research as the wetland producer and user accuracies were lower 

(73.7 and 66.7% respectively) in the updated wetlands map. However, the model was run 

using the updated wetlands map and produced results less than one standard deviation 

from the mean as compared with using the older wetlands data, indicating no dramatic 

shifts in wetland areas or total acreage, a fact also shown by the Black Hawk County 

Wetlands timeline in Figure 13 on page 57. Cells that were adjacent to existing wetlands 

were given a score of 2 (see also Hey & Philippi, 1999). 

Lastly, cells that were adjacent to or contained within county conservation areas 

were given a score of 3. The reasoning behind this is that wetlands have a greater chance 

of being restored and are easier to manage if they are to be located in land already owned 

or adjacent to county conservation land (S. Finegan, personal communication, May, 

2003). The final equation from the methodology section was: (x = existing area index 

total, y = soil index total, z = hydrology index total) RESTORATION POTENTIAL= [(x 

* 0.85) + (y * 0.65) + (z* 0.40)]. Cell scores were computed using ArcGIS Spatial 

Analyst raster calculator according to the above equation (for example, if a cell had a 



perfect ranking, meeting all desirable criteria, [((3+2)*0.85) + (4*0.65) + (3*0.40)], it 

would have a score of 8.05. 
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Three categories were then defined using a Jenks Natural Breaks method: Cells 

with scores of 3.9 through 8.05 were ranked as most suitable areas, cells with scores of 

2.7 through 3.8 were given a ranking of medium suitability, and cells with scores of 2.6 

were given a ranking of low suitability. Cells with scores lower than 2.6 were deemed as 

unsuitable or unclassified. For a map of these areas, refer to Map 9 in Appendix A. 

There were not too many surprises in the results of the model, as all areas were close to 

surface hydrological features and generally were in areas where wetlands were present 

historically. The topography of the county does not vary greatly, and some areas have 

been known to county conservation officials for some time as highly-suitable areas for 

wetland restoration, such as the Crane Creek watershed and areas in the southeastern part 

of the county along the Cedar River. What this study contributes, through the use of GIS, 

is to demonstrate where restoration of wetlands could and should take place if county or 

state resources become available. Table 18 displays a numerical summary of the 

restoration model. Figure 13 references a timeline for wetland changes in Black Hawk 

County. 



Table 18 

Results from GIS-Based Restoration Model 

Cell TYPe 
Black Hawk County 
Highest Suitability 
Medium Suitability 
Lowest Suitability 

Unsuitable 
USGS Landcover Mask 

Wetland Parcel Mask 
County Roads Buffer Mask 
Hydric Poorly Drained Soil 

Adjacent to Hydrology 
Adjacent to Wetlands 

Adjacent or Contained in County 
Conservation Area 

Cell Total Area (acres) 
362,880 

2,971 
34,307 
121,271 
204,331 
56,729 

93.4 
24,724 
121,271 
17,491 
30,590 

7,170 

Wetlands Change in Black Hawk County 

50000 

~ 40000 
~ < 30000 

§ 20000 

~ 10000 

0 +-------= 
1832 

Source: IDNR 
1983 

Source: NW! 
1992 

Source: USGS 

Figure 13. Black Hawk County Wetlands Timeline. 

2004 

Source: Harken 
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As shown by the above timeline, Figure 13, wetlands have decreased in the past 

twenty years in Black Hawk County. This is possibly due to natural variations in the 

hydrological cycle, agricultural practices, or image bias. While the acreage amount of 

decrease is not great, it still shows a need for restoration planning and implementation. 

As Hey and Philippi (1999) note, wetlands can be restored to provide ecological benefits 
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(wildlife habitat, non-point pollution treatment, flood water storage) that have been lost. 

They also noted that wetland restorations are most effective when the wetlands occupy 

less than 10% of the area to be restored, as is the case in Black Hawk County where 

wetlands currently account for only 5% of the county's surface area. 

