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ABSTRACT

Strategic planning and control are among the most critical activities that modem 

enterprises require to succeed in the global economy. This research is an original study 

that investigated the combination of tools and methodologies in order to apply them to a 

midwestem tractor manufacturer. The current study identified the constraints applicable 

to a polishing line in the Drivetrain Division of a major tractor manufacturer interested in 

exploring alternative techniques to improve its worldwide manufacturing operations.

The specific questions that this project tried to respond are stated as follows:

1. What were the most important variables that affected inventory levels of an 

assembly line of an automotive manufacturer?

2. What were the significant effects of the causal relationships identified in order 

to determine an initial model stmcture?

3. What constrains restrict the behavior and improvement of the selected 

variables?

4. What levels of the selected variables could be used in order to improve 

production levels?

The current research explored the impact of a series o f variables (work-in process, 

process utilization, cycle time, queue size, utilization of work centers, capacity, and 

others) in order to examine their impact in the overall performance of the polishing line. 

Two main models were developed based on two algorithms created for each of the
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selected part families (PTO and Covers), and in combination determined material flow, 

resource utilization, and sequencing within and outside the automatic polishing line. The 

two computer models combined both dynamic and discrete simulation to establish a 

reference to be used for improvement of similar processes within the company using 

structural equations modeling, path analysis, scatter plot diagrams, and eigen value plot.

Besides, the results of this research indicated that: (a) cycle time can be improved 

with the addition of a new transporter in order to reduce the moving time within and 

between work centers; (b) the queue sizes of the polishing line were not improved 

significantly using either genetic algorithms (GA) and full factorial designs because of 

the low initial variability of the system; (c) the structural modeling equations model 

allowed to identify possible material flow errors based on its relationships, in this way it 

is possible to have a benchmark to compare both the results of the current study and the 

outcomes of similar studies developed by the company. In summary, a new methodology 

has been developed in order to study and optimize manufacturing systems, and avoid cost 

reductions without any statistical significance that might affect the strategic position of 

the company in the long run. The current study did not give a simple answer to the 

complexity of the discussed problem, but an alternative to many of the current academic 

and industrial solutions that can have more than one correct answer.
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CHAPTER I 

INTRODUCTION

The improvement and development of manufacturing systems is a challenge by 

itself and requires both empirical and scientific approaches. It is simple to determine that 

a process performs or does not perform to specifications, but it is more difficult to 

actually replicate that process in order to simulate those behaviors that were undesirable.

The purpose of the current research was to propose an alternative and high-level 

methodology for improvement of manufacturing processes. For that reason, the 

combination of three areas of study: genetic algorithms, discrete and dynamic simulation 

were used in order to propose an alternative solution for a highly complex problem.

The researcher was interested in proposing several alternative models to improve 

rather than “optimize” the performance of a polishing line of an automotive 

manufacturer. The term optimization itself is well understood in industry and academia, 

but still creates confusion between managers and engineers because of the diverse 

availability of tools and techniques to accomplish a similar objective. Byrne (1998) 

mentioned that the term optimization is considered to be a relative improvement of the 

current performance without necessary achieving the real optima of the system, which 

was considered to be the case for the current research.

For that reason, the term optimization and improvement were considered to be 

synonymous for the present study. Thus, the analysis of results was cited as 

“optimization” but for the researcher means only improvement based on the current 

process constraints that might change if  further information is available after the
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completion of the study. In reality, what the present study showed was a sub optimum 

value, which could be an intermediate result between the current performance and the 

real optimum.

The project concluded with improved levels of several performance variables that 

were key for the objectives of the Drivetrain Division of the automotive manufacturer. 

The study was an introduction of advanced planning techniques into a Fortune 500 

company, meeting the company’s constraints and interests.

In summary, the final models replicated accurately the general constraints of the 

system, but required further research in order to develop a single simulation model that 

integrates the total production system for the selected automotive manufacturer.

Problem to Investigate 

The problem of this research was to develop a simulation model for an 

automotive polishing line that allows the optimization of the inventory levels.

Purpose of the Investigation 

Simulate and demonstrate how inventory levels of a polishing line of an 

automotive company can be improved using system dynamics, structural modeling 

equations and genetic algorithms.
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Type of Research

This investigation was directed to develop a computer simulation model using 

both qualitative and quantitative approaches to develop causal and inferential 

relationships of variables that supported managerial decision-making. The computer 

software used for the research in order to develop the different algorithms and simulation 

models were: Promodel, Powersim, Statistica and EQS.

According to Fraenkel (2003), qualitative research studies investigate and infer 

relationships of a phenomenon, and quantitative studies, specifically causal-comparative, 

analyze cause and effect relationships within dependent and independent variables. Both 

characteristics can be combined according to Byrne (1998) using quasi-experimental 

exploratory research, because random assignment, independent and experimental data 

was not always feasible, and for this particular case the researcher had to develop 

assumptions based on managerial insight due to unavailability of information.

Byrne (1998) refers to this strategy as the “modus operandi approach” or the same 

strategy used by “a detective trying to solve a crime”, since the researcher was the one 

who lead the investigation and there were no initial theories, rather than managerial 

knowledge, to support the conclusions and findings of this applied research project. 

Besides, this approach maintains the qualitative orientation o f the research since quasi- 

experimental studies, according to the same author, creates an approximation to 

experimental designs and provides causal inferences of relationships between variables. 

However, as mentioned by Fraenkel (2003) this type of research study has two main 

weaknesses: “lack of randomization and instability to manipulate an independent
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variable.” Fraenkel mentions that the random assignment is not possible since the groups 

were already formed and the manipulation of the independent variables is not possible 

because the groups have been already exposed to them and the information has already 

affected the response variable.

For this reason, the application of system dynamics (SD), structural modeling 

equations (SEM) and genetic algorithms (GA) into the study considered these elements 

into consideration while dealing with non-experimental (also referred to as historical or 

observational) and non-independent data collected during a long period of time.

A selected number of key variables chosen by a management team of the selected 

company provided the initial population of variables to investigate; the research 

determined their operational impact of the selected process. These variables were 

strategic, explicit and meaningful in order to be measured and included during the 

investigation and the development of the simulation model.

Kaplan (1996) mentioned that this kind of simulation models require that these 

relationships (hypotheses) among objectives (and measures) be explicit enough so that 

they can represent an approximation of the real managerial problem.

Justification of the Study 

The justification of the study depends on the need of Drivetrain Management to 

explore a more scientific approach to manufacturing improvement using advanced six 

sigma tools such as discrete simulation and structural equation modeling. The basic need 

of management is to explore new ways that the assembly and polishing operations could
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be improved with a more scientific approach, and in order to guarantee that the changes 

made over the manufacturing lines, will have positive impact in the future improving 

production levels and reducing work in process.

For this reason, the development of a mathematical computer based model to test 

future changes in the polishing line will have a significant effect in the organization and 

planning of future production plans. It is required by Management, that the final output of 

the study be a computer-simulated model that allows adding, removing, and modifying 

the production rules for a polishing line. In this way, it is possible to reuse the simulation 

model in order to build similar representations of other manufacturing lines with just 

small changes in the basic algorithm.

The methodology developed during this study was oriented to be a standard 

procedure to scientifically analyze and improve different sets of values for a given 

production system. The scope of the project will limit not only its complexity but also the 

final results obtained from using the suggested procedure of this research. The procedure 

used in this project could be equally applied to simulate the total manufacturing plant or 

simply just one small line but the results cannot be same because of differences of scope.

In addition, the increasing amount of information available to managers makes it 

more difficult to provide, in a short period of time, a valid insight regarding the impact of 

their decisions over the Supply Chain or the financial performance of the company. 

Roberts (1999) points out that business leaders are influenced by an “image of the future” 

that is vague and have a strong impact on the long-term decisions of the company.
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According to Roberts (1999), it is a major breakthrough in understanding how an 

industrial company success depends on the interaction between the flows of information, 

materials, money, manpower, and capital equipment. In this way, the manager’s role can 

be more visualized and simulated as any other measurable process.

Manufacturing processes were an important part of the success of high technology 

enterprises and, according to Skinner (1985), is the formidable competitive weapon, since 

most of the decisions related to manufacturing and product development influenced 

directly the company’s long-term success in the marketplace, and the product life cycle 

directly.

For that reason, the current project provided a simplified approach to deal with 

top managerial problems with an integrated approach using system dynamics modeling 

(SD), structural modeling equations (SEM), and genetic algorithms (GA). The first two 

techniques have been applied extensively in the social sciences and were becoming more 

applicable to ease the problems to manufacturing companies in areas of decision and 

policy development, time compression, demand amplification, supply chain design and 

integration, international company integration and many other applications according to 

the Massachusetts Institute of Technology (MIT) System Dynamics Group (2002).

The same research institute at MIT concludes that current simulation and 

managerial practices were directed to discrete simulation and were reluctant to 

incorporate managers as active players in the model building and enterprise design 

process. The techniques to be used in this study incorporated managers into the 

simulation process from beginning to end, using their insights as the “backbone” to
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develop an algorithm that can be understood by both managers and engineers in order to 

identify optimized inventory levels. A research developed at Arizona State University 

(1998), supports the development of SD models using management insights as a way to 

provide early predictions and enable planners to see the potential impact of various 

project control decisions.

The development of nonlinear models based on approximated linear models 

comes as a response to the great instability and oscillation of real-world variables. Craig 

Kirwood (1998), from Arizona State University, mentions that models that assume a 

process is linear have been extensively studied because the mathematics for such models 

is relatively easier in comparison with the development of non-linear models.

In this way, SD, SEM, and GA, can be perceived as useful combination not yet 

explored to solve the managerial complexity and give statistical support to the decision

making activities and reduce uncertainty.

Research Questions

The following statements determined and establish which elements were tested in 

order to show the effect of nonlinear relationships over decision-making o f a 

manufacturing activity. However, it is important to point out that due to the nature of the 

study causal inference and correlational analysis were expected to have nonrandomized, 

non-independent, non-experimental and biased samples that have been already exposed 

to different treatments for a long period of time, and as previously discussed by Fraenkel 

(2003), their effect can only be reduced but not eliminated from the data.
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Bill Shipley (2002) and Bollen (1989) presented several statistical methods that can 

test and discover cause-effect relationships between variables in situations where it is 

difficult to conduct randomized or experimental studies that also supported this research.

Based on these issues the research questions helped to initiate the exploratory analysis 

towards the development of a simulation model that behaves similarly to the real system. 

According to Byrne (1998) the term quasi-statistics is quite appropriate to the study of 

real processes, since statistical analysis was used in order to validate qualitative data and 

support the researcher findings along the project.

The current research addresses the following questions. The findings were reported 

in Chapter IV.

1. What were the most important variables that affect inventory levels of an 

assembly line of an automotive manufacturer?

2. What were the significant effects of the causal relationships identified in order 

to determine an initial model structure?

3. What constraints restrict the behavior and improvement of the selected 

variables?

4. What levels of the selected variables could be used in order to improve 

production levels?

These statements were the basis for the current research using biased and 

nonlinear data that was tested using descriptive and inferential statistics to guarantee that 

the findings were supported by reliable techniques and experience.
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Assumptions

The development of any research activity required that the researcher defined a basic 

set of general assumptions in order to guarantee validity of his/hers results. The following 

assumptions were the starting point for development of a simulation model and different 

conclusions with the decision makers. The way that variables were monitored, managed 

and controlled depended directly on the relationships identified initially as well as the 

level of details required by top management.

These assumptions directed how the managerial variables were analyzed in 

combination with causation and inference theory that it is suggested that the reader 

consult Byrne (1998), Glymour (1999), Bollen (1989), and Shipley (2002) before 

questioning any of the following statements.

The fundamental assumptions for the study were:

1. Correlation can be used to infer causation in combination with Bayesian Networks.

2. The observed (historical) data is biased, dependent, and nonrandom.

3. The initial population of variables is nonlinear and managerial insight is a good 

source to validate intermediate and final results in combination with quasi-statistics.

4. Key variables that influence the inventory levels in the Drivetrain Division were 

measurable.

5. The manufacturing and assembly operations can be graphically represented and 

simulated using computerized software.

6. The allocated resources to the manufacturing and assembly processes that cause 

fluctuation of the inventory levels were limited and must be optimized.
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Limitations

The researcher is concerned about the importance of statistical techniques and 

their application to the observational data; in addition, it is important to consider that 

there were several new changes in the processes of the Drivetrain Division, and many of 

the final conclusions might not be applicable to the new processes.

The limitations of this study were stated as follows:

1. Development of the simulation model was oriented to the 20 most 

important variables in the selected processes.

2. Due to the type of variables available to analyze and study, experimental 

research is not possible due to the amount of resources required as well as 

the time needed to evaluate them.

3. The application of correlational analysis determined a basic causal 

inferential relationship between selected variables.

4. The solutions provided by the simulation model were limited to specific 

scenarios determined by the company’s interest.

5. Due to the nature of this study the development of the simulation model 

was biased and non-random.

6. The allocated resources to the study were limited.

7. The application of the decisions and policies generated from this study 

were limited to the company resources and ability to implement them.

8. The historical values provided by the company are considered to be valid 

and representative for simulation purposes.
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Definition of Terms

The following terms describe the most important definitions that are required to 

clarify the analysis to be performed during this investigation. Each of them has close 

relationships either with system dynamics, genetic algorithms or structural modeling 

equations.

1. Bayesian Networks or Path Diagram: “a directed acyclic graph in which nodes 

represent variables and arcs represent probabilistic dependence.”(Glymour, 1999).

2. Delay: “delay is an interruption between an action and its consequences.” 

(Senge, 2000)

3. Feedback: “information coming from outside of a system and that 

influences its behavior.” (Sterman, 2000)

4. Flow: “elements that represent decisions.” (Sterman, 2000)

5. Genetic Algorithm (GA): “stochastic search technique based on natural 

selection and natural genetics.” (Gonzalez, 2003).

6. Model: “a model is an abstraction, a simplified representation of the real 

world.”(Sterman, 2000)

7. Levels: “blocks that accumulate flows.”(Sterman, 2000)

8. Operations Research: “the study of allocation of limited resources” (Lieberman, 

1990)

9. Optimization: “the improvement of a mathematical model meeting predefined 

constraints.” (Lieberman, 1990)
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10. Simulation: “a broad collection of methods and applications to mimic the 

behavior of real systems, usually on a computer with appropriate software.” 

(Kelton, 1998)

11. Structural Modeling Equations: “is a statistical methodology that takes a 

confirmatory (i.e., hypothesis-testing) approach to the multivariate analysis of a 

structural theory bearing on some phenomenon.” (Byrne, 1998)

12. System Dynamics: “is a methodology for studying and managing complex 

feedback systems, such as one finds in business and other social systems. In fact it 

has been used to address practically every sort of feedback system.” (MIT System 

Dynamics Group, 2002)

13. System: “A system is a set of organized, interacting parts which, when 

complete, exhibits properties or capabilities o f the set as a whole which were not 

attributable exclusively to any of the parts.” (Senge, 2000)

Procedure of the Investigation 

The following procedure is a standard procedure for the development of system 

dynamic activities used in academia and in the different consulting firms. The procedure 

to be used is suggested by the MIT System Dynamics Group, Powersim Consulting, 

Ventana Systems and also it is similarly applied in other doctoral theses at the same 

institution (Ahn, 1999).

The following procedure reflects a standard model development process tested and 

applied by MIT System Dynamics Group:
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1. Identify the problem.

2. Isolate the factors that appear to interact to create the observed symptoms.

3. Trace and create cause-effect information-feedback loops.

4. Identify relationships inside the selected polishing line.

5. Construct a mathematical model of the decision policies, information sources, and 

interactions of the system components.

6. Generate the behavior through time of the system.

7. Compare results against available information of the real system.

8. Generate recommendations to modify the real system.
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CHAPTER II 

REVIEW OF LITERATURE

Today, optimization has become one of the most discussed topics in engineering 

and applied research (Zeaman, 2003). The fact that optimization is commonly associated 

with simulation and advanced statistical techniques makes it a complex topic and 

overwhelms managers and engineers with a lot of information and data that are difficult 

to generate and analyze, and which is relative to the subjective perception of optimization 

itself.

