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Review Article
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Worldwide, an estimated 12 million people are infected with Leishmania spp. and an additional 350 million are at risk of infection.
Leishmania are intracellular parasites that cause disease by suppressing macrophage microbicidal responses. Infection can remain
asymptomatic or lead to a spectrum of diseases including cutaneous, mucocutaneous, and visceral leishmaniasis. Ultimately, the
combination of both pathogen and host factors determines the outcome of infection. Leishmaniasis, as well as numerous other
infectious diseases, exhibits sex-related differences that cannot be explained solely in terms of environmental exposure or
healthcare access. Furthermore, transcriptomic evidence is revealing that biological sex is a variable impacting physiology,
immune response, drug metabolism, and consequently, the progression of disease. Herein, we review the distribution, morbidity,
and mortality among male and female leishmaniasis patients. Additionally, we discuss experimental findings and new avenues
of research concerning sex-specific responses in cutaneous and visceral leishmaniasis. The limitations of current therapies and
the emergence of drug-resistant parasites underscore the need for new treatments that could harness the host immune response.
As such, understanding the mechanisms driving the differential immune response and disease outcome of males versus females
is a necessary step in the development of safer and more effective treatments against leishmaniasis.

1. Introduction

1.1. Leishmaniasis. Leishmania are parasitic protozoa
endemic in 98 tropical and subtropical countries. Worldwide,
12 million people are infected with Leishmania spp. and an
additional 350 million are at risk of infection [1, 2]. Leish-
mania spp. are intracellular parasites that cause a spectrum
of human diseases called leishmaniasis, including cutaneous
(CL), mucocutaneous (ML), and visceral leishmaniasis (VL)
as prominent forms [1, 3]. Post-kala-azar dermal leishmania-
sis (PKDL) is a complication of VL, and there are several
additional disseminated forms of cutaneous disease [1, 2].
Leishmania spp. life stages include the promastigote form,
which converts to the infective metacyclic form in the gut of
a phlebotomine sand fly vector, and the obligate intracellular
amastigote present in the phagocytes of a mammalian host.

Leishmania spp. have a number of mechanisms to subvert
the microbicidal activity of the host macrophages [4]. Progres-
sive leishmaniasis is characterized by replication of amasti-
gotes and the spread of parasites to additional macrophages,
leading to localized or disseminated diseasemanifestations [3].

VL is the most severe clinical form of leishmaniasis, and
symptomatic VL is often fatal if left untreated. Up to
500,000 new cases of VL are estimated on a yearly basis,
along with about 50,000 reported deaths [2]. Treatment
modalities for VL are complicated by high cost, toxicity,
and the need for lengthy and often parenteral administration.
An increasing concern is the emergence of drug-resistant
Leishmania parasites in some endemic areas, particularly
among L. donovani strains in India [2, 5, 6]. These limitations
highlight the importance of developing new approaches to
therapy. In particular, approaches that synergize with the
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host immune response as well as natural determinants of
susceptibility provide potential targets to interfere with
disease progression.

1.2. Biological Sex as a Variable in Physiology and Disease.
Large-scale transcriptomic studies are shedding light on the
various ways that biological sex impacts physiology and
as a consequence, disease outcomes. Males and females
have a similar number of genes, differing only in those
encoded by the sex chromosomes. However, in various tis-
sues, the expression of many transcripts can differ signifi-
cantly between the sexes. In humans, this includes the
brain, heart, liver, and peripheral blood mononuclear cells.
Furthermore, the number of biased transcripts and their
respective fold difference varies from tissue to tissue
between both sexes [7–11].

Sex-related differences in immunophysiology may
underlie distinct male or female susceptibility to certain
cancers and autoimmune conditions as well as infectious dis-
eases, including several that are caused by parasites [8, 12–
16]. Both pathogen and host factors likely drive these dichot-
omous rates in disease [16–18]. It cannot be excluded that
social dynamics and gender-associated behavior might play
roles in the disposition to seek medical care and conse-
quently, disease outcome [13, 14, 16, 17]. However, often
these sex differences cannot be explained by environmental
exposure or healthcare access, suggesting a physiological
basis [13, 14, 16–20]. Biological differences between the sexes
have been shown in animal models and in a number of
human disease states. Furthermore, sex-associated differ-
ences have been observed in cells of male versus female ori-
gin, strongly supporting a role for biological sex in disease
development [7, 9–12, 16–19].

In this review, we will explore epidemiological patterns of
sex-related differences in cutaneous and visceral leishmania-
sis, in addition to other manifestations of symptomatic infec-
tion. We also outline ongoing efforts to elucidate the immune
mechanisms contributing to sex-specific responses in disease.

2. Cutaneous Leishmaniasis

2.1. Epidemiological Evidence of Sex Bias in Old World CL.
Old World CL is caused primarily by L. aethiopica, L. major,
and L. tropica, while in the NewWorld, L. mexicana and spe-
cies of the Leishmania (Viannia) (V.) subgenus are largely
responsible for causing CL [21, 22]. Differential incidence
of CL between the sexes has been reported in multiple
endemic regions of the Old World. Whether CL is more
common in males versus females appears to differ depending
on multiple variables. It is likely that a complex interaction
between environmental, host gender and biological factors,
and the infective Leishmania species, determines whether
there is a sex bias and, if so, the direction of the bias [23–29].