Web-Based Data Dissemination 

The Black Hawk County wetland project homepage is available to the general 

public at http://gisrl-9.geog.uni.edu/wetland/ (Figure 14). The homepage explains the 

goals and objectives and also methodologies and protocols developed in this project. It 

also provides a summary of results, links to other wetland sites, and a comprehensive list 

of references. Also available on the website is a technical report published for the Iowa 

Space Grant Consortium in January 2003. 

Figure 15 shows a screen shot of the ArcIMS viewer. An ArcIMS-based web 

page was created so stakeholders in the project as well as the general public could access 

the results and use them for their own needs. According to ESRI (2003), ArcIMS is 

software specifically designed to serve geographic data on the Internet, and to develop 

Web pages that communicate with maps. Potential uses of the website include: (a) 

landowners identifying parcels of land that would be highly suitable to restore wetlands, 

(b) corroborating evidence for local government officials for conservation planning, and 

(c) general information on wetlands in Black Hawk County for the public. Users of the 

website can select different layers to display, as well as use built-in functions such as a 

measuring, querying, and buffering tools. 
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In this study multispectral (CIR; ETM) and hyperspectral (CASI) images were 

tested for wetland classification using different classifiers (Maximum-Likelihood, 

ISODATA, Object-Oriented and Spectral Angle Mapper). The object-oriented classifier 

produced superior results over traditional pixel-based classifiers (ISODATA; Maximum

Likelihood) in multispectral imagery (73.7% vs. 57.14%; 70.0%) when mapping 

wetlands but only when spectral resolution was increased (i.e., 15-m 6-band Landsat 

imagery achieved superior results over 1-m 3-band Color Infrared Aerial photography) 

and the spatial resolution of the Landsat imagery was increased (Pan-sharpened from 30-

m to 15-m). 

The results for Eddyville also clearly showed that hyperspectral images enabled 

more accurate wetland mapping than multispectral datasets when using the object

oriented classifier (94.6%) and the SAM classifier (79.3%). The object-oriented 

classifier in this case also performed better than the pixel-based (SAM) classifier. A 

seasonal comparison of Landsat imagery to identify wetlands did not produce accurate 

results, perhaps due to extensive flooding present in the summer (July) imagery. 

The answers to the research questions from Chapter 1, Page 7, are as follows: 

1. The Object-Oriented classifier was superior and more accurate in comparison 

to the pixel-based Maximum-Likelihood and ISODATA for the delineation of wetlands 

using multispectral imagery in Black Hawk County. 



2. Data fusion between a Landsat ETM multispectral and ETM panchromatic 

band increased the accuracy of wetland classification in Black Hawk County. 
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3. The Object-Oriented Classifier was more accurate than the SAM classifier for 

identifying wetlands in the Eddyville hyperspectral (CASI) image. 

4. Seasonality may play a significant role in classifying wetlands from remotely

sensed imagery; however this study did not yield anticipated higher wetland detection 

accuracies. 

5. The most important variables for a GIS-based wetland restoration model in 

Black Hawk County were: (a) hydric soil; (b) proximity to surface hydrological features; 

( c) proximity to existing wetlands; and ( d) proximity to existing conservation areas 

owned by the county. 

The results of the GIS-based model used in this study for wetland restoration in 

Black Hawk County identified far more acres than initially believed were suitable for 

such purposes (56% of county land area deemed unsuitable, 33% low suitability, 10% 

medium suitability, 1 % highly suitable). Two highly-suitable identified areas had already 

been previously targeted by conservation officials for wetland easements or restorations 

should funding become available. 

Known sources of error include the fact that any wetland identified through 

remotely-sensed imagery must be field-checked by a qualified ecologist or biologist in 

order to qualify for legal status or protection. Wetlands in Black Hawk County showed a 

slight decrease of roughly 1500 acres(+/- an error margin of 375 acres) from 1983-2003. 