The creation of “virtual worlds” or computer simulated models that can support 

decision makers to improve their managerial skills, explain causality, conduct 

experiments, and “play”, is part of a scientific and non-empirical way of planning (Schon, 

1983). Simulation, a word that comes from the Latin “simulare”, which means “imitate” 

is not universally accepted within academia and industry as a useful resource to improve 

engineering and managerial processes.

According to Davidsen (2002), simulation models, in particular, can be used to 

investigate the intimate relationship that exists between the structure and behavior of 

dynamic systems. This chapter provides a review and analysis of the literature related to 

manufacturing simulation and how it can be complemented with genetic algorithms 

(GA), structural modeling equations (SEM) and system dynamics (SD).
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Genetic Algorithms (GA1

History

According to Golberg (1989), genetic algorithms originated from the studies of 

cellular automata, conducted by John Holland and his colleagues in the Department of 

Psychology at the University of Michigan. Holland’s book, published in 1975, is 

generally acknowledged as the beginning of the research of genetic algorithms. Until the 

early 1980s, the research in genetic algorithms was mostly theoretical with few real 

applications (Davidor, 1989).

This period was characterized by work with fixed length binary representation in 

the domain of function optimization, such as those developed by De Jong and Hollstien. 

Hollstien's work provides a careful and detailed analysis of the effect that different 

selection and mating strategies have on the performance of a genetic algorithm.

From the early 1980s genetic algorithms experienced an abundance of 

applications in many disciplines. Each additional area o f study gave a new perspective to 

the theory and contributed on its development, robustness and applicability (Golberg,

1989). Effort was deviated in order to create improved algorithms for science, 

engineering, and business towards optimization, scheduling, data fitting, trend spotting, 

clustering and path finding in the following years, with the result that genetic algorithms 

were classified as a new area of Artificial Intelligence (AI).
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Functionality

According to Holland (1975), a genetic algorithm is a probabilistically guided 

search method “developed originally in the 1970’s as a computer science tool to improve 

programming structures and performance.” From another perspective Golberg (1989) 

defines a genetic algorithm (GA) as “a model of machine learning which derives its 

behavior from a metaphor of the processes of evolution in nature.”

These changes are made by the creation within a machine of a population of 

individuals represented by chromosomes, in essence a set of character strings that are 

analogous to the base-4 chromosomes that can be found in the DNA of many organisms. 

The individuals in the population then go through a process of evolution using the 

Darwinian theory of “survival of the fittest” based on the principles of mutation, 

selection, crossover and isolation (Davidor, 1989).

Basically, genetic algorithms are intended to interchange elements or groups of 

elements between individuals as if  by sexual combination and reproduction (crossover) 

took place. In other cases, changes take place at random or via mutation that happens 

when the process cannot generate children that can outperform their parents.

New generations appear from clones of the current population, in proportion to 

their fitness: a single objective function of the parameters that returns a numerical value, 

to distinguish between good and bad solutions. Fitness is then used to apply selection 

pressure to the population in a ‘Darwin’ fashion (survival of the fittest; Golberg, 1989).

Davidor (1989) mentions four features that are widely accepted in relation to 

coding and encoding processes that are presented as follows:
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1. Evolution is a process that operates on chromosomes rather than on the living 

beings they encode.

2. Natural selection is the link between chromosomes and the performance of 

their decoded structures. Processes of natural selection cause those chromosomes 

that encode successful structures to reproduce more often than those that do not.

3. The process of reproduction is the point at which evolution takes place. 

Mutations may cause the chromosomes of biological children to be different from 

those of their biological parents, and recombination processes may create quite 

different chromosomes in the children by combining material from the 

chromosomes of the two parents.

4. Biological evolution has no memory. Whatever it knows about producing 

individuals that will function well in their environment is continued in the gene 

pool- the set of information carried by the current individuals-and in the structure 

of the chromosome decoders (p. 2-3).

All these elements make genetic algorithms (GA) an easier optimization tool 

compared to alternative processes such as differential calculus, Lagrange multiplier, or 

design of experiments. Cavalca (2003) mentions that genetic algorithms are robust 

methods because they are not influenced by local maximums and minimums, 

discontinuity or noise in the objective function. For these reasons, Cavalca (2003) 

suggests that GA can work not only with one point in a search space but also with a
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cluster o f points simultaneously that helps to reduce the amount of time required to find 

an optimum point.

Structural Equations Modeling (SEMI

History

According to Bollen (1989), most researchers applying statistics think in terms of 

modeling individual observations. In multiple regression or ANOVA (analysis of 

variance), for instance, Bollen mentions that the regression coefficients or the error 

variance estimates are derived from the minimization of the sum of squared differences 

of the predicted and observed dependent variable for each case. These discrepancies have 

misled researchers towards minimization functions of observed and predicted individual 

values rather than mathematical equations that reduce the difference between the sample 

covariances and the ones predicted by the model (Bollen, 1989).

The origins of structural modeling equations (SEM) are difficult to determine 

since it is mostly a combination of methods (path analysis, conceptual synthesis and 

measurement models, and general estimation procedures) that continue being developed 

and refined. The first one, path analysis, was invented by Sewall Wright in the 1900’s as 

a diagram that represents correlations or covariances of parameters, and the 

decomposition of their effects using simultaneous equations and Bayesian networks 

(Bollen, 1989).

A simplified version of the theory developed by Wright is shown in Figure 1. 

Here two independent variables, XI and X2, are part of a latent variable 8 (an unknown
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variable that is affecting the process) that together influence directly the dependent 

variable Y.

Figure 1. Example of a simple path diagram (Bollen, 1989)

From Figure 1, the error variables q, Si, and 82 are uncorrelated with each other 

and latent variable 8 . Single-headed variable arrows represent one-way causal influences

from the variable at the arrow base to the variable to which the arrow points. The

implicit coefficients of one for the effects of 8 on x l and x2 are made explicit in the

diagram (Bollen, 1989).

Based on this diagram, Wright proposed a set of rules that relate correlations or 

covariances with the model variables in order to obtain parameter estimates o f direct and
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indirect causal effects. However, the scientific community did not recognize his 

accomplishments until many years later.

The path analysis equations for Figure 1 used by Bollen (1989) based on the 

Wright’s research are shown as follows:

y = y£ + <; (1)

xi = s + 8i (2)

x2 = s + 52 (3)

During the 60’s and early 70’s, path analysis theory was the starting point for the 

development of conceptual synthesis. These models were more complex than those 

proposed by Wright’s and linked latent variables based on the covariance of the observed 

indicators. It was not until Joreskog (1979) that these models reached a practical 

approach in order to apply the technique into real world problems.

Joreskog and other collaborators finally derived the two most popular procedures 

in structural modeling equations: generalized least squares (GLS) and maximum 

likelihood estimator (ML). Both of them are still being used as the best alternatives to 

solve structural modeling equations, although their applications have been largely limited 

to the social sciences.
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Functionality

The terms of causality and inference are two important parts of the development 

of a structural equation model using observational data. Glymour (1999) suggests that 

observational data cannot be manipulated or controlled in comparison with the results 

obtained from experimental studies. The traditional thinking of correlation does not 

imply causation, fails when analyzing observational (historical) data since it has already 

being exposed to the treatments, and random assignments are not possible in order to 

study it (Fraenkel, 2003).

Sterman (2000) and Glymour (1999) mention that causal relationships and 

correlations differ in the sense that the second one does not represent the causal structure 

of the system. Both authors agree that correlations only reflect past behavior but the fact 

that could suggest an initial structure of the system is an issue not yet explored. Sterman 

shows in his work that if  new policies or changes are added to the causal structures the 

model needs to behave accordingly and correlations within the system will emerge when 

it is simulated.

However, structural modeling equations using correlations or covariances could 

be used to infer initial causal structures from data that was not experimental. Glymour 

(1999) explores this issue using sensitivity analysis and associations without any 

substantial knowledge in order to solve this problem.

Despite the fact that many of the elements previously mentioned still puzzle 

researchers in science, engineering, mathematics, psychology and many other areas, it 

has not discouraged the development of these techniques in order to approximate real-
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world causal structures. Some of the applications according to StatSoft Corporation 

(2004) for which SEM could be applied are:

1. Causal modeling, or path analysis, which hypothesizes causal relationships among 

variables and tests the causal models with a linear equation system. Causal 

models can involve either manifest variables, latent variables, or both;

2. Confirmatory factor analysis, an extension of factor analysis in which specific 

hypotheses about the structure of the factor loadings and intercorrelations are 

tested;

3. Second order factor analysis, a variation o f factor analysis in which the 

correlation matrix of the common factors is itself factor analyzed to provide 

second order factors;

4. Regression models, an extension of linear regression analysis in which regression 

weights may be constrained to be equal to each other, or to specified numerical 

values;

5. Covariance structure models, which hypothesize that a covariance matrix has a 

particular form. For example, a hypothesis can be tested with a set of variables 

that have equal variances with this procedure;

6. Correlation structure models, which hypothesize that a correlation matrix has a 

particular form (p. 1-2).
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From the previous list of applications this research will focus on causal modeling 

using inferred relationships from observational data. Thus, Bayesian networks will be 

used as a way to represent causality based on the three components of a cause: isolation, 

association, and direction of influenced (Bollen, 1989).

Goldstein (2003) suggests the use of structural modeling equations when 

measurements are difficult to be defined precisely so that the investigator can assume the 

existence of an underlying stmcture evaluating a number of relevant indicators.

Goldstein suggests that structural modeling equations were specifically designed to 

develop and measure individual’s behavior, attitudes or mental performance over time 

and for the purposes of the current study can provide a basic view of causal structures.

For example, if variable yl is isolated from all other variables except x l, a change 

in xl alters the values of y l, then it can be said that a modification of x l is associated 

with a change y 1. Under these circumstances a causal relationship can be constructed 

based on the relationship discovered with xl and yl. However, it is important to first 

isolate the variables and then make their association based on the well-known statement; 

correlation does not imply causation, in order to guarantee their relationship and direction 

of influence. Thus, in the previous example the arrow that represents the causal path that 

x l causes y l, not the opposite, needs to be reflected in the Bayesian network.

Once the network diagram has been constructed, using the collected data 

identified the correlations or covariances calculated for each variable in order to input 

them into the causal model. However, the usage o f nonrandom or observational data will
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create problems of internal validity and bias that need to be solved using nontraditional 

statistical procedures.

Box (1978) proposed an alternative approach to resolve such problems when 

performing statistical analysis over nonrandomized data. Box mentions that random 

sampling is considered in statistical writing as a law of nature, but when dealing with real 

data this property cannot be considered to be true. To solve this issue, Box developed a 

procedure called “external reference distribution” based on real data coming from a 

chemical production process in order to compare the performance of two alternative 

production methods using historical and not independent observations.

Here the dependency of the data and the effects of the previously applied 

treatments were eliminated using an equal moving average value. Applying the central 

limit theorem, the effects of any disturbances will be reduced by the moving average 

value and the resulting data will have a normal distribution (Box, 1978).

Using this approach solves part of the complications o f using real data, but again 

the development of causal structures will need to identify another major issue. While 

working with statistics, it is important to understand that two structures could be equally 

valid but with different mathematical values (Box, 1978).

For that reason, structural modeling equations can provide different causal 

structures after analyzing covariances or correlations and all o f them can be equally valid. 

In Figure 2 such a case is shown using ten statistically identical models coming from the 

same covariance matrix that provide different causal networks (Bollen, 1989).
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At this point the only way to determine which structure is closer to the real system 

will require managerial and engineering knowledge. The causal structure selected will 

constrain any optimization strategies to develop and will give an initial shape of the 

decision-making processes study with the Bayesian networks.

3

3

A
- K h -

/

Figure 2. Ten models for three observed variables 
that have “perfect” fit with the same covariance matrix (Bollen, 1989)
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System Dynamics (SD)

History

System dynamics is the application of feedback control systems principles and 

techniques to managerial, organizational, and socioeconomic problems. For managerial 

usage, system dynamics advocates seek to integrate several functional areas of an 

organization into a conceptual and meaningful whole, and to provide an organized and 

quantitative basis for designing more effective organization policies (Roberts, 1999).

The beginning of system dynamics was originated during the 1940’s and 1960’s 

because o f its initial applications to the military. The high technology created during and 

after World War II on feedback systems design and analysis, computer simulation 

techniques, and the increasing experience in decision-making modeling, required a field 

that could integrate knowledge of several disciplines in order to improve the utilization of 

limited resources.

Professor Jay W. Forrester, from the Sloan School of Management, pioneered in 

each of the engineering-related areas mentioned, and developed system dynamics as a 

formal discipline and created the Industrial Dynamics Group at MIT. The initial 

philosophy rests on a belief that the behavior (or time history) o f an organization is 

principally caused by the organization’s structure. This structure includes not only the 

physical aspects of plant and production processes but, more importantly, the policies and 

traditions, both tangible and intangible that dominate decision-making (Roberts, 1999).

Analysis and control of nonlinear systems is a major challenge to even the most 

experienced control system engineers, and an effective and reliable decision is even more
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difficult. For example, Figure 3 shows a general perspective on how system dynamics 

visualizes an advertising and consumer market integrating into the same model: 

production, inventory, distribution, retailing and other decision making processes and the 

way they interact with each other.

in v en to ry !

\Mmjm

PROSPECTIVE 
PURCHASERS 
(4 MOHTHS)

Figure 3. Advertising and consumer market model (Roberts, 1999)

In order to perform such analysis, system dynamics needed to apply tools coming 

from many technical disciplines. For example, signal-flow graphs of electrical 

engineering, and cause-and-effect arrow diagramming that were invented to support
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sequential process analysis. From this effort and with the support of MIT sponsors, the 

Industrial Dynamics Group, directed by J. Forrester, developed DYNAMO the first 

system dynamic software capable of handling linear, nonlinear, algebraic and differential 

equations with several thousand variables and later on tested on several industries.

Currently system dynamics is an active area of research at MIT and many other 

universities, and several computer packages have been developed to enhance the interface 

capabilities unavailable previously with DYNAMO (Roberts, 1999).

Functionality

According to Powersim Corporation (2004), system dynamics is a methodology 

to analyze complex systems, and has been widely spread in academia and industry. The 

word “dynamic” implies continuous change over time, as well as patterns of behavior.

Figure 4 describes the system dynamics process suggested by Powersim 

Corporation (2004), in which simulation of a business system is just part of the overall 

effort of development and improvement of organization’s policies and strategies.

In order to start the model building of a system dynamics equation it is important 

to consider the basic flow notation used. Figure 5 shows an example of the notation 

utilized to construct a general system dynamics model.
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Bu*ine«s System
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A. Evaluate /
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A /

Analyze

Figure 4. The system dynamics process (Powersim, 2004)

However, the identification of such patterns requires an organized process that 

collects, analyzes, and generates new information and adjusts the business models over 

time. The example presented in Figure 5 represents a model of a firm’s inventory where 

a stock accumulates the inflow of production and is reduced by the outflow of shipments.

In Figure 5, the cloud symbols indicate that the stock of raw materials never 

starves the production rate and the stock of product is shipped to the clients, and never 

grows so high that it blocks the shipment rate.
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General Structure?
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Figure 5. Stock and flow diagramming notation (Sterman, 2000)
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These are the only flows considered in the model and any additional information 

would have a value of zero. According to Sterman (2000), system dynamics is based on 

stocks and flows using the following logic:

1. Stocks are represented by rectangles (suggesting a container holding the 

contents of the stock.

2. Inflows (adding) pointing into the “stock” are represented by pipes. 

Outflows (subtracting) pointing out of “stock” are also represented by 

pipes.