2.2. Sex-Dependent Differences in Experimental Models of Old
World CL. During infection with the Old World species L.
major, the resistant and susceptible phenotypes of
C57BL/6 and BALB/c murine models are determined by
their respective Th1- and Th2-mediated CD4+ T cell

responses [30, 31]. Sex biases have been documented in
murine L. major infection; however, whether it is males or
females that develop more severe disease is highly depen-
dent on the model. This suggests that sex-dependent
responses are driven by factors that are differentially
expressed in male versus female mice and their distinct
interactions with parasites [32–34].

Studies using wild-type (WT) C57BL/6 mice showed that
a low-dose L. major inoculum, which resembles natural
infection, resulted in higher parasite burdens and parasite
spread to the spleens of female than male mice. In addition,
cells from draining lymph nodes showed that females have
a cytokine profile resembling Th2 responses, with higher
interleukin (IL)-4 and lower interferon-γ (IFN-γ) than male
mice. Interestingly, in this study, neither macrophages, den-
dritic cells, nor lymphocytes were involved in driving the
biased cytokine profile and disease outcome. The authors
hypothesized that factors present at the time of inoculation
or shortly thereafter might be involved in driving the higher
susceptibility of females. These could include stromal tissue,
fibroblasts, keratinocytes, and/or hormones [31]. Several
other lines of evidence support a role for keratinocytes and
hormones in mediating sex-specific differences at the inocu-
lation site. First, many skin diseases show a sex bias in prev-
alence, severity, andmortality [35, 36]. Second, sex hormones
are known to mediate differences in skin structure and phys-
iology between males and females [35, 36]. Third, keratino-
cytes and sebaceous glands can synthesize sex hormones
[36, 37]. In particular, keratinocytes can synthesize sex ste-
roids de novo, which in turn can exert autocrine and para-
crine effects in various targets, including immune cells,
potentially contributing to sex-related immune responses
[37]. Furthermore, studies in other systems have shown that
IL-6, a cytokine produced by keratinocytes and stromal cells,
among others, can skew T cell responses away from Th1- and
towards Th2-type responses [38, 39]. Overall, these studies
suggest complex host-pathogen interactions at the inocula-
tion site, although further studies will be necessary to dissect
the factors contributing to sex-biased responses at the earliest
stages of infection.

Additional factors with the potential to drive
sex-dependent responses during or shortly after Leishmania
inoculation include tissue-specific differences in resident
immune cell populations. For example, in C57BL/6 mice,
males have more resident neutrophils and nonclassical
monocytes in the spleens than their female counterparts,
whereas there are twice as many macrophages, B cells, and
CD4+ T cells in the pleural and peritoneal cavities of females
than males [40, 41]. However, no sex differences were
observed in the bone marrow [40]. It is possible that varia-
tions in cellular composition might be driven by
tissue-specific chemokines [41].

Sex-dependent differences have also been shown in
immune cell infiltration. For example, a model of acute
inflammation showed higher neutrophil and monocyte
recruitment in male than female C57BL/6 mice [40]. More-
over, sex-dependent responses have been observed in eosino-
phil infiltration during L. major infection, although the role
of eosinophils in leishmaniasis is complex [33, 42]. In vitro
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studies suggested that eosinophils are microbicidal toward L.
major and L. amazonensis and increased numbers of eosino-
phils in vivo correlate with resistance to murine L. mexi-
cana and L. infantum infection [42]. In contrast,
Slapnickova et al. found a significant correlation between
eosinophil infiltration and increased parasite loads in male
mice but not female mice infected with L. major. This sug-
gests a male-specific detrimental role for eosinophils [33].

Murine host polymorphic genes associated with eosino-
phil infiltration into lymph nodes mapped to four autosomal
loci, two of which showed a cooperative effect (Lmr15, chr 11;
Lmr26; chr 9) and two of which apparently functioned inde-
pendently (Lmr14, chr 2; Lmr25, chr 5). Interestingly, Lmr14
was associated with eosinophil infiltration in male mice but
not female mice. The positive correlation between parasite
load and higher eosinophil infiltration in males was sug-
gested to reflect the chronic inflammatory state in L. major
infection [33]. These results form part of a growing number
of studies showing the potential involvement of autosomal
genes in controlling pathogen tropism, immune responses,
and the sex-dependent outcome of infection [13, 16, 33]. In
summary, it can be speculated that at the inoculation site,
qualitative and quantitative differences in cellular composi-
tion and inflammatory signals will affect the development
and maintenance of the immune response and the outcome
of infection between males and females [2, 33, 42].

Sex-based differences have also been described in patients
and in animal models of infection with L. tropica, another
Old World species. In addition to cutaneous lesions, L.
tropica infection can result in VL, simultaneous VL and
disseminated CL, or viscerotropic disease, a hybrid of
cutaneous and visceral symptoms that is defined by the
systemic spread of parasites [32, 43–45]. Epidemiological
data suggest that different clinical syndromes due to L. tro-
pica infection vary also in their sex bias. CL, the most com-
mon presentation of L. tropica infection, seems to be more
prevalent among females in some endemic areas, whereas
males are more likely to develop viscerotropic leishmaniasis
[26, 28, 44]. However, the mechanisms responsible for the
spectrum of disease manifestations and the variation in
sex-dependent outcomes have been elusive, due in part to
the lack of an apt animal model [32].

