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.. The Modeling of Phosphorus Dynamics in A Lake System 

Todd N. Swift and H. K. Macomber, Advisor 

We have constructed a basic closed stock and flow model of lake phosphorus cycling that includes 
three stock concentrations: inorganic phosphorus, phosphorus in living organic material, and 
phosphorus in dead organic material. Stocks are connected by flows that are made stock 
dependent in a plausible manner. The model exhibits two equilibrium points, one stable and the 
other unstable, with an interesting crossover between them. Below a certain total phosphorus 
threshold, stable equilibrium is characterized by all of the phosphorus stock residing in th·e 
inorganic form, suggesting the collapse of the biological system. Above the threshold, this is not 
true. We then used STELLA® II, a computer program for dynamic modeling, to study the 
dynamics of the basic model and some extensions and modifications to it, including the addition of 

1 another stock and external loading of the system. When the system is perturbed from 
equilibrium, the ·model shows eutrophication blooms and other interesting behavior. 

Introduction 

The element phosphorus is essential to the growth of all plants, 
including algae. Phosphorus is often not freely available in natural waters 
and is one of the elements whose availability is a major constraint on the 
production of large crops of plankton algae (Reynolds, p. 202). When large 
amounts of phosphorus are added to a lake, algae grow rapidly in a process 
called eutrophication. When these algae exceed the carrying capacity of 
the lake and die out, the bacteria that thrive on their decay consume large 
amounts of oxygen. This can kill fis.h in the lake. 

The implications of human disruption of phosphorus cycles in 
populated lake areas are not always clear. Small amounts of additional 
phosphorus may be beneficial, but large amounts may be disastrous. The 
biological cycling of phosphorus and the attendant distruptions can be 
extremely rapid (Reynolds, p. 202). . 

The purpose of this project is to develop a basic model for the 
phosphorus cycle in a lake and to study its behavior under various 
conditions. The dynamic modeling of biological systems is an important 
activity in many areas, ranging from terrestrial environmental science to 
closed life-support systems in space vehicles. The modeling of space 
biological systems may become more important as the length of time that 
astronauts spend in space continually increases, while the weight of 
resources that may be used for life support remains constrained. 



The Basic Model 

The basic model (from Harte, pp. 45-49) is a very simple closed box 
model of the interrelationships of living, inorganic, and dead organic 
phosphorus concentrations in a lake. Figure 1 shows the model in its 
dimensionless form. (See the Appendix for the development of this and 
other mathematical details not given in the main body of the paper.) 

' 
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L D 

cl cD 
D 

Figure 1. Diagram of the basic model, where the boxes labeled L, P, and D represent 
dimensionless co1Jcentrations of phosphorus in living organic material, inorganic material, and 
dead organic material, respectively, and c is a dimensionless rate constant. The dark circular 
areas represent single unit converters. 

The three corresponding governing equations are: 

dL = PL - L 
dt , 

dP = D - PL 
dt J 

dD = cL - cD, 
dt 

( 1 ) 

(2) 

(3) 

where L, P, and O represent dimensionless concentrations of phosphorus in 
living organic material ; inorganic material, and dead organic material, 
respectively, and t is the dimensionless time. 

Note from the figure and equations above that the conversion to a 
dimensionless form requires that the flows into and out of the D box be 
unit converted. This form is preferrable to the dimensional one because 
the number of rate constants appearing in the equations is reduced from 
three to one, making analysis of the system more straightforward. 

In a closed lake system, phosphorus must be conserved . This is seen 
in the dimensional equations by summing the right-hand sides of all three 
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equations and noting that the result is zero. In the dimensionless 
variables adopted here, conservation implies that 

L+P+D=K 
C (4) 

where K is the dimensionless total phosphorus concentration in all forms. 

Analytic Study of the Basic Model 

The three governing equations given above can be reduced to two to 
facilitate analysis. By using (4) to eliminate D in (2), we arrive at the two 
governing nonlinear equations: 

-
dL = PL - L 
dt , 

dE = c(K - P - L) - PL 
dt 

for L and P. D can then be obtained from (4). 