A web site with an ArcIMS viewer was created in order to disseminate information to the 
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stakeholders involved in the study, as well as the general public. Information available 

on the website include: a summary of findings, maps of classification results, wetland 

links, a comprehensive bibliography, as well as a technical report published for the Iowa 

Space Grant Consortium. Available on the ArcIMS site is the ability to arrange different 

layers, as well as measurement, buffer, and query tools. 

In conclusion, it is the findings of this research that wetland classification from 

multispectral imagery in the study area can be accurately completed if spatial resolution 

is increased by data fusion, but not at the cost of spectral resolution. A non-parametric 

object-oriented classifier can also identify freshwater inland wetlands for the study areas 

of Black Hawk County and Eddyville more accurately than traditional pixel-based 

(ISODATA, Maximum-Likelihood) ones. Hyperspectral imagery is preferable to 

multispectral imagery in identifying freshwater inland wetlands because of increased 

spectral resolution. The object-oriented classifier also identifies wetlands more 

accurately using hyperspectral imagery, but has limitations for large file sizes. 

Limitations of the research include: (a) image availability for the seasonal matrix, 

(b) classifying only a subset of the multispectral and hyperspectral imagery with the 

object-oriented classifier, and (c) a limited number of variables used in the GIS-based 

restoration model. 
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Recommendations for Future Research 

The future direction of this study lies in testing more non-parametric classifying 

methods, such as a CART ( classification and regression tree) algorithm since other 

studies have shown it to be more accurate than a purely spectral based classifier 

(Sugumaran, Pavuluri, & Zerr, 2003). In addition, greater long-term seasonality will also 

be addressed, as other studies have stressed the importance of multi-seasonal variation in 

detecting wetlands via remote-sensing imagery (Ozemi, 2000; Houhoulis & Michener, 

2000). Future efforts for the restoration model include adding more variables, such as 

land ownership, as well as field testing of high potential sites for evidence ofhydrophytic 

vegetation and confirmation of hydric soils. 



REFERENCES 

Acreman, M. C., & Hollis, G. E. (1996). Water management and wetlands in Sub
Saharan Africa. Gland, Switzerland: IUCN. 

Alsdorf, D. E., Smith, L. C, & Melack, J.M. (2001). Amazon floodplain water level 
changes measured with interferometric SIR-C radar. IEEE Transactions on 
Geoscience and Remote Sensing, 39(2), 423-431. 

67 

Anderson, B. D., Garono, R., & Robinson, R. (2003). CASI and Landsat: Developing a 
spatially linked, hierarchical habitat cover dataset along the lower Columbia 
River, USA. Retrieved December 9, 2003, from 
http://www.waterobserver.org/event-2003-06/pdf/paper-04-June-05-
BAnderson.pdf 

Anderson, J. R., Hardy, E., Roach, J. T., & Witmer, R. E. (1976). A land use and land 
cover classification system for use with remote sensor data (United States 
Department of the Interior). Washington DC: U.S. Government Printing Office. 

Anderson, P. F. (1992). Primer for Geodesy: GIS teaching software for landscape 
planning. Ames: Department of Landscape Architecture, Department of 
Agronomy, Land Use Analysis Laboratory, Iowa State University. 

Antunes, A. Z. B., Lingnau, C., & Da Silva, J. C. (2003). Object-oriented analysis and 
semantic network for high resolution image classification. Retrieved January 14, 
2003, from http://www.definiens-imaging.com/documents/publications/felipe.pdf 

Arbuckle, K., & Pease, J. L. (1999). Managing Iowa habitats: Restoring Iowa wetlands. 
[Iowa State University Extension, Pm-1351h]. Ames: Iowa State Press. 

Baatz, M., & Schape, A. (1999). Multiresolution segmentation: An optimization approach 
for high quality multi-scale image segmentation. In the AGIT Symposium 
Angewandte Geographische Informationsverarbeitung XI [Geographic 
Information Processing Vol. 11]. Salzburg: Definiens Imaging. 