3. Valves control the flows.

4. Clouds represent the sources and sinks for the flows. A source represents 

the stock from which a flow originating outside the boundary of the model 

arises; sinks represent the stocks into which flows leaving the model 

boundary drain. Sources and sinks are assumed to have infinite capacity 

and can never constrain the flows they support (p. 192).

The overall logic is based on the research presented by Sterman (2000) as a 

hydraulic metaphor the flow of water into and out o f reservoirs. In addition to stocks and 

flows, another important element that is part of system dynamics is delays.

Delays are a critical part of the theory of developing complex systems, since they 

can not only cause instability and oscillation but also help to filter unwanted variability 

helping managers to separate signals from noise (Sterman, 2000).
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Under such circumstances another problem arises, nonlinear behavior that is the 

common nature of real-world systems affects the stability of the model and can seriously 

damage the final results of the study (Sterman, 2000). For this circumstance, the 

mathematical equations that relate inputs and outputs need to be carefully investigated to 

consider the nonlinearity factor and the accuracy of the model.

Current approaches of system dynamics overlook the issue of mathematical 

relationships, and concentrates mostly on causal structures created based on experience. 

The simulation models are constructed under these assumptions and in many cases can 

mislead the investigation and cause association of variables with the wrong cause paths.

This problem could be solved using structural modeling equations in order to 

guarantee at least that the relationships identified have some mathematical validity, and 

do not merely reflect insight and multiple adjustments which have been the standard so 

far. However, dealing with too many variables will also raise another issue: 

multicollinearity. According to Schofer (2002), this factor is caused by the inclusion of 

highly correlated variables into a single model, which creates an increase in variance and 

correlation that could mislead toward incorrect conclusions. This final argument might 

cause complications in the study, and will require a consideration by the researcher while 

constructing the SEM model.
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Discrete Event Simulation and System Dynamics 

According to Gourgand (2003), industrial systems are subject to random 

(stochastic) events, which may disturb their working conditions and an optimal solution 

developed without considering its lack of scientific validity. For that reason, to develop a 

simulation study without considering any variation will not provide any useful 

information to the company or to the researcher. Besides, when analyzing simulation, 

specifically manufacturing systems, this factor becomes quite important because of the 

multiple states and the variables that influence their performance.

For the purposes of this study, only discrete event simulation (DES) and system 

dynamics (SD) would be compared since a combination of both of their approaches 

would be utilized to develop the current research. In comparison, system dynamics and 

discrete event simulation differ mostly in two levels as Arsham (2004) mentions: the way 

that modelers represent systems is different; as well as the underlying algorithms are also 

different. Each technique is well tuned to the purpose it is intended but one may use a 

discrete event approach to do system dynamics and vice versa.

Zahir (2002) mentions that discrete event simulation (DES) can also be used in 

order to explore causality and generalization of relationships performing qualitative and 

quantitative research incorporating resources and constraints into the same simulation 

model. This characteristic has made DES more applicable to manufacturing leaving 

system dynamics limited to research and development in the social sciences with few 

applications in manufacturing.
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The main reason for this segregation is that system dynamics is focused more on 

identification of relationships than on specific levels of variable such as machine 

utilization, number of employees, or number of parts in queue that DES has mastered 

with the support of Operations Research and other analytical tools.

As Arsham (2004) reports, the most important distinction of both of these areas of 

simulation is the modeling purpose. For example, Discrete event simulation is more 

oriented to find how many resources the decision maker needs such as how many trucks, 

and how to arrange the resources to avoid bottlenecks, excessive waiting lines, or 

inventories, whereas system dynamics is directed at decision making required to 

promptly respond to any timely and structural changes, e.g., physical shipping delay time, 

so that inventories, sales, and production are optimized.

Arsham (2004) concludes that a modeler must consider both system dynamics and 

discrete event modeling as complementary tools to each other. For example, system 

dynamics could be utilized to develop a high level problem and identify areas that need 

detailed analysis. Then, discrete event modeling can support the initial findings and 

improve specific areas of interest such as finite capacity planning, goal seeking and 

design of experiments.

For the purpose of this research the combination of both system dynamics and 

discrete event simulation will be directed to create several simulation models that 

replicate the behavior of a manufacturing system and a causal structure using structural 

modeling equations that infer causal relationships within those models.
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A summary that combines the views of Arsham (2004) and Sterman (2000) 

regarding system dynamics and discrete event simulation is presented as follows:

1. System dynamics supports the simulation models on mental models, 

qualitative knowledge and numerical information, while discrete event 

simulation supports their views based on analysis of data.

2. System dynamics applies methods and insights from feedback control 

engineering and other scientific disciplines to assess and improve the quality 

of models. Discrete event simulation uses techniques developed in operations 

research, design of experiment and other statistical areas.

3. Both DES and SD seek improved ways to translate scientific results into 

achieved implemented improvement.

4. System dynamics approach looks at systems at a very high level so is more 

suited to strategic analysis. Discrete event approach may look at subsystems 

for a detailed analysis and is more suited, e.g., to process re-engineering 

problems.

5. System dynamics is indicative, i.e., helps us understand the direction and 

magnitude of effects (i.e., where in the system do we need to make the 

changes), whereas discrete event approach is predictive (i.e., how many 

resources are needed to achieve a certain goal of throughput).

6. System dynamics analysis is continuous in time and it uses mostly 

deterministic analysis, whereas discrete event process deals with analysis in a 

specific time horizon and uses stochastic analysis.
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Optimization and Operations Research

History

According to Winston (1990) and Lieberman (1990) the roots of operations 

research can be traced back many decades, when early attempts to apply the scientific 

method to management of organizations during World War II because of the urgent need 

to allocate scarce resources to the various military operations and to the activities within 

each operation in an effective manner. For this reason, the British and American military 

combined a group of scientist and engineers in order to develop a group of techniques 

that will able to handle this type of strategic and tactical type of problems.

The correct term utilized was to do research on (military) operations, and these 

efforts allegedly were instrumental in winning the Air Battle of Britain, the Island 

Campaign in the Pacific, the Battle of the North Atlantic, and others. Because of its 

success in the military, industry gradually became interested in this new field in order to 

solve the greater complexity of organizations. With the development of computers, the 

new field was called Operations Research (OR) as well as the great interest during the 

1960’s on statistics, optimization, and experimental design provided a great background 

for its development in industry and academia.

The term Operations Research (OR) was later on associated with the phrase 

“Management Science” as a correct manner to identify those techniques that apply the 

scientific methods to managerial decisions. Many industries, including aircraft and 

missile, automobile, paper, communications, computer, electric power, electronics, food, 

metallurgy, automobile, petroleum, transportation, financial institutions, governmental
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agencies, and hospitals are currently increasingly using operations research (Lieberman,

1990).

Later on professional societies devoted to this field and related activities have 

been founded in a number of countries throughout the world. In the United States, 

Operations Research Society of America (ORSA), established in 1952, and the Institute 

of Management Sciences (TIMS), founded in 1953 have led the way of developing and 

improving its applications in industry.

Functionality

The applications of OR initially to military applications were extended later on to 

industry. For example, the initial problems were directed towards the tactical planning 

for requirements and use of weapon systems as well as consider the larger problems of 

the allocation and integration of effort.

The usage of OR is oriented in the formulation, solution, and implementation of 

mathematical models for analyzing complex real-world systems. For that purpose several 

techniques that allow an initial understanding of the system using: linear, integer, 

nonlinear, goal, dynamic, stochastic processes, and probabilistic programming. Part of 

the problem is that due to the complexity of the real-world many of these techniques will 

bring limited solution, simply a mere approximation and for that reason the combination 

of OR and more advanced techniques such as simulation and advanced statistics supports 

the constraint development process while studying a process.

These techniques allow the development of advanced models for inventory 

handling, queuing processes such as machine scheduling or repairs, game theory,
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mixtures analysis, transportation problems, leasing or selling company’s resources, 

PERT/CPM (project management), forecasting, reliability, simulation, artificial 

intelligence, and many more.

However, one basic element that is part of these mathematical techniques is the 

issue of mathematical optimization. The combination of OR and other techniques will 

cause that optimization to become a relative term based on the types of tools available. 

For example, a transportation problem that is resolved using traditional OR techniques 

will differ from a similar model built using genetic or tabu search algorithms because 

their calculation methods differ.

This issue makes it more difficult to guarantee that a process is really optimized 

because if  new constraints are added to any system, this one might react differently than 

initially expected and maybe the initial solution will be quite different from the new 

problem structure. Thus, for this project when the term optimization is used, it would be 

referring to an improvement of the system based on the current constraints and variables, 

and not as the only possible answer that guarantees the maximization or minimization of 

the final answer.
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CHAPTER III 

RESEARCH DESIGN AND METHODOLOGY

Research Design

This quasi-experimental research was designed to develop a simulation model that 

replicated the behavior of assembly lines of the Drivetrain Department of an automotive 

company. The four research questions stated in Chapter I were used for this study:

1. What were the most important variables that affect inventory levels of an 

assembly line of an automotive manufacturer?

2. What were the significant effects of the causal relationships identified in order 

to determine an initial model structure?

3. What constraints restrict the behavior and improvement of the selected 

variables?

4. What levels of the selected variables could be used in order to improve 

production levels?
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Managerial Variables

The current study was oriented towards the development of a simulation model 

that allowed Drivetrain Operations to plan and improve its manufacturing operations. The 

main goal was to improve the final output or the Drivetrain Buffer (which constituted the 

total number of finished parts coming from the line into final assembly).

In addition, Drivetrain Management wanted to have a modem simulation tool that 

supported its current Six Sigma efforts, in order to build a virtual manufacturing plant.

For this reason, Drivetrain Management was interested in improving the following set of 

variables using the developed simulation models: work in process and production for 

each of the parts processed inside the line, utilization times for each of the work stations 

and the operator, queue size in front of the line and in the Drivetrain Buffer.

Initial Information

The selected manufacturing process initiates with a limited number of parts in 

front of the line (between 4 and 5 depending of the type of product), that were picked up 

by an operator that loaded them in groups of either 1 for covers or 2 for PTO parts. The 

different parts were loaded into an automated line that put them into the computerized 

control work centers that performed the operations of polishing.

The operator altered the loading and unloading operations of the different parts 

based on the availability o f automatic work centers that processed the parts twice, one for 

every side of the part, which required that the part be unloaded from the work center and 

redirected towards the available workstation based on priority, machine availability, and 

part type. For example, a PTO (Power Takeoff) part that required processing in any of the
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three available work centers needed to compete for capacity with other processed parts, 

since each part had to be polished on two sides before leaving the line towards final 

assembly. There are three PTO parts called PT0195, PT0196, PT0197, and two cover 

parts called Coverl and Cover2, which competed for capacity in the Unload/Load Station 

and the other parts of the system.

Each PTO load required one part in order to be processed in the different work 

centers, except the cover parts that required two parts per load in order to be processed by 

the automatic transporter. Before loading the polished and the raw (without previous 

polishing) cover parts into the line, two raw parts (status=l) were loaded if there were no 

previously polished parts (status= 2).

The operator loaded and unloaded the parts one at a time from the 

loading/unloading station, and those parts were either sent back to the process after their 

sides have been polished and switched, or simply moved to the Gage Station when they 

are completely finished. No parts were allocated to the Unloading/Loading station if the 

operator was busy, or if  there was at least one part available in the work center in order to 

redirect the next part to this station.

The automatic transporter was in constant communication with all work centers, 

using the FIFO rule (First in First Out), and each part was processed based on its type, 

workstation capacity, and work-in-process (WIP) sequence. The operator’s capacity was 

allocated based on the number of scheduled and ready-to- process parts (status=2); in the 

case that none were available, raw parts were loaded (status=l).
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Each of the part types was competing for load capacity at the Load/Unload 

Station that had a maximum of two per load for cover and one per load for PTO parts. 

Once the part was loaded into the Unload/Load Station, this initiated its work-in-process 

(WIP) status, and a counter was increased based on the number of parts that entered and 

exited the system.

The automatic transporter picked up the parts and took them to their designated 

workstations, based on their classification, and routing depending on the “status” 

variable, that was assigned for raw parts as one, and for reprocessed parts as two. Parts 

with status=2, had higher priority than status=l, because it meant that the part has 

previously entered the system, and required a second processing but in the opposite side 

of the part in order to complete its routing and be able to exit the process.

A part must enter the system twice in order to be considered finished, and has to 

be loaded and unloaded by the operator based on its availability, otherwise it was 

considered work-in-process, and waited in the workstation queue in order to be picked up 

based on the loading/unloading station availability.

If the operator was too busy to unload/load the parts, they waited until he was 

ready to move them into the next routing sequence based on their status. For example, if 

the status of a PTO 196 arrived to the unload/load station after completing its first pass, 

the operator unloaded and loaded the part, representing the real life operation of taking 

the part into the station and switch it into the other side in order to complete its polishing.

A representation of the described algorithm for the automatic line is presented in 

Figure 8 using Promodel, shown later on, in which each part is differentiated by color.
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The idea behind the model is to approximate the behavior of the polishing line using a 

simulation model in order to test several scenarios before the new changes are applied to 

the real manufacturing cell.

The production orders for the polishing line were broken down into daily fixed 

demands, considering setups or breakdowns as negligible, since all the machinery is 

automatic. The build schedule was generated and distributed on the automatic line for 

the next production day and assuming 8-hour days.

A state transition diagrams presented on Figure 6 and 7 based on the interviews 

with the supervisors in charge, operator, and other managers in the Operations 

Department, in order to provide the sequences, times, production levels, shutdowns, 

routings, and time studies of the automatic line. The basic data was presented previously 

in Tables 1 and 2, to understand initially the simulation model and to assign the 

sequences based on the number of states and decisions involved in the polishing line.

This general description established the background under which the simulation was 

developed in order to find improved (optimized) scenarios and a genetic algorithm that 

can be utilized by management and linked to an enterprise resource planning system and 

has been divided in three regions: A, B, and C.

Region A displayed the logic followed by both PTO and Cover parts in order to 

load, initiate the queue in front of the line, and increment the work-in-process (WIP) 

inside the line. Once the part entered the polishing line, Region B described how this part 

was directed to a specific routing that considered the processing time for the specific 

work center, the type of part that was processed; the machining time, loading and
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unloading logic in each workstation; and the priority that each part had in order to be 

picked up by the automatic transporter. Finally, Region C described the sequences 

required by the part in order to exit the polishing line, to be unloaded and loaded 

depending on its sequence and priority, the reduction in the number of parts that were in 

work-in-process (WEP) for each part type, and the following sequence required for each 

part before it arrived the Drivetrain Buffer.

Region B

Regioi

Figure 6. State transition diagram that represents the algorithm for the cover parts
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Typ» Capacity J_Capadty
Pi t_Typa

Region A

Region B

Gaging TimaRegion C

Figure 7. State transition diagram that represents the algorithm for the PTO parts

In Figure 6 and 7 the major algorithm of the study was represented using a state 

transition diagram. Here the boxes represented the resources and the circles represented 

the states or resources that the system had at any given time period. Initially, in Region A 

identified the area of the algorithm that controls the arrival of parts into the system. First, 

the PTO parts arrived at an entry queue and based on their classification WIP or Raw
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(initial state), were allocated to the available capacity from either Work Center 1 or Work 

Center 2.

The part changed into the WEP status and utilized the available capacity of the 

operator in order to load the part into the machine and once completed it was ready for 

pick up where it entered a queue FIFO that determined which part goes first to the 

unload/load station. Once there, the part maintained its status (WEP or Raw) at all times, 

and the WEP parts had the priority to use the available capacity of the conveyor, operator, 

selected work center, and change its state once it has been completed the task to WIP 

(status=2).

This value was used in the rest of the model in order to identify those parts that 

have passed through the line at least one work center and had the highest priority once 

they got back to the unload/load station to be rotated by the operator in order to apply the 

same process but in the other side of the part.