( 1 ) 

(5) 

At equilibrium, L and P will be constant, so that by setting the right
hand sides of (1) and (5) to zero, the equilibrium conditions may be 
obtained. When this is done, two equilibrium points are found: L=O, P=K and 
L=c(K-1)/(c+1-}, P=1. A linear stability analysis of each of these 
equilibrium points can be performed by examining the exponential time 
dependence of small perturbations .from equilibrium. The exponents are 
calculated as eigenvalues, and the signs of the real parts of these 
determine stability. A negative sign indicates decay to the equilibrium 
point for long times and hence stability, while a positive sign indicates 
instability. 

For the first equilibrium point, L=O, P= K, we find that the 
eigenvalues are -c and K-1. Perturbations L * and P* in the neighborhood of 
the point are then given by 

[ ~:]=w1[~]e-CI+ W2[ c:K ]e(K-1)t 

1-c-K 

(6) 

where W1 and W2 are constants determined by the initial conditions. Thus, 
if K<1, this equilibrium point is stable. If K>1, it is clearly unstable. 

Linear stability analysis fails in the case K=1 for the two 
equilibrium points coalesce. We then find, by graphical means, that this 
single equilibrium point has both stable and unstable attributes but is 
stable in the domain of interest. 
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For the second equilibrium point, L=c(K-1 )l(c+ 1 ), P=1, the 
eigenvalues are not so easily calculated. However, we can show that if 
K<1, the equilibrium point is unstable, and if K>1, it is stable. In the latter 
case, solutions approach equilibrium in an oscillatory or monotonic 
manner depending on the value of K. Larger K values produce eigenvalues 
that are real and negative, resulting in a monotonic approach to 
equilibrium. Smaller K values result in eigenvalues that are complex 
conjugates of each other, resulting in an oscillatory approach to · 
equilibrium. Note that the condition for stability of the second equilibrium 
point is opposite to that for the first point. 

We see that the long-term behavior of the system depends on the 
single constant K, measuring the concentration of phosphorus in the 
system. If it ·is too low, K<1, the system will eventually settle down to 
equilibrium at L=O, P=K. The condition L=O means that there is no 
phosphorus and suggests that the biological system has collapsed due to 
insufficient phosphorus. This may also mean that if we perturb a dead 
system (L=O) by adding sufficient phosphorus to make K> 1, we can bring 
the system back to life (provided there is a "seed" of algae or living 
material to begin the growth). 

Figure 2 below shows the stable equilibrium point and physically 
admissible regions (L, P, D ~ 0) of the LP-plane for K<1, K=1, and K>1. 

p p 

1 ,,,,,,,,,,,,,,,,,,,,,,,, 

K 

0 K L 0 

p 
K:1 

L 0 c(K-1) 

c+1 
K L 

Figure 2. Stable equilibrium point, black dot, and physically admissible region, shaded, in the 
LP-plane for K<1 , K= 1 , and K> 1 . 

As K increases, the physically admissible boundary line moves outward 
from the origin while maintaining a slope of magnitude unity. As can be 
seen from the two graphs on the left, when K :::;1 the system will settle 
down to L=O . 
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STELLA ® II and the Dynamics of the Basic Model 

The long-term behavior of the basic model is completely determined 
by the analysis above, but the analysis tells us very little about what the 
system does on its way to final equ ilibrium. Also, when the model is 
extended to improve its realism, analytic studies become very difficult 
and we must turn increasingly to computational numeric studies. STELLA® 
II (hereafter referred to as STELLA) is a simulation program designed .to 
model dynamic systems in a relatively simple manner. It is powerful and 
has the potential to significantly lessen the programming demands for any 
dynamical modeling project. 

Figure _3 below shows the basic model as constructed in STELLA, and 
can be used to explain the workings of STELLA. 

Living 

INPUT 

Dead 

decomposit ion 

Figure 3. The basic model , as constructed in STELLA. The cloud attached to the INPUT flow 
represents an infinite source of phosphorus and the shaded circles represent single unit 
conversions . 