Baatz, M., & Schape, A. (2001). eCognition User's Manual. [Computer software and 
manual]. Munich, Germany: Definiens Imaging. 

Bakker, W. H., & Schmidt, K. S. (2002). Hyperspectral edge filtering for measuring 
homogeneity of surface cover types. Photogrammetry & Remote Sensing, 56, 
246-256. 

Benz, U. (200 I). Definiens Imaging GmbH: Object-oriented classification and feature 
detection. IEEE Geoscience and Remote Sensing Society Newsletter, 8, 16-20. 



68 

Benz, U., Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004). Multi
resolution, object-oriented fuzzy analysis ofremote sensing data for GIS-ready 
information. ISP RS Journal of Photogrammetry & Remote Sensing, 58, 239-258. 

Berman, M. R., Rudnicky, T., Berquist, H., & Hershner, C. (2002). Protocols for 
implementation of a GIS-based model for the selection of potential wetlands 
restoration sites in southeastern Virginia. Gloucester Point, VA: Center for 
Coastal Resources Management, Virginia Institute of Marine Science, College of 
William and Mary. 

Boardman, J. W., & Kruse, F. A. (1994). Automated spectral analysis: A geological 
example using AVIRIS data, northern Grapevine Mountains, Nevada. In 
Proceedings, Tenth Thematic Conference, Geologic Remote Sensing (pp. 407-
418). San Antonio, TX: Environmental Research Institute of Michigan. 

Bourgeau-Chavez, L. L., Kasischke, E. S., Brunzell, S. M., Mudd, J.P., Smith, K. B., & 
Frick, A. L. (2001 ). Analysis of space-borne SAR data for wetland mapping in 
Virginia riparian ecosystems. International Journal of Remote Sensing, 22(18), 
3665-3687. 

Braster, M., & Radish, G. (1996). Floodplain land use and resource management 
alternatives for western Iowa. Ames: Iowa State University Press. 

Brown, T. N, Johnston, C. A., & Cahow, K. R. (2003). Lateral flow routing into a 
wetland: Field and model perspectives. Geomorphology, 53, 11-23. 

Budlong, R. C. (2002). The use of spatial data in creating a riparian buffer suitability 
model: Whitewater River watershed, Minnesota. Winona, MN: Dept. of Resource 
Analysis, St. Mary's University of Minnesota, U.S. Fish and Wildlife Service. 

Carter, G., Wells, T., & Lewis, D. (2004, March) Hyperspectral remote sensing of 
invasive wetland plants in northern Mobile Bay. Paper presented at the annual 
meeting of the American Association of Geographers, Philadelphia, PA. 

Chapman, H.P., & Cheetham, J. L. (2002). Monitoring and modeling saturation as a 
proxy indicator for in-situ preservation in wetlands: A GIS-based approach. 
Journal of Archaeological Science, 29, 277-289. 

Chen, J. H., Chun, E. K., Tan, C.H., & Shih, S. F. (2002). Use of spectral information for 
wetland evapotranspiration assessment. Agricultural Water Management, 55, 
239-248. 



69 

Chopra, R., Verma, V. K., & Sharma, P. K. (2001). Mapping, monitoring and 
conservation of Harike wetland ecosystem, Punjab, India, through remote sensing. 
International Journal of Remote Sensing, 22(1 ), 89-98. 

Civco, D. L., Hurd, J. D., Wilson, E. H., Song, M., & Zhang, Z. (2002, April). A 
comparison of land use and land cover change detection methods. Paper 
presented at the meeting of the American Society for Photogrammetry and 
Remote Sensing, Denver, CO. 

Cohen, D. (2001). Iowa wetlands. [Iowa Association of Naturalists, Iowa Biological 
Community Series, IAN-204]. Ames: Iowa State University Press. 

Cowardin, L. M., Carter, V., Golet, F. C., & LaRoe, E.T. (1979). Classification of 
wetlands and deepwater habitats of the United States. (U.S. Fish and Wildlife 
Service). Washington, DC: U.S. Government Printing Office. 

