
University of Northern Iowa University of Northern Iowa

UNI ScholarWorks UNI ScholarWorks

Honors Program Theses Honors Program

2018

A graphical file system visualization tool for operating systems A graphical file system visualization tool for operating systems

Jacob Bundt
University of Northern Iowa

Let us know how access to this document benefits you

Copyright ©2018 Jacob Bundt

Follow this and additional works at: https://scholarworks.uni.edu/hpt

 Part of the Computer and Systems Architecture Commons, and the Data Storage Systems Commons

Recommended Citation Recommended Citation
Bundt, Jacob, "A graphical file system visualization tool for operating systems" (2018). Honors Program
Theses. 348.
https://scholarworks.uni.edu/hpt/348

This Open Access Honors Program Thesis is brought to you for free and open access by the Honors Program at
UNI ScholarWorks. It has been accepted for inclusion in Honors Program Theses by an authorized administrator of
UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.

https://scholarworks.uni.edu/
https://scholarworks.uni.edu/hpt
https://scholarworks.uni.edu/uhp
https://scholarworks.uni.edu/feedback_form.html
https://scholarworks.uni.edu/hpt?utm_source=scholarworks.uni.edu%2Fhpt%2F348&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.uni.edu%2Fhpt%2F348&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=scholarworks.uni.edu%2Fhpt%2F348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uni.edu/hpt/348?utm_source=scholarworks.uni.edu%2Fhpt%2F348&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uni.edu

A GRAPHICAL FILE SYSTEM VISUALIZATION TOOL FOR OPERATING SYSTEMS

A Thesis Submitted

In Partial Fulfillment

Of the Requirements for the Designation

University Honors with Distinction

Jacob Bundt

University of Northern Iowa

December 2018

This Study by: Jacob Bundt

Entitled: A Graphical File System Visualization Tool for Operating Systems

has been approved as meeting the thesis or project requirement for the Designation University

Honors with Distinction

________ __

Date Dr. Sarah Diesburg, Honors Thesis Advisor

________ __

Date Dr. Jessica Moon, Director, University Honors Program

 1

 Abstract

Fileshark was developed for the primary purpose of aiding in the teaching of students in file system

related courses, particularly at the undergraduate level, by providing a visual representation of

often abstract file system ideas. Many teachers find it difficult to teach the file system in detail in

a typical operating systems classroom environment due to its abstract nature and the inability to

truly observe what is occurring within the file system. Fileshark provides an easy to use interface

that can be used by both students and professors to visualize the internal workings of the file system

and the processes that allow the file system to read, store and delete data. Such a program also has

applications for systems forensics and system security related research. The application described

in the following project is the result of those aims. The future goal of this project is for the

application to be tested in the classroom setting with the goal of continued implementation into

file system related curriculum.

I. Introduction

Within a computer there are many complex processes that must be carried out for even the smallest

task to be carried out. Of the many portions of computers that manage these processes the file

system stands out as not only one of the most important process managers, but also one of the least

understood aspects of the system. The file system is responsible for managing the storage, naming,

access rights, and metadata for files and directories. Almost every process revolving around files

and directories is coordinated by the file system. Despite its importance, many teachers find it

difficult to teach the file system in detail in a typical operating systems classroom environment

due to its abstract nature and the inability to truly observe what is occurring within the file system.

Due to this difficulty, the research contained in this thesis revolves around the development of a

 2

web-based application for the purpose of aiding in the teaching of students enrolled in file system

related courses, particularly at the undergraduate level. The purpose of the project was to create an

easy to use interface that can be used by both students and professors to visualize the internal

workings of the file system and the processes that allow the file system to read, store and delete

data. The resulting program was entitled Fileshark.