It is important to notice that in Region B, once the part has utilized the available 

resources, they were released in order to make them available to the next part in the 

routing and controlled the logic of the automatic robot that loaded and unloaded the parts 

inside the line. Region C controls the area of the line that assigned and released capacity 

to the unload/load station and the operator that performed the rotation of the part for both 

PTO and Cover parts. Once the conveyor arrived to the Unload/Load Station it released 

the capacity making it available to the operator to perform the rotation, however, if the 

station was busy the conveyor had to wait until the capacity for both the operator and the 

station become available.
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In Region C once the operator performed the unload operation (if the part were 

polished in both sides) or the rotation (if the part were polished in only one side and 

required to go back to the line with high priority while queuing). If the part needed to go 

back into the line, its status was changed to the value of two, and had a higher priority in 

the next conveyor routing.

The next time that the part reaches the Unload/Load Station, the part would be 

unloaded and follow a similar procedure when moving from this station to Gaging, 

Finishing, and Wash Work Centers. It is important to notice that the queue line at the end 

of the polishing line is called Drivetrain Buffer, which is the WIP between this line and 

final assembly that included all the finished parts coming out of the polishing line. This 

variable is a key variable for management since improvement of the production levels of 

the line will improve the Drivetrain Buffer, allowing more parts to be delivered before 

final assembly and will help to improve the assembly rate of the main production line.

In Figure 7 the same algorithm performs the same operations for PTOs, but with 

the change that in the first one there are three work centers and for Cover parts there are 

only two work centers. In this way, the algorithms shown in Figures 6 and 7 will be 

working at the same for the same computer model, and will give priority to produce 

based on number o f finished parts for each type in the Drivetrain Buffer. The processing 

times for each of the work centers depend on the time ranges previously defined for each 

resource, including the operator and each work center.
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Experimental Groups

Several scenarios were run using the current operational values of the system that 

will be entered into a simulation model, in order to replicate the behavior o f the automatic 

polishing line. The state transition diagrams presented in Figure 6 and 7 were coded into 

the simulation model including both production parts into the same system, which is 

presented in Figure 8.

i  P rn M n rie t a u to s a v e .m o d
I File E dt Vtow BuJd Simulation Output Tools Window H *wtmm

Ertty... 1 Location... l o t  O ip il 1 MoveLotfc.
PT0196 UNLOADSTATION : wait 2 minDOit status-2 thenO H B pT0196 :I0C13 IFsUtus-1.1 stotus*200MOVEV
PT0196 .....[Gage ................ [wait 2 | |F T 0 1 9 6 .Gage ' -F sttfus«2 ; MOVE WTM Employ
PT0196 | Finish Iwai2(nln :
PT0196 jtMash 1
PT0196 1 4 1 :■ ■ ■ HHH H H I

PTO WORK CENTERSCOVER WORKCENTERS
New P rocess 

Add Routing

Find P rocess

PTO 95

%  PT0196 
%  PT0197 
0 Covert 

Cover2

il status=2 then

graphic 2}

Figure 8. Discrete simulation model for the polishing automatic line

The first three machines on the right represent the workstations available to 

process PTO parts, and the other two are exclusively assigned to polish cover parts. The 

model is in design view, and shows the major components of the discrete simulation 

model used in order to construct the algorithms developed in Figure 6 and 7. This was
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the first approach towards the development of a dynamic simulation model that replicated 

the behavior of the automatic line. The management goals for developing this system lies 

in the prospect of simulating several production schedules and integrating them with a 

highly scalable Enterprise Resource Planning System called SAP.

The final outcome of this project must allow management to generate 

optimization strategies using full factorial designs and genetic algorithms in order to find 

variable levels that affected the production, the utilization, and the inventory levels inside 

and outside the polishing line. In this way, the company was able to generate a virtual 

manufacturing plant that replicated the behavior of the current manufacturing systems, 

and that had a higher level of complexity than the one presented in this project.

This research integrated available production time, production requirements, 

machinery and operator capacity, raw material, and other constraints into the same 

system. Figure 9 presented a block diagram that identified all the processes and inputs 

required for each phase of the project, in order to optimize the system based on using two 

approaches: full factorial designs and genetic algorithms.
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Figure 9. Block diagram representing the research methodology

Due to the limitation of resources in order to perform the present study by the 

company, this research was intended to be a pilot project to initiate a new development in 

the manufacturing facility of this automotive manufacturer towards simulation and 

optimization of the whole plant. Currently the company lacks instrumentation, training, 

experience, and software capabilities in this area to create such a project by themselves,
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and it is not in the interest of the researcher to expand the current study to other sectors of 

the plant.

The initial historical data used to create the first discrete manufacturing model 

using Table 1 and Table 2, considers system constraints, capacities, cycle times, and 

production outputs. These elements were coded and compared with the performance of 

the developed model versus the outputs of the real process.

Table 1. Initial information o f the real system

Part Type
Machine

Cycletime
Min

Load/
Unload
Time
Min

Gaging
Time
Min

Gaging
Freq

Finish
Time
Min

Wash
Time
Min

RC R163964 F 64.377 " 4.7304 5.524667 6 ' 7.812 5.5
PTO R183195A r 66.996 r 4.8852 0 0 0.02 0
PTO R183196A r 54.936 ' 4.8852 0 0 0.02 0
PTO R183197A F 68.508 F 4.8852 0 0 0.02 0
PTO R183195B F 23.526 r 4.0158 5.143 6 ' 9.441 5.5
PTO R183196B r 18.675 r 4.0158 5.143 6 *■ 9.441 5.5
PTO R183197B ' 20.961 F 4.0158 5.143 6 F 9.441 5.5

Table 2. Maximum production per day

Material Pieces
COVER RAW 8

COVER FINISHED 8
PTO RAW 2

PTO FINISHED 6

In Tables 1 and 2 the time required to process each operation is established, and 

the simulation model must not have a statistical difference greater than 1 % (which 

includes the variation, shutdowns, and maintenance of the automatic machines included
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in the line and it is the standard value used by the company used for controllable 

variation) in order to be considered valid. In the same way, Table 2 provides the 

maximum number of raw and finished pieces that the current polished line is producing 

during a regular day. This information comes from measured results from the company 

and machine specifications from the CNC manufacturer.

Scheduling Scenarios

In order to find improved or optimized scenarios, a set of key variables would be 

selected based on the current managerial interests. Those variables were identified in the 

model using Figure 10, that were input into the system and others were displayed during 

the simulation run, their default status was Time Series, in order to collect information as 

their values change in time.

T m ~ View BJd Stmiebon Output Tools Window Help

H H H i
lean .( *> Type.

Yet jWPt neper ID Tme Serlee, Time !
Ye* iWP2 neper iO I Tine Series, Tine
Yes «*>3 neper - iO | T*ne Series, Time :
Yes MP4 neper 0 [TmeSenee.Tme '
Ye* iwPS neger ID Ttne Series, Tme :
Yes 1 Total neper 0 .tme Series. Time
No :A195 neper ; 74.44 Tme Senes, Tme
NO JB19S neper 126.14 Tme Sense, Tme ■
No A196 neper 61 04 Tme Senes .Tme ;
NO 0186 neper 20.75 Tme Senes, Tme
No ;A197 neper ;76.12 Tkre Series,Time .
No ' ”0197..................................  ................................... neper 23 29 Tme Series. Time
No iCove, Heper |71S3 ITme Senes, Tme

0 m e  m i  0 m il 0 TTTTI 0
MocUl K«y Variables

Figure 10. Variable definition for the discrete simulation model
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The variable description is shown in Table 3 with its name, description, and initial 

value. Each variable will be input into the model, and with another default values that 

monitor the behavior of each of the workstations for example: utilization, time in transit, 

throughput, and many others to be discussed during the optimization phase.

Table 3. Initialization values for the user-defined variables

Variable Description

Initial

Value

WIP1 Work in Process (WEP) for Cover 1, measured in units. 0

WIP2 Work in Process (WIP) Cover2, measured in units. 0

WIP3 Work in Process (WEP) for PTO 195, measured in units. 0

WIP4 Work in Process (WEP) for PTO 196, measured in units. 0

WIP5 Work in Process (WIP) for PT0197, measured in units. 0

Total Total Production, measured in units. 0

A195 Processing time for PT0195 first pass (status=l), measured in minutes. 74.44

B195 Processing time for PTO 195 second pass (status=2), measured in minutes. 26.14

A196 Processing time for PT0196 second pass (status=T), measured in minutes. 61.04

B196 Processing time for PTO 196 second pass (status=2), measured in minutes. 20.75

A197 Processing time for PTO 197 second pass (status=l), measured in minutes. 76.12

B197 Processing time for PT0197 second pass (status=2), measured in minutes. 23.29

Cover Processing time for covers, measured in minutes. 71.33
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These values were classified as counters and static values and derived from Table 

1 and 2. The counters (initialized as zero in order to represent that there were no initial 

parts inside the system) and incremented as the number of parts enter and left the 

automatic line, representing the work-in- process, and they were measured as a discrete 

value in order to quantify the number of parts.

The variables’ names are: W1P1, WIP2, WIP3, WIP4, WIP5, and Total, that 

represented the work in process for PT0195, PT0196, PT0197, Coverl, Cover2, and the 

total number of parts called Total. The other types of variables were those associated 

with the time required for each part to be processed in every work center depending on 

the type of part and its status. For example, A195 stands for the time in minutes that a 

PTO 195 part requires to be processed in the first phase of polishing (status=l), and B195 

is the time required in minutes that the part would need after it has been switched to the 

other side.

The same logic is used to code the other parts using the following code inside 

each workstation, using a normal distribution for the times inside the line, and a 10% 

variation as the standard deviation. The procedure shown in Figure 11 gives an example 

on the logic chosen to process the parts in each work center depending on the part status 

(either 1 or 2) as well as the routing logic. For example, if  a part in the first time that 

goes into the work center will have to wait A195 minutes, the variable A195 is used to 

define the time for the first pass in the work center of PT0195, and B195 is the second 

pass defined in minutes as well.
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IF status=l THEN 
{

WAIT N(A195, .1) min 

}
ELSE

{
WAIT N(B195, .1) min 

Figure 11. Processing code example for one of the PTO work centers.

The current planning systems of the company depend heavily on legacy systems, 

and offline systems do not allow developing either discrete simulation or dynamic 

simulation. Currently the company relies on an Excel based planning system called 

“@Risk” and “XLS” that are oriented towards analysis of data, and not towards analysis 

of flow and its integration with high level systems with the limited capabilities of any 

other Microsoft Office application. The integration with MSOffice is an extremely 

important capability for the company, and it is extremely reluctant to apply anything else 

out of this structure.

The importance of having great technological tools in this global economy 

depends on price, flexibility, and integration, but also of having people trained enough to 

use them and translate this knowledge into results for the company. In the case of the 

present research, the company has small amount of knowledge in the area of simulation, 

manufacturing optimization, and the current legacy systems do not address the 

management needs towards planning in the long run.
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Currently the company is also moving towards a more advanced platform using 

Enterprise Resource Planning Systems (ERP) Technologies, with the software called 

SAP. However, the current resources are limited in order to purchase the complete 

application, and even given the considerable amount of money to be spent on the process, 

the final results did not address the current managerial need of planning and simulating 

their manufacturing processes because they are transactional oriented, and not simulation 

oriented.

The selection of two software products, Promodel and Powersim, relied on the 

need of providing an off-line approach to the project. Legacy systems do not allow 

developing detailed planning scenarios, since they record information based on 

transactions and data, and not on a long term planning view, or an extensive analysis of 

the behavior of the data in time.

For this reason, both software packages enhance the capabilities of the company 

to plan and connect to their future legacy systems. The initial model was created using 

Promodel and provided a first approach towards the development of an integrated 

algorithm using genetic algorithms (GA), and finishing with a causal structure using 

structural modeling equations.

The last part was developed using Powersim and Statistica in order to create a 

simulation model that replicated the real system, and that could be connected to the future 

Enterprise Resource Planning Software, SAP. Powersim was the base of the genetic 

algorithm optimization module, one of the most common techniques of optimization
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utilized in industry today, and the one requested by top management to be one of the final 

outputs of the present study.

Data Collection

The data supplied by the automotive company was reviewed in Table 1, allowing 

a 10% of variation for each of the data selected in order to increase the system variation. 

The model, using 8-hour days during 1-month period, and assuming normal distributions 

for each of the workstations, must match the selected data.

The final model must be easy to customize in order to increase the process 

variation as well as the instability during time reflecting stationary changes on demand. 

Currently management and middle management are reluctant to have a model that is too 

complex; however, their specifications are numerous and it will be difficult to accomplish 

such a goal with the scant resources available.

The main problem relied on the lack of experience in similar studies, and their 

applications are limited to the current technologies available to the company. Again the 

only known application currently developed that approaches the current model, has been 

developed using @Risk software. However, even though it implements a valuable 

model, it does not address the need of exploring several scheduling scenarios and 

monitoring their impact on the manufacturing floor in a simulated scenario.

With the combination of Promodel and Powersim, both needs were addressed and 

the development of online and offline planning system that supported the operation of the 

polishing line was an important factor. Changes on demand or changes in the 

characteristics of the line (such as increment in the number o f machines, employees,
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demand, and reduction of the production cycle) must be easily modified in order to study 

their impact.

In the proposed models, the systems will perform both a full factorial and genetic 

algorithm optimizations using Promodel and Powersim. The model is intended to 

provide top management with a tool to perform what-if strategies before their assembly 

lines are changed due to new technology or variations on demand.

Statistical Analysis

After each simulation run using both optimization methods several statistical 

analysis (moving average, standard deviation, machine and operator utilization, work in 

process for each of the monitored, total production, blockage time, total of entries per 

work station, average contents per work station; percentage that each machine was in 

operation, idle, waiting, and blocked; average time per part that was in the system, 

waiting, in move logic, waiting for resource, and in operation; normal probability plot of 

residuals, path analysis, and others) would be performed inside the model, and the final 

results would be saved using a *.txt file. Please refer to the Appendix A for further 

details.

The three variables to compare and analyze are as follows:

1. Cycle time for each part (PT0195, PT0196, PT0197, Coverl, and 

Cover2) that enters the assembly line.

2. Queue size in front of assembly line.

3. Utilization of each of the work centers (three work stations to process 

PTOs and two to process Covers)
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Using the current reference values, a causal-comparative model was constructed 

after the most important variables were identified, in order to explain the causal 

relationship inside the manufacturing line. This relationship was explained using 

statistical analysis to the strength of the relationship between the most important variables 

that affected the behavior of the process.

This causal-relationship diagram will help management to understand not only 

what variables affect the size of the Drivetrain Buffer, but also what variables have a 

causal relationship inside the process and its statistical behavior; and the consequences of 

changes will be evaluated using structural modeling equations (SEM) applying the 

computer software “Statistica.”

Summary

The current research was designed to develop three computer models using 

discrete, dynamic, and causal comparative simulation grouping several parts with a 

common purpose in order to develop a system. The selected area for this research is a 

polishing line in an automotive manufacturer that is interested in exploring simulation 

techniques to create a virtual manufacturing plant before production strategies are 

implemented.

Several variables to analyze were selected by the Drivetrain Division 

Management in order to be improved (optimized) in order to replicate the real operations 

of a polishing line. The software selected for the project combines the utilization of 

Promodel, Powersim, EQS, and Statistica in order to develop the initial models and 

perform the optimization (improvement) algorithms. The first model takes a discrete
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simulation approach, and it is directed to an initial understanding of the variables, 

relationships, and flows that occur inside and outside the polishing line, and developing 

an initial optimization using full factorial design.

The second model was designed to create a dynamic simulation in order to 

integrate the initial state transition diagram and the relationships validated with the 

discrete simulation, in order to develop a model that allows integrating this process with 

ERP technology software called SAP. With this model another optimization strategy will 

be tested using genetic algorithms (GA) and compare with the solution obtained using 

full factorial designs.

The comparisons and analysis between the real system and two simulated models 

were done using statistical techniques (structural equation modeling, scatter plot diagram, 

eigen value plot, moving average and standard deviation), in order to compare their 

behavior and rank their performance versus the real system. However, due to the low 

variability of the system and its complexity to be simulated, does not provide a tool that 

can be easily used by any manager since it requires a high level of expertise and 

experience that currently the company does not have.