Dahl, T. E. (1990). Wetlands losses in the United States 1780's to 1980's. (U.S. Dept of 
the Interior, Fish and Wildlife Service). Washington, DC: United States 
Government Printing Office. 

Dahl, T. E. (2000). Status and trends of wetlands in the conterminous United States 1986 
to 1997. (U.S. Dept of the Interior, Fish and Wildlife Service). Washington, DC: 
United States Government Printing Office. 

Darwish, A., Leukert, K., & Reinhardt, W. (2003, June). Image segmentation for the 
purpose of object-based classification. Paper presented at the meeting of the 
International Geoscience and Remote Sensing Symposium, Paris, France. 

Dierberg, F. E., DeBusk, T. A., Jackson, S. D., Chimeny, M. J., & Pietro, K. (2002). 
Submerged aquatic vegetation-based treatment wetlands for removing phosphorus 
from agricultural runoff: Response to hydraulic and nutrient loading. Water 
Research, 36, 1409-1422. 

Dung, J.E. (2003). Agricultural land evaluation in Black Hawk County using geospatial 
technologies. Unpublished master's thesis, University of Northern Iowa, Cedar 
Falls. 

ENVI. (2002). 3.6 User's Manual [Computer Software and Manual]. Rochester, NY: 
Kodak Research Systems. 

Environmental Laboratory. (1987). Corps of engineers wetlands delineation manual. 
[Technical Report Y-87-1]. Vicksburg, MS: U.S. Army Engineering Corp. 



70 

ERDAS. (2002). ERDAS Imagine v. 8.6 Spectral Analysis User's Guide [Computer 
Software and Manual]. Heerbrugg, Switzerland: Leica Geosystems. 

ESRI. (2003, May). Arc/MS 4 architecture and functionality (White Paper J-8900). 
Redlands, CA: Environmental Research Systems, Inc. 

Fisher, C., Gustafson, W., & Redmond, R. (2002). Mapping sagebrush/grasslands from 
Landsat TM-7 imagery: A comparison of methods (U.S. Department of the 
Interior, Bureau of Land Management, Montana/Dakota State Office). 
Washington, DC: U.S. Government Printing Office. 

Garono, R., Schooler, S., & Robinson, R. (2003). Using CASI imagery to map the extent 
of purple loosestrife (Lythrum salicaria) in tidally influenced wetlands of the 
Columbia River estuary. Retrieved December 9, 2003, from 
http://www.waterobserver.org/ 

Goldberg, J. (1998). Remote sensing of wetlands: Procedures and considerations. 
Retrieved January 24, 2003, from 
http://www.vims.edu/rmap/cers/tutorial/rsceol.htm 

Gomes, A., & Marca!, A. (2003, May). Land cover revision through object based 
supervised classification of ASTER data. Paper presented at the meeting of the 
American Society for Photogrammetry and Remote Sensing, Anchorage, AK. 

Green, A. A., Berman, M., Switzer, P., & Craig, M. D. (1988). A transformation for 
ordering multispectral data in terms of image quality with implications for noise 
removal. IEEE Transactions on Geoscience and Remote Sensing, 26(1), 65-74. 

Halid, M. (1997). Land use-cover change detection using knowledge-based approaches: 
Remote sensing and GIS. Retrieved May 2, 2003, from 
http://www.gisdevelopment.net/aars/acrs/1997/ts8/ts8001 pf.htm 

Han, M., Cheng, L., & Meng, H. (2003). Application of four-layer neural network on 
information extraction. Neural Networks, 16, 547-553. 

Harken, J., & Sugumaran, R. (2004) Classification of Iowa wetlands using an airborne 
hyperspectral image: A comparison of Spectral Angle Mapper (SAM) classifier 
and an Object-Oriented (00) approach. Manuscript submitted for publication. 