Along with educational benefits, this program was designed to be an adaptable tool that has broader

application to any other fields that observe file system data. For example, system forensics is a

branch of criminal forensics that pertains to criminal evidence that can be found in computers and

their internal storage. Fileshark can be used to study where and how data is being stored thus

making it possible to find hidden information in the system storage. Another area is system

security. Dr. Diesburg’s dissertation used the information gathered from the internal workings of

the program to study secure deletion habits. With Fileshark, we are capable of tracing deletion

methods to see the completeness of deletion. This can help to make sure important information is

not left on hard drives creating security risks. Once the broad applications are understood the

necessity for a file system visualization tool becomes quite clear. These are a few of the reasons

Fileshark was created. Through the process of its creation I learned a number of important skills—

namely, programming in two new languages (HTML5 and JavaScript), basic networking tools,

webpage design, and finally a better understanding of the file system.

II. Literature Review

To better understand what Fileshark does, we must first understand the basics of a file system.

Currently, Fileshark is using a mounted EXT3 file system [14]. EXT3 is a member of the family

 3

of file systems that are most commonly used by Linux operating systems. Also, the Linux

operating system is used by a majority of servers on the Internet. Therefore, the use of EXT3

reaches a well-established and vast community of users. Figure 1 describes an overview of how

the file system operates.

Below are three important definitions that must be understood to understand how a file system

operates.

 Directories – A directory stores a collection of directory entries. These directory entries

are files and a pointer to the inode for the file. For example, as shown in figure 4 the

directory contains file1.txt and file 10.txt. These files point to a set of inodes.

 Inodes – Inodes (or index nodes) store the metadata for the files and directories in memory.

In figure 4 each file in the directory points to a block of inode data containing metadata.

 Metadata – Metadata describes the data you are trying to access. In figure 4, file1.txt points

to the metadata stored in the inodes. The metadata stores information about the data such

as where it can be found and how it is written so that when accessed it is easily read by the

Figure 1: Relational Diagram of the EXT Family of File Systems [3]

 4

system. The metadata is crucial in understanding how the operating system uses memory.

By examining the metadata the storage of data both in where it is stored and how it is stored

can be observed.

Understanding the role each of these components plays helps users visualize how the system

operates and understand the importance of observing this behavior. The best way to observe this

is visually as can be done using Fileshark. Table 1 below [4] shows how the file system sends

write and delete actions to the storage drivers. (Note that only low-level WRITE operations are

shown, even though a file is being deleted. When a file is deleted, only new metadata is written.)

Table 1: File system trace showing what happens when a file is written to disk and deleted.