For this reason, all work of this research was concentrated on developing models 

that included the optimal (improved) variables with the correct relationships, rather than 

simply matching numbers. The third causal relationship model demonstrated how 

causality theory can be included into the developing of complex simulation models, and 

generates initial structures that explain the cause-effect relationships inside the polishing 

line.
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CHAPTER IV 

SIMULATION RESULTS AND DISCUSSION

The purpose of the present research was to develop and evaluate a model that 

generated an improved system for the polishing line of the Drivetrain Division of a 

tractor manufacturer considering the current constraints.

The simulations generated using the discrete and dynamic algorithms were run for 

8 hour days during 30 days in order to represent a specific seasonal demand that the 

process must perform according to the historical data available in Tables 1 and 2.

Previously GPSS/H and PROOF simulation models were developed in the engine 

division (Choudry, 2000). However, their performance was still not close to the levels 

desired by the supervisor and management; moreover that interface is built using a low 

level system that interacted with Microsoft Excel called XLS, as well as another 

application called @Risk, which was very desirable for the common user but lacks the 

control to modify and customize changes in the polishing line for advanced discrete 

simulation applications and algorithms.

Also, the lack of expertise in the company directed towards manufacturing 

simulation also affects the study, since no previous project has been done in any other 

part of the process of the manufacturing plant. The generated model contains arrival 

cycles of the parts to the line, processing sequences, machine operation times, routings, 

logics, path networks, locations, and part types that maintain the current history and 

expectations of the supervisors in the line, however, there is no clear equipment that 

validates such results.
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The combination of discrete and dynamic simulation in the study complemented 

the decisions drawn from each simulation model since its findings were similar. Besides 

that the two approaches had two different final users: discrete simulation was ideal for the 

supervisor and operations manager to visualize and control their levels of productions, 

cycle times, material flow, and related information.

In the other way, system dynamics was directly related to provide top 

management with a cost oriented approach to monitor their processes based on inflows 

and outflows of data, that can also be statistically analyzed, close to discrete simulation, 

but without the complexities of capacity planning that the first one required. Besides, 

since the system dynamic software was part of the current SAP Platform, advanced 

enterprise resource planning application, the genetic algorithm is quite oriented towards 

corporate policies of the usage of such technology for top-level decision-making.

It is important to consider that the two selected optimization strategies (genetic 

algorithms and full factorial designs) were chosen in order to compare which one 

provided the best information to achieve the same goal. Full factorial designs were 

selected as part of the discrete simulation model because of its flexibility to work in 

discrete simulation environments and because most of the processing times allowed this 

functionality to be easily integrated into the model.

The genetic algorithm search engine was used applied to the system dynamic 

models, because it was a specific managerial requirement and was tested against the 

results obtained from the discrete simulation model and compared. However, if  the 

variability was not high enough because of not only the processing times but also the
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delays caused by the routings and sequences in the polishing line, it would be difficult to 

accurately conclude over which one is the best strategy to be selected to study the 

different available processes.

The Discrete Simulation Model

The user interface and the discrete simulation model can be seen in Figure 12, and 

its representation in dynamic simulation for both PTO’s and covers in Figure 14. For the 

discrete simulation model, the changes done over the model cannot be shown during the 

simulation run, and only the selected work-in-process (WIP) and total production values 

were displayed. In comparison with the current model built in XLS and @Risk software, 

this discrete simulation model was more flexible since it allowed keeping track of 

detailed information by resource, work center, and routings. The models built in XLS and 

@Risk did not provide enough information in order to fully understand the potential 

problems that could occur inside the line because of the complexity to be coded, its lack 

of flexibility, and its limitation to a small level of detail and did not allow to fully 

represent the real complexity of a manufacturing system with an advanced algorithm that 

interacts directly with the graphic environment.

However, the statistical information was tracked internally and displayed at the 

end of the simulation run, and the researcher simply needs to identify the previously 

selected variables to monitor and considered the rest of the information as guidance since 

it is difficult to optimize or improve every single part of the system without affecting 

others.
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Figure 12. Simulation run for the discrete model

The selected variables were the processing times for each of selected work 

centers, using a range of values from low to high, with a 1% of expected variation, which 

was the company’s standard that included shutdowns, maintenance and blockage. Figure 

13 shows those ranges as well as the optimization module using full factorial designs that 

will be the initial point to look for optimized levels for the polishing line; however, this 

approach is believed to generate little impact over the system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



65

74.18A195 Real73.69
RealB195 26.1425.87

A196 61.04 Real60.42
B196 20.75 Real20.52
A197 76.12 Real76.12
B197 23.29 Real23.05
Covei 71.54 Real70.82

Figure 13. Full factorial optimization module for promodel

At the end of the simulation run, the model generated output reports describing 

production levels, resource and machine utilization, inventory and work-in-process 

levels, and total cycle time, which was a function of all the individual process cycle 

times. The model generated this information in a text file that could be easily shared on 

the network or saved into a local drive. A copy of the output appears in Appendix A.

On Figure 14 the first run without optimization was performed in order to analyze 

the behavior of the simulated system under current working conditions. Each part was 

represented by its color, and the graph represented the average number of parts in work- 

in-process in time measured in hours. The 30 simulated days were represented using 

replications for the same 8-hour periods, and using processing times based on a normal 

distribution with a standard deviation of .01.
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The graph represents each variable using the following nomenclature:

• WIP1 = W ork-in-process of PTO195

• WDP2= Work-in-process of PT0196

• WIP3= Work-in-process of PT0197

• WIP4= Work-in-process of Coverl

• WIP5= Work-in-process of Cover2

It was evident how an initial step function is generated for WIP3, WIP4 and WIP5, 

and not for WIP1 and WIP2, that was more stable. After one hour the model stabilized 

generating an average of 8 parts in work-in-process for the first group and almost 2 parts 

for the other group.

The difference in behavior depended on the availability of parts in the queue as well 

as their processing times and the availability of the worker to control and handle the 

request of all workstations and the automatic conveyor.
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Figure 14. Work-in-process levels (WIP) for each part type

Figure 15 shows the utilization for each work center as a percentage of the total 

available time, which provided a brief overview of how close the system reflected the 

real performance of the polishing line of 99%. The results of the discrete simulation 

model are presented in Tables 4, 5, 6, 7 and 8 reflecting the differences between the 

actual system and the simulation model. However, it is important to consider that the 

submitted values are approximations since the company does not perform any work-study 

or detail analysis over its processes in order to improve processing options.

The values of work center utilization were quite close to the real or “expected 

values” but there are some differences in utilization that were corrected with the 

optimization, but they are limited to the availability of the company to meet the suggested 

improved parameters.
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Figure 15. Utilization per work center

Table 4. Production levels for the discrete model and the actual system

Part
Type

Expected
Production
(parts/day)

Model
Production
(parts/day)

Standard
Deviation

Expected 
Average 

Number of 
Parts in 

WIP Status 
(parts/day)

Model 
Number of 

Parts in 
WIP Status 
(parts/day)

Standard
Deviation

PT0195 8 7.99 0.04 2 2.55 0.2

PT0196 8 7.98 0.10 1 1.55 0.30

PT0197 8 7.96 0.40 8 7.80 0.25

Cover 1 8 7.98 0.25 12 10.88 0.40

Cover2 8 7.99 0.34 9 8.2 0.82
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Table 5. Utilizations per  work center fo r  the discrete model and the actual system

Part Type Expected 
Utilization (%)

Model 
Utilization (%)

Standard
Deviation

PTOCenterl 99.0 98.96 0.03

PTOCenter2 99.0 98.6 0.02

PTOCenter3 99.0 98.0 0.016

CoverCenterl 99.0 70.0 0.021

CoverCenter2 99.0 60.0 0.012

Table 6. Production levels for the discrete model 
and the actual system after full factorial optimization

Part
Type

Expected
Production
(parts/day)

Model
Production
(parts/day)

Standard
Deviation

Expected 
Average 

Number of 
Parts in 

WIP Status 
(parts/day)

Model 
Number of 

Parts in 
WIP Status 
(parts/day)

Standard
Deviation

PT0195 8 7.99 0.04 2 2 0.001

PT0196 8 7.98 0.10 1 1.03 0.01

PT0197 8 7.96 0.40 8 8.2 0.02

Cover 1 8 7.98 0.25 12 12.56 0.2

Cover2 8 7.99 0.34 9 9.01 0.03
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Table 7. Utilizations per  work center fo r  the discrete model
and the actual system after optimization

Part Type Expected 
Utilization (%)

Model 
Utilization (%)

Standard
Deviation

PTOCenterl 99.0 99.0 0.01

PTOCenter2 99.0 99.0 0.01

PTOCenter3 99.0 99.0 0.01

CoverCenterl 99.0 75.0 0.02

CoverCenter2 99.0 70.0 0.03

Table 8. Optimized values for the processing times for each work center

Initial Values 
(Min)

Factorial
Optimization

(Min)
A195 74.44 73.80

B195 26.14 25.89

A196 61.04 60.34

B196 20.75 20.67

A197 76.12 75.74

B197 23.29 23.24

Cover 71.53 70.51
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The System Dynamic Model

The initial discrete model was useful to comprehend the initial system, and to 

optimize the selected variables using full factorial designs. However, the initial 

managerial required a genetic algorithm model be developed capable of interacting with 

the new SAP system; therefore the system dynamic model needed to be simplified in 

order to integrate the flow of the line, and the work-in-process.

Figure 16 shows a simplification of the model into a dynamic flow diagram that 

can be directly linked to the SAP platform into their main database using the software 

Powersim (see the complete model in Figure B1 in Appendix B). The dynamic model 

was developed after the system has been clearly identified using the state transition 

diagrams presented in Figure 7 and 8. This simplification responds to orientation towards 

improvement of the flow inside the line based on the work in process (WIP), and 

processing times for each of the polishing centers.

The processing time would be considered to be the rates that move the parts from 

workstation to next and the accumulation of inventory in the line. The flows and rates 

were part of the optimization (improvement) strategies using genetic algorithms, which 

constituted the second part of the study.
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4 n o c z

Figure 16. System dynamic model for the polishing line

Both models, discrete and dynamic, have the same outputs and processing times, 

based on the Tables 1 and 2 from Chapter III. However, their approach was totally 

different. The first one was oriented towards consideration of low-level decisions, but the 

other one was more oriented to the analysis of information inside and outside the line.

Table 9 and 10 show the final output coming out of the system dynamic model 

that, as well as the discrete model, makes the comparison between required production 

levels and the information generated from the system dynamic model.

For this reason, this model was more appropriate for high-level strategic 

decisions, because it allowed one to connect the data for each individual work center to
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the SAP system, which linked costs and other transactional information to this planning 

system that are uploaded from the SAP BW system.

The discrete system was useful if the specific changes to the line have been 

developed using the dynamic system, but a lower of level planning was required. For 

example, once that it was determined that the production rate for coverl could be 

improved by reducing the cycle time of operation 2 and its impact validated by the rest of 

the system performance, it was important to schedule the task it did not affect the rest of 

the flow in the line.

This could be achieved if the new rate was introduced into the system, and 

operational optimization was desired, instead of focusing on overall line performance. 

Figure 17 validated this information showing that the same performance viewed in the 

discrete simulation model was also affecting the dynamic simulation model for each of 

the individual WIPs, replicated 30 times for 8 hours each.
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Figure 1 7. Dynamic model for the work-in-process levels (WIP) for each part type

Table 9. Production levels fo r the dynamic model and the actual system

Part
Type

Expected
Production
(parts/day)

Model
Production
(parts/day)

Standard
Deviation

Expected 
Average 

Number of 
Parts in 

WEP Status 
(parts/day)

Model 
Number of 

Parts in 
WIP Status 
(parts/day)

Standard
Deviation

PT0195 8 7.28 0.03 2 2 0.001

PT0196 8 7.26 0.09 1 1 0.05

PT0197 8 7.27 0.38 8 8.01 0.002

Coverl 8 7.7 0.17 12 11.99 0.010

Cover2 8 7.8 0.34 9 8.989 0.025
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Table 10. Utilizations per work center fo r  the dynamic model and the actual system

Part Type Expected 
Utilization (%)

Model 
Utilization (%)

Standard
Deviation

PTOCenterl 99.0 98.96 0.03

PTOCenter2 99.0 98.6 0.04

PTOCenter3 99.0 90.0 0.02

CoverCenterl 99.0 70.0 0.01

CoverCenter2 99.0 60.0 0.01

The Powersim software allowed the researcher to look for optimized scenarios 

using its optimization module (Figure 18), in order to construct the genetic algorithm 

based on the developed model for the polishing line (Figure 16). The researcher will 

focus on improvement of the processing time and work in process levels inside the line, 

with the same ranges used in the discrete simulation model, and shown in Figure 12.

As the final outcome, it was desirable that the assembly queue be maximized in 

order to determine the maximum production that is possible from the polishing line. For 

that reason, the variables washing2 and washing were optimized (improved) because they 

were the variables that the polishing line was supposed to increase. In this way, the 

results of using the same range of values applied Promodel but this time applied to the 

system dynamics model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



76

The results were shown in Table 11, where the maximum possible outcome based 

on the previously defined constraints the washing2 and washing values for PTO and 

Cover, respectively are 15 and 24.47 parts. These results mean that at the end of the line 

the maximum number of possible parts to be produced by the polishing line were 

approximately 40 (8 parts of each type).

In this way, the modification of the assembly line using the current values of the 

machinery and considering the low allowed variation in the polishing approximately only 

37 parts can be produced during a regular work schedule of 8 hours, meaning that close 

to 3 parts need to be produced in extra time. The approximation of the model reflects that 

the system is working to maximum capacity and that no improvement is possible 

considering the types of machines and levels of production of the line, as well as its low 

variability.

This conclusion did not differ much from values reached with the full factorial 

optimization model, and further analysis needed to be made in order to improve the 

approximation of the processing, logic, and flow of the current polishing line.

Table 11 shows the suggested levels using genetic algorithms in order to improve the 

polishing line performance according to the above conclusions using 3 parents, 300 

generations and 15 offspring as the standard for each generation considering that the 

sample size was sufficient because it is bigger than 30 and because of the low variability 

of the system (refer to Appendix C for the variable codification).
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Tables 12 and 13 show that the optimization strategy using genetic algorithms does 

not improve significantly the final output of the simulation model. The initial low 

variability of the system plays an important role in this final output and that made it 

difficult to compare this results with those coming out of the discrete simulation model.
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Figure 18. Optimization module of powersim for genetic algorithms
Source: Powersim corporation

Table 11. Final values o f the genetic algorithm optimization module

Washinq2 22.335 PT0C3 1.440 PT0195 rate 0.457
Washing 15.888 PTOC2 -1.322 LoadC33 0.282

WIPCoverCenter2 8.250 PTOC1 2.159 LoadC3 0.617
WIPCover2Status2 -8.629 UnloadC33 0.384 LoadC22 0.356
WIP Coverl Status2 -8.629 W ash Rate2 1.035 LoadC2 0.383

SemiPTO -9.280 W ash rate 0.056 LoadCI1 0.362
WIPCoverCenterl 8.250 load11 0.011 LoadCI 0.375

SemiCover -15.829 load22 0.011 Load2 0.011
RawPTO 5.223 unloadl 0.006 Loadl 0.011

RawCover - 16.368 UnloadC3 0.316 Gage rate2 0.157
Queue2 -15.806 UnloadC2 0.504 Finish Rate 0.045

PTOCenler3 -0.442 UnloadCI 0.523 Finish rate2 0.737
Queuel 24.222 UnloadC11 0.331 Coverl 0.006

PTOCenter2 4.405 PT0196 rate 0.470 Assem bly rate 0.047
PTOCenterl 2.664 PT0197 rate 0.412

*Note: refer to appendix C for nomenclature
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Table 12. Production levels for the 
dynamic model and the actual system after optimization

Part
Type

Expected
Production
(parts/day)

Model
Production
(parts/day)

Expected 
Average 

Number of 
Parts in 

WIP Status 
(parts/day)

Model 
Number of 

Parts in 
WIP Status 
(parts/day)

PT0195 8 7.33 2 1.99

PT0196 8 7.33 1 .78

PT0197 8 7.33 8 7.7

Coverl 8 7.5 12 11.5

Cover2 8 7.5 9 8.88

Table 13. Utilizations per work center fo r the 
dynamic model and the actual system after optimization

Part Type Expected 
Utilization (%)

Model 
Utilization (%)

Standard
Deviation

PTOCenterl 99.0 98.96 0.01

PTOCenter2 99.0 98.6 0.02

PTOCenter3 99.0 90.0 0.03

CoverCenterl 99.0 70.0 0.02

CoverCenter2 99.0 60.0 0.01
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The Structural Equation Modeling Model (Causal Model)

As part of the current research a causal correlation model for a manufacturing line 

was developed using the previous generated information. The idea was to have a deeper 

understanding of the factors that “cause” the performance of the different manufacturing 

variables. In order to create the model based on the previous information, the initial data 

would be utilized and the variation of the simulated discrete model would be combined in 

order to create the model. In Figure 19 shows those causal blocks created based on 

discrete and dynamic simulation models in order to derive and create a causal structures 

that explains the behavior of the current polishing line.

