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ABSTRACT 

 

Traversing the automotive environment exposes drivers to a risk of property 

damage, injury, and death.  This risk varies across the road network.  This research 

questions whether drivers are capable of accurately perceiving their own exposure to risk 

in this environment.  Analysis begins with an assessment of risk exposure at roadway 

intersections (as measured in terms of crash frequency, severity, and mixed-weighting 

methods).  This assessment provides risk indices for a cross-section of road intersections 

across an urban Iowa community.  These indices are then used in the development of an 

experimental visual cognition survey used to record risk perceptions of roadway sites 

amongst survey respondents.  Survey responses record the way in which drivers’ 

perception of risk varies within the automotive environment.  Despite limitations in the 

experimental methods, survey results question the ability of drivers to predict their risk 

exposure, and therefore contributes to our understanding of risk homeostasis theory. 
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CHAPTER I 

INTRODUCTION 

On Risk, Perception, and the Automotive Environment 

Every day we are confronted with risk: an uncertain probability that exposure to 

some hazard may cause injury or loss.  We navigate the complexity of this risk in one of 

two ways, either a cognitive analysis or an affective perception.  Cognitive analyses 

require thoughtful deliberation and critical reasoning to reach a carefully calculated 

estimate of risk (Loewenstein, Weber, Hsee, & Welch, 2001).  However, many of our 

individual evaluations of risk are necessarily made quickly and subconsciously, 

suggesting that these risk analyses are dominated by emotion and intuition; this quick 

calculation of risk is described as an affective perception of risk (Slovic & Peters, 2006).  

There is often a striking divergence between our cognitive analysis and our affective 

perception of risk (Loewenstein et al., 2001).  

The divergence between cognitive analysis and affective perception is especially 

intriguing in scenarios for which methods of expert analysis of risk are well established.  

This phenomenon occurs frequently in the context of automotive transportation safety.  

Drivers broadly self-report themselves as possessing above-average driving skills 

(Wohleber & Matthews, 2016), and also underestimate their risk of collision while 

driving (McKenna, 1993).  Although these and similar studies are informative, they fail 

to address the uneven spatial distribution of crash risk in the automotive environment 

(Dezman et al., 2016).  Some road sites are particularly dangerous, demonstrating 
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elevated levels of crash risk.  This spatial heterogeneity of crash risk has prompted 

development of numerous statistical methods to identify these dangerous roadway sites, 

often referred to as crash hotspots (Hauer, 1996; Lord & Mannering, 2010).  Given these 

considerations, this research questions whether the individual affective risk perception of 

roadway sites demonstrates concordance with the empirical assessment of crash risks. 

 

The Risk of Being Wrong 

There are countless sources of risk when navigating the automotive environment.  

In addition to the red-light runners and the reckless, distracted, inexperienced, and 

intoxicated drivers, there are the risks of mechanical failures, such as tire blowouts, brake 

failures, seized engines, and locked transmissions.  There is also the risk posed by nature, 

from wildlife and weather conditions like snow, ice, rain, fog, wind, and the daily cycle 

of darkness.  There are yet more risks, though less common, posed by road debris or from 

roadway structural failures.  Lastly, there is our own inexperience, inability, and 

inattentiveness that poses additional risk to ourselves and others.  We evaluate these risks 

cognitively before ever starting the car, but after, we rely on our affective perception to 

update our assessments based on the dynamic conditions we observe when traversing the 

high-speed and high-risk automotive environment. 

The cost of a bad decision on the road varies from minor fender benders to life-

altering injuries and death.  In 2015, automobile collisions killed 35,092 people in the 

United States (including 5,376 pedestrians and 817 bicyclists), an increase of 7% from 

2014 (Insurance Institute for Highway Safety, 2017).  This mortality rate makes the 
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automobile the thirteenth leading cause of death in the United States, and the eleventh 

leading cause of death in Iowa (Centers for Disease Control, 2015; Iowa Department of 

Transportation [IaDOT], 2016a).  Non-fatal collision data is infrequently aggregated at 

the national level, but in Iowa alone, there were 54,589 collisions and 19,103 reported 

injuries during 2015 in a population of just 2.2 million licensed drivers (IaDOT, 2016b).  

In 2005, the National Highway Traffic Safety Administration found that automotive 

crashes were the leading cause of death for all individuals aged 3 through 33 (United 

States Department of Transportation [USDOT], 2005).  Automotive collisions remain a 

leading cause of death for Americans (USDOT, 2015b).  The automotive environment 

poses a significant risk to drivers, passengers, and non-participants alike. 

 

Rationale for Study 

Calls for increased automotive safety are generally well regarded and 

uncontested.  Debate continues, however, as to how best to establish safety objectives, 

and further, which programs might meet such objectives.  There is strong support for 

utilizing technological innovations and for increasing regulatory enforcement, however, 

these programs typically prove to be prohibitively expensive (Elvik, 1999).  Focusing 

instead on driver behavior could increase safety for all road users and all travel modes. 

Compounding the cost of safety intervention is the drastic rise in automotive 

reliance, especially in the United States.  Compared to 1980, the average driver travels 

30% more miles per year; coupled with the increasing number of drivers, this contributes 

to a doubling of total annual vehicle miles travelled (USDOT, 2014).  United States 
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drivers travel over 3 trillion miles per year, while tolerating near 100 fatalities per day.  

Travel demand management programs, aimed at reducing automotive reliance, may offset 

societal exposure to automotive risks, but are unlikely to eliminate the social and 

economic costs of automotive collisions (Giuliano, 1992; Winters, 2000).   

Mention of transportation safety concerns can be traced back to the early 20th 

century, garnering attention from transportation’s earliest regulatory agencies.  In those 

early days, safety was only a casual concern; safety was secondary to economic 

productivity during the rapid transition from railroad commerce to interstate trucking and 

bussing industries (George, 1935).  Since then, public road mileage has increased less 

than one million miles, while vehicle miles travelled have tripled (Figure 1).  The 

increasing density of automotive traffic and the increasing potential for traffic collisions 

motivates the ongoing review of transportation safety concerns.  

 

 

Figure 1: Public Road Mileage and VMT (1920 – 2013) (Adapted from USDOT, 2013) 
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Government agencies have asserted a goal of eliminating roadway fatalities.  The 

Iowa Department of Transportation, following the lead set by the Federal Highway 

Administration (McGee & Sawyer, 2011), has adopted an initiative of its own, “Toward 

Zero Deaths: A Goal We Can Live With.”  This plan, as outlined in the 2013 Iowa 

Strategic Highway Safety Plan (IaDOT, 2013, p. 1), stated a goal of reducing the number 

of fatalities 15% by 2020 (or conversely, accepting an ongoing fatality rate in Iowa of 

over 300 fatalities per year).   

Governmental safety initiatives often start by targeting the “Four E’s,” improving 

roadway engineering, increasing enforcement, expanding emergency medical services, 

and reviewing driver education programs (McGee & Sawyer, 2011, p. 2).  While these 

four focal areas are under the direct control of regulatory agencies, eliminating fatalities 

through these programs alone is far too costly (Elvik, 1999).  Instead, eliminating traffic 

fatalities is increasingly the responsibility of the “Fifth E”: everyone (IaDOT, 2013, p. 1).  

This is especially pertinent, given that over 90% of all collisions are the result of driver 

error (USDOT, 2015a).  We must emphasize the role that every individual plays in 

maintaining a safe automotive environment; this requires more than just education, but 

rather demands a cultural shift embracing safer drivers (Lerner, Singer, & Jenness, 2010; 

Ward, Linkenbach, Keller, & Otto, 2010).   Encouraging a movement toward a safety 

culture has several benefits over traditional direct interventions.  Peer attitudes and social 

norms have a strong influence on behavioral outcomes in hazardous environments 

(Fogarty & Shaw, 2010).  Additionally, as Goetzke and Weinberger (2012) suggest, a 

well-organized cultural movement might enjoy a social-multiplier effect, where peer 
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influences diffuse across an ever-wider audience.  The goal, then, of an intervention 

targeting safety culture is to provide a campaign that transforms individual attitudes and 

perceptions, and fosters widespread adoption (Ward et al., 2010).  Designing such an 

intervention will first rely on understanding the fundamental perceptions of the 

automotive environment, and in particular, the individual’s affective perception of risk 

(Charlton, Starkey, Perrone, & Isler, 2014; Ewing & Dumbaugh, 2009; Rundmo & 

Nordfjærn, 2017).  It is also necessary that we understand not just the affective perception 

of risk, but its relationship to the empirical measures of crash risk as well.  To guide the 

exploration of this relationship, the following questions and objectives were outlined: 

 

Research Questions 

• Does the individual affective perception of risk at roadway junctions demonstrate 
concordance with the empirical assessment of crash risks? 

• Does the affective perception of risk at roadway junctions vary with regard to 
demographic variables?  

• Does the affective perception of risk at roadway junctions exhibit a spatial pattern, 
and if so, which roadway attributes best predict perceptions of increased risk? 

 

Objectives of Study 

• Develop a rank-order list of risky roadway junctions in Cedar Falls, Iowa, based on 
empirical crash report data and well-regarded methods. 

• Collect individual affective perceptions of risk at a subset of roadway junctions 
using a digital survey distribution, featuring junctions identified as high-risk by 
rank-order listing. 

• Assess the aggregate results of the affective perceptions of risk at roadway junctions 
for concordance with respect to the empirical rank-ordering. 
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• Address the primary question: does the individual affective perception of risk at 
roadway junctions demonstrate concordance with empirical assessment of crash 
risks? 

• Provide the null hypothesis: that individual affective risk perceptions have no 
relation to actual risk exposure.   

o If true, then promoting an increased safety culture could be as simple as 
presenting a more visible representation of actual roadway junction risk 
and severity of consequences. 

o If false (implying drivers are cognizant of their risk exposure), then 
increasing the safety culture relies on decreasing the acceptance of 
dangerous driving behaviors, possibly by emphasizing driver education 
and increased enforcement initiatives. 

 

Summary Review 

Drivers’ affective perception of risk guides their decision making in the 

automotive environment.  Drivers often underestimate their risk, and overestimate their 

abilities, but it is not clear how these errors are manifested, especially when considering 

the spatially heterogeneous distribution of crash risk in the automotive environment.  

Currently, the automotive environment poses a significant risk of injury or death to all 

participants (drivers and non-drivers alike).  Understanding drivers’ perception of risk in 

this environment could help improve driver education, law enforcement initiatives, and 

the design of infrastructure that encourages safer driving.  These steps are critical in 

fostering a safety culture that seeks to eliminate traffic fatalities.  A more thorough 

review of these ideas is presented in the next chapter.  
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CHAPTER II 

LITERATURE REVIEW 

Promoting public safety for all users in the automotive environment relies on a 

thorough understanding of the risks inherent to the system, and by extension, the 

individual’s ability to perceive and assess these risks.  This review begins by outlining 

the geographic perspective, and then describes the history of risk perception studies, and 

most specifically, the interest in the risk perception of drivers.  Last, there is a discussion 

of methods available to empirically model crash risk, and to survey individual 

perceptions of drivers.  This review provides justification for the present study and 

context for the methods used. 