There are four basic building blocks used to represent dynamical systems 
in STELLA. They are stocks , flows , converters , and connectors. The 
rectangular boxes are stocks and, in this case , represent the three kinds 
of phosphorus. Every stock accumulates one type of phosphorus. 

The stocks are connected by flows that have "spigots" on them to 
control the flows. The half-shaded flow circles represent flows in which 
unit conversions are performed. Th is is necessary in the dimensionless 
model used here. The cloud represents an infinite stock . In this case , there 
is an infinite amount of phosphorus (from the lake's point of ~iew) that 
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can be aqded to the lake to perturb it. 
Circles that are used to modify flows and stocks are called 

converters. There are none used in this model, but these can be used when 
more complexity is required . 

Finally, connectors are used to connect parts of the model that 
depend on each other. These are the curved arrows seen on the diagram 
above. The nonlinear term in the basic model appears because the growth 
rate depends on both the living phosphorus concentration and the inorganic 
phosphorus concentration. This can be seen by the connectors coming from 
both of these stocks to the growth flow. · 

After designing the system graphically, the user of STELLA must 
then define all of the quantities and relationships between the various 
components of the model. When this is done, the model can be run and 
adjusted so that it in equilibrium. The dynamics of the model when 
perturbed from equilibrium can then be studied. 

The basic model . requires only initial values for the three stocks and 
a value for c (see (3)). The constant c acts in the unit converted flows in 
Figure 3 above and thus controls the flow rate between the appropriate 
stocks. The value used for c was 0.2, which is realistic for a lake system. 
In the dimensionless model, the L, P, D point of 1, 1, 1 (which corresponds 
to K=7) is a stable equilibrium point, so we start with all three of the 
stock concentrations at unity and then perturb the system by using a 
STELLA function called pulse to rapidly increase the concentration in the 
inorganic phosphorus stock to a new value. The added phosphorus comes 
from the infinite cloud of phosphorus. 

One way that lakes are perturbed is by the phosphorus from 
fertilizers and detergents that are commonly used today, so we begin by 
simulating a perturbation of this sort. When we perturb the system by 
adding a pulse of height 0.5 (a 50% increase) and width of one time step to 
the inorganic phosphorus (P) stock at time t=3.00, we obtain the result · 
·shown in Figure 4 below. 
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1 : Phosphorus 2: Living 

i] 
1.50 ······ ·· ·· ·· ···· · · ······ 

Dimensionless 
Concentration 

1.20 

... ... .. .. .... ....... ... 

3: Dead 

. . . . r· .. r 
..... ..... .... .... ... .. . .~ ..... ...... : .. .... ~ .... ~ ..... ~J. .. .... ~~~······· ·· ·· 

!1~1 1-2-3----L----

0 .904-------......... ----=;..._-+---------;.--------; 
0 .00 3 .00 6 .00 9 .00 12.00 

Dimensionless Time 

Figure 4. Results of increasing the inorganic phosphorus concentration by 0.5 units at time 
t=3.00. Note the initial rapid increase in the living concentration followed by a rapid decrease 
to the new equilibrium values : P=1 and L=D=1.083. 

It can be seen in Figure 4 that the solutions are oscillatory and the 
concentrations overshoot their equilibrium values several times. This 
means that the eigenvalues are complex conjugates of each other with 
negative real parts . If our perturbation results in a much larger K value, 
analysis shows that we should obtain solutions that monotonically 
approach their new equilibrium values. This is seen in Figure 5 below 
which shows the solutions when we pick an extremely large initial 
perturbation that results in a K value of 50. 
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i] 
1 : Phosphor-us 