PTOC1:
WIP

Utilization
Q ueue

PTOC2:
W IP

Utilization
Q ueue

PTO C3:
W IP

Utilization
Q u eu e

CovetC 2:
W iP

Utilization
Q u eu e

C overC I:
W IP

Utilization
Q u eu e

Production:
PTO

C overl
C over2

Figure 19. Causal structural model for the manufacturing polishing line

In order to perform the causal analysis Table C l, see Appendix C, a population of 

5000 samples was generated for work-in-process (WIP), utilization, and processing times
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for each work centers. The analysis was centered on these three main variables and their 

influence on the production levels for each of the product types PT0195, PT0196, 

PT0197, Coverl, and Cover2.

The generated random values provided a detailed understanding of the existing 

correlations inside the manufacturing line that defined the causal-correlation model to be 

presented at the end of this chapter. The results of the correlation analysis are presented 

in Table C l, in Appendix C, and created the basis in order to generate inferences 

regarding the impact that each variable has over the process performance.

In order to analyze the different selected variables by a computer program, these 

results need to be analyzed using a standard coding system in order to identify it in the 

analysis. For that reason, Appendix C shows this coding system defining each individual 

variable utilized in the generation of the causal-correlation model analyzed using 

Statistica Software.

In this way, using the correlation values from Table C l, the significant factors are 

shown in order to reflect that its relation is statistically significant (p<0.05), and that it is 

important to explore its influence in more detail. Figure 19 presents a path diagram that 

represented a possible causal structure for the selected area o f study. Because of the 

issues properly described in the literature review, this diagram was only one of the many 

possible alternatives based on the selected level of statistical significance (p<0.05).

In general the idea of examining correlations between variables was not a new thing. 

Even though that correlation does not necessarily imply causation, the same analysis 

could be used to “infer” causation as it was explained in the literature review.
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In Figure 19 an alternative causal structure for the manufacturing line is presented 

using only those relationships shown to be significant based on the correlation 

coefficients (with values higher than 0.02). This level of correlation was small and close 

to insignificant and increased in variability up to 30% was added in order to identify the 

causal correlations that would not show clearly because of the reduced amount of data 

and low level of variability of the current system. In this way, 13 variables were 

identified using the eigenvalues mathematical criteria in order to quantify its impact over 

the statistical model ( see Figure 21). According to Bollen (1989), in order to consider the 

eigenvalues significant its value was bigger or equal to 2, meaning that the set of selected 

values shown in Figure 18, only WIP and Queue size of cover center 2 did not show a 

significant impact over the polishing line performance even at levels of 30% variation 

(response variables PT0195, PT0196, PT0197, Coverl and Cover2).

Figure 20 represents an initial causal structure for the control of the polishing line, 

and a way to clarify the impact of the different set of variables identified in the process.

In this way, it is possible to determine the relationships that exist within the polishing 

line, that control its behavior and that allowed the improvement of its final outputs.

The values used to calculate the eigenvalue curve have a low level of correlation 

because of the effect of variability in the system. However, the increased variability 

reflects the existence of a possible causal structure shown in Figure 20 that might 

represent the best way to handle and control the polishing line in case that any changes 

are introduced in the future. This figure might suggest causation based on correlation, but
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the logic analysis performed using the supervisor insight validates the found structures in 

order to clarify the behavior of the line.
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Figure 20. Alternative causal structure for the polishing line

t f i l  W P l  End of y$$ns\
Significance ■- 

p a  M g  Region $$&&&
Bgen Values

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 26

Variable Number

Figure 21. Eigenvalues for the causal-correlation model o f the polishing line
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From Figure 20 and Table D l, in the Appendix D, one can see the most 

significant variables (those that have the correlation coefficient with a minimum value 

equal or higher to 0.04 (absolute) and a maximum value lower than 1). For example, for 

the processing time at work center 3 for PT0197 affects significantly the work in process 

(WIP) for the PTO work center 1 with a coefficient of 0.05. This relationship might 

indicate that any variations in the processing time for work center 3 will affect 

importantly the level of WIP in work center 1. Although the relationship between the 

processing times for work centers 1 and 2 though is 1, it should not be considered 

meaningful since having both the same characteristics will have the same effect over the 

system.

The inverse relationship between the utilization for the PTO work center 1 and the 

work in process (WIP) for work center 2 was also significant, this could be explained by 

the fact that with a higher utilization of work center 1 the queue size for work center 2 

would be inversely affected. Generating a causal correlation structure improved 

management of the effect of each work center and its associated variables could be 

understood based on its impact on the overall line performance.

In this way, the improvement or change in the manufacturing line can be 

developed based on the impact that each variable has over the line performance. The 

correlation coefficients can potentially suggest causation within the polishing line, and a 

change in the current variables will affect the relationships with other variables.

For example, if another machine was supposed to be added into the line, its 

impact over the flow and the key selected variables of work in process, utilization,
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processing time, and production levels, need to be restudied in order to determine how 

the rest of the variables would be affected. From a production stand point as showed in 

Table C l, see Appendix C, shows the major influence for the final production levels for 

each of the product types is caused by the following relationships:

• Production of the PTO 195 part did not have a significant effect over any other 

major variables in the system.

• Production of PTO 196 is significantly influenced by the work in process (WIP) 

levels of the Cover work center 1.

• Production of PTO 197 is highly influenced by the processing time of the PTO 

work center 2 when producing PTO 196 and for its utilization, and also with a 

major influence from the WIP levels at the Cover work center 2.

• Production of Cover 1 was not significantly influenced by any major factors 

within the polishing line; however, this issue might be caused because of 

inaccuracy from the original data that affected the researcher along this project.

• Production times for each cover center affected each others processing times. 

However, this relationship was clear since there are only two work centers, if  any 

one malfunctions the queue size was increased and the production of both cover 

parts was affected. This is obvious since there are only two work centers for 

production of covers, in comparison to three for the production of PTOs.

It is important to consider that a model that is consistent with reality must also be 

consistent with the data (Bollen, 1989). But even if  the data were consistent with a model,
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this does not imply that the model is consistent with reality. In the case of this model, the 

selected structure seems to be logically related to reality, especially with respect to the 

cover work centers.

It seems that their processing times are interrelated, which is logical given that 

depending on the time from one there would be a higher queue in the other. However, it 

is possible that these processing times are not connected with any other part of the main 

model, which causes the researcher to suspect that there are other variables that affect 

these work centers that are not considered yet in the model, unfortunately no additional 

data were available to continue the analysis validation study of the simulated and real 

data.

However, it is important to notice that as can be seen in the Appendix D, the 

overall line behavior even though that the random numbers are generated using a normal 

distribution, in overall there is a lack of fit of the line with the normal distribution. The 

explanation is because of the combination of the different times is not stable around all 

the simulation runs, there are delays that affect its performance and thus affects the 

statistical values of the monitored variables.

Besides, if  there were a part in movement between one or two work centers in the 

limit when that part is finishing and the other one is arriving, there would be a block 

station status. This will mean that the work center is not operative for a short period of 

time, and it will cause an additional delay between the switch between processing and 

free state. These problems are clearly reflected in the significant loop found between 

ClC2Time (processing time for part Coverl in work center 1), ClC2Time (processing
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time for part Coverl in Work Center 2), and C2C2Time (processing time for part Cover2 

in Work Center 2) shown in Figure 22.
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C2C2Time
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Figure 22. Material flow deficiencies

This isolated control loop reflects these problems that were natural to any process 

when it was operating over capacity. The only solution would ideally eliminate the 

blocking time while improving the flow within the line, but these problems will always 

affect the variability of the system.

Using the current model, it was detected that around 5% of the time there is at 

least one of this type of failures in the line, and thus the performance will deviate from an 

ideal smooth move of materials inside the polishing line affecting the collection of 

statistics during the simulation run. However, if  the variability due to this factor causes 

the system to increase the answer does not rely on the optimization of the processing 

times, since the variability of the system by itself is very small, the answer of the
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increasing the Drivetrain Output may be simply improvement of the flow of material 

within the line in order to avoid the lack of capacity during this cycles.

In this way, addition of another load/unload workstation might as well as a 

secondary automatic transporter will resolve the production problem since the current 

processes were performing at maximum capacity, and the relationship between variables 

clearly identifies that those deviations were attributed to this factors, and the available 

capacity in the process is quite limited.

In summary, the development of a dynamic simulation model and its optimization has 

been reached with an initial causal-correlation structure that might indicate the variables 

that are the most sensitive to variation in the polishing line. It is clear that even though it 

was simple to understand, it was difficult to quantify the interrelationships between the 

selected group of variables and the final process performance.

The results of the Structural Modeling Equations are shown in Appendix E in 

Table E l, and determine the initial causal structure identified with the model. The 

significant effects are highlighted in red in order to show the R Square and the 

significance levels with 5% (if p<0.05 is significant). In addition, as it can be seen in 

Figure 23, the results coming from the structural modeling equation model reflects the 

effects that each individual variable have in the system, which complements the findings 

identified in Appendix D, Figure D1 and D2, because of the lack of normal fit might also 

be caused of the big differences in the mean.
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Figure 23. Effect size for all the variables included in the study 
(source data in Appendix E)

In this way, the structural design has low correlation coefficients because of its low 

variability and its big differences in mean. However, the structural model presents an 

initial solution to explore in order to develop more advanced algorithms or detailed 

scenarios by the company. Part o f the problem of developing such an advanced 

methodology is that in a small level of application the effects o f variability and the 

algorithms required to control the involved variables will increase the analysis time, same 

principle applied to artificial intelligence projects where high-level analysis can be easily 

performed in comparison with a simple problem.
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For example, if an AI algorithm or structural modeling software is built to control 

or analyze the production of the whole plant, will give better results rather than studying 

how only one operation performs. In relation to the project, the level of detail for the 

selected polishing line was too narrow and this is just one of the reasons why the impact 

of the final results are small because of the complexity of the decision making inside the 

polishing line. The machine utilization of the work centers was increased with the 

additional transporter, and thus improving the Drivetrain Buffer (total production for each 

finished part type) production levels at the end of the line.

Finally, it was important to consider that this model now can be linked to the 

table related to SAP Software since the interface of the system allows it. The use of 

advanced database systems, like OLAPs, allowed the present model to be shared within 

the company and populating it with SAP and add the same analysis to other assembly or 

polishing lines because the logic and routings were substantially similar.
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CHAPTER V 

CONCLUSIONS AND RECOMENDATIONS 

Conclusions

This research was the initial study of the possible application and combination of 

three different areas in industrial environments: discrete simulation, structural modeling 

equations, and dynamic simulation.

The current research identified the constraints inherent to the polishing line of the 

automotive manufacturer, in order to establish an initial simulation model and 

improvement strategies that allow management to have a base model that replicates the 

key processes of other assembly and polishing lines of the company.

The answers for the research questions are stated as follows:

1. What were the most important variables that affect inventory levels of an 

assembly line of an automotive manufacturer?

Based on the study, the main variables that management was interested to investigate 

and were essential for the performance of the line were: work-in-process for each part 

type, work station and operator utilization, arrival rates of the parts into the line, 

processing times for each work station and the unload/loading times, routing priorities, 

and the Drivetrain Buffer (the total production of finished parts for each type of product).

2. What were the significant effects of the causal relationships identified in order 

to determine an initial model structure?
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It is important to consider that due to the low variability of the selected polishing 

line, many of the results might be close to reality because the system can be controlled 

and simulated without major difficulty, in comparison with variations of performance 

with 30% to 100%. Even though that the intermediate results look quite nonlinear, in 

overall the design of the simulation models was focused more in the analysis and 

discovery of the system, rather than how exact the data was because of the lack of 

information to validate it.

The causal-correlation model developed provides an initial understanding of the 

statistical significant variables and its relationships within the polishing line. In this way, 

management will have a better idea of the impact that a change of one of the final 13 

most important variables will have over the line and how each of them impacts the final 

production of each of the part types.

Based on the causal relationship model using structural equations modeling the 

following relationships were identified:

• Production of the PT0195 part did not have a significant effect over any other 

major variables in the system.

• Production of PT0196 was significantly influenced by the work-in-process (WIP) 

levels of the Cover work center 1.

• Production of PT0197 was highly influenced by the processing time of the PTO 

work center 2 when producing PTO 196 and for its utilization, and also with a 

major influence from the WIP levels at the Cover work center 2.
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• Production of Cover 1 was not significantly influenced by any major factors 

within the polishing line; however, this issue might have been caused because of 

inaccuracy from the original data that affected the researcher along this project.

• Production times for each cover center affected each others processing times. 

However, this relationship was clear since there are only two work centers, if  any 

one malfunctions the queue size was increased and the production of both cover 

parts was affected. This is obvious since there are only two work centers for 

production of covers, in comparison to three for the production of PTOs.

3. What constraints restrict the behavior and improvement of the selected 

variables?

Based on Figures 6 and 7 using the state transition diagrams, the constraints of the 

system were identified and included part of the simulation algorithms. For example, in 

Region A in Figure 6 the system constraints were considered in order to determined the 

available capacity of the Load/Unload stations, as well as the others work stations, 

considering either PTO parts are in the system and it is not allowed to include not higher 

or lower than two parts, or either one or two parts for Cover parts. However, the system 

did not allow including parts of PTO and Covers combined in the Unloading/Loading 

workstation, and the production rate for a given part type was determined by the slowest 

operation.

The same constraints were included in order to establish the logic that controlled 

the transporter to move inside the polishing line. Besides, the processing constraints
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shown in Region C for Figure 6 displayed the change of status for the part once it was 

rotated in the Unload/Load station. For example, once a raw part entered the system, its 

status variable changed from one to two once processed the first time, in this way this 

constraints limited the priority rules in the processing sequences since this is the way to 

determine if the part was new in the system or work-in-process, updating the proper 

statistics during the simulation run.

The queue size for all the operations within and outside the line was controlled if 

the material flow within the line was improved with the addition of another unload/load 

workstation in order to increase the number of parts in the system in comparison with the 

current levels. However, the current data measurement and historical data makes it 

difficult to totally support this argument because there is no availability of proper 

instrumentation in order to perform such analysis. With the use of the developed models 

and Six Sigma tools (scatter plot diagram, structural equation modeling, path analysis, 

simulation, moving average, standard deviation) it was possible to replicate similar 

processes in other parts of the company, and create virtual manufacturing strategies for 

process, product, assembly, flow, and capacity optimization.

4. What levels of the selected variables could be used in order to improve production 
levels?

Using the system dynamics and full factorial simulation results, Table 8 and Table 11 

there was enough information in order to determine the improved behaviors of the line. 