 

The Geographic Perspective 

The psychological elements of this study are, perhaps, the most readily apparent, 

but, it was a geographic perspective which led to this line of inquiry.  This 

interdisciplinary approach may require clarification for some.  Therefore, it is beneficial 

to begin by anchoring this study to its geographical tradition, while acknowledging the 

inherently interdisciplinary nature of the problem.   

The link between the geographical and psychological disciplines can be traced 

back to the “Quantitative Revolution” (Golledge, 2002, p. 3), which encompassed the 

development of a behavioral specialization in geography and a growing interest in the 

individual decision-making process (Cox & Golledge, 1969; Johnston, 1981, p. 28).  
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Robert Beck, in 1967, argued that neither geography nor psychology alone could answer 

questions about human-environment relationships (Beck, 1967; Golledge, 2002).  

Restated, an individual’s perception of their environment shapes their decision-making 

process, and in turn, heavily influences behavioral outcomes (Downs & Stea, 1974; 

Golledge & Stimson, 1997; Jakle, Brunn, & Roseman, 1976; Kitchin & Blades, 2002).   

Behavioral research in geography has since become a formalized and 

methodological emphasis area (Aitken & Valentine, 2014).  Within this emphasis, there 

is also a specific focus on micro-scale environments and related perceptions (Golledge & 

Stimson, 1997, p. 9).  Further guiding this exploration is the identification of key 

psychological variables underpinning environmental perception, such as our affective 

perceptions (Golledge & Stimson, 1997, p. 26; Johnston, 1981, p. 135).   

Finally, although underrepresented in geographic literature, there is the link 

between environmental perception and the evaluation of risk (Golledge & Stimson, 

1997).  These concepts, rooted in geographic tradition and borrowing from psychology, 

guided the perspective and language of the review, methods, and analysis. 

 

Foundations in Risk Perception 

Risk, in its most basic definition, is any exposure to potential danger, loss, or 

injury (Risk, 2010).  Practical usage of the term in research has, unfortunately, been 

inconsistent. There is a clear contention that risk should only be used to describe known 

and objective probabilities (Johnston, 1981).  However, risk has been widely used to 

reference the subjective perception of these probabilities (Fischhoff, Watson, & Hope, 
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1984; Gill, 2004; Rowe, 1975; Vlek & Stallen, 1980).  The term has also been used more 

generally (though arguably incorrectly) to reference the hazards, outcomes, and 

consequences themselves, all while ignoring the aspect of probability altogether (Slovic, 

1999).  This research uses the definition of risk offered by Golledge and Stimson (1997), 

in which the use of risk may refer to both the objective and subjective probabilities of 

loss or injury.  In the context of the automotive environment, risk refers to the probability 

of experiencing a reportable collision; this definition should provide the greatest clarity 

for comparing the subjective perception of crash risks to the empirical crash data records. 

Investigation in risk perception is a growing discipline.  Among the earliest of 

seminal works is that of Chauncey Starr in 1969.  His research concluded that voluntary 

risks, such as those taken in automotive travel, are perceived to be far more acceptable 

than involuntary risks, or those risks derived from decision-making at institutional or 

governmental scales.  This early work confirmed the role of subjective perceptions in risk 

analysis, and was partly responsible for the interdisciplinary Society of Risk Analysis and 

its associated journal (Deisler & Schwing, 2000).   

Research in risk perception has increasingly focused on subjective risk 

assessments at the individual level.  Key factors in subjective risk perceptions were 

expanded to include the illusion of control, familiarity, knowledge, and immediacy, in 

addition to Starr’s voluntariness (Fischhoff, Slovic, Lichtenstein, Read, & Combs, 1978; 

Rowe, 1975; Vlek & Stallen, 1980).  The role of individual psychology became 

inseparable from risk analysis, thus prompting development of the “psychometric 

paradigm” (Slovic, 1992). 
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The psychometric paradigm guided subjective risk perception research into the 

current millennium.  Studies focused primarily on addressing and attributing variations in 

subjective risk perceptions to cultural, demographic, and experiential traits.  Boholm 

(1998) provides an exhaustive review, concluding that clear distinctions in risk 

perception exist among specific sample groups.  Typically, women tend to be more 

sensitive to risk, and more risk averse than men when controlling for other 

sociodemographic traits.  In contrast, individuals having more extensive educational 

backgrounds or holding a higher socioeconomic status tend to be less sensitive, and less 

averse, to risk-taking behaviors.   

The effects of nationality and culture on risk perceptions, if any, are not well 

understood.  Cross-national and cross-cultural comparisons of study results are difficult 

due to inconsistent survey content, inconsistent control of demographic and experiential 

variables, and significant temporal gaps between studies (Boholm, 1998).  Further, efforts 

to identify sociocultural groups and to correlate their shared biases in risk perceptions 

have yielded inconclusive results (Marris, Langford, & O'riordan, 1998) and harsh 

criticisms (Boholm, 1996; Sjöberg, 2000).   

Improving our understanding of risk perception enables the development of 

campaigns that might promote a broader public awareness of safety concerns in the 

automotive environment.  This awareness is needed to foster a safety culture and to reach 

a public consensus capable of driving political support (Lerner et al., 2010; Loewenstein 

et al., 2001; Pachur, Hertwig, & Steinmann, 2012; Starr & Whipple, 1980; Ward et al., 

2010).  This perspective requires a focus on the psychometric paradigm and the 
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perception of the individual, and benefits from the existing foundations of knowledge 

concerning demographic and experiential biases in risk perception (Boholm, 1998; 

Kahneman, 2011; Rundmo & Nordfjærn, 2017; Vlek & Stallen, 1981).   

 

Affective Risk Perception 

Affective perception, and its relation to cognition, has captured a prominent focus 

in psychology literature; it has also become increasingly integral to the study of risk 

perception.  The individual’s affective system — a complex of feelings, emotions, and 

intuitions — is given primacy in the formation of our perception, preceding cognition and 

decision-making (Kahneman, 2011; Tomkins, 1962; Zajonc, 1980).  Affect, then, has an 

important influence on the outcomes of risk perception (Johnson & Tversky, 1983). 

Individual assessments of risk permeate everyday decision-making processes.  A 

large majority of risk decisions are relatively insignificant, thus made quickly and 

subconsciously.  This does not eliminate the process of cognitive analysis in risk 

assessment, but it does suggest that affect is the predominant means for individual 

evaluations of risk (Finucane, Alhakami, Slovic, & Johnson, 2000; Keller, Siegrist, 

Gutscher, 2006; Pachur et al., 2012; Slovic, Finucane, Peters, & MacGregor, 2004; 

Slovic & Peters, 2006).  It becomes imperative, then, to understand how an individual 

makes affective judgements. 

Affective perception is subjective and innate, dependent on what an individual 

remembers.  The recollection of direct and indirect experience, communication, and 

education — the “availability heuristic” — is assumed to guide our affective perception 
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of risky scenarios (Boholm, 1998; Golledge & Stimson, 1997; Kahneman, 2011; Keller et 

al., 2006; Linden, 2014; Reason, 1990; Tversky & Kahneman, 1973).  Furthermore, there 

is a striking divergence between this affective perception of risk, and more thoughtful, 

cognitive analyses of risk (Loewenstein et al., 2001).  Hence, decision-making and the 

behavioral response resulting from affective perceptions are expected to vary 

significantly from responses driven by cognitive thought.  This suggests that there are 

specific conditions under which an individual forgoes the cognitive approach in favor of 

purely affective responses. 

The reliance on affective perception, rather than cognitive assessment, results 

from external limitations.  One limitation is a lack of knowledge of potential risks 

(Kuklinski, Metlay, & Kay, 1982).  More pervasive limitations, however, are imposed by 

time and by cognitive load.  When pressured for time, an individual forgoes the complex 

consideration of probabilities, alternatives, outcomes, and consequences; this provokes a 

reliance on the affective system of perception for guiding decision-making (Finucane et 

al., 2000; Slovic et al., 2004; Slovic & Peters, 2006).  Similarly, cognitive overload (e.g., 

from holding an interactive conversation) increases the latency of driver reactions, and 

further stresses the decision-making process (Brookhuis & De Waard, 2010; Lamble, 

Kauranen, Laakso, & Summala, 1999).  Such overloading is expected to arise quickly in 

driving situations (De Waard & Brookhuis, 1991).  This understanding provides rationale 

for studying individual affective perceptions of risk in the fast-paced and highly dynamic 

automotive environment. 
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Automotive Risk, Driver Perception and Behavior 

Understanding affective risk perception in the automotive environment requires a 

discussion of automotive risk and driver behavior.  Foremost, it is key to acknowledge 

that the process of risk perception is independent from measured reaction times (Currie, 

1969).  This is, in part, due to behavioral responses in driving scenarios occurring before 

the actual identification of a risk.  Drivers who avoid crashes do so by responding well 

before the appearance of a risk; this is likely a result of past experiences prompting an 

affective perception of potential risk (Ba, Zhang, Chan, Zhang, & Cheng, 2016).  

Experience, knowledge, and awareness of potential risks may improve driver response, 

but the improper perception of risk might just as well stimulate reactions that aggravate 

the development of risk (Currie, 1969).  Successfully navigating the automotive 

environment requires extensive practice and experience, which serve to improve the 

affective response to risk stimuli (Deery, 2000; DeJoy, 1989; Groeger & Brown, 1989). 

Drivers typically underestimate their risk exposure.  The minor severities 

involved in most automotive collisions (often limited to property damage), coupled with 

the chronic and persistent nature of the risk contributes to the underestimation of risk 

(Rundmo, Nordfjærn, Iversen, Oltedal, & Jørgensen, 2011; Slovic, 1999).  In addition to 

the familiarity of traffic risks, the underestimation of risk is also a byproduct of both the 

voluntariness of the activity and the perceived controllability of the risk scenarios 

(DeJoy, 1989; Fischhoff et al., 1978; Friedland, Keinan, & Regev, 1992; McKenna, 

1993; Rowe, 1975; Starr, 1969; Vlek & Stallen, 1980; Wohleber & Matthews, 2016). 
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Coupled with the underestimation of empirical risk, drivers also overestimate 

their own ability to manage and mitigate automotive risks.  Primarily, drivers 

overestimate their driving abilities relative to their driving peers (DeJoy, 1989; Glendon, 

Dorn, Davies, Matthews, & Taylor, 1996; Gregersen, 1996; Harré, Foster, & O'neill, 

2005; McCormick, Walkey, & Green, 1986; Svenson, 1981; Wohleber & Matthews, 

2016).  Drivers also overestimate their ability to manage driving tasks while impaired or 

tired (Wohleber & Matthews, 2016), and overestimate the abilities of their vehicles 

(Svenson & Eriksson, 2017).  Not only do drivers overestimate their driving skill, but 

they further compound these risk factors by engaging in secondary tasks, such as talking 

or texting on cell phones, eating, or applying makeup while driving (Li, Gkritza, & 

Albrecht, 2014; Vanlaar & Yannis, 2006; Wohleber & Matthews, 2016).  The 

overestimation of driving abilities is particularly prevalent amongst young and 

inexperienced drivers (Crundall et al., 2012; Deery, 2000; DeJoy, 1989; Finn & Bragg, 

1986; Glendon et al., 1996; Gregersen, 1996).   