43 .76 

Dimensionless 
Concentration 

~
1] 21 .92 

2 : Living 3: Dead 

~~~~2~3-----2-3~~~ 
3-

1-2-3---~-=======~i;.!.:1=======~~~~~:.!.:~~~~~~~~~~~~ 0 .07-+-------..-
0 .00 6.00 9 .00 12.00 

Dimensionless Time 

Figure 5. Results of increasing the dimensionless concentration of phosphorus by 43 units at 
t=3.00. Note the monotonic approach to the new equilibrium values: P=1, L=D=8.167. 

There are many ways to run and perturb even this basic model. The 
initial perturbation could be of a different stock (representing for 
example, the dumping of organic waste into the lake) or it could be a 
sudden removal of phosphorus from one stock (representing, for example, 
heavy fish harvesting in the lake). We do know, however, from the analysis 
how to predict the equilibrium values that will result from a given 
perturbation. 

The basic model is very simple but does provide plausible results. 
The next step is to make the model more realistic by adding a new stock 
and then to experiment by perturbing the new system. 

Extending the Model 

Any rea listic phosphorus lake model must distinguish between 
absorption and growth , so this is where we make our extension. 
Absorption is the process by which algae rapidly absorb nutrients at a 
rate several times faster than they can use them to grow. The nutrients, 
called luxury nutrients, are "stored" until the algae can grow. To 
accommodate this , we modified the model to include one additional stock , 
called luxury phosphorus. This extended model is shown in Figure 6 below. 
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Luxury P Living 

LuxContr a int 

growth 

absorption death 

Phosphorus Dead 

INPUT decomposition 

Figure 6. The model extended to include luxury phosphorus as an additional stock. The 
converter, LuxContraint, is used to restr ict the luxury phosphorus concentration (see text). 

The dimensionless equations for this extended model are: 

dP = o _ p 
I 

dt 
dLux = p _ c2 LuxL 
dt c1c3(t+Lux) 

dL = c2 LuxL - c3L , 
dt (1 +Lux) 

dD = L - c1D , 
dt 

(7) 

( 8) 

(9) 

( 1 0) 

where P, Lux, L, and O represent dimensionless concentrat ions in the 
respective compartments , t is the dimensionless time , and c1 , c2, and c3 
are dimensionless rate constants. 

There is one additional part of this system that is seen in Figure 6 
as the converter called LuxContraint. The concentration of phosphorus in 
luxury form cannot exceed six percent of the total concentration of 
phosphorus in living material. In dimensionless terms, 

Lux~ 0.06 L . 
c1c3 ( 11 ) 

This constraint means the second term in the right-hand side of 
(8) and the first term in the right-hand side of (9) should be set to zero 
when the luxury concentrat ion exceeds its allowab le amount. This was 
implemented in STELLA by multiplying these terms by a function of the 
to rm 
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1 0 

1 
1 +e(-x!a) ( 1 2) 

where x is the difference between Lux and its maximum value determined 
by (11 ). When Lux is significantly below its maximum value, (12) is nearly 
unity. But when Lux is significantly above its maximum value, (12) is 
nearly zero, and the absorption flow in Figure 6 is effectively disabled. 
The constant a determines how quickly the transition takes place. · 

The model was first run until an equilibrium point was established. 
The resulting equilibrium concentrations were then converted to their 
dimensional counterparts to see if the numbers were realistic. The 
concentrations seemed realistic, so we began perturbations of the model 
to see what would happen. Figure 7 below shows the results of an increase 
of 50% (1000 units) in the concentration of inorganic phosphorus at 
f=1 .00. 

2 : Luxury P 3: Living 4 : Dead 

1 : 
2 : 
3 : 
4: 

1 : Phosphorus 

2852 .55 
28 .11 

3 .11 
1857.60 

. . . . . . . . . . . . . . . . . . . .. ·,,, .. .... . .. .. . 3 ....... -~ ,,· ........ . 3 3 71 
; ~ : • I 

Dimensionless 
Concentration 

1 : 
2 : 
3 : 
4 : 

2355 .04 
23 .34 

3 .10 
1857 .57 

.. ... i·· · ···· ·· ··············1 · ···········.···· r··· ··············· 1 

. . . . . . . . . .. . . . . . .. ..... .. ~· . . . . . . . . . . . . . . . . . . . . . . ~ . . ' . . . . . . . . . . . . . . . . . . . . . ~ 