Recently, Kobets et al. developed a suitable model to
study the intersection between genotype, sex-dependent
differences, and Leishmania species-specific responses. They
used nine recombinant congenic mouse strains from STS/A
(CcS/Dem) on a BALB/c background to examine the
progress of L. major and L. tropica infection [32]. Compared
to L. tropica, infection with L. major progressed faster and
showed increased pathology in all but one of the strains of
mice. In some, but not all strains, males developed larger skin
lesions than females. However, during infection with L. tro-
pica, females of most strains formed larger skin lesions. This
did not correlate with higher parasite burdens in draining
lymph nodes of females, suggesting the involvement of other
host factors, such as inflammatory mediators, in the
sex-associated differences in skin lesions. For example, the
greatest skin pathology to L. tropica infection was shown by
females of the strain CcS-16, which also showed the highest

expression of the C-C motif chemokine ligands (CCL)
CCL3 and CCL5. These chemokines have been associated
with resistance to L. major, although CCL3 has been related
with chronic progressive L. mexicana disease [32]. The spe-
cific effects of CCL3 and CCL5 in L. tropica infection merit
further study.

The complex interactions between genotype, parasite
species, and sex-based disease manifestations are well illus-
trated in the CcS-11 mouse strain. This strain showed only
moderate susceptibility to L. major-induced lesions but suc-
cumbed to L. tropica infection. By week 14, female mice
developed small lesions that healed into nodules; however,
by weeks 32-42, about half the animals had died. Males were
more resistant to skin pathology as they developed only small
or no nodules, yet most male mice died earlier, by week 18.
Histopathological examination showed no parasite dissemi-
nation into the spleen of CcS-11 mice. In contrast, L. tropica
visceralizes to the spleens of BALB/c mice and several other
recombinant strains used in this study [32, 43]. Together,
these results suggest that the differential response to infec-
tion between males and females, if present, includes a
combination of factors such as host genetic background,
organ-specific responses, and the Leishmania species.

2.3. Epidemiological Evidence of Sex Bias in New World CL.
Unlike Old World CL, data from the New World document
a higher incidence of CL in males than females in Mexico
and Colombia [46–48]. Similar reports from across Brazil
show that males develop cutaneous manifestations of leish-
maniasis at higher rates than females [49–53]. A nationwide
study found increased CL in males versus females under age
1. The predominance in male infants could be driven by
minipuberty, a transient postnatal increase in sex steroid
levels that shows clear hormonal differences between boys
and girls and has been implicated in other sex-biased infec-
tious diseases [54, 55]. Overall, the prevalence of CL among
males increased at puberty, reached its highest level in adult-
hood, and decreased in the elderly population. This occurred
despite the fact that males likely do not experience increased
parasite exposure, suggesting that the observed sex dichot-
omy has a biological basis [54, 56]. Together, these studies
support the hypothesis that inherent biological factors, per-
haps together with gender-related behavior, place males at
higher risk of New World CL.

2.4. Sex-Dependent Differences in Experimental Models of
New World CL

2.4.1. L. mexicana. Mice lacking the IL-4 receptorα (Rα) are
resistant and do not form lesions during L. mexicana infec-
tion. Since IL-4Rα is a common subunit in the IL-4 and
IL-13 receptors, these results suggest that either IL-4, IL-13,
or both are involved in susceptibility [30]. To identify the
critical cell populations, Bryson et al. studied infection in
global- and CD4+ T cell-specific IL-4Rα-deficient mice in a
BALB/c background and compared these results to that in
WT mice. These data show that IL-4Rα from CD4+ T cells,
but not from neutrophils and macrophages, is implicated in
disease progression by facilitating Th2 responses. Strikingly,
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the splenocyte cytokine response differed between CD4+ T
cell-specific IL-4Rα-deficient male and female mice. Spleno-
cytes from males expressed higher levels of IL-4, IL-5,
IL-10, and immunoglobulin G1 (IgG1). This occurred
despite the fact that mice of both sexes curtailed disease pro-
gression. However, while females healed the initial small
lesions, sex-specific, IL-4Rα-independent production of
IL-4 led to lesion persistence in males [30].

In humans, L. mexicana infection can result in localized
CL (LCL) with ulcers at the site of parasite inoculation or
anergic diffuse cutaneous leishmaniasis (ADCL). ADCL is
characterized by high parasite loads, suppressed cutaneous
delayed-type hypersensitivity, and disfiguring nodules
throughout the body. Innate immunity has been implicated
in parasite dissemination in ADCL [3, 45]. Natural killer
(NK) cells, components of innate immunity, have the poten-
tial to activate innate and adaptive immune responses and
thus could play a role in the differential manifestations of
LCL versus ADCL. Peripheral blood and tissue samples
showed higher numbers of NK cells in LCL than ADCL
patients. In addition, LCL patients showed increased expres-
sion of IFN-γ and tumor necrosis factor (TNF) in nonstimu-
lated and lipophosphoglycan (LPG) stimulated NK cells,
with greater levels in females than males [45]. Increased
NK cell numbers and their associated production of IFN-γ
and TNF facilitate macrophage activation and parasite
control and might contribute to the increased resistance of
females to L. mexicana infection [34, 45].

The aforementioned studies showed how differences in
the immune response contribute to L. mexicana susceptibility
among males. Although some sex-specific immune responses
may be determined by the male or female genotype, some are
modulated by circulating sex hormones [13, 16]. Several
studies discussed herein have examined sex steroids as a
variable in infection using animal models of leishmaniasis
[34, 57–59]. Additionally, a role for sex steroids in disease pro-
gression is implied by the epidemiological data [54, 60–62].