The concurrent underestimation of risk and overestimation of ability contributes 

to risk-taking attitudes and behaviors (Deery, 2000; DeJoy, 1989; Gehlert, Hagemeister, 

& Özkan, 2014; Ulleberg, 2001; Wilde, 2001).  Furthermore, this perspective implies that 

increasing automotive safety through technological or engineered solutions would only 

serve to increase the risk-taking behavior of drivers (Charlton et al., 2014; Peltzman, 

1975; Wilde, 2001).  It is argued, then, that the widespread underestimation of risk and 

overestimation of abilities by drivers inevitably produces an unacceptably high crash, 

injury, and fatality rate in automotive environments.  Addressing these attitudes requires 
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the promotion of a safer driving culture that acknowledges and embraces a clear 

understanding of crash risk (Falk & Montgomery, 2007; Lerner et al., 2010; McNeely, & 

Gifford, 2007; Ward et al., 2010).  Such promotion relies on an understanding of current 

affective perceptions of risk, specifically at roadway junctions with exceptionally high 

crash risks. 

 

Empirical Crash Risk Analysis 

Evaluating the subjective perceptions of risk in the automotive environment is 

reliant on the objective assessment of individual crash risks.  There are numerous 

procedures for conducting this empirical assessment, each with a unique set of strengths 

and weaknesses (Lord & Mannering, 2010; Montella, 2010).  Some methods restrict 

analysis to crash frequency, while others attempt to include weighted measures of crash 

severity and crash rates (Savolainen, Mannering, Lord, & Quddus, 2011; Tarko & 

Kanodia, 2004).  There is also a distinction between the identification of dangerous sites 

and the additional efforts required to extend this analysis to sites having potential for 

improvement (Hauer, 1996; Jonathan, Wu, & Donnell, 2016).  Crash risk is spatially 

heterogeneous, although crash frequencies are generally significantly higher at road 

junctions (Evans, 2004, p. 351; Vanderbilt, 2008, p. 178).  Therefore, this study will 

emphasize the identification of dangerous roadway junctions, relying on an assumption 

that those sites with a history of high crash rates represent a proneness for the future risk 

of automotive crashes (McGuigan, 1987, pp. 61–62). 
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The interest in crash risk to the individual road user implies a preference for the 

use of crash rate, or the number of crashes normalized for average traffic flow (Hauer, 

1996; Montella, 2010).  Calculating the crash rate requires the designation of analysis 

sites, including a summary count of crash occurrences and traffic flow data for each site 

(Hallmark, Basavaraju, & Pawlovich, 2002; Huang et al., 2016; Pawlovich, 2007).  

Despite being straightforward, this method is reliant on an assumption of accurate traffic 

flow data, and furthermore may bias the rank-list towards roadway sites having relatively 

few crashes coupled with low traffic volumes (Montella, 2010; Zegeer & Deen, 1977).   

Modifications of the crash rate analysis can minimize the exaggeration of 

roadway sites with low traffic volumes.  One suggestion is to establish a minimum 

threshold of crash frequency for inclusion of a particular site before establishing a rank-

order listing by crash rate; this combination of frequency and rate methods accounts for 

the deficiencies of either method taken by itself (Hauer, 1996; Pawlovich, 2007; Zegeer 

& Deen, 1977).  This method provides a meaningful assessment of crash rate, however, 

fails to address concerns of crash severity. 

Crash severity, generally measured by property damages and injury outcomes, 

also warrants consideration as a relevant risk factor for road users.  As with frequency 

analysis, there are several relevant methods (Pawlovich, 2007; Savolainen et al., 2011).  

The equivalent property-damage-only (EPDO) method is relatively straightforward, and 

therefore commonly used (Hauer, 1996; Zegeer & Deen, 1977).  The procedure 

eliminates the additional categorization of crash severity, instead transforming injuries 

and fatalities to an appropriately weighted measure of property damage.  The weighting 
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strategy used, however, introduces an aspect of subjectivity to the results (Pawlovich, 

2007).  Nonetheless, because of the spatial differentiation between the frequency and 

severity of crashes (Dezman et al., 2016), it seems prudent to account for both as factors 

of risk.  The resulting EPDO index can also be normalized for traffic flow to produce an 

EPDO rate, which then reflects the risk faced by individual users in the automotive 

environment (Hallmark et al., 2002; Hauer, 1996; Montella, 2010; Pawlovich, 2007; 

Zegeer & Deen, 1977).   

There are additional methods that provide an analysis of risk probabilities beyond 

frequency, severity, and rate.  Such methods increase the complexity of the calculations, 

introduce additional subjectivity, and often require intensive data collection and 

management.  The simplest of these methods incorporates a statistical test of significance 

to compare crash frequencies and rates against a predetermined critical value using a 

Poisson distribution; sites are then ranked according to a ratio of each site’s test value and 

the critical value (Hauer, 1996; Lord & Mannering, 2010; Pawlovich, 2007; Zegeer & 

Deen, 1977).  This method requires developing a categorization of sites, and does not 

typically integrate measures of severity.  Popular extensions of this method make use of 

Negative Binomial distributions, and the application of Bayesian statistics (Cheng & 

Washington, 2005; Lord & Mannering, 2010; Montella, 2010; Savolainen et al., 2011).  

Although such models are informative, in many cases simple rankings or confidence 

intervals are sufficient (Cheng & Washington, 2005). 

A broad range of methods are available for analyzing crash data and, by 

extension, identifying sites with exceptionally high levels of crash risk.  Pursuing an 
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analysis of the individual perception of risk, this research aims to identify roadway 

junctions posing high levels of crash risk to the individual road user.  This aim supports 

the utilization of a method that reflects crash rate (Hauer, 1996; Montella, 2010), but 

should also feature a measure of severity. These objectives are distinctly captured by a 

method developing rank-order lists based on either a crash rate, a severity rate, or an 

EPDO rate method.   

 

Measuring the Perception of Risk 

Understanding risk as it is perceived by individuals relies on their participation.  

The current understanding of risk perception developed from studies showcasing an 

extensive variety of research designs.  This variety, while potentially problematic, might 

simply reflect the exploratory nature of burgeoning research attempting to map risk 

perceptions (Downs & Stea, 1974, pp. 6–7).  The unifying thread underlying this research 

is the application of various survey methods. 

Arguably, the most popular survey method is the questionnaire.  The 

questionnaire was foundational to, and has remained predominant in, risk perception 

research (See Boholm, 1998; Armsby, Boyle, & Wright, 1989; Deery, 2000).  Although 

text-driven questionnaires might outwardly appear simple, the design and distribution of 

any survey remains a complex procedure warranting proper diligence (Dillman, Smyth, 

& Christian, 2014; Fowler, 1995; Iarossi, 2006; Saris & Gallhofer, 2007).  One facet of 

this complexity is the distinction between stated and revealed preference data, which has 

strong implications for risk perception surveys (Fischhoff, Slovic, & Lichtenstein, 1979).  
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The use of a survey questionnaire to capture respondents’ perceptions of roadway 

junctions produces a type of stated response, rather than revealed, data. 

Respondents can also be asked to state their own attitudes towards risk-taking and 

sensation-seeking.  Variations in respondents’ propensity for sensation-seeking could 

influence their risk perception.  Early versions of a Sensation Seeking Scale construct 

were comprised of more than 40 items (Heino, van der Molen, & Wilde, 1996; Horvath 

& Zuckerman, 1993; Zuckerman, Kolin, Price, & Zoob, 1964).  More recently, an 

abbreviated version of the construct, the Brief Sensation Seeking Scale, has exhibited 

significant reliability and replicability (Arnett, 1994; Fan et al., 2014; Hoyle, Stephenson, 

Palmgreen, Lorch, & Donohew, 2002; Scott-Parker, Watson, King, & Hyde, 2013).  The 

brevity of this scale is ideal for inclusion in this, and future, risk perception research. 

There are more advanced experimental methods used to measure the perception of 

risk.  Such methods typically record observable physical characteristics, such as galvanic 

skin responses, eye movements, or other measures of stress response and reaction time.  

These procedures typically require lengthy visual experiences, active-participant driving 

simulations, or actual on-road driving phases (Ba et al., 2016; Currie, 1969; Gregersen, 

1996; Neale et al., 2002; Taylor, 1964).  These experiments provide valuable insight for 

the study of risk perception; however, these methods are more expensive and 

cumbersome, and present their own sources of bias and error.   

The use of visual-stimuli in a survey questionnaire provides a method that blends 

the simple text-driven questionnaire with cues from more advanced biometric designs.  

Imagery, situated as a visual stimulus, can be utilized to provide a meaningful and 
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quantifiable measure of affective perception (Yoon, 2010).  This intriguing style of 

survey design has been used only sparingly in risk perception research (Beanland, 

Filtness, & Jeans, 2017; Chapman, Corner, Webster, & Markowitz, 2016; Cox, Beanland, 

& Filtness, 2017; Finn & Bragg, 1986; Glendon et al., 1996; Leiserowitz, 2006; Wetton 

et al., 2010).  Such a survey warrants at least the same, if not more, diligence than a 

strictly text-driven questionnaire.  Nonetheless, this method is particularly suited for the 

collection of individual affective perceptions of risk given visual stimuli of specific 

roadway junctions. 

 

Summary Review 

This chapter has provided a thorough review of topics central to the present 

research.  The geographic perspective is understood to have prompted an inquiry towards 

the spatial distribution of risk in the automotive environment, and in turn as to how such 

risk is perceived by individual participants in such a setting.  This inquiry is shown to be 

inseparable from the psychological discipline, and furthermore, situates itself within the 

ongoing and interdisciplinary study of risk perception. 

The breadth of studies over risk perception generate several considerations 

pertinent to this research.  This literature review suggests an expected divergence 

between objective measures and subjective perceptions of risk, and supports a study 

design which utilizes the psychometric paradigm (a quantitative methodology) to record 

responses to a questionnaire regarding an individual’s perception of risk.  Additionally, 

there is motivation to control for gender and demographic biases throughout the data 
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collection and analytical process.  Lastly, the affective system, and its influence over 

individual risk perceptions is also considered and reviewed. 