However, neither of those search methods gave a significant difference in order to 

determine which one was the best in order to apply it to the polishing line because of it
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the low variability. The results of both discrete and dynamic simulation models showed 

the WIP can be reduced up to 5% for PTO parts and 3% for Cover parts if  the utilization 

of the work centers is improved up to 98% with an additional transporter.

Even though that machine utilization seems to be over 90% in many work centers, 

in some cases these levels went down as low as 40%, because the machine was idle 

because the transporter was busy loading, unloading, moving, or waiting for a specific 

part and that work center has low priority in comparison with other work centers. 

However, even though that the changes made under the current conditions did not 

provide enough information about the real behavior of the line, it was expected that the 

implementation was directed to improve the production rate at least 13 % per product 

family.

Finally, the new knowledge generated from this research is mainly focused to 

identify the possibility of combining three different methodologies into one single effort 

towards an aggressive system and process optimization with the usage of advanced 

statistical techniques that are not common to industrial environments to explore the 

capabilities of the different mathematical techniques to optimize a process.
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Recommendations

The applicability to support managerial decisions with simulated models needs to 

be validated under real world circumstances, and must consider the issue of variability as 

the most important factor to control.

All simulation parameters (processing times, routings, loops, initial inventories, 

and others) need to be revisited in order to make sure that they are the main parameters 

that influence the performance of the polishing line and their behavior due to seasonality 

of the requirements of the polishing line.

The application of the current project to implement and plan manufacturing 

strategies before the allocation of resources into a specific production plan will improve 

the production efficiency and reduce the machine downtimes and shutdowns. The 

development of a large simulation algorithm that controls the total production plant is not 

suggested because of its complexity and its difficulty of modification.

The division of the plant in production groups will allow management to allocate, 

measure, control, and monitor resources in a better way in virtual environments rather 

than a complete simulation model of the facility. The application of similar computer 

based models in combination with Six Sigma tools would be quite beneficial because it 

will allow management to direct its process optimization efforts with a more strategically 

oriented approach. The utilization of @Risk Software should be limited to managerial 

models, not to operational models related to control flow, routings, capacity, and 

constraints because of its limited discrete and dynamic capabilities.
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In addition, in order to improve the material flow inside the line an another 

transporter and unload/load station is suggested to be added if the production volume is 

desired to be increased. Since the current system is working close to its maximum 

capacity and its capability to improve the current output is difficult because of its low 

variability.

The structural modeling equations model as well as the complete simulation 

models will need to be reanalyzed using the additional transporter and the new 

load/unload station, because it will increase an important change in the algorithm and will 

also change the behavior of the selected response variables.

The application of the current procedure requires not only knowledge of the 

current processes, but an extensive training in software simulation and model building. It 

is suggested to train at least one expert in the company using these types of advanced Six 

Sigma techniques since currently there is a lack of knowledge in the corporation in order 

to continue the development of the current research.
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SIMULATION AND SEQUENCING MODEL SIMULATION

General Report
Output from D:\Doctorate Work\JOHN DEERE \WAS.M0D 
Date: Jan/09/2005 Time: 01:01:05 PM

Scenario : Normal Run
Replication : 1 of 1
Simulation Time : 40.40918333 hr

LOCATIONS

Average
Location Scheduled Total Minutes Average
Maximum Current
Name Hours Capacity Entries Per Entry Contents
Contents Contents % Util

PTOCenter2 35.40918333 1 211 2.000000 0.19863
1 0 19.86
PTOCenterl 35.40918333 1 424 2.000000 0.399143
1 0 39.91
PTOCenter3 35.40918333 1 0 0.000000 0
0 0 0.00
CoverCenterl 35.40918333 1 0 0.000000 0
0 0 0 . 00
CoverCenter2 35.40918333 1 0 0.000000 0
0 0 0.00
Gage 35.40918333 1 531 1.426940 0.356642
1 1 35.66
Finish 35.40918333 1 530 1.293560 0.322697
1 1 32 .27
Locll 35.40918333 1 529 0.269000 0.0669793
1 0 6.70
UNLOADSTATION 35.40918333 2 1063 2.456259 1.22897
2 1 61.45
Locl3 35.40918333 2 1063 0.170891 0.0855037
2 0 4.28
Wash 35.40918333 1 529 0.145807 0.0363051
1 0 3.63
ENTRY 35.40918333 1 425 0.266692 0.0533496
1 0 5.33
Loci 35.40918333 2 214 1.214883 0.122372
1 0 6.12
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Loc3 
0 0

35.40918333
0.00

2 0 0.000000 0

Loc2 
2 0

35 .40918333 
1.68

999999 848 0.266164 0. 106238

Loc4 
1 0

35.40918333
0.30

999999 422 0.139436 0.0276962

Loc5 
0 0

35 .40918333 
0.00

999999 0 0.000000 0

Total Count 
0 0

35.40918333 
0.00

1 0 0.000000 0

LOCATION STATES BY PERCENTAGE (Multiple Capacity)

Location Scheduled
%

% Partially
1

% | %
Name Hours Empty Occupied Full | Down

UNLOADSTATION 35.40918333 20.28 36.55 43.17 | 0.00
Locl3 35 .40918333 92.55 6.35 1.10 j 0.00
Loci 35.40918333 87.76 12 .24 0.00 | 0.00
Loc3 35.40918333 100.00 0.00 0.00 j 0.00
Loc2 35 .40918333 89.38 10.62 0.00 j 0.00
Loc4 35.40918333 97 .23 2.77 0.00 I 0.00
Loc5 35 .40918333 100.00 0.00 0.00 I 0.00

LOCATION STATES BY PERCENTAGE (Single Capac i ty/Tanks)

Locationa Scheduled % % % % %

Name
Down

Hours Operation Setup Idle Waiting Blocked

PTOCenter2
0.00

35.40918333 19.86 0.00 80.14 0.00 0.00

PTOCenterl
0.00

35.40918333 39.91 0.00 60.09 0.00 0.00

PTOCenter3
0.00

35.40918333 0 . 00 0.00 100.00 0.00 0.00

CoverCenterl
0.00

35.40918333 0 . 00 0.00 100.00 0.00 0 . 00

CoverCenter2
0.00

35.40918333 0.00 0.00 100.00 0.00 0.00

Gage
0.00

35.40918333 29.96 0.00 64.34 5.38 0.33

Finish
0.00

35.40918333 29.87 0.00 67.73 2.39 0.00

Locll
0.00

35.40918333 6.70 0.00 93.30 0.00 0.00

Wash
0.00

35.40918333 0.00 0.00 96.37 3.63 0.00
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ENTRY
0 . 0 0
Total Count 
0 . 0 0

35.40918333

35.40918333

0.00 0.00 94.67 5.33 0.00

0 . 0 0  0 . 0 0  1 0 0 . 0 0  0 . 0 0  0 . 0 0

RESOURCES

Resource
Blocked
Name Units
In Travel % Util

Scheduled

Hours

Number 
Of Times

Used

Average
Minutes

Per

Usage

Average
Minutes
Travel

Average
Minutes
Travel

To Use To Park

Resl 1 35.40918333
0.00 6.43
Employee 1 35.40918333
0.00 25.97

1912 0.043677 0.027794 0.000000 

2865 0.067539 0.125026 0.000000

RESOURCE STATES BY PERCENTAGE

% %

Resource Scheduled % Travel Travel % %
Name Hours In Use To Use To Park Idle Down

Resl 35.40918333 3.93 2.50
Employee 35.40918333 9.11 16.86

0.00 93.57 0.00 
0.00 74.03 0.00

FAILED ARRIVALS

Entity Location Total
Name Name Failed

PT0195 ENTRY 213
PT0196 ENTRY 1
PT0197 ENTRY 142
Coverl ENTRY 35
Cover2 ENTRY 142

ENTITY ACTIVITY

Average
Current

Minutes
Entity Total Quantity 
Name Exits In System 
Blocked

Average Average Average Average

Minutes Minutes Minutes Minutes

In In Move Wait For In
System Logic Res, etc. Operation
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PT0195 212 0 11.144660 1.502986 0.000000 8.987000
0.654675
PT0196 105 1 14.850000 1.630000 0.000000 13.111000
0.109000
PT0197 0 0 - - - -

Coverl 212 2 13.018712 2.022132 0 .294189 8.719000
1.983392
Cover2 0 0 - - - -

ENTITY STATES BY PERCENTAGE

% %

Entity In Move Wait For % %
Name Logic Res, etc. In Operation Blocked

PT0195 13 .49 0.00 80.64 5.87
PT0196 10.98 0.00 88.29 0.73
Coverl 15.53 2.26 66.97 15.23

VARIABLES

Variable Total
Average
Minutes Minimum Maximum Current Average

Name Changes Per Change Value Value Value Value

WIP1 426 4.974315 0 2 2 1.08917
WIP2 0 0.000000 0 0 0 0
WIP3 636 3 .336119 0 213 212 106.698
WIP4 316 6.709082 0 106 106 53.0517
WIP5 0 0 .000000 0 0 0 0
Total 317 6.694136 0 317 317 156 . 996
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APPENDIX B 

DYNAMIC SIMULATION MODEL
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APPENDIX C 

NOMENCLATURE FOR THE VARIABLES IN 

THE DYNAMIC SIMULATION MODEL
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Table C l . Nomenclature for the variables in the Dynamic Simulation Model

Washing2 Cover parts in washing PTOC3 PTO Part 197 PT0195 rate Arrival Rate PT0195
Washing PTO parts in washing PTOC2 PTO Part 196 LoadC33 Loadinq Rate of Work Center 3 PTO's status 1

WIPCoverCenter2 WIP in Cover Center 2 PT0C1 PTO Part 195 LoadC3 Loading Rate of Work Center 3 PTO's status 2
W1 PCover2Status2 WIP in Cover Center 2 with Status 2 UnloadC33 Unload rate for PTO Work Center 3 LoadC22 Loading Rate Work Center 2 Status 2
WIP Coverl Status2 WIP in Cover Center 1 with Status 2 W ash Rate2 Washing Rate for PTO’s LoadC2 Loading Rate Work Center 2 Status 1

SemiPTO PTO parts with Status 1 W ash rate W ashing Rate for Covers LoadC11 Loading Work Center 1 Status 2
W IPCoverCenterl WIP Cover Center 1 load11 Loading rate for Work Center 1 Cover LoadCI Loading Work Center 1 Status 1

SemiCover Cover Parts with Status 1 load22 Loading rate for Work Center 2 Cover Load2 Loading Cover Status 1
RawPTO PTO parts ready to process unloadl Jnloading rate for Work Center 1 Cove Loadl Loading Cover Status 2

RawCover Cover parts ready to process UnloadC3 Jnloading rate for Work Center 2 Cover Gage rate2 Gaging Rate
Queue2 Cover parts waiting for Gaging Station UnloadC2 Unloading rate for Work Center 3 PTO Finish Rate Finishing Rate for PTOs

PTOCenter3 PTO Work Center 3 UnloadCI Unloadinq rate for Work Center 2 PTO Finish rate2 Finishing Rate for Covers
Q ueuel PTO Parts waiting for Gaqing Station UnloadC11 Unloading rate for Work Center 1 PTO Coverl Cover Arrival Rate

PTOCenter2 PTO Work Center 2 PT0196 rate Arrival Rate of PT0196 Assembly rate Assembly Rate
PTOCenterl PTO Work Center 1 PT0197 rate Arrival Rate of P T 0 197

ooo
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RESULTS FOR THE CAUSAL CORRELATION MODEL
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Table D l. Correlation Values for the Dynamic Simulation Model

PICT 95 PTC196 PTC197 PTCIUtilizat PTC1WIP PTC295 PTC296 PTC297 PTC2USIiz PTC2WIP PTC395 PTC396 PTC397 PTC3USIiz PTC3WIP
FTC195 1.0000 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
FTC196 0.0010 1.0000 0.0069 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 -0.0313 0.0100 0.0100 0.0100 0.0100 -0.0098
FTC197 0.0010 0.0010 1.0000 -0.0123 -0.0376 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

FTdUtiiizat 0.0010 0.0010 -0.0123 1.0000 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0071
FTC1WIP 0.0010 0.0010 -0.0376 0.0117 1.0000 0.0100 0.0100 0.0100 0.0100 00287 0.0100 0.0100 0.0439 0.0100 -0.0111
FTC295 0.0010 0.0010 0.0010 0.0117 0.0100 1.0000 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 -0.0061
PTC296 0.0010 0.0010 0.0010 0.0117 0.0100 0.0100 1.0000 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 ■0.0104
FTC297 0.0010 0.0010 0.0010 0.0117 0.0100 0.0100 0.0100 1.0000 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0010

PTC2Utiliz 0.0010 0.0010 0.0010 0.0117 0.0100 0.0100 0.0100 0.0100 1.0000 0.0100 0.0100 0.0100 0.0100 0.0100 -0.0070
FTC2WIP 0.0010 -0.0313 0.0010 0.0117 0.0287 0.0100 0.0100 0.0100 0.0100 1.0000 0.0100 0.0100 0.0100 0.0100 0.0100
PTC395 0.0010 0.0010 0.0010 0.0117 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 1.0000 0.0100 0.0100 0.0100 0.0083
PTC396 0.0010 0.0010 0.0010 0.0117 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 1.0000 0.0100 0.0100 0.0071
PTC397 0.0010 0.0010 0.0010 0.0117 0.0439 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 1.0000 0.0100 0.0211

PTC3Utiliz 0.0010 0.0010 0.0010 0.0117 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 1.0000 0.0100
PTC3WIP 0.0010 0.0010 0.0010 0.0117 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 1.0000
TimeC1C1 0.0010 0.0010 0.0010 0.0117 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0102
TimeC1C2 0.0010 0.0010 0.0010 0.0117 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0102

CoverlUtiliz 0.0010 0.0010 0.0010 0.0117 0.0100 0.0306 0.0100 0.0100 0.0100 -0.0278 0.0100 0.0100 0.0100 0.0100 0.0100
Coverl WIP 0.0010 0.0010 0.0010 0.0117 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
TimeC2C1 0.0010 0.0010 0.0010 0.0117 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
TimeC2C2 0.0010 0.0010 0.0010 0.0117 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

Cover2Utliz 0.0010 0.0010 0.0010 0.0117 -0.0302 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
Cover2WIP 0.0010 0.0291 0.0010 -0.0410 0.0100 0.0298 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

Prod195 0.0010 0.0100 0.0010 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
Prod196 0.0010 0.0100 0.0010 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0188 0.0100 0.0104 0.0106 0.0100 0.0311

Prod197 0.0010 0.0100 0.0010 0.0205 0.0100 0.0100 0.0293 0.0100 0.0306 0.0100 0.0100 -0.0053 -0.0057 0.0100 0.0100

0.0010 0.0100 0.0010 -0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

PCover2 0.0010 0.0100 0.0010 0.0010 -0.0100 0.0100 0.0100 00100 0.0200 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

o
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Figure D l. Normalized residuals for the processing times for the PTO parts.
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Figure D2. Normalized residuals for the processing times for the cover parts.
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APPENDIX E 

FINAL RESULTS FOR THE STRUCTURAL EQUATION MODELING MODEL
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Table El. Final results fo r  the structural modeling equation model

N=5000
Intercept
PTC195Time
PTC196
PTC197
PTC1 Utilizat
PTC1WIP
PTC295Time
PTC296
PTC297
PTC2UtiIiz
PTC2WIP
PTC395
PTC396
PTC397
PTC3Utiliz
PTC3WIP
Timed C1
Timed C2
Cover! Utiliz
Cover! WiP
TimeC2C1
Tiin*C2C2
Cover2Utiliz
Cover2WIP

Ridge Regression Summary for Dependent Variable: Prod196 (WAS FILE.sta) 
K 10000 R= .06942981 R̂ = .00482050 Adjusted R*= .00022059 
F(23,4976)=1.0480 p<39854 Std.Error of estimate: .09845

Beta Std. Err. 
of Beta

B Std.Err. 
of B

t(4976) p-level

0.014562 0.013500 
0.000868 0.013512 
0.004307 0.013508 
0.002059 0.013503 
0.002052 0.013524 

-0.016024 0.013512 
-0.016044 0.013508 
-0.013868 0.013496 
-0.016477 0.013503 
0.017091 0.013511
0.003329
0.009127
0.008108
0.017165

0.013497
0.013500
0.013516
0.013503

0.028137 0.013493 
0.005276 0.032369 
0.005276 0.032369 

-0.003820 0.013506 
-0.029555 0.013499 
0.002194 0.013498 

-0.009077 0.013504 
-0.019754 0.013507 
0.009901 0.013517

-1.05978 5.227899 
0.01438 0.013334 
0.00086 0.013386 
0.00418 0.013113 
0.19827 1.300233 
0.00204 0.013454 
-0.01561 0.013159 
-0.01570 0.013219 
-0.01372 0.013355 
-0.00030 0.000247 
0.01699 0.013428 
0.00331 0.013427 
0.00890 0.013161 
0.01621 0.027020 
0.01692 0.013313 
0.02734 0.013112 
0.00518 0.031778 
0.00518 0.031778 

-0.00379 0.013397 
-0.02884 0.013170 
0.00213 0.013128 

-0.00896 0.013329^^722210.501472 
-0.01953 0.013356 -1.46244*0.143684 
0.00956 0.013055 0.73250 0.463895

-0.20272 0.839365 
1.07870 0.280772 
0.06421 0.948805 
0.31886 0.749849 
0.15249 0.878808 
0.15171 0.879418 
-1.18598 0.235688 
-1.18775 0.234987 
-1.02756 0.304206 
-1.22021 0.2224421 
1.26498 0.205936 
0.24667 0.805172] 
0.67604 0.499048 
0.59989 0.548607] 
1.27119 0.203722 
2.08523 0.037100 
0.16300 0.870528 
0.16300 0.870528 

-0.28282 0.777327 
-2.18946 0.028610 
0.16255 0.870879

*Note: The values in red represent those variables of the model used to construct the 
SEM model because their effect is significance at the P-level < 0.05.