In addition to modulating host susceptibility, sex
hormones could directly affect pathogens [16, 19, 63, 64].
Treatment of L. mexicana promastigotes with physiological
doses of dihydrotestosterone (DHT), the main circulating
androgen in males, increased parasite growth [13, 64]. In
addition, DHT-treated parasites increased the macrophage
infection rate and parasite load and were more resistant to
the macrophage microbicidal attack. Furthermore, male
BALB/c mice infected with DHT-treated parasites developed
larger lesions and contained more parasites per area than
those infected with nontreated parasites [64]. Overall, these
results suggest that interactions between sex steroids, parasite
virulence, immune responses, and host susceptibility deter-
mine the final outcome of Leishmania infection.

2.4.2. Leishmania (Viannia) Species. Sex differences in the
severity of experimental leishmaniasis are not limited to spe-
cies of the L. Leishmania subgenus (L. major, L. mexicana).
Studies in hamster models of cutaneous infection with
either L. (V.) guyanensis or L. (V.) panamensis led to
higher parasite loads in males than females. Although
overall infection severity was higher with L. (V.) guyanensis,

the sex dichotomy was most pronounced in L. (V.) panamen-
sis-infected animals [59].

A potential role for sex steroids in driving the differential
responses to L. (V.) panamensis was investigated in studies of
estrogen-treated male or testosterone-treated female ham-
sters. There was an increase in the size of lesions of hamsters
treated with testosterone, whereas estrogen treatment had
no discernible effects. This was consistent with the obser-
vation that the augmented size and necrosis of lesions
due to L. (V.) panamensis developed only in adult male
hamsters that have reached biological maturity. These sex
differences correlated with the abundance of skin lesion
transcripts encoding IL-4, IL-10, and transforming growth
factor-β (TGF-β), but not IFN-γ or IL-12 [59]. L. (V.)
guyanensis infection resulted in a contrasting pattern, in
that adult males developed an increase in necrosis but
not in lesion size compared to juvenile males. Further-
more, adult female hamsters had smaller lesions than juve-
niles infected with L. (V.) guyanensis, consistent with a
protective role for estrogen [59]. Similar sex-based differ-
ences have been observed in other infectious disease
models including Staphylococcus aureus, in which female
resistance to dermonecrosis is associated with estrogen
and its downstream effects [35].

3. Visceral Leishmaniasis

3.1. Epidemiological Evidence of Sex Bias in Old World VL.
VL, known in some endemic areas as kala-azar, is a systemic
disease characterized by enlargement of the spleen and liver
as well as progressive immunosuppression [2, 65]. VL is
caused by L. infantum in the NewWorld and either L. infan-
tum or L. donovani in the OldWorld [2, 21, 65]. Considering
VL patients from Brazil, East Africa, India, and Nepal,
Harhay and colleagues concluded that despite variations in
the ratios of males-to-females, males accounted for more
cases of VL across all regions. These observations could result
from parasite, host, societal factors, or some combination of
these variables [5]. An illustration is VL caused by L. dono-
vani in the Indian subcontinent and other areas, where gen-
der and biological factors could contribute to variations in
disease severity between the sexes [34, 61, 66–72]. Reports
from India are uncertain regarding a sex bias in PKDL, a
cutaneous complication sometimes observed after VL treat-
ment; whereas some studies indicate no difference, others
show a greater incidence of PKDL in males [69, 73, 74]. In
India, conclusions about the involvement of biological
factors are complicated by the likely underreported num-
bers of adult females with symptomatic VL, which may
result from gender disparities in healthcare access in the
region [61]. However, in some endemic areas (e.g., Northeast
Brazil), studies provide evidence that the male predominance
in VL prevails even in situations of similar infection rates
between the sexes, as discussed herein [60, 75].

Sex-associated differences in antileishmanial IgG titers
have also been reported, although not always in the same
direction. Among VL patients from India, males had higher
IgG titers whereas Sudanese females with VL had higher
serologic titers than males. In both populations, sex
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differences were observed in subjects aged 16 or older, raising
the possible involvement of sex hormones [76]. Although the
physiologic consequence of serologic differences is not
known, elevated leishmania-specific IgG has been identified
as a marker of subjects who will progress from asymptomatic
to symptomatic VL [77].

3.2. Sex-Dependent Differences in Experimental Models of Old
World VL. Several studies have set out to investigate the
mechanisms underlying the sex bias observed in Old World
VL epidemiological data. Compared to females, male
hamsters infected with L. donovani exhibited higher parasite
loads. Furthermore, in both sexes, estradiol lowered whereas
testosterone increased infection [78]. In murine macro-
phages, testosterone has been shown to promote L. donovani
uptake and parasite load, and decrease p38 mitogen-activated
protein kinase (MAPK) activation, which may lead to a
lower antimicrobial response and promote parasite survival
[79–82]. In contrast, exposure to 17β-estradiol has no impact
on parasite load [81]. Overall, these results implicate sex
hormones in the modulation of L. donovani infection. The
potentially detrimental effects of testosterone would likely
hold more significance in the infection of males than females.

3.3. Epidemiological Evidence of Sex Bias in New World VL.
In Brazil, where L. infantum is endemic, the epidemiolog-
ical data have largely shown a male predominance in VL
[54, 83–88]. In addition, one nationwide study found
higher levels of discontinued therapy among male VL
patients. It is unknown whether gender-related behavior
explains higher rates of treatment cessation among men
or if sex-related biological differences lead to more adverse
effects, and thus, higher treatment withdrawal [86]. In the
same study, males (n = 1,168) represented a greater number
of deaths caused by VL compared to females (n = 611),
similar to other reports from Brazil as well as in Southern
Iraq where L. donovani is endemic [84–86, 89, 90]. Further-
more, morbidity and mortality associated with HIV and
Leishmania coinfection in Brazil and Spain are reported to
be higher in males [84, 85, 87, 89, 91]. However, epidemio-
logical studies cannot always discern whether differences
between males and females are due to gender-related or
biological factors.