Mount the file system

Timestamp Action Sector Page ID I-nodes Sector Type

1 WRITE 2 1398389 EXT3 SUPERBLOCK

2 WRITE 3 1398389 EXT3 SUPERBLOCK

Create file and sync

Timestamp Action Sector Page ID I-nodes Sector Type

3 WRITE 12290 1398723 12 DATA

4 WRITE 12291 1398723 12 DATA

5 WRITE 1052 1398393 8 JOURNAL SUPERBLOCK

6 WRITE 1053 1398393 8 JOURNAL SUPERBLOCK

7 WRITE 1054 1398393 8 JOURNAL DESCRIPTOR

8 WRITE 1055 1398393 8 JOURNAL DESCRIPTOR

9 WRITE 1056 1398391

 INODE FREEMAP IN JOURNAL

10 WRITE 1057 1398391

 INODE FREEMAP IN JOURNAL

11 WRITE 1058 1398389

 GROUP DESCRIPTOR IN JOURNAL

12 WRITE 1059 1398389

 GROUP DESCRIPTOR IN JOURNAL

13 WRITE 1060 1398391 12 INODE IN JOURNAL

14 WRITE 1061 1398391 12 INODE IN JOURNAL

15 WRITE 1062 1398391 2 INODE IN JOURNAL

16 WRITE 1063 1398391 2 INODE IN JOURNAL

17 WRITE 1064 1398633 2 DIR IN JOURNAL

18 WRITE 1065 1398633 2 DIR IN JOURNAL

 5

19 WRITE 1066 1398720

 BLOCK FREEMAP IN JOURNAL

20 WRITE 1067 1398720

 BLOCK FREEMAP IN JOURNAL

21 WRITE 1068 1398726 8 JOURNAL COMMIT RECORD

22 WRITE 1069 1398726 8 JOURNAL COMMIT RECORD

23 WRITE 4 1398389

 GROUP DESCRIPTOR

24 WRITE 5 1398389

 GROUP DESCRIPTOR

25 WRITE 518 1398720

 BLOCK FREEMAP

26 WRITE 519 1398720

 BLOCK FREEMAP

27 WRITE 520 1398391

 INODE FREEMAP

28 WRITE 521 1398391

 INODE FREEMAP

29 WRITE 522 1398391 2 INODE

30 WRITE 523 1398391 2 INODE

31 WRITE 524 1398391 12 INODE

32 WRITE 525 1398391 12 INODE

33 WRITE 1024 1398633 2 DIR

34 WRITE 1025 1398633 2 DIR

Delete file and sync

Timestamp Action Sector Page ID I-nodes Sector Type

35 WRITE 1070 1398726 8 JOURNAL DESCRIPTOR

36 WRITE 1071 1398726 8 JOURNAL DESCRIPTOR

37 WRITE 1072 1398633 2 DIR IN JOURNAL

38 WRITE 1073 1398633 2 DIR IN JOURNAL

39 WRITE 1074 1398391 2 INODE IN JOURNAL

40 WRITE 1075 1398391 2 INODE IN JOURNAL

41 WRITE 1078 1398389 EXT3 SUPERBLOCK IN JOURNAL

42 WRITE 1079 1398389 EXT3 SUPERBLOCK IN JOURNAL

43 WRITE 1080 1398391 12 INODE IN JOURNAL

44 WRITE 1081 1398391 12 INODE IN JOURNAL

45 WRITE 1082 1398720 BLOCK FREEMAP IN JOURNAL

46 WRITE 1083 1398720 BLOCK FREEMAP IN JOURNAL

47 WRITE 1084 1398389 GROUP DESCRIPTOR IN JOURNAL

48 WRITE 1085 1398389 GROUP DESCRIPTOR IN JOURNAL

49 WRITE 1086 1398391 INODE FREEMAP IN JOURNAL

50 WRITE 1087 1398391 INODE FREEMAP IN JOURNAL

51 WRITE 1088 1398732 8 JOURNAL COMMIT RECORD

52 WRITE 1089 1398732 8 JOURNAL COMMIT RECORD

53 WRITE 2 1398389 EXT3 SUPERBLOCK

54 WRITE 3 1398389 EXT3 SUPERBLOCK

55 WRITE 4 1398389 GROUP DESCRIPTOR

56 WRITE 5 1398389 GROUP DESCRIPTOR

57 WRITE 518 1398720 BLOCK FREEMAP

58 WRITE 519 1398720 BLOCK FREEMAP

 6

59 WRITE 520 1398391 INODE FREEMAP

60 WRITE 521 1398391 INODE FREEMAP

61 WRITE 522 1398391 2 INODE

62 WRITE 523 1398391 2 INODE

63 WRITE 524 1398391 12 INODE

64 WRITE 525 1398391 12 INODE

65 WRITE 1024 1398633 2 DIR

66 WRITE 1025 1398633 2 DIR

Un-mount the file system

Timestamp Action Sector Page ID I-nodes Sector Type

67 WRITE 1052 1398393 8 JOURNAL SUPERBLOCK

68 WRITE 1053 1398393 8 JOURNAL SUPERBLOCK

69 DELETE 1060 1398391 8 INODE IN JOURNAL

70 DELETE 1061 1398391 8 INODE IN JOURNAL

71 DELETE 1064 1398633 8 DIR IN JOURNAL

72 DELETE 1065 1398633 8 DIR IN JOURNAL

73 WRITE 1052 1398393 8 JOURNAL SUPERBLOCK

74 WRITE 1053 1398393 8 JOURNAL SUPERBLOCK

75 DELETE 1072 1398633 8 DIR IN JOURNAL

76 DELETE 1073 1398633 8 DIR IN JOURNAL

77 DELETE 1080 1398391 8 INODE IN JOURNAL

78 DELETE 1081 1398391 8 INODE IN JOURNAL

79 WRITE 1052 1398393 8 JOURNAL SUPERBLOCK

80 WRITE 1053 1398393 8 JOURNAL SUPERBLOCK

81 WRITE 2 1398389 EXT3 SUPERBLOCK

82 WRITE 3 1398389 EXT3 SUPERBLOCK

The scan in Table 1 display the processes issued in the file system to create and delete a small file