1 : 
2 : 
3: 
4 : 

1857 .53 
18 .58 

3 .10 
1 857 .53 1 =2=3=4 1 1-2 i 1=2 l 

0 .00 2 .00 4.00 
Dimensionless Time 

6 .00 8 .00 

Figure 7. Early time response to an increase of 1000 units (50% increase) in the 
dimensionless concentration of inorganic phosphorus at t=1.00. Note the dynamics of the luxury 
stock closely follow those of the phosphorus stock. 

We can see that the dynamics of the luxury stock closely follow the 
phosphorus stock. This is because the absorption rate constant is very 
large, thus allowing the luxury concentration to rise very rapidly . As the 
luxury concentration rises , the growth rate increases and we see a rapid 
increase in the living concentration . This is followed by a decrease in the 



growth rate and a leveling off of the living concentration as the luxury and 
phosphorus concentrations are reduced close to their new equilibrium 
values. The living and dead concentrations are not yet in equilibrium after 
eight dimensionless units of time (about 6 hours of real time). The living 
concentration has begun to decline and the dead concentration continues to 
rise. 

The long-term behavior of the solutions is not shown in Figure 7 or 
the following figures due to memory limitations in the computer being 
used and insufficient time to implement a convenient method to ' 
accurately capture the early dynamics of the system and retain the long
term dynamics without running out of memory. An adaptive step size 
Runge-Kutta algorithm would be convenient, but unfortunately is not 
available in STELLA. Another method that could be used will be discussed 
later. 

Figure 8 below shows the results when the inorganic phosphorus 
concentration is increased by 40,000 units. 

1 : 
2: 
3 : 
4 : 

1 : Phosphorus 

41757 .69 
8234 .22 

3 .63 
1861 .66 

2 : Luxury P 3 : Living 4 : Dead 

Dimension! 
Concentra 

, 3~3------,,--~3 

1 : 
2: 
3 : 
4 : 

1 : 
2 : 
3 : 
4 : 

21807 . 
4121 . 

3 . 
1859 . 

1857 .53 
9 .29 ; j 

3 .10 _ -.-..----::===~=- -~~~===· 1-_2 · 1 857 .53 1 =2=3=4- _ 

1 1 

0 .00 2 .00 4 .00 

Dimensionless Time 

6.00 8.00 

Figure 8. Early time response to an increase in dimensionless phosphorus concentration of 
40,000 units at t=1.00. 

There are several interesting things happening after this 
perturbation . The increase in luxury concentration is not as abrupt as in 
the previous case. This is because there is so much more inorgan ic 
phosphorus available that , even with a very large rate constant , the 
absorption flow takes some time to fill the luxury stock concentration to 



its maximum. 
We can also see that the high rate of decrease of the luxury 

concentration after t=2.00 causes the concentration to become nearly 
zero. This is very interesting behavior and may be a defect in the model. 
STELLA will not allow the stock to go below zero, so the luxury 
concentration becomes a very small number and there is a discontinuity in 
the growth rate. However, we see that the growth rate is still positive 
meaning that there is some flow ~nto the living stock. This result seems 
to make sense in the real world: the algae deplete their luxury stock to 
zero and begin growing directly from the inorganic phosphorus stock. But 
we are not sure how STELLA is producing this result as there is no direct 
connection between the phosphorus and living stocks. We do not see any 
discontinuities in the slope of the phosphorus curve, suggesting that the 
flow from it has not been disrupted. If the non-negativity requirement is 
relaxed, the curves do not have any kinks and the luxury concentration will 
become negative. More work needs to be done to better understand this 
situation. 

The dynamics of the phosphorus, living, and dead curves are similar 
to those in Figure 7 except for the discontinuities mentioned above. Also, 
the living' curve does not appear to be bending over as it was in Figure 7. 
This may be because there is more total phosphorus available, thus 
extending the -period of rapid growth. The maximum luxury concentration 
constraint has not been reached in either of these situations. 

Figure 9 below shows the results of a perturbation that is large 