Data from the state of Rio Grande do Norte, Brazil, have
consistently demonstrated a male bias in VL [60, 62, 92].
Lutzomyia longipalpis, the sand fly vector of L. infantum,
is peridomestic, and males and females have similar rates
of infection [60, 62, 93]. However, after the age of ten,
males were more likely to develop symptomatic disease
than females. This age range approximately corresponds
with the start of puberty [60, 62]. An expanded analysis of
1,967 cases of VL reported from across the state showed the
same pattern of male bias in disease after puberty. Likewise,
a nonsignificant male bias among VL subjects under the age
of 1 may be related to minipuberty, which has been impli-
cated in other studies of leishmaniasis [54, 62]. Overall, males
accounted for 66% of symptomatic cases [62]. Other studies
in Brazil have found comparable rates of infection between
the sexes but did not always differentiate between early

childhood and postpubertal patients [54, 94–96]. Those stud-
ies could be complicated by the fact that VL has been a disease
predominant in children under the age of 10, although this
epidemiological pattern is now changing [97]. The increased
frequency of disease in postpubertal males could result from a
combination of factors, including biological variables such as
the anti-inflammatory properties of testosterone and
sex-based genetic differences, possibly in combination with
gender-related behavioral patterns [54, 62, 86, 87, 98, 99].

3.4. Sex-Dependent Differences in Experimental Models of
New World VL. Collectively, epidemiological studies of
New World VL support the concept that the interaction
between gender-based behavior and biological sex could
determine the outcome of disease. Experimental studies
are necessary to elucidate the biological aspects of
sex-dependent responses to infection with visceralizing spe-
cies of Leishmania.

3.4.1. Sex-Dependent Differences at the Macrophage Level:
Receptors, Parasite Load, and Potential Implications for
Leishmaniasis

(1) Macrophage Receptors. Phagocytic and antimicrobial
differences in macrophages of male versus female origin
have been shown in various infectious diseases including
Cryptococcus neoformans, group B streptococci, and
Paracoccidioides brasiliensis [19, 20, 41]. Recently, our
group examined infection levels in C57BL/6 macrophages
of male and female origin. In the initial hour of infection
with LcJ, a clonal line of a Brazilian L. infantum strain,
macrophages from male mice showed higher percent of
infection and parasite load. Leishmania uptake is mediated
by various receptors including mannose, fibronectin, Fcγ
receptor, complement receptor-1 (CR1), and CR3 [100–
104]. The observation of sex-biased uptake of LcJ
promastigotes suggests receptor differences in C57BL/6
macrophages of male versus female origin [62]. Recognition
by macrophage receptors is among the earliest interactions
between Leishmania and its host, and parasite survival is
impacted by differential uptake [100, 104]. As such,
sex-specific differences at this stage could have a major
impact on infection outcome.

Transcriptomic data have shown differential expression
of surface and downstream signaling molecules in macro-
phages of male versus female origin. These differences are
far more extensive than those originating only from the sex
chromosomes. Many variations arise from dissimilar regula-
tion in epigenetics and gene expression [7, 10, 105]. For
example, mouse macrophages from males and females
showed over 30% of genes differentially expressed. Addition-
ally, transregulation of expression quantitative trait loci was
mostly sex specific. The differential gene expression was
independent of exogenously added sex steroids, as these were
ex vivo experiments [105]. However, it cannot be ruled out
that endogenous sex hormones could have induced
long-lasting epigenetic changes nor can it be excluded that
there were intracrine or autocrine effects of sex hormones
released by macrophages in vitro [37]. Overall, these data
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showed a strong effect of biological sex in both gene expres-
sion and transregulation, thus, supporting the rationale of
segregating data analysis by sex [37, 105].

Likewise, macrophages from male and female donors
differentially express various transcripts including CD14,
cell surface adhesion proteins, signaling molecules, tran-
scription factors, and Toll-like receptors (TLRs) [7, 10,
12, 13, 41, 106]. To facilitate their survival, Leishmania
spp. interact with TLR-2, TLR-9, and TLR/IL-1R signaling
cascades [107, 108]. Similarly, L. infantum increases the
transcripts of phagocytosis receptors implicated in parasite
survival while decreasing those associated with parasite
clearance [109]. Differential use of macrophage receptors
leads to distinct entry and parasite survival [100, 103,
104]. As such, future studies should examine whether sex
differences in the types or abundance of receptors
involved in parasite recognition and entry contribute to
the differential responses of male- versus female-derived
macrophages.

(2) Parasite Load. As we previously showed that LcJ and WT
L. infantum promastigotes could utilize different entry path-
ways, the sex-biased uptake of attenuated parasites led us to
examine the kinetics of infection using a WT strain of L.
infantum from Brazil [62, 100]. Uptake and parasite load of
WT promastigotes were similar between C57BL/6 macro-
phages of male and female origin in the initial 24 hours. In
contrast, by 72 hours, parasite loads were higher in macro-
phages from males. Thus, despite similar uptake of WT par-
asites, macrophages from females contained the infection
better [62].