These considerations are directly extensible to the perception and resulting 

decision-making processes of drivers in the automotive environment.  Drivers generally 

overestimate their own ability and also underestimate their risk exposure.  This almost 

certainly contributes to current crash and injury rates in the automotive environment, and 

seems to provoke a general resistance or ignorance towards traffic safety advocacy and 

continued driver training.   

To better understand risk perception and decision-making of active drivers, it is 

imperative to expand our understanding of the subject.  To provide a stronger foundation 

for this research, the review continues with a discussion of methods for the empirical 

identification of crash hotspots.  This discussion highlights the EPDO rate methodology 

for its ability to incorporate measures of crash frequency and severity in a single index.  

There is also a review of the methods useful for collecting the individual’s affective 

perception of risk; further discussion outlines the distinction between popular survey 

methods (e.g., text-driven questionnaires) and more advanced biometric methods (using 

simulators and physiological sensors).  The use of a visually-stimulated survey serves as 

a reasonable compromise for this thesis.  The combination of crash hotspot indices and 

respondent survey enables a comparison between empirical measures of risk and the 

subjective perceptions of risk. 
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CHAPTER III 

METHODS 

This research was designed to compare individual perceptions of risk against an 

empirical assessment of risk at roadway junctions and to contribute to the understanding 

of risk perception and traffic safety.  This chapter describes the design, data, and 

procedures used for this research.  Procedures included an exploratory regression analysis 

of statewide crash data in the state of Iowa, and the development of a geographic 

information systems (GIS) procedure for identifying crash hotspots at various scales 

within the state.  Following these procedures, the digital survey instrument is described, 

including design, the use of imagery, and the method of distribution.  The chapter 

concludes with an overview of methods used to assess various risks associated with crash 

hotspots, to analyze survey response data collected from members of targeted digital 

communities, and the statistics used to evaluate concordance between empirical 

assessments of crash risk and individuals surveyed perceptions of risk (Figure 2).  

 

 

Figure 2: Research Overview 
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Research Design 

This research utilized a mixed-methods approach to investigate risk perceptions in 

traffic safety.  Research began with a regression analysis of the population of crash 

records in the state of Iowa.  The statewide regression aided in defining and 

contextualizing the local study area within Black Hawk County.  Within this county 

extent, a geographic information systems (GIS) procedure identified potential crash 

hotspots.  Hotspots, and their crash histories, were used to assess and rank risk factors for 

these road junctions.  From these rankings, a photography-driven survey instrument was 

designed to record individual perceptions of risk at selected intersections.  Analyses 

assessed the leading research question: is there concordance between empirical measures 

of risk and the individual perceptions of risk (Figure 3)?  

 

 

Figure 3: Workflow 
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Data 

Data acquisition began with secondary datasets obtained from public agencies.  

Crash records were requested from the Iowa Department of Transportation (IaDOT).  The 

received database included records from the year 2007 through 2016.  The underlying 

road network data was also provided by the IaDOT.  The 2015 American Community 

Survey (United States Census Bureau, 2016) provided demographic estimates for all 

Iowa counties (Table A1).  These datasets were used in the empirical procedures, and 

provided estimates of crash risk.  These data were then used to develop, distribute, and 

analyze a survey instrument that gathered new primary data revealing drivers’ risk 

perceptions (Figure 4).  Data was managed and analyzed with procedures in ArcGIS 

Suite, Microsoft Excel 2013, TIBCO Spotfire S+, and RStudio (Appendix B). 

 

 

Figure 4: Project Data Flow 
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Exploratory Analysis of Iowa Counties 

An exploratory analysis was conducted to assess the full population of crash 

records and to provide context for smaller scales of analysis.  A regression model 

estimated county-wide crash counts as a function of total land area, percentage of land 

area in incorporated urban areas, population counts of adults 16 and over, percentage of 

population employed in agriculture, median household income, total length of state and 

national highway, and the total length of transnational interstate highway.   

Backwards elimination linear regression (a process of eliminating insignificant 

variables from the fitted regression model) produced an accurate model (R2 = .9829) with 

three variables: population count of driving age adults, percent of urban land area, and 

length of transnational interstate highways.  Two additional regressions were analyzed, 

each adding a variable term to account for possible spatial correlations (one using a 

simultaneous auto-regressive term, and the other a moving-average term).  The 

neighborhood structure considered any two counties sharing any length of border as 

neighbors.  These regression models defined Iowa’s counties and their crash histories. 

This exploratory analysis revealed residual error in modeling crash rate 

predictions for Iowa’s most highly urbanized counties.  This effect was most pronounced 

for Polk County (and the capital city of Des Moines), but also affected Linn County 

(Cedar Rapids) and Johnson County (Iowa City and Coralville). Black Hawk County was 

influential in the regression (as measured by Cook’s Distance), however was not a 

significant outlier.   
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These regressions defined potential counties suitable for a microscale crash 

hotspot analysis.  Although urban counties exhibited residual error from the predicted 

model, these counties are also host to the most extensive crash records.  Black Hawk 

County does not represent the majority of Iowa’s rural counties, but it does serve as a 

proxy for Iowa’s more heavily urbanized counties.  Black Hawk County was chosen for 

its fit to the regression model, its representation as a highly urbanized Iowa county, its 

low length of transnational interstate highway, and for its locality to the research institute. 

 

Procedure for Crash Hotspot Identification 

Crash hotspots — roadway sites which present road users with an increased 

probability of crash occurrence and severity — were identified through an empirical 

procedure that joined crash reports to spatial locations.  This assessment relied on the 

assumption that a history of high crash frequencies and severities predicts a future 

proneness for automotive collisions (McGuigan, 1987, pp. 61–61).  The procedure 

created data defining crash hotspots in Black Hawk County and provided several indexes 

for empirically measuring risk. 

The Iowa Department of Transportation’s crash report data included a spatial 

point location in addition to a comprehensive set of attributes detailing conditions of the 

driver, vehicle, environment, and severity.  Reports are filed by law enforcement officials 

either of the local jurisdiction or the Iowa State Patrol.  Pertinent details for this research 

included the crash severity (reported categorically on a scale of 1 to 5), as well as the 

count of fatalities, major injuries, and property damage estimates.   
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ArcGIS (a geographic information system) was used to develop the dataset of 

crash hotspots (Figure 5).  Road-line data were parsed into a planar network, and 

processed to create a point feature class of road junctions that included a sum of the 

annual average daily traffic (AADT) from each approaching road segment.  A polygonal 

buffer with a radius of 50 meters was drawn around each road junction point.  Where two 

or more buffers overlapped, the polygon with the highest AADT was preserved, while 

any overlapping buffer with a lower AADT was erased (Appendix C).  Crash report point 

locations within remaining buffers were spatially joined to the associated junction point.   

Data summarizing crash reports for each junction were calculated.  This table 

featured each junction as a single row, and included attributes such as the count of 

crashes (representing crash frequency), and a sum of severity classifications, injuries, and 

fatalities.  The Equivalent Property Damage Only value, or EPDO, was also calculated to 

provide a composite value of fatalities, injuries, and property damage; fatalities were 

accounted using the “Value of a Statistical Life,” or $9,600,000, and each reported major 

injury was valued as one tenth of a statistical life, or $960,000 (Timothy, 2016, p. 1). 

The summary values (crash count, sum of severity, and EPDO) for each junction 

were normalized using AADT, to provide an estimate of respective rates.  The use of 

AADT introduces a potential source of error in the calculation, due to issues inherent to 

traffic monitoring.  Nonetheless, these rate calculations provide the best estimates of 

personal risk exposure for individual drivers. 

The resulting list of crash hotspots and risk rates required further modification.  

To mitigate the inflation of junctions having relatively low traffic volumes (and thus an 
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Figure 5: GIS Model for Creation and Analysis of Crash Hotspots 
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absurdly high risk rate), a “rate and numbers” method was used to refine the risk indices 

to include only intersections with at least 3 reportable collisions in the decade of data 

(Hauer, 1996; Pawlovich, 2007).  These considerations produced a collection of hotspots 

representing road junctions frequently encountered during a typical daily drive, including 

residential connectors, commuter thoroughfares, and urban arterials.   

Intersection hotspots were ranked according to the developed measures of risk.  

These included intersection crash frequency and average crash severity, as well as the 

more personal risk measures of crash rate, severity rate, and EPDO rate.  These indices 

were replicated to ascertain the context for hotspots within the county, within the city of 

Cedar Falls, and of those hotspots tied exclusively to the survey design.  Each risk factor 

provided a separate index, each a unique, yet empirical estimate of risk.  These indices 

provided foundations for the development of a survey questionnaire featuring visual 

stimuli, and furthermore, provided for an analysis of concordance between empirical and 

perceived risks.   

 

Survey Imagery 

Several crash hotspots throughout Cedar Falls were photographed for use in the 

community survey.  Images were recorded using a camera and motor vehicle mount, 

which were necessary for capturing intersection imagery while participating in active 

traffic conditions.  Furthermore, this platform achieved economic practicality and 

personal availability.  The process of image collection was thoroughly planned and the 

selection of final survey images given due care. 
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Imagery Collection 

An original series of road intersection images were collected to suit this research.  

As much as possible, collection controlled for variable conditions such as the weather, 

season, time of day, and traffic.  After processing, 38 images depicting 22 different 

intersections were considered for the survey instrument.   

Images were captured using an Activeon CX Action Camera featuring a 5 

megapixel camera sensor configured to collect a “Wide” field of view.  The action 

camera was mounted on a 2007 Kawasaki Vulcan.  Images were captured from a time 

lapse mode, capturing a single still photo every three seconds.  This system (Appendix B) 

recorded more than 4,500 images totaling over 7.5 gigabytes. 

Intersection photo targets were selected from the hotspot index to represent both 

high and low risk rankings, as well as a cross section of urban, suburban, and rural 

intersections.  Road junctions that have been redeveloped, reconstructed, or altered in 

recent years create an issue in comparing current perception to historical measures of 

crash risk.  Therefore, such sites were avoided during image collection.   

All intersections photographed were selected from within Cedar Falls (a city 

within Black Hawk County).  Collection occurred during the months of June, July, and 

August of 2017 between the hours of 10:00 am and 2:00 pm.  Most intersections were 

photographed several times so as to capture an image with the least visible traffic 

possible.  Many intersections were filmed from multiple approaching road segments.   

Due to rotations of the camera on its mount, some photographs required a slight 

rotation to correctly align their respective horizons.  This procedure was performed using 
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the GNU Image Manipulation Program (Appendix D).  All of the images were 

constrained to 432 pixels by 324 pixels and stored in a JPEG file format; this was done to 

minimize bandwidth and increase accessibility for survey respondents.  