Hey, D. L., & Philippi, N. S. (1999). A case for wetland restoration. New York: Wiley & 
Sons. 



71 

Hodgson, M. E., Jensen, J. R., Mackey, H. E., & Coulter, M. C. (1987). Remote sensing 
of wetland habitat: A wood stork example. Photogrammetric Engineering & 
Remote Sensing, 53, 1075-1080. 

Houhoulis, P. F., & Michener, W. K. (2000). Detecting wetland change: A rule-based 
approach using NWI and SPOT-XS data. Photogrammetric Engineering & 
Remote Sensing, 66(2), 205-211. 

Iowa Department of Agriculture and Land Stewardship. (1998). Iowa wetlands and 
riparian areas conservation plan. Retrieved April 30, 2003, from 
http://www. ag. iastate. edu/ centers/iawetlands/NWlhome.html 

Iowa Department of Natural Resources. (2004). Restoring wetlands. Retrieved April 18, 
2004, from http://www.iowadnr.com/wildlife/files/restorwet.html 

Iowa Department of Transportation & National Consortium on Remote Sensing in 
Transportation - Environmental Group. (2002). NCRST-E remote sensing 
mission to Eddyville, Iowa in conjunction with the Iowa Department of 
Transportation. Retrieved December 2, 2003, from 
http://www.ncrste.msstate.edu/publications/posters/ncrste _ eddyville _mission_ 200 
l.pdf 

Ivits, E., & Koch, B. (2002). Object-oriented remote sensing tools for biodiversity 
assessment: A European approach. In Proceedings of the 22nd EARSeL 
Symposium. Rotterdam, Netherlands: Millpress Science Publishers. 

Jenssen, L. L., & Middelkoop, H. (1992). Knowledge-base crop classification of Landsat 
Thematic Mapper image. International Journal of Remote Sensing, 13(15), 2827-
2837. 

Juan, C., Jordan, J. D., & Tan, C. H. (2000). Application of airborne hyperspectral 
imaging in wetland delineation. Retrieved October 13, 2003, from 
http://www.gisdevelopment.net/aars/ acrs/2000/ts 16/hype0006pf.htm 

Kaya, S., Pultz, T. J., Mbogo, C. M., Beier, J. C., & Mushinzimana, E. (2002). The use of 
radar remote sensing/or identifying environmental factors associated with 
malaria risk in coastal Kenya. Retrieved June 19, 2003, from 
http://www.pcigeomatics.com/tech-papers/igarss02_kaya_paper.pdf 

Konecny, G. (2003). Geoinformation: Remote sensing, photogrammetry and Geographic 
Information Systems. New York: Taylor & Francis. 

Lillesand, T. M .. , & Kiefer, R. W. (2000). Remote sensing and image interpretation. New 
York: John Wiley & Sons. 



Loiselle, S., Bracchini, L., Bonechi, C., & Rossi, C. (2001). Modelling energy fluxes in 
remote wetland ecosystems with the help ofremote sensing. Ecological 
Modelling, 145, 243-261. 

Lower Mississippi River Conservation Committee. (2001). Spatial model to prioritize 
wetland forest restoration on private lands in the Mississippi alluvial valley to 
enhance water quality. Retrieved March 19, 2003, from 
http://www.lmrcc.org/newmodel. pdf 

72 

Lunetta, R., & Balogh, M. (1999). Application of multi-temporal Landsat 5 TM imagery 
for wetland identification. Photogrammetric Engineering and Remote Sensing, 65 
(11), 1303 -1310. 

Lyon, J. G. (1993). Practical handbook for wetland identification and delineation. Ann 
Arbor, MI: Lewis Publishers. 

Lyon, J. G., & McCarthy, J. (Eds.). (1995). Wetland and environmental applications of 
GIS. Boca Raton, FL: Lewis Publishers. 

MacKinnon, F. (2001). Wetland application of LIDAR data: Analysis of vegetation types 
and heights in wetlands. Nova Scotia: Applied Geomatics Research Group, 
Centre of Geographical Sciences. 