While more comprehensive studies are necessary to
determine the mechanisms underlying these sex-dependent
differences, the 72-hour kinetics implicate the involvement
of nitric oxide (NO) [62, 110]. Related studies with L. mexi-
cana showed increased NO production by female-derived
DBA/2 macrophages leading to better control of infection
[34, 58]. Furthermore, treatment with estrogen increased
NO and microbicidal activity in L. mexicana-infected
DBA/2 macrophages from both sexes [34, 58].
Sex-dependent responses in L. mexicana infection could
depend on the host genotype, as studies with C57BL/6
macrophages did not show the same results [57, 58]. Thus,
sex-dependent antimicrobial responses are determined by
the combination of the host genotype, sex hormones, and
Leishmania species [34, 57, 58]. Collectively, these results
indicate that inherent differences at the macrophage level,
which may be further modulated by sex hormones, could
be factors driving the sex dichotomy in disease.

3.4.2. Sex-Dependent Differences in Granuloma Formation:
Potential Implications for VL. To further explore the mecha-
nisms mediating sex differences, we examined liver parasite
loads in L. infantum-infected BALB/c and C57BL/6 mice.
In both strains, male mice had higher parasite burdens than
females, suggesting that across genetic backgrounds, males
are more susceptible to L. infantum infection [62]. In the
mouse model, containment of parasite growth in the liver
correlates with the induction of Th1-mediated immune

responses, which interact with TLR7 in the formation of liver
granulomas [2, 110–112].

Immune cells from females have higher expression of
TLR7, a gene present in the X chromosome. In humans and
mice, females avoid doubling the expression of genes
encoded on the X chromosome by inactivating the second
copy [7, 13, 113, 114]. However, this is not a comprehensive
shutdown and at least 15% of the genes in the second X
chromosome escape inactivation, either partially or
completely [7, 10, 12, 13, 113]. The X chromosome con-
tains a high number of immune-related genes, and incom-
plete gene inactivation could facilitate some amplified
immune responses in females [9, 12]. Escaping gene inac-
tivation might not be random, and it has been proposed
that some genes, such as TLR7, are biased to be overex-
pressed in females [7, 9, 13]. Thus, it can be speculated
that female tissues will respond to infections with stronger
granuloma formation. In agreement with this notion, the
BALB/c and C57BL/6 models of Mycobacterium tuberculo-
sis infection have shown that lung granulomas form earlier
and reach a larger size in female than in male mice [115,
116]. Furthermore, castration of male BALB/c mice
improved granuloma formation and survival, implying an
adverse effect of testosterone in granuloma development
[115]. Taken together, these studies suggest that females
could more readily initiate and maintain granulomatous
immune responses. Whether granulomas contribute to
the sex-biased responses observed in L. infantum infection
deserves further investigation.

3.4.3. Sex-Dependent Differences in Cytokine Responses. In
the mouse model of L. major infection, a distinct dichotomy
of Th1- or Th2-mediated responses results in cure or disease,
respectively. The immune responses implicated in experi-
mental CL systems involving other Leishmania species as
well as in VL are more complex. Similar to experimental
models of CL, other than L. major BALB/c mice, a clear-cut
Th2 response is absent in L. infantum-infected animals or
VL patients. Nonetheless, Th1 responses have been associ-
ated with resolution of either asymptomatic or symptomatic
infection in all models and infections examined [65, 117].

In response to anti-CD3 and anti-CD28 stimulation,
naive T cells from female donors produce more IFN-γ and
express higher levels of IL-12Rβ, as well as molecules associ-
ated with higher cytotoxic activity [14, 118]. Furthermore,
animal infection models and vaccination studies in humans
have shown that females have increased expression of several
molecules involved in the TLR pathway and Th1 responses,
including TLR8, myeloid differentiation primary response
88 (MyD88), and nuclear factor-kappaB (NFκB) [13, 114].
Overall, T cells from females displayed a stronger proinflam-
matory profile, which became increasingly more so with
repeated stimulation. In contrast, T cells from males dis-
played a mixed profile, with the inflammatory cytokine
IL-17A, the eosinophil-recruiting cytokine IL-5, and the
anti-inflammatory cytokine IL-10 [118]. Interestingly, about
half of the genes overexpressed in T cells from females had
estrogen-responsive elements (EREs), suggesting a regulatory
role for sex steroids [13, 16, 114, 118]. However, the
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mechanisms underlying sex-biased T cell immune responses
have not been elucidated.

Cytokine expression assays in male and female C57BL/6
mice infected with L. infantum showed no difference in the
serum levels of IL-12, a type 1 cytokine [2, 62]. In contrast,
males had higher levels of serum TNF and IL-10, two cyto-
kines implicated with exacerbated VL [2, 62, 65, 119–
121]. Examination of cytokine expression in splenocytes
showed that females have higher levels of the proinflamma-
tory cytokine IL-1β, and IFN-γ, a key type 1 cytokine impor-
tant for protective or curative immune responses. No
sex-dependent difference was observed in IL-4, consistent
with the observation that type 2 responses do not drive VL
susceptibility [62, 65, 117]. A sex-based difference was also
observed in splenocyte-derived IL-6 and IL-17, with males
showing higher expression [62]. Our results are in agreement
with animal models of inflammation in which splenocytes
cultured from females produced higher IL-1, whereas
splenocytes from males released higher levels of TNF
and IL-6 [122].

IL-6 is a pleiotropic cytokine produced by many cell types
[12, 38, 39]. As a consequence, its role in leishmaniasis has
not been fully delineated. However, IL-6 has been impli-
cated in the modulation of macrophage and T cell
responses. For example, IL-6 has the potential to drive
macrophages away from M1 (classical) activation leading
to lower microbicidal activity and inhibition of proinflam-
matory cytokines, which could facilitate parasite growth
[39, 109]. In addition, IL-6 facilitates type 2 cellular immune
responses whereas it suppresses type 1 immunity by interfer-
ing with IFN-γ signaling [38].