 

Final Image Selection, and Considerations 

The digital survey instrument featured 23 original images (Appendix E, Figure E1 

and E2).  The first 3 images were provided as a warm-up exercise for respondents; these 

images featured intersections depicting the range of intersection size and traffic densities 

within the study area.  The experimental visual block featured the remaining twenty 

images.  Eight intersections were each featured in 2 images; each pair of images depicted 

perpendicular roads approaching the same intersection (e.g., one image with a perspective 

facing north, the other a perspective facing west).  One final intersection was featured in 

4 images, which included all of the possible approaching roads for that intersection.  This 

imagery was expected to represent the field-of-vision of a driver traveling through an 

intersection at speed, demanding an affective judgement of risk (Figure 6). 

The camera lens captured a wide angle perspective of the hotspot intersections.  

This wide field of view captured peripheral details of the intersection, but also introduced 

potential distortions in the resulting imagery (all camera lenses impart some distortion to 

captured images).  This lens also captured the sun in south facing imagery, which caused 

these images to appear overexposed, and unsuitable for the purpose, thus limiting the 

selection of south facing imagery in the final survey instrument.   
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Figure 6: Changing Field of Vision at Speed (Reproduced from Nozzi, 2003) 

 

Despite multiple attempts at imaging, some intersections were burdened with 

nearly endless traffic during daytime-hours.  In such cases, imagery was chosen to limit 

the visible traffic.  Images featuring potential left-turn or right-on-red traffic were not 

used.  In all chosen survey images, any visible traffic is at a sufficient distance as not to 

be expected to factor into a driver’s risk perception. 

There were concerns over the quality and biases in selected imagery survey; 

concerns of visible traffic, weather conditions, and the relative sun angle were considered 

and controlled.  Despite potential limitations, this method of image collection proved 

more consistent than other alternatives, such as Google’s Streetview.  Furthermore, 
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increasing the quality of imagery was expected to significantly increase equipment costs, 

necessitate closing of active city streets during peak hours, or both.  Imagery collected 

from this procedure provided a key component in the development of the visual survey. 

 

Design of the Community Survey 

Crash risk is described in empirical measures, but also by the individual and 

subjective perception of the probability of a crash.  Having developed an objective 

ranking of risk for various roadway junctions, it was necessary to collect a dataset of the 

individual perceptions of risk at those junctions.  This dataset was gathered using a digital 

survey instrument designed and distributed using the Qualtrics survey platform.  There 

were 36 questions total, with respondents expected to take less than 10 minutes.  The 

survey included a demographics section, the Brief Sensation Seeking Scale (Fan et al., 

2014), and an experimental block with image stimuli and risk scale responses (Figure 7).   

 

  

Figure 7: Survey Design 
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Survey Flow 

The survey began with an introduction that described the purpose of the research, 

outlined the survey’s organization, and acknowledged the use of photography some of the 

survey questions.  Participants were asked to express their willingness to participate, to 

identify themselves as at least 18 years of age, and to confirm they had a valid driver’s 

license.  Respondents answering these three questions affirmatively were permitted to 

continue with the questionnaire (Appendix F). 

The first question block consisted of six questions designed to reveal basic 

demographics and driver experience.  Participants were asked their age and gender.  They 

were also asked if they were a resident of the United States, for potential consideration in 

variations between local and international road systems.  The last three questions asked 

individuals at what age they received their driver’s license, how many miles they drove in 

a typical year, and to rate their driving ability.  

The second question block was constructed using eight items taken from the Brief 

Sensation Seeking Scale (BSSS).  The BSSS was designed to assess individual attitudes 

toward risk and thrill-seeking, and the individual’s willingness to engage in risky 

activities (Arnett, 1994; Fan et al., 2014; Heino et al., 1996; Horvath & Zuckerman, 

1993; Hoyle et al., 2002; Scott-Parker et al., 2013; Zuckerman, 1971; Zuckerman et al., 

1964).  The use of this scale enabled comparisons between this research and past 

publications, and provided additional context for risk perception responses recorded from 

the image-based survey questions. 
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The third question block introduced the visual stimuli.  A brief paragraph 

described the presentation of photographs and the risk response scale.  The response scale 

featured six selectable stops with one label on each end, ranging from “Far below 

average” to “Far above average”; this represented an ordinal continuum of risk from low 

to high (Gill, 2004).  The choice of six stops was intentional, to avoid potential central 

tendency bias.  Respondents were asked to provide an estimation of risk and to respond 

as quickly as possible (intended to capture a more affective risk response).  Respondents 

were also informed that the photography was not intended to be misleading.   

Respondents were presented with a total of 23 image-based questions.  Each 

question featured a single image along with the risk response scale centrally-aligned 

below the image; each survey featured the same 23 road-junction images.  This imagery 

presented the perspective of a driver approaching to stop at the junction just prior to the 

legally designated stop-line.  The sequencing of the first three image questions was the 

same for all surveys, providing a warm-up exercise for respondents, and a measure of 

control for later analysis.  The last twenty images were then presented in a random 

sequence using a built-in feature of the Qualtrics platform. 

The survey concluded with two questions.  One question asked participants to 

type in their birth year, which coupled with the age question from the demographics 

block, provided another means of verifying respondent integrity and the reliability of 

their responses.  A second question invited participants to provide additional comments, 

suggestions, or feedback.  The survey was intentionally as short as possible, to encourage 

a higher response rate and reduce respondent fatigue. 
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Digital Development Process 

The survey instrument was designed in a digital format within the framework of 

the Qualtrics survey software.  This software is well documented (Snow, 2011).  

Nonetheless, it is valuable to report on the capabilities of this platform for future 

replication.  These capabilities include modern accessibility, survey flow controls, 

advanced customization, as well as intuitive and feature-rich interfaces for tasks such as 

the integration of imagery.  

The Qualtrics web-based interface was readily accessible from any computer 

workstation with internet access.  This interface was responsive using a relatively weak, 

but highly portable ChromeOS netbook (Appendix B).  Furthermore, the interface 

included many user-friendly, point-and-click, and drag-and-drop style elements for 

designing the survey instrument. 

A key aspect of the Qualtrics design experience was its control over survey flow.  

These control tools enabled easy reordering of large blocks of the survey instrument.  

Advanced flow control tools provided advanced logic tree functionalities, such as basic 

if, and, or statements, multiple conditional statements, nested functions, and boolean 

display logic.  This level of control over the survey order and display can be used to tailor 

the presentation of survey blocks to respondents based on their answers to earlier 

questions. In this research, these controls were used to present visual cognition questions 

in a randomized order, and to prematurely end the survey for respondents who failed to 

provide their consent, were under age 18, or did not have a driving license.  
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Qualtrics also provides fine control over the survey’s appearance, including 

details of the question prompt and the question response controls.  Formatting for this 

survey was primarily left to default text and question settings, chosen from the interface.  

Images were integrated through the Qualtrics interface.  The interface include a robust 

photo album feature, and point-and-click user controls for placing and controlling an 

image’s pixel display size, alignment, and mouse-over text; these customizations require 

no prior coding experience.  The interface generates the underlying HTML coding, 

enabling an advanced user to provide additional markup coding to the image, question 

block, and page elements.  In this research, these tools were used to align and center the 

text-prompt, image, and risk-estimation scales for image-based questions.   

 

Distribution of the Visual Survey 

The survey was digitally distributed through postings of unique and traceable 

hyperlinks created within the Qualtrics interface.  A new research account was created for 

each specific community targeted, and from this account each link was posted only one 

time to the user community.  These links functioned the same as a Qualtrics anonymous, 

multiple-complete link, with the exception that it provided information as to the 

originating community of each respondent.  This additional demographic data became a 

fundamental element of the empirical analyses.  No incentives for participation were 

provided, and participants were fully informed of the nature of the survey.  The 

Institutional Review Board at the University of Northern Iowa approved the survey 

instrument for distribution prior to recruitment. 
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Trackable Links 

Unique links were created in Qualtrics to track the originating community of each 

survey respondent.  This link-tracking was achieved using features of Qualtrics and 

Google’s Gmail.  In Qualtrics, the survey options were configured for “Open Access” 

(enabling multiple-completes per single generated link), and to “Prevent Ballot Box 

Stuffing” (allowing only one entry per physical hardware device).  In the Qualtric’s 

Contact Manager, several new email contacts were created, one for each unique survey 

link; each contact was created using the email address of the researcher along with the 

addition of a unique filter term.  (Adding “+Link1” in a Gmail address does not change 

the intended recipient, though this tag is useful for tracking; e.g., 

investigator+Link1@gmail.com.)  This unique term is then embedded in every survey 

response, retrievable by creating a new Qualtrics report variable using the “Recipient 

Email” contact field.  This tracking provided an additional source of generalized 

demographic data, and a trust mechanism to potentially filter abusive and exploitative 

user groups, or “troll entities” (Chiregi & Navimipour, 2016; Herring, Job-Sluder, 

Scheckler, & Barab, 2002).   

Survey links were emailed to the investigator.  Each email contained a unique link 

as described above, and was configured to allow multiple completes (an advanced option 

within the Qualtrics e-mail dialogs).  The links were received by the investigator and 

posted, along with a recruitment statement, to the respective target audience group.  

Distribution began on Friday the 13th of October 2017 at approximately 9:00 am.  Survey 

responses were finalized and recorded on Tuesday, November 7th of 2017. 
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Target Communities 

Survey links were posted to several subreddits on the Reddit website, as well as 

other special interest discussion forums, and to the investigator’s personal Facebook page 

(Table 1).  Although many sites maintain a count of the number of registered users, these 

numbers do not accurately portray the size of the currently active user base.  One 

anonymous research account was able to post links to several unique subreddits, while 

the other web forums each required a separate new user registration to post. 

Reddit.com provided an opportunity to reach multiple target communities and a 

large number of respondents through a single new user account.  Reddit enables users to 

post text or hyperlinks, which then become a stand-alone web page allowing other users 

to comment.  Although Reddit features an “All” page that shows content from any topic, 

 

Table 1: 
Target Communities 
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the majority of users are expected to self-select affiliations within smaller topical 

hierarchies known as subreddits; the self-selected affiliations of users within subreddits 

serves to divide the broader Reddit audience into more specialized communities with 

potentially unique demographic traits.   

There are limited demographic data available to describe Reddit’s millions of 

users.  Overall, Reddit’s demographic skews toward younger Caucasian males (Barthel, 

Stocking, Holcomb, & Mitchell, 2016).  However, broad generalizations do not 

necessarily portray the demographics of the niche communities within subreddits.  Shatz 

(2017) provides a thorough review of using Reddit for targeted survey recruitment.  This 

research targeted communities of bicyclists, enthusiast and professional drivers, 

motorcyclists, pilots, and academic users through specific subreddits: AskAcademia, 

Bicycling, Cars, Flying, Geography, GradSchool, Motorcycles, Truckers, SampleSize, 

UrbanPlanning, and UrbanStudies.   