(1K). The first step is mounting the file system. You can see the action write followed by a bit of

metadata the sector and page ID’s. This describes where the data is being written to. The sector

type here shows that we are writing to a “superblock.” The superblock is the beginning portion of

the file system and describes the file system. It contains descriptions of file system sizes (block

sizes, number of inodes, inodes per block etc.), configuration, where items such as inode tables are

located and descriptors of available and used memory. There is also copies of the superblock stored

throughout memory in case of corruption. The next set of commands creates the file. You see the

 7

data, superblock, inodes, descriptors, and directories (dir) are updated. The next set of commands

deletes the file. Again the directories, inodes, and superblocks are all overwritten. Finally, the

commands are issued to unmount the file system. The unnecessary directories and inodes are

eliminated via overwriting and the superblock is updated.

III. Source Review

There are a number of similar graphical visualization tools that share the common focus of

visualizing the file system. However, none of these software tools are capable of visualizing the

interactions and requests in a “live capture” form in which processes are displayed as they occur.

Below is a list of a few of the similar software along with short descriptions of each product.

The Sleuth Kit (TSK) [12] operates in the computers command line and examines disk images. It

is expandable through modules or as being used as a plugin to larger forensics tools. It avoids the

operating system to find hidden or deleted files, it allows you to examine disk layout and then

extract partitions. It is capable of displaying all data for files such as file attributes, file hashes, and

file system and metadata structure details.

Autopsy [2] is a free forensics tool that allows the user to see timestamp data and compile usage

reports as to when certain events occurred on the computer, finding corrupt, hidden or dangerous

files, searching a computer for keywords, extracting web data (history, bookmarks, cookies etc.),

recovering deleted files from unallocated space, extracting metadata from pictures and scanning

for threats. The program includes STIX and PhotoRec. Autopsy is the graphical interface to The

Sleuth Kit, and it displays the data collected from the TSK commands. Figure 2 shows an example

 8

of the interface. Autopsy is a forensics tool, meaning that it is an investigative software to help

investigators collect data that is hidden or was intentionally or unintentionally destroyed. Its

purpose is fighting cyber-crime or for criminal investigation but may be used for personal data

recovery.

File System Visualizer [6] is an older program that shows the files in directories in a 3D map. It

shows where files are stored in the memory by showing directories as base rectangles with files

viewed as blocks within the directory. The blocks are proportionate in size to their file size either

in height or area depending on the view. There is also a 2D directory tree/file list interface that

lays out the directories in a tree configuration to visualize sub-directories. Figure 3 shows the

output visualization of the data storage.

Figure 2: Autopsy Interface

 9

Windows Directory Statistics (WDS) [15] is a program that scans the directory and creates a

directory list, tree map, and an extension list. It displays a visual representation of the memory

usage. The directory list and tree map visually display the files and directories while the extension

list acts as a descriptor to show details about the system and its components. Figure 4 shows how

the data is displayed in visual form. Each rectangle is a different file that is made proportionate in

size to its file size. In the same way directories are formed out of these rectangles and include sub

directories and other files. The colors represent file type.

Figure 4: WDS Interface

Figure 3: FSV Interface

 10

As detailed above, there is a variety of software that is designed to visualize the file system in its

current state. Detailed below are a number of applications used specifically for education [8].

Alg_OS [9] is an educational tool designed for teaching students memory management and page

replacement. Students are able to make changes and watch results in real time. Student data is then

recorded for teaching purposes. The system is web based and is capable of creating models of

memory that can be “accessed” using algorithms and commands.

Another approach to operating system education is the use of virtual machines [10]. Virtual

machines can be combined with versioning systems (versioning systems track changes to work

and allow collaboration for group members or teachers). Demonstrating techniques live on such a

system can create a useful model of the operating system and kernel. Students are able to make

changes without harming the outside system and teachers are able to observe what changes

students make through versioning systems or shared access to the virtual machines.