Peripheral blood mononuclear cells from male donors
have higher basal levels of IL-6 than cells from females, and
this difference further increases upon stimulation [123]. In
experimental L. donovani infection, IL-6 decreases IFN-γ
leading to increased liver parasite load [124]. Similarly,
among L. infantum-infected VL patients, IL-6 correlates
with disease severity and death risk, both of which show
a male predominance [86, 125]. An association between
elevated IL-6 levels and more severe disease in males has
also been documented among hepatocarcinoma patients
[12, 15, 63].

In concert with TGF-β, IL-6 facilitates the induction
of Th17-type effector cells, the main producers of IL-17
[39, 117, 120, 126, 127]. There is a balance between the
development of Th17 and the differentiation of regulatory
T cells (Tregs) in humans, and IL-6 appears to be a piv-
otal regulator of this equilibrium. IL-6 has been reported
to inhibit the Treg-associated transcription factor FOXP3,
and in combination with TGF-β, it has been shown to down-
regulate FOXP3 protein levels. On the other hand, TGF-β
promotes Treg differentiation, possibly in a dose-dependent
manner [126, 127]. There is abundant TGF-β in the organs
of BALB/c mice as well as bone marrow of VL patients
infected with L. infantum, although recent studies have
shown that progressive visceral leishmaniasis in humans
and mouse models is associated with IL-10-producing CD4
+ T cells [128–132]. In addition to the well-studied type 1
CD4+ T cells, the ultimate outcome of chronic VL is the

sum of the effects of adaptive cell populations expanded in
the host, including B cells, CD8+ T cells, and CD4+ T cells
expressing IFN-γ and inhibitory IL-10, as well as Tregs and
Th17 cells.

Studies of IL-17 in VL have shown mixed results, with
some studies suggesting a protective role whereas others
suggest that it is detrimental to the host [117, 120]. IL-17A,
the most studied member of the IL-17 family, is implicated
in the expansion and recruitment of neutrophils. How-
ever, the ultimate effect of neutrophils in Leishmania
spp. infection varies according to the tissue infected, the
timing of recruitment, and their persistence at the infection
site [2, 120]. Further examination of the effects of IL-17A in
VL showed lower parasite load in the spleen and liver of L.
donovani-infected IL-17A-/- C57BL/6 mice. The absence of
IL-17A led to increased IFN-γ production by CD4+ T cells
and lower neutrophil recruitment. These results suggest that
IL-17A facilitates VL progression by impairing IFN-γ
responses while supporting damaging inflammation [117].

Furthermore, studies from our group and others suggest a
link between IL-17 and sex-specific responses. For example,
male donors have higher numbers of Th17-type cells in
peripheral blood than females. In addition, naive and stimu-
lated T cells from males secrete more IL-17 than those from
females [118, 133]. Similarly,male C57BL/6mice infectedwith
L. infantum released significantly higher levels of IL-17 than
females. Additionally, IL-6 increased slightly in C57BL/6
males [62]. IL-6 induces the development of Th17-type cells,
and consequently, can facilitate IL-17 production [120]. Thus,
higher IL-6 and IL-17 expression may converge to influence
pathways underlying sex-dependent responses.

4. Transcriptomic Evidence of Sex-Dependent
Immune Responses: Potential
Implications for Leishmaniasis

Accumulating transcriptomic evidence is increasing our
knowledge of sex-based differences in immunity [7, 106]. In
a comprehensive study, Piasecka et al. examined transcrip-
tional profiles from 500 males and 500 females before and
after stimulation of whole blood samples with various micro-
bial challenges. Of the 560 immune-related genes examined,
509 (91%) showed significant sex differences in response to
at least one stimulus. One hundred eighty-one (36%) of the
sex-biased genes were differentially expressed only after stim-
ulation. Thus, some sex-specific differences in the immuno-
transcriptome are present in basal conditions while others
are inducible [106].

In a similar study, microarrays of mononuclear blood
cells of over 5,200 healthy human subjects showed about
1,000 transcripts differentially expressed between the sexes
[7]. Many female predominant transcripts were associated
with the Kyoto encyclopedia of gene and genome pathways
termed as cytokine stimulus, response to interferon 1, and
lymphocyte differentiation, whereas male predominant
transcripts were related to the pathway named lysosomes
[7, 134]. Some of the transcriptional differences decreased
in postmenopausal women or increased in women using

7Journal of Immunology Research



hormone-based contraceptives, suggesting a role for sex ste-
roids. However, the number and magnitude of the most sig-
nificantly changed transcripts did not correspond with the
hormone status, indicating that sex-based transcriptional dif-
ferences are driven by multiple mechanisms [7, 9].

Differences between male and female transcriptomes
are highlighted by a meta-analysis of 22 microarray studies
involving 2,500 healthy subjects. Samples from 15 tissues
showed over 3,000 transcripts differentially expressed.
The major differences were found in the brain and the
heart. The liver, a target organ in VL, also showed a sig-
nificant number of sex-biased transcriptional differences.
Global analysis of the transcripts overexpressed in one
sex or the other revealed that about one-third contained
hormone-responsive elements, including androgen response
elements, estrogen response elements, or both. Some of the
differences were due to genes on sex chromosomes. How-
ever, almost two-thirds of the dichotomous transcripts
were found in autosomal chromosomes and did not con-
tain sex steroid binding sites [10]. It has been proposed
that these transcripts could be controlled by sex-specific
epigenetic modifications [10, 11]. Data from VL epidemio-
logical studies show a higher male bias at puberty, coincid-
ing with the spike of sex hormones, and a moderate bias
into older age; these observations could be associated with
the cumulative effects of sex steroids and sex-biased epige-
netics [54, 60–62].