Survey links were also distributed to highly specific special interest forum and 

discussion web sites.  These sites typically retain a regular, though limited, readership 

with a vested interest in the discussion topic.  As with Reddit, there are limited data 

available for characterizing each community.  Target web sites were chosen for their 

unique perspectives of the automotive environment.  These forum included communities 

of bicyclists, drivers, motorcyclists, and academic users.  The target websites included 

ADVRider.com, BimmerForums.com, BikeForums.net, Edmunds.com, Facebook.com, 

TheGradCafe.com, MTBR.com, and NICOClub.com. 
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Analysis of Data 

Despite the brevity of the survey instrument, the response data necessitated 

several analyses.  These analyses began with an investigation of the survey method, and 

the demographics of respondents.  An analysis of the Brief Sensation Seeking Scale 

provided additional context for respondent demographics and their respective 

communities.  Lastly, correlations and case studies were used to assess the concordance 

between empirical measures of risk and the subjective perceptions of risk. 

The visual design and digital distribution aspects of the survey instrument were 

both regarded as experimental methods, prompting an analysis of the success and 

limitations of this survey methodology.  First, a quantitative analysis was used to assess 

the total number of responses, the survey completion rate, and the observed respondent 

loss throughout the survey.  Second, qualitative analysis was used to summarize the 

general reception of the survey amongst various communities. 

An analysis of the respondent demographics reinforced the findings from the 

analysis of the survey method, and provided context for comparing respondent’s 

perceptions of risk to empirical measures of risk.  Self-reported demographic details were 

analyzed through comparisons of respondent’s communities, driving experience, gender, 

and residency.  Summary statistics were reviewed and visualized for each classification 

of the total respondent pool. 

The Brief Sensation Seeking Scale (BSSS) was also considered as one aspect of 

the respondent’s demographic data.  Correlations and variable inflation factors were used 

to test potential multicollinearity amongst the eight Likert items of the BSSS.  Additional 
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Pearson’s product-moment correlation coefficients were calculated for each of the BSSS 

items and respondent’s self-reported demographic details.  Generalized linear models and 

cellular reference models assessed the predictive power of the BSSS and further 

distinguished differences amongst respondent’s community affiliations. 

The final analyses were designed to answer the leading research question 

regarding driver’s perception of risk and potential concordance between these perceptions 

and the actual risks posed by the automotive environment.  First, Pearson’s correlations 

were used to assess concordance between drivers’ perception of risk and five distinctive 

measures of risk propensity (crash rate, severity rate, equivalent-property-damage-only 

rate, crash frequency, and average crash severity).  These correlation tests were repeated 

for the perceptions of risk within respondent communities, and for varying degrees of the 

BSSS.  Second, the variance between risk perception for each image-pair was examined 

(each intersection in the survey was shown in two images, each a different approaching 

road segment).  Finally, select intersections were reviewed as case studies, granting 

deeper insight into the way in which drivers form their perception of risk. 

 

Summary of Methods 

This research was dependent on multiple experimental methods.  Initially, crash 

records and road-line network data were requested from the Iowa Department of 

Transportation.  These data were analyzed using a linear regression model, and further 

refined using a geographic information system to define crash hotspots, their respective 

crash histories, and to estimate their crash risk.   
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These initial analyses shaped the design and development of a digitally-

distributed, visual-stimulated survey.  This survey included traditional demographic 

questions, elements from the Brief Sensation Seeking Scale, as well as questions in 

response to visual imagery.  These imagery questions were designed to record 

respondent’s risk perceptions of selected crash hotspots.   

A methodological analysis was completed to assess the potential success and 

limitations of the survey methods.  This analysis included a qualitative report on the 

reception of the survey by various communities.  A quantitative analysis assessed the 

completion rate and demographics from the survey distribution.   

The survey provided new primary data describing respondents, their communities, 

and their risk perceptions.  Data were analyzed with mixed-methods approaches utilizing 

correlations, linear modelling, and intersection case studies.  The culmination of these 

analyses is an assessment of the concordance between empirical measures of personal 

risk exposure and the subjective perception of automotive risk. 
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CHAPTER IV 

RESULTS 

This chapter presents a comprehensive analysis of data collected and generated 

during this research.  The review will begin with the results from the exploratory 

regression models and the crash hotspot analysis.  Following these empirical procedures, 

the review will outline the insights gained from the survey design and distribution, 

including an analysis of survey respondents, their self-reported driving experience and 

ability, and their responses to the Brief Sensation Seeking Scale.  The chapter will 

conclude with comparisons between the empirical measures of risk and subjective 

perceptions of risk in the automotive environment. 

 

Exploratory Regression Analysis 

A linear regression model assessed the population of crash records in the state of 

Iowa.  Crash records were first aggregated by county to create 99 unique records.  Using 

several attributes of these counties, the model was refined using a stepwise backwards 

elimination regression method.  The resulting model accounted for the driving-age 

population of each county, the percentage of urbanized land area, and the length of 

transnational highways with an R2 of .98 and with 95 degrees of freedom (Table 2).  

These findings helped to define the extent for the microscale crash hotspot analysis. 

The most significant factor in the regression analysis was the population of 

residents over age sixteen.  Results indicated that for every additional one thousand  
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Table 2:  
Results of Exploratory Regression Analysis 

 

 

residents there was an expected increase of 204 crashes per decade.  This finding was 

unsurprising, and represents a baseline for crash propensity among driving Iowans. 

 The second most significant factor in the regression analysis was the percentage 

of urban land area.  For each percentage increase in urban land area, the model predicted 

an increase of over 300 crashes per decade.  To better understand this result, the average 

land area of an Iowa county is 568 square miles, therefore a one percent increase in urban 

land area is approximately five square miles. 

The third significant factor in the analysis was the length of transnational highway 

in each county.  Each additional mile of highway predicted an increase of almost 30 

crashes per decade.  The resulting increase in crashes is expected, given the large volume 

of traffic these roads typically endure.  It should be noted however, that a significant 

proportion of this traffic would be expected to come from non-resident drivers, thus 

skewing crash counts in counties with long lengths of transnational highways. 
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Several measures were used to assess the rigor of the regression model.  A normal 

probability plot was utilized to identify significant outliers, and Cook’s Distance was 

used to identify strongly influential points.  Two counties — Polk and Linn — were both 

outliers and influential points, suggesting they exerted a strong influence over the 

predicted coefficients of the model’s variable factors.   

Two revisions of the linear regression model were also tested to address potential 

spatial spillover effects.  One revision included the addition of a spatial autoregressive 

factor, the other revision utilized a moving average factor.  Neither of these two spatial 

regressions resulted in notable deviations from the initial linear regression. 

The most striking revelation from the regression analysis was the visible 

distinction between urban and rural counties (Figure 8).  Iowa’s rural and agrarian 

counties fit the model exceptionally well. In contrast, many of Iowa’s more urbanized 

counties exhibited large residual errors.  The arrangement of this error was inconsistent; 

some urban counties experienced fewer reported crashes than predicted, and others 

suffered more crashes than predicted.  Polk county and the city of Des Moines suffered a 

significantly higher number of crashes than predicted; Wood, Webster, and Dubuque 

counties (Sioux City, Fort Dodge, and Dubuque cities respectively) also had higher 

numbers of actual crashes than predicted.  Linn, Johnson, and Dallas counties (the cities 

of Cedar Rapids, Iowa City/Coralville, and Des Moines’ suburbs respectively) fared 

better, having fewer crash reports than predicted.  Less significantly, but still with fewer 

crashes than predicted, were the counties of Black Hawk, Story, and Muscatine 

(respectively hosting the cities of Waterloo/Cedar Falls, Ames, and Muscatine).  
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Figure 8: Map of Residual Error. Derived from a regression model accounting for driving 
population, urban land area, and highway mileage. 
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The distinction between urban and rural counties was considered in defining the 

extent for the microscale crash hotspot analysis.  Urban environments are host to the 

greatest frequencies of automotive crashes, which rationalizes a focus on one of Iowa’s 

more urbanized counties.  Of Iowa’s limited number of urban counties, Black Hawk 

County is neither a significant outlier, nor host to any significant length of transnational 

highway.  These two points suggest that the crash history of Black Hawk County is 

representative of a typical urban setting in Iowa and is not biased by large volumes of 

non-resident through-traffic traveling on national highways.  

 

Crash Hotspot Analysis 

The hotspot analysis was performed to develop an objective estimation of risk at 

specific roadway sites using crash records within Black Hawk County.  Several key 

observations were made as a result of the design and implementation of the geographic 

information systems procedure.  First, the hotspot procedure reinforced the findings of 

the exploratory analysis and confirmed the need to distinguish urban from rural crash 

hotspots.  Second, development of the hotspot analysis revealed a series of subjective 

decisions underlying these types of analyses (and calls into question the reporting of such 

subjectivities across all studies of this nature).  Third, the hotspot analysis suggested 

significant limitations in constraining the estimation of risk to a single index and 

supported the idea that risk estimations should be reported in multiple measures. 

There was a notable distinction between the frequencies, rates, and severities of 

urban and rural crash frequencies.  Early iterations of the hotspot procedure produced 
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indices of crash risk for intersection sites county-wide.  These preliminary risk indices 

were widely dispersed across several communities and spread across urban and rural land 

areas.  There was a noticeable preponderance of high crash rate sites falling within the 

urban boundary.  When accounting for severity (especially through the equivalent 

property-damage-only, or EPDO rate index), however, crash hotspots shifted toward the 

rural periphery (Figure 9).   

This dispersion and segmentation of risk typologies across the county extent 

encouraged a refinement in the hotspot procedure.  The procedures, and risk indices, were 

reiterated and constrained to the extent of the urban boundary of Cedar Falls.  This extent 

provided a more useful spatial distribution of study sites.  The urban-focused risk index 

was more evenly dispersed across varying configurations of urban intersections, best 

reflected the risk faced by a majority of daily driving commuters, and defined a cross-

section of intersections within a singular community (Figure 10). 

The demarcation of hotspot sites necessitated decisions that introduced 

subjectivity in the risk indices.  The most critical decision was the definition of buffer 

radii; crashes occurring within these radii are assumed to bear a connection to the features 

of the hotspot site.  The demarcation procedure also revealed the complexity of many 

intersections, especially where several junctions converge in close proximity (such as at 

frontage roads, or intersection complexes at freeway entrance and exit ramps); in such 

cases, hotspot buffers often overlapped.  A script was used to modify the initial buffers 

such that crashes falling in overlapping buffers were assigned to a single intersection 

having the highest average annual daily traffic (Appendix C).   
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Figure 9: Map of High-Risk Intersections County Wide 
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Figure 10: Map of High-Risk Intersections City Wide 
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Subjectivity was also a fundamental aspect of developing the empirical risk 

estimations.  Risk can be described as the frequency of a hazard, the severity of a hazard, 

or by some weighting of the two (and potentially other factors, e.g., property damage and 

societal costs).  Risk can also be considered from the sweeping public view, using 

absolute factors of frequency and severity.  The alternative to this view is to adopt a 

personal and individual perspective that considers these risk factors relative to traffic 

volumes (derived from risk-rate calculations using reported annual average daily traffic 

estimates).  Although many organizations publish procedures for calculating a single 

weighted index, this estimation of risk was regarded as impossibly precise. To increase 

accuracy, this research has considered several indices reliant on measures of crash rate 

and crash severities, and also provided a detailed description of the construction of the 

weighted EPDO rate index. 