Marcus, W. A., Legleiter, C. J., Aspinall, R. J., Boardman, J. W., & Crabtree, R. L. 
(2003). High spatial resolution, hyperspectral (HSRH) mapping of in-stream 
habitats, depths, and woody debris mountain streams. Geomorphology, 55(1-4), 
363-380. 

Meinel, G., Neubert, M., & Reder, J. (2001). The potential use of very high resolution 
satellite data for urban areas: First experiences with IKONOS data, their 
classification and application in urban planning and environmental monitoring. 
Remote Sensing of Urban Areas, 35, 196-205. 

Mitsch, W. J., & Gosselink, J. G. (2000). Wetlands: Characteristics and boundaries. 
New York: Wiley & Sons. 

Ozemi, S. L. (2000). Satellite remote sensing of wetlands and a comparison of 
classification techniques. Unpublished doctoral dissertation, University of 
Minnesota, Minneapolis. 

Rio, J. N. R., & Lozano-Garcia, D. F. (2000). Spatial filtering of radar data 
(RADARSAT) for wetlands (brackish marshes) classification. Remote Sensing of 
the Environment, 73, 143-151 



73 

Riverlink. (2000). GIS management models to assist wetland restoration efforts in 
Buncombe and Haywood counties, North Carolina. Retrieved February 22, 2003, 
from http://www.riverlink.org 

Sader, S. A., Ahl, D., & Liou, W. S. (1995). Accuracy of Landsat-TM and GIS rule-based 
methods for forest wetland classification in Maine. Remote Sensing of the 
Environment, 53, 133-144. 

Salem, F., & Kafatos, M. (2001). Hyperspectral image analysis for oil spill mitigation. In 
Proceedings of the Asian Conference on Remote Sensing: Vol. 1. (pp. 748-753). 
Singapore: National University of Singapore, Center for Remote Imaging. 

Schiewe, J., Tufte, L., & Ehlers, M. (2001). Potential and problems of multi-scale 
segmentation methods in remote sensing. Retrieved February 22, 2003, from 
http://www.definiens-imaging.com/ documents/publications/G IS200106034. pdf 

Schmidt, K. S., & Skidmore, A. K. (2003). Spectral discrimination of vegetation types in 
a coastal wetland. Remote Sensing of the Environment, 85, 92-108. 

Shaikh, M., Green, D., & Cross, H. (2001). A remote sensing approach to determine 
environmental flows for wetlands of the Lower Darling River, New South Wales, 
Australia. International Journal of Remote Sensing, 22(9), 1737-1751. 

Shepherd, I., Wilkinson, G., & Thompson, J. (1999). Monitoring surface water storage in 
the north Kent marshes using Landsat TM images. International Journal of 
Remote Sensing, 21(9), 1843-1865. 

Sierra Club (2000). Report: Wetlands restoration in waiting. Retrieved October 13, 
2003, from 
http://www.sierraclub.org/wetlands/reports/wetland_restoraation/iowa.asp 

Sugumaran, R., Pavuluri, M. K., & Zerr, D. (2003). The use of high-resolution imagery 
for identification of urban climax forest species using traditional and rule-based 
classification approach. IEEE Transactions on Geoscience and Remote Sensing, 
41(9), 1933-1939. 

Takeuchi, R., Tamura, M., & Yasuoka, Y. (2003). Estimation of methane emission from 
a west Siberian wetland by scaling technique between NOAA A VHRR and SPOT 
HRV. Remote Sensing of the Environment, 85, 21-29. 

Toyra, J., Pietroniro, A., & Martz, L. W. (2001). Multi-sensor hydrologic assessment of a 
freshwater wetland. Remote Sensing of the Environment, 75, 162-173. 