Pintos [11] is a full educational operating system that comes with documentation and instructions

for projects that can be carried out on the system. Students are able to interact with the system on

actual hardware giving them full access to its components (scheduler, process manager etc.). Pintos

was designed solely for the purpose of education.

Yet another approach to operating system education is the use of simulators such as SOsim [1].

SOsim creates a small basic operating system which includes a process manager, scheduler and

 11

paged virtual memory. It uses a multi-programmed approach to teach users how the operating

system components interact. Its basic design makes it easier to understand and use and its visual

interface helps students visualize the ideas being taught.

After examining these tools, we have found that no software exists that would allow users to

visualize what the file system is currently doing and how it is doing it. This is why we intend to

create such a program to see this data in real time.

IV. Design and Methodology

This project was an extension of work done by Dr. Diesburg for her dissertation while attending

Florida State University. Dr. Diesburg had created an application that worked with the file system

to gather information about the procedures carried out by the file system to store, read and delete

data. Her goal for this research was to work with secure deletion methods to increase security of

data that is deleted by the user. Figure 5 is a diagram taken from Dr. Diesburg’s dissertation work

[5] that shows how her application gathers data. The application interfaces with the file system

and gathers data including time stamps, drive operations, sector numbers, transaction numbers,

memory pages, inode numbers, a description and the data that is being read, written or deleted.

The data was then outputted into a spreadsheet for examination such as in Table 1. This

information has many applications for use, but the application we chose to pursue is educational

in nature.

 12

The 2018 spring semester was devoted to researching a number of aspects of the project. The first

goal was to make sure a program did not already exist that did the work we were trying to do. We

found many similar programs as cited in the literature review but none that implemented our

purpose of an educational tool that displayed live file system data.

The next stage of our research was on possible implementation languages and platforms. We

decided that we wanted to pursue creating an easy-to-access webpage and programming in

HTML5 with as little Java Script as possible to fill in the gaps. HTML5 is the newest addition to

the html language family. HTML5 was not a language I was familiar with prior to this project.

Despite the steep learning curve we were able to develop a basic knowledge of the syntax and

semantics of the language prior to the start of designing the application.

Figure 5: The basic framework of Dr. Diesburg’s application

 13

In our initial meetings to discuss possible designs for our program, a few necessary requirements

were laid out. Due to the educational nature of the application, the tool needed to be easy enough

for students and teachers to be able to quickly learn and use. The application would also need to

be laid out in such a way that information could be easily accessed and easy to read. Finally, the

goal was for the application to provide real time feedback to user commands such that the results

could be viewed as they are processed by the file system.

For the original design, we knew we wanted to create a visual interface for Dr. Diesburg’s

application. This would entail three parts. First, we would need to receive information from Dr.

Diesburg’s process running on a remote server. Second, we would need to parse this information

and place it in table form. Finally, we would need to display the table. Based on this

implementation, one background process and two visual portions were needed. The initial design,

as seen in Figure 6, began with a basic window interface that works in much the same way as any

other program on a computer. Within the window we needed a series of buttons to control the

connection to the server with Dr. Diesburg’s process.

Figure 6: Design #1

Start

Stop

Data Output

 14

We initially had two buttons: start (connect to the server and begin receiving data), and stop (stop

receiving data). Finally, we added an area for the final output.

Our initial plan was to reuse open source code from a similar software called WireShark [16].

WireShark is a packet sniffing software that captures data being passed through the network and

displays it to the user. The software captures all basic components of the packets including

destinations, sources, packet contents etc. (similar to metadata in a file system). Figure 7 shows

the Wireshark interface. The interface shows the captured packets in real time. In our program,

these are equivalent to the data traces found in Table 1.

Figure 7: Wireshark Interface

 15

In Figure 7, we also see that the user can click on a packet and see an expanded set of details. In

the case of Fileshark, this would be similar to the metadata and the data that is being read or written.

With this basis, we planned on simplifying the interface slightly while displaying similar output

and keeping basic functionality.