enough to make the luxury concentration reach its maximum allowable 
amount. 
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1 : Phosphorus 

1: 101607.94 
2 : 16956 .56 
3 : 4.43 
4 : 1863.44 

Dimensionless 
Concetration 

1 : 51732 .74 
2: 8482.92 
3: 3 .76 
4: 1860.48 

1 : 
2: 
3 : 
4: 

1857.53 
9.29 
3 .10 

1857.53 

1 3 

2: Luxury P 3: Living 4: Dead 

~~--------+------====.==1 =----2=~====~ 
0 .00 2 .00 4.00 6.00 8.00 

Dimensionless Time 

Figure 9. Early time response to an extremely large increase of 100,000 units in the 
phosphorus concentration at 1=1.00. Note the discontinuity in the luxury stock when the luxury 
concentration reaches its maximum at 1=1.20. 

This result is similar to that in Figure 8 except that at t=1 .20, the 
luxury concentration has reached its maximum value relative to the living 
concentration. We see the constraint come into effect as the absorption 
rate is rapidly decreased and the luxury concentration switches to a new 
path that rises as the concentration in the living stock raises the 
maximum allowable luxury concentration. Later, the luxury concentration 
nearly reaches zero, as in Figure 8, and causes a discontinuity in the 
growth rate. 

These numerical experiments are interesting in themselves but also 
indicate problems that need to be solved. The model needs to be 
constructed in such a way that the long-term and the .short-term 
behaviors can be observed. Chasing a time step that is small enough to 
accurately capture the short-term dynamics currently requires too much 
memory to see the long-term equilibrium. One method we are attempting 
to use to avoid this problem is to change the time scale of the model at a 
point in time that we can choose. This should make it possible to include 
the long-term equilibrium and the early dynamics on the same graph. 

Perhaps the biggest problem is discovering what STELLA is doing 
when the luxury concentration drops to nearly zero. We must also decide if 
the result we obtain , algae using up all of their luxury phosphorus, is 



realistic and if it is not, we must modify the model further before making 
any other extensions. 

Additionally, the initial rate constants and relations chosen when 
building the dimensional model should be further studied. Different sets of 
realistic values should be used and the resulting effects examined. 

Conclusions 

The modeling of phosphorus dynamics in a lake environment is indeed 
a complicated matter. Both of the models constructed in this report 
demonstrate plausible behavior but generate as many or more questions 
than they answer. 

The governing equations for the basic model are simple enough to be 
studied analytically, which helps immensely in subsequent numeric study. 
However, adding just one more equation, or stock, to the model makes 
analytical study very difficult. The complicated numeric results are hard 
to interpret when there is little fundamental understanding of the model. 
It is hard to be convinced by them when so little is known about what is 
happening within the equations that produce them. 

There is much left to be done in this study. The "kinks" in solutions 
of the extended model must be better understood, the long-term behavior 
of the system needs to be incorporated into the study, the inner workings 
of STELLA when confronted with discontinuities must be discovered, and 
the assumptions made during construction of the extended model need to 
be carefully studied and evaluated. 

All this must be done before extending the model further to include 
such things as sedimentation, inflowing streams, seasonal variations, and 
different forms of life competing for the same phosphorus . Seemingly 
simple additions to the model greatly increase its complexity. 
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Appendix 

Recasting the Basic Model Equations Into a Dimensionless Form: 

The dimensional equations and rate constants for the basic model are 
(Harte, pp. 45-49): 

dL = {3PL - yL, 
dt 

dE!.. = o:D - {3PL, 
dt 

dD = yL - o:D 
dt ' 

( 1 A) 

(2A) 

(3A) 

where L, P, and O are the phosphorus concentrations in the respective 