 

Survey Distribution 

Despite the growing history of digital research, such methods are being 

continually improved and refined.  In particular, the use of a digital survey presents novel 

opportunities for researchers to distribute their surveys to increasingly targeted 

communities (Shatz, 2017).  With this in mind, the survey responses are first considered 

in aggregate, including the total response count and overall completion rate and 

completion times.  A more thorough review includes specific response data for each 

trackable survey link distributed, and a qualitative description of various communities’ 

reception and public commentary. 
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Response Count and Completion Rate 

The survey link was clicked by 433 respondents, though only 300 respondents 

completed all of the questions in the survey (Figure 11).  This yielded a completion rate 

of 69.3%.  The respondent losses can be identified throughout the survey’s flow.  Six 

survey respondents never answered the first question, and 13 more did not complete the 

demographic questions.  Twenty-one respondents were lost before the Brief Sensation 

Seeking Scale, and 22 more were lost at the visual warmup images.  Fifty-four 

respondents were lost during the experimental visual block, and 17 more, otherwise 

complete responses were eliminated for not answering the final verification question.  

Completion time was similar for each of the various survey distributions.  Most 

complete responses were well under 10 minutes.  This suggests that respondents did not 

spend much time analyzing photographs; instead, respondents provided their first 

impressions and affective perceptions of risk for pictured junctions.  Beyond removal of 

incomplete responses and verification of the respondent’s age, data cleansing procedures 

were intentionally minimal to avoid concerns of researcher-bias and data manipulation.   

 

 

Figure 11: Survey Completion Rate Analysis 
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Survey Reception 

Different reactions to the survey invitation were observed in communities before 

response data were analyzed.  (Respondent comments are presented anonymously in 

Appendix G.)  Reactions varied between different targeted forums, and between the niche 

subreddit communities.  In many cases, the survey invitation was rebuked, and research 

accounts banned by forum moderators.  This was true of large automotive and bicycling 

communities, resulting in a loss of respondents and biases in the community 

demographics.  These biases were an unfortunate effect of heavy-handed moderators, and 

did not represent a lack of interest by individual community members.  In total, 60% of 

respondents originated from various subreddit communities, with other respondents 

originating from the other disparate web forum communities. 

Motorcyclists were the most receptive audiences.  This group included users of 

the motorcycles subreddit community and the ADVRider community.  These groups 

accounted for two-thirds of survey respondents and sparked respectful, though critical, 

discussion of the survey methods (especially concerning the experimental visual 

cognition elements).  Despite their reservations for the experiment, these communities 

were overwhelmingly participatory.   

A much smaller, but significantly more vocal, respondent group was recruited 

from the flying subreddit (a community primarily comprised of active student pilots, 

Private Pilot’s License holders, and professional and military pilots).  Their initial 

comments were disparaging.  Early commentators regarded the survey as farce, which 

likely reduced further respondent participation. Other commentators asserted the presence 
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of errors in the display of questions, however, review of the survey could not confirm 

these errors (nor were they noticed by any other respondents).  One commentator implied 

the survey had been removed or deleted, despite the survey link and community post 

being active for more than 30 days afterward.  Despite evidence of readership, the 

estimated response rate from the pilot community was underwhelming. 

Several bicycling communities were approached, but only one community’s 

moderators allowed posting of the survey link.  The link was posted to the forums at 

MTBR.com, or the Mountain Bike Review.  It could be argued that mountain bike riders 

take more risks than the general populace (considering the “extreme” aspects of the 

sport).  However, these riders may be more specifically choosing soft-trails as a means of 

reducing their exposure to risk by separating themselves from automotive traffic. 

Many other communities were also invited to participate, but did not produce as 

large of a respondent pool.  These communities included niche make and model specific 

car forums, discipline-specific academic subreddits, and professional truck driving 

communities.  Despite these forums retaining a large number of registered users, the 

actual number of active users within these communities appeared to be much smaller.  

Nonetheless, most of these communities were receptive to the survey, and provided a 

broader demographic for analysis.   

Communities were aggregated by common associations to create larger clusters of 

respondents (Table 3).  Classifications were described as academics, bicyclists, driving 

enthusiasts, motorcyclists, and professional operators.  One last classification was derived 

from a survey link disseminated through social media.  This link was posted to Facebook, 
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and given to friends and family.  Despite encouragement to distribute this link widely, 

this social media distribution provided an underwhelming response.  With no specific 

community affiliations, these respondents were classified as a general audience, although 

potentially biased by a predisposition to the research subject matter.  

 

Table 3: 
Details for Individual Survey Distribution Links 
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Respondent Analysis 

Demographic data from the 300 completed responses were analyzed (Table A2).  

This data included three primary elements.  Respondents were asked to provide some 

descriptive data about themselves, to complete eight questions comprising the Brief 

Sensation Seeking Scale, and were classified according to the community where they 

discovered the survey link.  These data were analyzed to acknowledge potential biases in 

the demographics of the survey respondents, to understand differences in the respondent 

communities, and to provide context to the reported perceptions of risk.   

 

Descriptive Demographic Data 

Respondents were asked to self-report their age, gender, United States residency 

status, and to self-rate their driving experience and driving ability.  Respondents were 

also classified according to their community affiliations (determined through the 

trackable links procedure).  Exploration of this data provided context for interpreting the 

individual perceptions of risk (Figure 12 and 13). 

There was an apparent skew towards a younger audience among the 300 

completed responses.  This was expected given the nature of the digital distribution, and 

the underlying demographic of the Reddit communities.  Despite this skew, there was a 

reasonable representation of all ages, from those just 18 to those over age 65.   

A gender bias was the most apparent, and most damaging to the survey results.  

Nine out of 10 respondents (n = 270) identified as male, while only 29 respondents 

identified as female, and 1 respondent identified as other.  Females were similarly 
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distributed across ages, and shared similar risk perceptions as male counterparts.  

Females also expressed similar self-rated driving abilities as compared to their male 

counterparts, although most females reported driving fewer miles per year. 

Survey respondents included both United States residents and international 

respondents.  Although there were concerns about non-U.S. drivers’ responses, their risk 

perceptions were similar to their U.S. counterparts.  Non-U.S. drivers were, however, less 

likely to drive more than 20,000 miles per year compared to U.S. residents.   

Respondent demographics were also considered according to their driving 

experience (measured by proxy as a respondent’s miles driven per year).  Most notably, 

the highest mileage drivers also tended towards being the oldest.  Furthermore, although 

risk responses were relatively consistent across all demographics, additional driving 

experience expanded the range of risk responses — higher mileage drivers exhibited both 

the highest and lowest overall risk perceptions.   

A final examination of available demographic attributes considered respondents’ 

communities.  This demographic classification produced distinctive differences.  Age 

varied across the communities; on average, motorcyclists represented the youngest 

respondents, while professional operators and driving enthusiasts represented the oldest 

respondents.  Overall, averaged risk perceptions were consistent across communities, 

however, self-rated driving ability varied somewhat significantly.  Professional operators 

and driving enthusiasts consistently rated themselves among the most capable of drivers, 

while academics rated themselves the closest to having average abilities (however, even 

academic respondents exhibited the Above-Average Effect). 
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Figure 12: Demographic Analysis by Community and Driver Experience 
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Figure 13: Demographic Analysis by Residency and Gender 
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Brief Sensation Seeking Scale 

The Brief Sensation Seeking Scale (BSSS) was intended to provide insight into 

respondent’s attitudes and perceptions of risk.  The scale was composed of eight Likert 

scale items, which were treated both independently and as a summative composite score.  

The scale was first analyzed for multicollinearity.  Afterwards, respondent’s descriptive 

demographic data was analyzed for correlations with individual response items of the 

BSSS (Table 4).  A final analysis utilized the BSSS scale and its individual items to 

explore distinctions between respondent communities. 

The BSSS scale items did exhibit moderate correlations amongst themselves 

(Appendix H).  Many of these inter-item correlations were statistically significant, but did 

not appear to cause a multicollinearity issue (the maximum correlation was between scale 

Items 4 and 8, with an effect size of 0.487).  A variable inflation factor test found the 

highest inflation factor was 1.7 for Item 8; meanwhile, Cronbach’s α was .71. 

Age was correlated with BSSS Item 1.  Older respondents were less likely to 

express an interest in exploring strange places.  Additionally, older respondents expressed 

a lower overall sensation seeking score; although this finding was not supported with 

statistical significance, it is consistent with earlier studies (Fan et al., 2014). 

Driver experience was correlated with BSSS Items 1 and 2.  Respondents who 

drove more miles per year expressed less interest in exploring new places, and, more 

significantly, reported being less restless when spending time at home.  Respondent’s 

driving experience was also associated with lower overall BSSS scores, although not with 

any testable statistical significance. 
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Table 4: 
Correlations between Items of the Brief Sensation Seeking Scale and demographics. 
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There were significant correlations between items of the BSSS and with 

respondent’s self-reported driving abilities and their overall risk perception.  Agreement 

with Item 8 (seeking new experiences, even if illegal) correlated strongly with increased 

self-perception of driving ability, and in overall risk perception.  Agreement with Item 3, 

“I like to do frightening things,” correlated with elevated perceptions of risk and with 

increased perceived driving abilities (this correlation had the greatest observed effect 

size, and was the most significant overall).  Despite their similarities, self-reported 

driving abilities and averaged risk perceptions were not significantly correlated (having a 

Pearson moment-correlation of only -.0285 and a p-value of 0.6223). 

Items of the BSSS were also used to assess distinctions between respondent 

communities (Table 5).  First, a generalized linear model was used to assess each scale 

item as a factor in predicting respondent’s community affiliations; although parameters 

are not estimable for this model, the p value indicates which BSSS items were most 

significant in predicting a respondent’s community (Ogorek, 2012).  Second, a cellular 

reference model was used to compare each community of respondents against the average 

of all responses.  This model compared each community’s set of responses to BSSS Items 

against the full population of respondent responses.  The results report on the magnitude 

and significance of variations in BSSS responses between communities. 