Our next design focused on combining the two actions of inputting commands to create the output

and displaying the output. In order to do so, two interfaces were needed. We would need an

interface for displaying output visually and an interface for inputting commands. The commands

entered cause actual file system calls to the file system which in turn correlate to the data output

by the program. For this reason, we shifted our focus to the design in Figure 8.

Figure 8: Design #2

Start

Stop

Command Line Interpreter

Data Output

 16

In the second design, we kept the same basic interface as the first design, but added a command

line interface that would allow the user to enter the commands and see the results in the same

window. Unfortunately, due to time constraints and a steep learning curve, we had to eliminate the

command line interface to focus on core features of the program. After this shift in focus we

returned to our more basic original design and focused more on the user interface as opposed to

the backend processes.

Figure 9 shows the final interface for the application. As you can see, we kept the original start

and stop buttons but relabeled them connect and disconnect. These buttons allow us to connect to

the server and keep it open while starting and stopping the output. When we are finished we can

disconnect and clear the table using the disconnect button and by refreshing the webpage. The

table output is formatted in CSS to be simple to read and easy to understand. We decided to use a

browser window as our basic window due to the flexibility of implementation as explained in the

next section.

 17

Figure 9: Final Design

Figure 10 shows a diagram describing the interactions that occur within the Fileshark framework.

The base setup for the application is a webserver provided by Dr. Diesburg running Apache (a

web server) [7]. The server contains both the code for the front-end web page and the virtual

machine running the file tracing code.

Start Stop

Data Output

Connect Disconnect

 18

Figure 10: The Fileshark Framework

V. Implementation

While the program was in development and testing, we configured the Apache htaccess to require

a login to access the web interface. However, due to the environment in which the webpage resides,

the interface is accessible from any machine with Internet access when logged into the webpage.

Using Apache, I configured the index.html file that Apache uses to display web content to run the

code found in Appendix B. Apache sends the code to the webpage where it is interpreted. Figure

11 shows the Fileshark interface running in a browser window.

Webpage
Apache

Fileshark

VM

 19

Figure 11: Final Webpage

At the top of the page, just below the title, the “Connect” and “Disconnect” buttons are visible.

Pressing the “Connect” button establishes a websocket connection to the virtual machine.

Disconnect tears down this connection and stops new data from being received. Below the buttons

is the table interface. The table headers each describe a different piece of metadata that is contained

in the file system call (more information about the headers is available in Appendix A). The table

is scrollable to simplify the user experience. At the bottom of the page is a short description of

Fileshark and a brief usage tutorial.

 20

VI. Future Work

To improve usability and functionality, a few more pieces could be added to the program. The goal

is to add filtering and sort functionality so that users can search for specific types of data. Currently,

the data field is far too large to display normally. This can be adjusted for by creating a hidden

attribute tag for the data field. An option could be added to download the captured trace into a file

that could be saved and reloaded.

Finally, the ultimate goal is to have this application tested in the classroom as a teaching tool.

Curriculum must be designed for use with this tool to teach a file system module in a traditional

computer science undergraduate course. Partner schools will be selected, with a group of operating

system classes taught with and without this tool. Finally, learning will be evaluated via the same

exam questions throughout both the classes that use the Fileshark tool and the control classrooms.

VII. Conclusion

At the end of the 2018 Fall semester, the alpha version of the Fileshark program has been

completed and Fileshark is ready to begin testing in a classroom environment. Functionality that

is currently supported by Fileshark includes parsing of incoming data, control over data

connections, and basic user interfaces for data display. The final interface is shown in Figure 11.

Through the process of Fileshark’s creation, I learned a number of important skills: namely,

programming in two new languages (HTML5 and JavaScript), basic networking skills including

setting up an Apache webserver and the use of websockets, website design practices, experience

with using virtual machines, and finally, a better understanding of the file system.