forms, t is the time, and representative values of the rate constants a , f3 , 

and rare 0.05/day, 2.5/(day µM), and 0.25/day, respectively. 
To put these equations into dimensionless form, we write 

* * * * 
L=LcL , P=PcP. , D=DcD , and t=tct , ( 4A) 

where Le, Pc, De , and tc are characteristic dimensional values of the 
respective quantities and L*, P*, D* , and t* are dimensionless variable 
values . Substitution of the expressions (4A) into (1 A), (2A), and (3A) 
yields the equations : 

* * * * 
dL_ = (f3tcP cJ P L - (rte) L , 

* 
( SA) 

dt 
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dP: = f-tcDc)o * - (f3tcLc) P \ * , 
dt Pc 

dD * = (-rtcLc)L * - (ate) D * 
dt * De 

(6A) 

(7 A) 

which contain six constant coefficients. We now chose the four 
characteristic values in an effort to reduce the number of constant 
coefficients. A convenient choice is: 

1 r r r2 
tc =-,Le=-, Pc=-, De=- (8A) 

r f3 f3 a/3 

This gives us the dimensionless equations (1,2, and 3) in the main part of 
the paper: 

dL = PL - L 
dt ' 

(9A) 

dP = D - PL 
dt ' 

(1 OA) 

dD = cL - cD 
dt ' 

( 11 A) 

where C=al y and the asterisk (*) has been surpressed. The equations now 

only contain one rate constant, c, which makes the system easier to study 

analytically. Since c does not depend on {3, f3 enters into the dynamics of 

the system only through its effect on the initial values of the 
dimensionless variables . 

Conservation of Phosphorus: 

If the original dimensional equ~tions are added together, the right
hand side becomes zero, implying that the total phosphorus concentration 
L+P+D is conserved, as it must be. Using (4A) above this may be expressed 
in the form 

* * * LcL +P cP +DcD = constant total phosphorus concentration ( 1 2A) 

This is easily rewritten in the form 

( 1 3A) 

where the asterisk (*) has again been suppressed and K is the 
dimensionless total phosphorus concentration. This is (4) in the main part 
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• 
of the paper. 

Equilibrium Points: 

At equilibrium, the concentrations are not changing. Then (1) and (5) 
in the main body of the paper imply that 

PL - L =0, 

c(K - P - L) - PL = 0 . 
( 14·A) 
(15A) 

The first equation tells us that P=1 or L=O. We can then use the second 
equation to solve for the Lor P values that go with P=1 and L=O, 
respectively. ·we arrive at the two equilibrium points L=O, P=K and L=c(K-
1 )/(c+ 1 ), P=1. 

Linear Stability Analysis of Equilibrium: 

In the neighborhood of the equilibrium point L=O, P=K, let us write 
L=O+L* and P=K+P* where L* and P* now represent small perturbations of 
the equilibrium solution. Substituting into (1) and (5) and neglecting all 
nonlinear terms, assumed small , yields 

* l [ L K- 1 
p* = -c-K 

This equation has exponential solutions of the form 

where 

[ 
K- 1 

- c-K 

which tells us that 

(K-1-?s)c1 =0, 

(-c-K)c1 + (- C-A) C2 = 0. 

(16A) 

( 17 A) 

( 18A) 

( 1 9A) 

We can eas il y solve (19A) for the two possible values of A and associated 
values of er and c 2 and express our perturbed solution in the form: 

1 7 
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[ L:]=w1[D ]e-ct+ w, 1 
]e(K-t)t 

P 1 c+K 
1-c-K 

(20A) 

where W 1 and W 2 are constants determined by the initial conditions. This 
is (6) in the paper. 

We now move to the second equilibrium point, L=c(K-1 )/(c+1 ),· P=1. 
Finding the eigenvalues in this case is not as easy as for the first · 
equilibrium point, but by proceeding as before we arrive at a quadratic 
equation for the eigenvalues: 

i 2 + cfc+K)i + c(K-1) = O, 
le+ 1 (21 A) 

where the two roots of this equation are the eigenvalues. This tells us 
that 

1112 = c(K-1) , 

-(1 t +12) = c(K +c) , 
c+1 

where 11 and 12 are the eigenvalues. 

(22A) 

(23A) 

The discriminant of the quadratic equation (21 A) for the eigenvalues 
is positive if K<1; thus both eigenvalues will then be real numbers. In 
addition, if K<1 (22A) tells us that the signs of the two eigenvalues must 
be opposite, and thus we have one positive and one negative eigenvalue and 
an unstable saddle around the equilibrium point. Note that when K<1, the 
first equilibrium point is stable . 

If K> 1, the ana lysis becomes more complicated because, depending 