(Table continues)
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Table El. Final results fo r  the structural modeling equation model

Variable

Variables currently in the Equation; DV: Prodl 96 (WAS FILE.sta) 
Ridge regression, lambda=. 1000000

Beta in Partial
Cor.

Semipart
Cor.

Tolerance R-square t(4976) p-level

PTC195Time 0.014562 0.015290 0.015255 1.097431 -0.097431 1.07870 0.280772
PTC196 0.000868 0.000910 0.000908 1.095393 -0.095393 0.06421 0.948805
PTC197 0.004307 0.004520 0.004509 1.096009 -0.096009 0.31886 0.749849
PTC1 Utilizat 0.002059 0.002162 0.002156 1.096942 -0.096942 0.15249 0.878808
PTC1WIP 0.002052 0.002151 0.002146 1.093491 -0.093491 0.15171 0.879418
PTC295Time -0.016024 -0.016810 -0.016772 1.095487 -0.095487 -1.18598 0.235688
PTC296 -0.016044 -0.016835 -0.016797 1.096105 -0.096105 -1.18775 0.234987
PTC297 -0.013868 -0.014565 -0.014532 1.098024 -0.098024 -1.02756 0.304206
PTC2Utiliz -0.016477 -0.017295 -0.017256 1.096856 -0.096856 -1.22021 0.222442
PTC2WIP 0.017091 0.017930 0.017889 1.095547 -0.095547 1.26498 0.205936
PTC395 0.003329 0.003497 0.003488 1.097927 -0.097927 0.24667 0.805172
PTC396 0.009127 0.009583 0.009561 1.097326 -0.097326 0.67604 0.499048
PTC397 0.008108 0.008504 0.0084841 1.094800 I -0.094800 0.59989 0.548607
PTC3Utiliz 0.017165 0.018018 0.017977 1.096849 -0.096849 1.27119 0.203722
PTC3W1P 0.028137 0.029548 0.029489 1.098446 -0.098446 2.08523 0.037100
Timed 01 0.005276 0.002311 0.002305 0.190878 0.809122 0.16300 0.870528
Timed 02 0.005276 0.002311 0.002305 0.190878 0.809122 0.16300 0.870528
Coverl Utiliz -0.003820 -0.004009 -0.004000 1.096447 -0.096447 -0.28282 0.777327
CoverlWiP -0.029555 -0.031023 -0.030963 1.097606 -0.097606 -2.18946 0.028610
TimeC2C1 0.002194 0.002304 0.002299 1.097713 -0.097713 0.16255 0.870879
TimeC2C2 -0.009077 -0.009529 -0.009507 1.096784 -0.096784 -0.67222 0.501472
Cover2Utiliz -0.019754 -0.020727 -0.020682 1.096153 -0.096153 -1.46244 0.143684
Cover2WIP 0.009901 0.010384 0.010359 1.094686 -0.094686 0.73250 0.463895

(Table continues)
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Table El. Final results fo r  the structural modeling equation model

Ridge Regression Summary for Dependent Variable: Prod197 (WAS FILE.sta 
l=. 10000 R= .06966199 R̂ = .00485279 Adjusted R*= .00025304
F(23,4976)=1.0550 p<.38968 Std.

Beta Std. Err. B
N=5000 of Beta
Intercept -0.339344
PTC195Time -0.002237 *0.013499 -0.002236
PTC196 0.000733 0.013512 0.000735
PTC197 -0.004792 0.013508 -0.004710
PTC1 Utilizat 0.020035 0.013502 1.953045
PTC1WIP 0.009823 0.013524 0.009893
PTC295Time -0.003950 0.013511 -0.003895
PTC296 0.027702 0.013508 0.027443
PTC297 0.003342 0.013496 0.003348
PTC2Utiliz 0.028058 0.013503 0.000520
PTC2WIP -0.001015 0.013511 -0.001021
PTC395 0.001190 0.013496 0.001198
PTC396 -0.005067 0.013500 -0.005001
PTC397 -0.005248 0.013516 -0.010620
PTC3Uti!iz 0.019465 0.013503 0.019427
PTC3WIP 0.009055 0.013493 0.008907
Timed 01 -0.005335 0.032369 -0.005302
Timed 02 -0.005335 0.032369 -0.005302
Coverl Utiliz 0.009011 0.013505 0.009049
CoverlWIP 0.009435 0.013498 0.009319
TimeC2C1 -0.011351 0.013498 -0.011176
TimeC2C2 -0.003152 0.013503 -0.003149
Cover2Utiliz 0.015920 0.013507 0.015935
Cover2WIP 0.035633 0.013516 0.034841

Error of es timate: .09966
Std. Err. t(4976) p-level

of B
5.292217 -0.064121 0.948876
0.013498 -0.165675 0.868420
0.013551 0.054239 0.956747|
0.013275 -0.354784 0.722766j
1.316230 1.483818 0.137921 j
0.013619 0.726371 0.467645
0.013321 -0.292367 0.770019!
0.013381 2.050851 0.040334j
0.013520 0.247661 0.804407
0.000250 2.077936 0.037766
0.013594 -0.075141 0.940105
0.013593 0.088135 0.929773
0.013323 -0.375360 0.707409
0.027352 -0.388285 0.697822
0.013477 1.441539 0.149495
0.013273 0.671049 0.502221
0.032169 -0.164834 0.869082
0.032169 -0.164834 0.869082
0.013562 0.667247 0.504646
0.013332 0.698986 0.484593
0.013289 -0.840963 0.400409
0.013493 -0.233418 0.815447
0.013521 1.178591 0.238617
0.013216 2.636279 0.008408

(Table continues)
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Table El. Final results fo r  the structural modeling equation model

Variables currently in the Equation; DV: Prod197 (WAS FILE. 
Ridge regression, lambda=. 1000000________

Variable

st a)

Beta in Partial
Cor.

Semipart 
 Cor.

Tolerance R-square t(4976) p-level

PTC195Time -0.002237 -0.002349 -0.002343 1.097431 -0.097431 -0.165675 0.868420
PTC196 0.000733 0.000769 0.000767 1.095393 -0.095393 0.054239 0.956747
PTC197 -0.004792 -0.005029 -0.005017 1.096009 -0.096009 -0.354784 0.722766
PTC1 Utilizat 0.020035 0.021030 0.020984 1.096942 -0.096942 1.483818 0.137921
PTC1WIP 0.009823 0.010297 0.010272 1.093491 -0.093491 0.726371 0.467645
PTC295Time -0.003950 -0.004145 -0.004135 1.095487 -0.095487 -0.292367 0.770019
PTC296 0.027702 0.029061 0.029003 1.096105 -0.096105 2.050851 0.040334
PTC297 0.003342 0.003511 0.003502 1.098024 -0.098024 0.247661 0.804407
PTC2Utiliz 0.028058 0.029444 0.029386 1.096856 -0.096856 2.077936 0.037766
PTC2WIP -0.001015 -0.001065 -0.001063 1.095547 -0.095547 -0.075141 0.940105
PTC395 0.001190 0.001249 0.001246 1.097927 -0.097927 0.088135 0.929773
PTC396 -0.005067 -0.005321 -0.005308 1.097326 -0.097326 -0.375360 0.707409
PTC397 -0.005248 -0.005504 -0.005491 1.094800 -0.094800 -0.388285 0.697822
PTC3Utiliz 0.019465 0.020431 0.020386 1.096849 -0.096849 1.441539 0.149495
PTC3WIP 0.009055 0.009512 0.009490 1.098446 -0.098446 0.671049 0.502221
Timed C1 -0.005335 -0.002337 -0.002331 0.190878 0.809122 -0.164834 0.869082
TimeCI C2 -0.005335 -0.002337 -0.002331 0.190878 0.809122 -0.164834 , 0.869082
Covert Utiliz 0.009011 0.009459 0.009436 1.096447 -0.096447 0.667247 0.504646
CoverlWIP 0.009435 0.009908 0.009885 1.097606 -0.097606 0.698986 0.484593
TimeC2C1 -0.011351 -0.011921 -0.011893 1.097713 -0.097713 -0.840963 0.400409
TimeC2C2 -0.003152 -0.003309 -0.003301 1.096784 -0.096784 -0.233418 0.815447
Cover2Utiliz 0.015920 0.016706 0.016667 1.096153 -0.096153 1.178591 0.238617
Cover2WlP 0.035633 0.037346 0.037282 1.094686 -0.094686 2.636279 0.008408

(Table continues)
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Table El. Final results fo r  the structural modeling equation model

Ridge Regression Summary for Dependent Variable: ProdCover2 (VW 
l=. 10000 R= .07185989 R̂ = .00516384 Adjusted R*= .00056552
F(23,4976)=1.1230 p<.30962 Std. Error of es imate: .09962

N=5000
Beta Std. Err. 

of Beta
B Std. Err. 

of B
t(4976) p-level ]

Intercept 2.112728 5.289908 0.39939 0.689624
PTC195Time 0.022040 0.013497 0.022032 0.013492 1.63294 0.102544
PTC196 0.008336 0.013510 0.008358 0.013545 0.61704 0.537234
PTOS7 -0.019828 0.013506 -0.019480 0.013269 -1.46806 10.142151
PTC1 Utilizat 0.016412 0.013500 1.599397 1.315656 1.21567 0.224170
PT01WIP -0.012247 0.013522 -0.012330 0.013613 -0.90576 0.3651061
PTC295Time -0.008354 0.013509 -0.008234 0.013315 -0.61840 0.536337
PTC296 -0.003557 0.013505 -0.003522 0.013376 -0.26334 0.792298
PTC297 -0.010173 0.013494 -0.010188 0.013514 -0.75389 0.450952
PTC2Utiliz 0.022569 0.013501 0.000418 0.000250 1.67169 0.094649
PTC2WIP 0.002160 0.013509 0.002173 0.013588 0.15993 0.872943
PTC395 -0.011048 0.013494 -0.011124 0.013587 -0.81872 0.412985
PTC396 0.005911 0.013498 0.005832 0.013317 0.43794 0.661450]
PTC397 0.016750 0.013514 0.033889 0.027340 1.23953 0.215209]
PTC3Utiliz 0.006891 0.013501 0.006876 0.013471 0.51043 0.609773]
PTC3W1P 0.001360 0.013491 0.001337 0.013268 0.10079 0 9197241
TimeCI €1 -0.007114 0.032364 -0.007068 0.032155 -0.21980 0.826032!
Timed 02 -0.007114 0.032364 -0.007068 0.032155 -0.21980 0.826032!
Coverl Utiliz -0.006779 0.013503 -0.006805 0.013556 -0.50203 0.615672
Covert WIP 0.022715 0.013496 0.022429 0.013326 1.68305 0.092427
TimeC2C1 -0.008480 0.013496 -0.008347 0.013283 -0.62839 0.529779
TimeC2C2 0.001284 0.013501 0.001283 0.013487 0.09510 0.924237
Cover2Utiliz -0.021793 0.013505 -0.021808 0.013515 -1.61366 0.106665
Cover2WIP -0.030874 0.013514 -0.030180 0.013210 -2.28458 0.022379

(Table continues)
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Table El. Final results fo r  the structural modeling equation model

Variable

Variables currently in the Equation 
Ridge regression, lambda=. 100000

DV: ProdCover2 (WAS FILE.sta)
0

Beta in Partial
Cor.

Semipart
Cor.

Tolerance R-square t(4976) p-level

PTC195Time 0.022040 0.023143 0.023089 1.097431 -0.097431 1.63294 0.102544
PTC196 0.008336 0.008747 0.008725 1.095393 -0.095393 0.61704 0.537234
PTC197 -0.0198281 -0.020807 -0.020758 1.096009 -0.096009 -1.46806 0.142151
PTC1 Utilizat 0.016412 0.017231 0.017189 1.096942 -0.096942 1.21567 0.224170
PTC1WP -0.012247 -0.012839 -0.012807 1.093491 -0.093491 -0.90576 0.365106
PTC295Time -0.008354 -0.008766 -0.008744 1.095487 -0.095487 -0.61840 0.536337
PTC296 -0.003557 -0.003733 -0.003724 1.096105 -0.096105 -0.26334 0.792298
PTC297 -0.010173 -0.010687 -0.010660 1.098024 -0.098024 -0.75389 0.450952
PTC2Utiliz 0.022569 0.023691 0.023637 1.096856 -0.096856 1.67169 0.094649
PTC2WIP 0.002160 0.002267 0.002261 1.095547 -0.095547 0.15993 0.872943
PTC395 -0.011048 -0.011606 -0.011576 1.097927 -0.097927 -0.81872 0.412985
PTC396 0.005911 0.006208 0.006192 1.097326 -0.097326 0.43794 0.661450
PTC397 0.016750 0.017569 0.017526 1.094800 -0.094800 1.23953 0.215209
PTC3Utiliz 0.006891 0.007236 0.007217 1.096849 -0.096849 0.51043 0.609773
PTC3W1P 0.001360 0.001429 0.001425 1.098446 -0.098446 0.10079 0.919724
Tim ed C1 -0.007114 -0.003116 -0.003108 0.190878 0.809122 -0.21980 0.826032
Timed C2 -0.007114 -0.003116 -0.003108 0.190878 0.809122 -0.21980 0.826032
Coverl Utiliz -0.006779 -0.007117 -0.007098 1.096447 -0.096447 -0.50203 0.615672
CoverlWIP 0.022715 0.023853 0.023798 1.097606 -0.097606 1.68305 0.092427
TimeC2C1 -0.008480 -0.008908 -0.008885 1.097713 -0.097713 -0.62839 0.529779
TimeC2C2 0.001284 0.001348 0.001345 1.096784 -0.096784 0.09510 0.924237
Covei2Utiliz -0.021793 -0.022870 -0.022816 1.096153 -0.096153 -1.61366 0.106665
Cover2WIP -0.030874 -0.032370 -0.032303 1.094686 -0.094686 -2.28458 0.022379
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