 21

In conclusion, during the past two semesters, we have created a functional tool that can be used by

educators to better teach students the internal workings of the file system. The tool consists of

back-end code that can be used to create file system traffic and a web-based user interface that

translates the file system traffic into an easy to read visual format. Fileshark is capable of reading

and displaying file system data in a way that enables visual learning experiences that were

previously not possible. This tool will not only help students learn in a visual way the internal

processes of the file system, it will also help teachers improve their ability to teach abstract file

system ideas, system forensic analysts to track how computers are storing data, and system security

experts to track file system operations. Finally, Fileshark will continue to be expanded to meet

user needs and to create a more detailed analysis of the processes it scans.

 22

Appendix A

Appendix A consists of an XML trace that simulates what the Fileshark interface receives from

the file trace software running on the back end. Each message sent to Fileshark is contained within

a <rec> or record tag. The other tags in each message contain data as follows.

<ts> Time Stamp shows when processes are carried out

<driveop> Drive Operation shows what operation is being carried out on the drive

<sect> Sector Number shows which sector of the memory is being accessed

<mempage> Memory Page shows which memory page information is stored on

<trans> Transaction ID shows the contained transaction number

<inodenum> Inode Number shows which index number points to the metadata for

the process

<desc> Description shows a what part of the file system is being accessed

<data> Data contains the data for each process

These tags are parsed by Fileshark and are added to the Output Table.