on the sign of the discriminant (which depends on the value of K), the 
eigenvalues may be complex. The discriminant has two roots for K: 

K+= (c2+4c+2)±2{c+ 1) 312 (24A) 
- C 

If 1 <K< K- , the discriminant is positive and both roots are both real. Then 
(22A) tells us that the eigenvalues must have the same sign , while (23A) 
tells us that their sum must be negative . Thus , both of them must be 
negative, making this equilibrium point stable . Similarly , when K>K+, both 
of the eigenvalues are again real and negative. 

When K-< K< K+ , the discriminant is negative , and the eigenvalues are 
complex . However, their real parts are still negative and so the solution is 
stil l stab le . In this case , near-equilibrium solutions will spiral in 
towards the equil ibrium point , oscillating around their new equilibrium 
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values. This was the case in Figure 4 if the main body of the paper. 
Linear stability analysis fails in the case K=1, in which case the two 

equilibrium points coalesce. We then find, by graphical means, that this 
single equilibrium point has both stable and unstable attributes but is 
stable in the domain of interest. 

RecastinQ the Extended Model Equations Into a Dimensionless Form: 

The model was extended by adding an additional stock, called luxury 
phosphorus. We first assumed that the absorption (uptake) rate, or the 
flow from phosphorus to luxury phosphorus was very fast. One source 
reported that within twenty minutes of adding H3PQ4 to a system, more 
than ninety percent of the added phosphorus was incorporated into algae 
(Emsley and Hall, p. 22). A somewhat less rapid rate of about ninety 
percent in forty-five minutes was assumed to arrive at a rate constant of 
30/day (called </>). 

The second assumption was that algal growth follows the Michaelis
Menten equation (Molot and Brown, p. 524). The form of this equation is 
seen in the right hand sides of (26A) and (27 A) below. The remaining rate 
constants were chosen to be similar to those in the basic model. 

The dimensional equations are then: 

dP = aD - </JP, 
dt 

d..LJ.J.K = </> p _ ( eL ux )L, 
dt Z + Lux 

dL =( eLux )L - yL, 
dT Z + Lux 

dO = vL - aD 
d f I' 

1 

(25A) 

(26A) 

(27 A) 

(28A) 

where P, Lux, L, and O are the phosphours concentrations in the respective 
forms, t is the time, a, y, </J, and e are rate constants with representative 
values of 0.05/day, 0.25/day, 30/day, and 2.5/day, respectively , and Z is 
the luxury concentration where the growth rate is one-half its maximum 
value in the Michaelis-Menten relation . 

We follow a procedure similar to that described in the first section 
of the Appendix and choose the following characteristic quantities to 
reduce the number of constant terms: 

q/ </> 
fc = J_, Pc = Z, Luxe= Z, Le= -Z, De = -Z 

</> ay a 
(29A) 

1 9 



This gives us (7)-(10) in the main part of the paper: 

dE=D-P 
dt ' 

dLux = p _ c2 LuxL 
dt C1C3(1+Lux) 

dL = C 2 L uxL - C 3 L ' 
d t (1 +Lux) 

dO = L - c1D, 
dt 

where c1, c2, and c3 are al </>, 81</>, and yl <J> respectively. 

(30A) 

(31 A) 

(32A) 

(33A) 

The constraint on the luxury phosphorous concentration (11) is 
described in the main body of the paper. 

Stability Testing of STELLA Differential Equation Solvers: 

STELLA was initially tested using two sets of three differential 
equations with known analytic solutions. The first set had an exponential 
solution. Using Euler's method in STELLA required a time step smaller than 
0.001 to achieve less than one percent error after 3000 iterations, while 
the fourth order Runge-Kutta algorithm had an error of less than 0.001 % 
after 3000 iterations with a time step of 0.05 . The Runge-Kutta method is 
clearly more accurate with this system of equations. 

The second system of equations had an oscillatory solution . The 
fourth order Runge-Kutta method had an error of less than 0.05 % with a 
time step of 0.02 after 2500 iterations. 

The fourth order Runge-Kutta method and a time step equal to or 
less than 0.02 was used for all of the results contained in this paper. 
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