Similarly, a study of sex-associated differences in liver
cell transcriptomes from equal numbers of male and
female subjects (n = 224) showed over 1,200 transcripts
differentially expressed between the sexes. Transcripts
involved in lipid and drug metabolism showed the highest
magnitude differences between males and females [11].
Given the expanding literature on the association between
dyslipidemia and inflammatory states and the recent rec-
ognition of dyslipidemia in animals and humans with
VL, these differences deserve exploration in the context
of VL [135–137]. Furthermore, other studies have shown
extensive sex-dependent differences in the expression of
genes encoding enzymes involved in liver metabolic path-
ways, including the drug-metabolizing enzymes cytochrome
P450s (CYPs) [8, 15, 138]. Differential expression of various
CYPs results in distinct pharmacokinetics and pharmacody-
namics between males and females [138]. Overall, vast
transcriptome differences in the liver, an organ involved in
VL pathogenesis as well as drug and lipid metabolism,
emphasize the importance of tracking experimental and
clinical differences in male versus female subjects.

5. Sex-Related Differences in the Outcome of
Antileishmanial Treatment

Higher rates of treatment failure or more adverse effects
among males have been shown in several studies. For exam-
ple, in Colombia, male CL patients were more likely to main-
tain measurable parasite burdens following treatment with
either miltefosine or meglumine antimoniate, although these
results were not statistically significant [139]. In a related
study of 318 CL patients in Belo Horizonte, Brazil, three

times more males (n = 24) than females (n = 8) experienced
relapse following treatment with meglumine antimoniate.
However, in a hazard risk analysis, sex was not significantly
associated with relapse [140].

In studies from the Indian subcontinent, male patients
were at a greater risk of VL relapse after treatment with either
miltefosine or liposomal amphotericin B [6, 141]. The differ-
ential responses between males and females could be due to
male-biased healthcare access [141]. Sex differences in
relapse rates might also result from biological factors such
as differential drug metabolism and variations in immune
responses [6]. In Nepal and Bihar, India, relapse rates fol-
lowing miltefosine treatment were higher among males of
all ages and the sex difference was most pronounced after
the age of 9. Furthermore, the authors could not identify
gender-based differences in adherence to treatment proto-
col that would explain the sex-biased risk. Together, these
results suggest an intrinsic male susceptibility to symp-
tomatic VL [6].

Drug teratogenicity and decreased access to healthcare
could potentially contribute to a lower rate of antileishma-
nial therapy among females in some endemic areas [61,
142]. In a study of PKDL patients in Bangladesh,
miltefosine-induced corneal keratopathy was reported only
in males. The authors suggest that increased treatment
access could contribute to the male bias in this complication,
although it cannot be excluded that biological differences
might have played a role in the adverse effects observed
among males [143].

A study from Kolkata, India, indicated no sex differences
in the prevalence of VL but a significantly higher PKDL inci-
dence in postpubertal males compared to females, as well as a
more protracted course of PKDL among males. While this
observation could be confounded by gender-related norms
in health care use, studies of skin disease and wound healing
in mice and humans have shown that estrogen promotes,
whereas testosterone decreases skin healing [35, 36, 74].
There was also a significant positive correlation between
levels of plasma testosterone and antileishmanial IgG in
PKDL patients as measured by ELISA [74]. Increased
levels of antileishmanial IgG have been implicated in the
severity of PKDL [144]. Interestingly, after treatment with
miltefosine, PKDL patients were found to have signifi-
cantly lower plasma testosterone levels. A decrease in tes-
tosterone levels by miltefosine treatment may reduce the
immunosuppressive effects of androgens, promoting an
immune response more appropriate for parasite killing
and disease resolution [13, 36, 74]. The authors concluded
that these data highlight the importance of closely moni-
toring progression to PKDL in male VL patients, especially
among pubertal and adult patients [74].

6. Concluding Remarks

The ultimate outcome of Leishmania infection will depend
on a multitude of host-pathogen interactions and the devel-
opment, or lack thereof, of immune responses that restrict
parasite growth [2, 65]. Accumulating evidence shows
sex-associated differences in the initiation and maintenance
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of immune responses [7, 13, 114, 118]. There are clearly
social and epidemiological factors that contribute to differ-
ences in disease prevalence between the sexes in various
endemic areas. Nonetheless, collective data from experimen-
tal models and studies of human infection suggest that there
are also biological predispositions leading to sex-specific par-
asite burden and symptomatic disease during infection with
Leishmania spp. Many epidemiological reports cannot easily
differentiate between gender-related exposure and sex-based
susceptibility. However, in Brazilian neighborhoods with
peridomestic exposure, the data suggest that there are biolog-
ical factors underlying the observed male bias in VL, as dis-
cussed herein [62]. In different endemic areas, whether a
sex bias is present or not and whether males or females are
more susceptible likely depend on the combination of the
infecting species, epidemiological variables, and host biolog-
ical factors. The molecular mechanisms underlying unique
immune responses to infection are just beginning to be
explored.

The increasing concern of drug-resistant pathogens,
including but not limited to Leishmania spp., underscores
the importance of developing therapeutic approaches that
target host factors associated with disease progression. We
propose that effective control and treatment of leishmaniasis
and other infectious diseases should take into account the
influence of biological sex in pathogenesis, immune response,
and drug metabolism.
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