 23

<rec><ts>0</ts><driveop>WRITE</driveop><sect>2</sect><mempage>2243171</mempage>

<trans>0</trans><inodenum>0</inodenum><desc> EXT3 SUPERBLOCK</desc><data>NULL

512-byte field</data></rec>

<rec><ts>0.01</ts><driveop>WRITE</driveop><sect>3</sect><mempage>2243171</mempag

e><trans>0</trans><inodenum>0</inodenum><desc>EXT3

SUPERBLOCK</desc><data>NULL 512-byte field</data></rec>

<rec><ts>0.02</ts><driveop>WRITE</driveop><sect>1052</sect><mempage>2243175</mem

page><trans>0</trans><inodenum>8</inodenum><desc> JOURNAL

SUPERBLOCK</desc><data>NULL 512-byte field</data></rec>

<rec><ts>0.03</ts><driveop>WRITE</driveop><sect>1053</sect><mempage>2243175</mem

page><trans>0</trans><inodenum>8</inodenum><desc> JOURNAL

SUPERBLOCK</desc><data>NULL 512-byte field</data></rec>

<rec><ts>0.04</ts><driveop>WRITE</driveop><sect>1054</sect><mempage>2243175</mem

page><trans>39</trans><inodenum>8</inodenum><desc> JOURNAL

DESCRIPTOR</desc><data>NULL 512-byte field</data></rec>

<rec><ts>0.05</ts><driveop>WRITE</driveop><sect>1055</sect><mempage>2243175</mem

page><trans>39</trans><inodenum>8</inodenum><desc> JOURNAL

DESCRIPTOR</desc><data>NULL 512-byte field</data></rec>

<rec><ts>0.06</ts><driveop>WRITE</driveop><sect>1056</sect><mempage>2243173</mem

page><trans>39</trans><inodenum>2</inodenum><desc> INODE IN

JOURNAL</desc><data>NULL 512-byte field</data></rec>

<rec><ts>0.07</ts><driveop>WRITE</driveop><sect>1057</sect><mempage>2243173</mem

page><trans>39</trans><inodenum>2</inodenum><desc> INODE IN

JOURNAL</desc><data>NULL 512-byte field</data></rec>

<rec><ts>0.08</ts><driveop>WRITE</driveop><sect>1058</sect><mempage>2243173</mem

page><trans>39</trans><inodenum>0</inodenum><desc> INODE FREEMAP IN

JOURNAL</desc><data>NULL 512-byte field</data></rec>

<rec><ts>0.09</ts><driveop>WRITE</driveop><sect>1059</sect><mempage>2243173</mem

page><trans>39</trans><inodenum>0</inodenum><desc> INODE FREEMAP IN

JOURNAL</desc><data>NULL 512-byte field</data></rec>

<rec><ts>0.1</ts><driveop>WRITE</driveop><sect>1060</sect><mempage>2243171</memp

age><trans>39</trans><inodenum>0</inodenum><desc> GROUP DESCRIPTOR IN

JOURNAL</desc><data>NULL 512-byte field</data></rec>

<rec><ts>0.11</ts><driveop>WRITE</driveop><sect>1061</sect><mempage>2243171</mem

page><trans>39</trans><inodenum>0</inodenum><desc> GROUP DESCRIPTOR IN

JOURNAL</desc><data>NULL 512-byte field</data></rec>

<rec><ts>0.12</ts><driveop>WRITE</driveop><sect>1062</sect><mempage>2243173</mem

page><trans>39</trans><inodenum>12</inodenum><desc> INODE IN

JOURNAL</desc><data>NULL 512-byte field</data></rec>

<rec><ts>0.13</ts><driveop>WRITE</driveop><sect>1063</sect><mempage>2243173</mem

page><trans>39</trans><inodenum>12</inodenum><desc> INODE IN

 24

Appendix B

Appendix B contains the code for Fileshark. Within the code comments describing the code are

denoted by <!—Comment-->. Fileshark is written in HTML5 with a few portions in Javascript.

 25

 26

 27

Sources Cited

[1] Luiz Paulo Maia, Francis Berenger Machado, and Ageu C. Pacheco, Jr.. 2005. A constructivist

framework for operating systems education: a pedagogic proposal using the SOsim.

In Proceedings of the 10th annual SIGCSE conference on Innovation and technology in

computer science education (ITiCSE '05). ACM, New York, NY, USA, 218-222.

[2] Autopsy: https://www.sleuthkit.org/autopsy/. Accessed: 2018-03-20.

[3] Carrier, B. 2005. File System Forensic Analysis. Addison Wesley Professional.

[4] Diesburg, S.M. Per-File Full-Data-Path Secure Deletion for Electronic Storage. (2012).

[5] Diesburg, S., Meyers, C., Stanovich, M., Wang, A.-I.A. and Kuenning, G. 2016. Trueerase:

Leveraging an auxiliary data path for per-file secure deletion. ACM Transactions on Storage

(TOS). 12, 4 (2016), 18.

[6] fsv – 3D File System Visualizer: http://fsv.sourceforge.net/. Accessed: 2018-03-20.

[7] The Apache HTTP Server Project. (n.d.). Retrieved December 9, 2018, from

https://httpd.apache.org/

[8] Garmpis, A. and Gouvatsos, N. 2012. Innovative teaching methods in Operating Systems: The

Linux case. (Oct. 2012).

[9] Garmpis Aristogiannis 2010. Alg_OS—A web‐based software tool to teach page replacement

algorithms of operating systems to undergraduate students. Computer Applications in

Engineering Education. 21, 4 (Nov. 2010), 581–585.

[10] Laadan, O., Nieh, J. and Viennot, N. 2010. Teaching operating systems using virtual

appliances and distributed version control. (2010), 480.

[11] Love, R. 2010. Linux Kernel Development, A thorough guide to the design and

implementation of the Linux Kernel. Addison Wesley Professional.

[12] Pfaff, B., Romano, A. and Back, G. 2009. The Pintos Instructional Operating System Kernel.

Proceedings of the 40th ACM Technical Symposium on Computer Science Education (New

York, NY, USA, 2009), 453–457.

[13] The Sleuth Kit: https://www.sleuthkit.org/sleuthkit/. Accessed: 2018-03-20.

[14] Tweedie, S. 2000. Ext3, journaling filesystem. Ottawa Linux Symposium (2000), 24–29.

[15] WinDirStat: https://windirstat.net/. Accessed: 2018-03-20.

[16] Wireshark · Go Deep.: https://www.wireshark.org/. Accessed: 2018-03-28.

https://www.sleuthkit.org/autopsy/
http://fsv.sourceforge.net/
https://httpd.apache.org/
https://www.sleuthkit.org/sleuthkit/
https://windirstat.net/
https://www.wireshark.org/

	A graphical file system visualization tool for operating systems
	Recommended Citation

	tmp.1547757634.pdf.fkOwL