Trettin, C. C., Song, B., Jurgensen, M. F., & Li, C. (2001). Existing soil carbon models 
do not apply to forested wetlands (USDA Forest Service General Technical 
Report SRS-46). Washington, DC: U.S. Government Printing Office. 

Tsihrintzis, V. A., John, D. L., & Tremblay, P. J. (1998). Hydrodynamic modeling of 
wetlands for flood detention. Water Resource Management, 12, 251-269. 

Underwood, E., Ustin, S., & DiPietro, D. (2003). Mapping non-native plants using 
hyperspectral imagery. Remote Sensing of the Environment, 86, 150-161. 

74 

United States Fish and Wildlife Service. (1996). National list of plant species that occur 
in wetlands. Retrieved May 2, 2003, from http://www.nwi.fws.gov/bha 

United States Geological Survey. (2004). Accuracy assessment of 1992 national land 
cover data, Region 7. Retrieved March 21, 2004, from 
http://landcover.usgs.gov/accuracy/pdf/region7.pdf 

van der Sande, C., de Jong, S., & de Roo, A. (2004): A segmentation and classification 
approach ofIKONOS-2 imagery for land cover mapping to assist flood risk and 
flood damage assessment. ISP RS Journal of Photogrammetry & Remote Sensing, 
58, 217-229. 

Wakeley, J. S. (1988). A method to create simplified versions of existing habitat 
suitability (HIS) models. Environmental Management, 12(1), 79-83. 

Wang, N., & Mitsch, W. J. (2000). A detailed ecosystem model of phosphorus dynamics 
in created riparian wetlands. Ecological Modelling, 126, 101-130. 

Whittecar, G. R., & Daniels, W. L. (1999). Use of hydrogeomorphic concepts to design 
created wetlands in southeastern Virginia. Geomorphology, 31, 355-371. 

Yasouka, Y., Yamagata, Y., Tamura, M., Sugita, M., Pornprasertchai, J., Polngam, S., et 
al. (1995). Monitoring of wetland vegetation distribution and change by using 
microwave sensor data. Retrieved November 29, 2003, from 
http://www.gisdevelopment.net/aars/acrs/1995/ts 1/ts 1001 pf.htm 



APPENDIX 

MAPS 

75 



2002 CIR Unsupervised Classification 

0 8,000 16 ,000 

Class_Names - Mixed_Forest 

- Fallaw/Bare Soil - Mixed_Grasses 

Artificial_Surface - Open_Water 

D Wetland 

32 ,000 Meters 

Map l: 2002 CIR Unsupervised Classification , Black Hawk County 
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Map 2: 2002 CIR Supervised Classification, Black Hawk County 
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Map 4: 2000 Landsat Unsupervised Classification, Black Hawk County 

79 



80 
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Map 5: 2000 Landsat Supervised Classification, Black Hawk County 
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Map 6: 2000 Landsat Object-Oriented Classification, Black Hawk County 
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1999 Landsat Object-Oriented Classification 

0 3.5 7 14 Miles 

Class_Names C:J Wetlands 

1111 Row_Crop/Mixed_Grasses C:=J Artificial_Surface s 

1111 Open_Water 1111 Mixed_Forest 

Map 7: 1999 Landsat Object-Oriented Classification, Black Hawk County 
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Map 9: Black Hawk County Roads Layer Used in GIS-Based Model 
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Map 10: Black Hawk County Conservation Areas Layer Used in GIS-Based Model 
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Map 11: SSURGO Soil Coverage Layer Used in GIS-Based Model 
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Map 12: NWI Wetland Areas Layer Used in GIS-Based Restoration Model 
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Map 13 : Landcover and Roads Buffer Mask Layer Used in GIS-Based Restoration 
Model 
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Map 14: Low Suitability Potential Wetland Restoration Areas identified by GIS-Based 
Model 
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Map 15: Medium Suitability Potential Wetland Restoration Areas identified by GIS
Based Model 
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Map 16: High Suitability Potential Wetland Restoration Areas identified by GIS-Based 
Model 
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