Academics, driving enthusiasts, and the general audience exhibited the lowest 

sensation seeking scores.  Academics expressed a preference for avoiding frightening 

things (Item 3).  Drivers disagreed strongly with Items 7 and 8 (bungee jumping, and 

trying new activities).  The general audience disagreed with Items 1, 3, 5, and 8.   
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Table 5:  
Modeling the Brief Sensation Seeking Scale and Community Affiliations 

 

 

Bicyclists, as a community, expressed a unique agreement with BSSS Item 2.  

This community strongly agreed that they would become restless if spending too much 

time at home.  Bicyclists also represented the second highest summative sensation 

seeking scores of any community. 

Professional operators, pilots and truck drivers, responded with significantly less 

agreement for Item 1 than the overall average for respondents.  Professional operators 
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overwhelmingly expressed less interest in exploring new places; notably, these 

respondents were also amongst the highest mileage drivers of any community. 

Motorcyclists expressed a unique agreement with BSSS Item 3, “I like to do 

frightening things.”  As a community, they also expressed the highest overall sensation 

seeking scores.  It is important to remember, too, that motorcyclists comprised the 

majority of respondents; therefore, despite the small effect sizes and low p values, these 

observed deviations from the overall average remain quite considerable. 

 

Analysis of Objective and Subjective Risk 

The leading research question asked whether there was concordance between the 

empirical estimations of risk and the subjective perceptions of risk.  A geographic 

information system identified crash hotspots and produced several indices of crash 

proneness and severity.  A visual survey instrument targeted towards digital communities 

collected individual perceptions of risk at a selected subset of crash hotspots.  Multiple 

methods were used to examine potential concordance between these objective and 

subjective measures.  Correlation tests were used to evaluate the average surveyed 

perceptions of risk and the various empirical measures of risk.  An additional correlation 

test explored the variance between different perspectives of imagery from the same 

intersection.  Finally, a selected series of survey intersections are presented as detailed 

case studies, completing the micro-scale analysis of the potential concordance between 

our perception of risk and the reality of risk in the automotive environment. 
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Correlations 

Each survey junction included a rank-index representing crash frequency, average 

severity, crash rate, severity rate, and the weighted equivalent property-damage-only rate.  

The three rate calculations best represent an individual’s personal crash risk (by 

normalizing the risk measure according to Annual Average Daily Traffic, or AADT).  

Pearson product-moment correlations were used to assess the concordance between the 

five objective measures of risk and the average of the perceptions of risk measured for 

each of the 20 survey photographs (Appendix H).  Correlations using the 20 rows of data 

(Table A3) were analyzed for each community, for high and low sensation seekers 

separately, and for all respondents together. The results are shown in Table 6. 

Correlations between risk perception and objective risk measures were calculated 

for each community of respondents.  These correlations were distinctive, and statistically 

significant, within the different communities.  Academics exhibited weak correlations 

across all scales.  Bicyclists, motorcyclists, and professional operators’ perception of risk 

were significantly and negatively correlated with the rate estimates of risk; implying their 

perception of risk was predictably reversed from the realities of personal crash risk.  In 

contrast, driving enthusiasts and general audience respondents exhibited significant and 

positive correlations with risk estimates; suggesting these respondents were more 

accurate in their perception of personal risk exposure. 

The Brief Sensation Seeking Scale (BSSS) was also used to assess objective and 

subjective correlations.  Respondents were divided into two groups of respondents based 

on their composite BSSS scores; BSSS scores at or above the median were considered  
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Table 6:  
Correlations between Objective and Subjective Risk Estimates 
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high sensation seekers, while scores falling below the median were considered as low 

sensation seekers (Fan et al., 2014).  This application of the BSSS did not produce unique 

distinctions from the correlations for all respondents. 

Considering all respondents, the individual ratings of risk did not exhibit any 

statistical significances.  The lack of a strong correlation suggests that individuals were 

unable to accurately predict the level of automotive risks for photographed junctions.  

Despite uncertainty in the results (from small sample sizes and marginal effect sizes), 

correlation coefficients were negative for all estimates of personal risk rates; this could 

potentially indicate that survey respondents not only misperceived risks, but that they 

were liable to perceive higher risk-rate intersections as being safer, and that they 

perceived safer intersections as having higher risks. 

 

Different Perspectives of the Same Intersection 

Individual risk perceptions were further examined by comparing the perceived 

risk ratings of different approach images taken from the same intersections.  A paired 

t-test did not reveal significant differences between images of the same intersections (p-

value of .40).  There were, however, three intersections which exhibited larger variability. 

In each case featuring high variability between perceptions of perpendicular 

perspectives, the featured intersection was a low traffic residential connector without any 

road paint markings (Figure 14).  Each of these intersections also included one image 

with a stop sign, and a second image that had no signal control (thus continuous thru-

traffic) in the other direction. The presence of a stop sign encouraged respondents to  
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Figure 14: Map and Plot of Variance in Perception between Views of the Same Site 
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decrease their risk estimate (thus increasing their perceived safety); conversely, the lack 

of a stop sign in the image caused an increase in respondent’s risk estimates, and 

decreased their perception of safety for the same intersections.  This result confirms that 

drivers do account for road geometrics in their perception of risk.

Select Intersection Case Studies

Four case study examples were selected to demonstrate the distinctions between 

crash frequency and crash rate, as well as between perceived and actual measures of risk.

The intersections are numbered using a unique index initially assigned to all junctions in 

Black Hawk County.  The four intersections are all located within 3 miles of each other,

and within 2 miles of the University of Northern Iowa.  This sample is a cross-section of

the daily activity spaces of many Cedar Falls residents (Figure 15).

Figure 15: Map of Case Study Intersections
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Figure 16: Junction 1100 Survey Photography (Left: West, Right: North) 

 

Junction 1100.  In both images (Figure 16), Junction 1100 (the intersection of 

Boulder and Maple Drives) was rated by respondents as posing well below average risk.  

In reality, this intersection was a notable crash hotspot in Cedar Falls.  Locals use this 

residential connector as a backway to the popular College Square Shopping Mall, and 

speeding is a common observation along the route.  The junction sees 2800 cars per day, 

has hosted 8 crashes, 1 fatality, and 2 reported injuries over the past decade.  Despite its 

low perceived risk, Junction 1100 holds the top spot on the EPDO rate index (Table 7). 

 

Table 7: 
Junction 1100 Crash Data, Risk Indices, and Surveyed Perception 

JID: 1100          Boulder and Maple Drive          42.509151, -92.438468 
Crash Report Data Empirical Risk Indices Surveyed Perception of Risk 

AADT 2843 Crash Rate 4.125   North West 
Crash Count 8 Severity Rate 4.750 Risk 2.89 2.64 
Severity 14 EPDO Rate 6.000 Std. Dev. 1.28 1.18 
Fatal 1 Crash Frequency 1.000  (expected average)  3.50 
Injured 2 Average Severity 5.375  (survey total average)  3.49 
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Figure 17: Junction 0725 Survey Photography (Left: West, Right: North) 

 

Junction 0725. The west-bound approach to Junction 0725 (the intersection of 

Walnut and 12th Streets) was perceived as posing below average risk, though the north 

bound approach (without the stop sign) was perceived as having average risk potential 

(Figure 17).  These perceptions were lower than the actual crash risk.  The intersection 

experiences over 8,000 cars per day, but with 59 reported crashes in the last decade, still 

ranks high on the crash rate index.  With 1 reported fatality and 19 reported injuries, this 

risk should rightfully be considered in terms of its severity as well as frequency (Table 8). 

 

Table 8:  
Junction 0725 Crash Data, Risk Indices, and Surveyed Perception 

JID: 0725          Walnut and 12th Street          42.527632, -92.453398 
Crash Report Data Empirical Risk Indices Surveyed Perception of Risk 

AADT 8550 Crash Rate 5.375   North West 
Crash Count 59 Severity Rate 5.375 Risk 3.66 3.11 
Severity 80 EPDO Rate 5.375 Std. Dev. 1.29 1.19 
Fatal 1 Crash Frequency 5.375  (expected average)  3.50 
Injured 19 Average Severity 3.500  (survey total average)  3.49 
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Figure 18: Junction 1214 Survey Photography (Left: West, Right: North) 

 

Junction 1214. Both images (Figure 18) from Junction 1214 (Greenhill Road and 

Orchard Hill Drive) were rated as well above average risk; this was despite the images 

showcasing wide lanes, clear sight lines, and open grass safety buffers.  The intersection 

experiences 8,000 cars per day, but only incurred 10 reported crashes in the last decade, 

meaning this intersection was not particularly crash prone.  However, it does rank high on 

the severity index, possibly owing to high speeds when relatively infrequent crashes do 

occur.  The above average perception of risk at this intersection was surprising (Table 9). 

 

Table 9:  
Junction 1214 Crash Data, Risk Indices, and Surveyed Perception 

JID: 1214          Greenhill and Orchard Hill          42.498187, -92.431605 
Crash Report Data Empirical Risk Indices Surveyed Perception of Risk 

AADT 8100 Crash Rate 1.625   North West 
Crash Count 10 Severity Rate 3.500 Risk 3.89 4.01 
Severity 21 EPDO Rate 2.875 Std. Dev. 1.20 1.31 
Fatal 0 Crash Frequency 1.625  (expected average)  3.50 
Injured 15 Average Severity 6.000  (survey total average)  3.49 
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Figure 19: Junction 0932 Survey Photography (Left: West, Right: North) 

 

Junction 0932. These two images (Figure 19) were perceived as having slightly 

above average risk, which aligned well the risk-rate indices.  The high volume of traffic 

at this intersection (Main Street and University Avenue) is mitigated by robust traffic 

signals, center lane dividers, road paint, and designated turn lanes.  Nearly 50,000 cars 

pass through this intersection every day, offsetting the 87 reported crashes (no fatalities, 

however).  Although the intersection is among the most frequent sites for crashes in the 

city, the actual crash rate (and measure of personal risk) was only average (Table 10).   

 

Table 10:  
Junction 0932 Crash Data, Risk Indices, and Surveyed Perception 

JID: 0932          Main and University          42.513115, -92.445814  
Crash Report Data Empirical Risk Indices Surveyed Perception of Risk 

AADT 49500 Crash Rate 3.500   North West 
Crash Count 87 Severity Rate 2.875 Risk 3.56 3.70 
Severity 121 EPDO Rate 3.500 Std. Dev. 1.13 1.12 
Fatal 0 Crash Frequency 6.000  (expected average)  3.50 
Injured 34 Average Severity 4.750  (survey total average)  3.49 



76 
 

 

Summary of Results 

This chapter described the results from an exploratory regression analysis and the 

identification of crash hotspots, as well as the development, distribution, and responses to 

the visually stimulated digital survey.  These results reproduced and expanded on results 

from existing literature, verified the efficaciousness of the methods, and provided for 

further discussions of geography, psychology, and, above all, traffic safety. 

A regression analysis verified the existence of a striking division between rural 

and urban crash patterns, and recognized Black Hawk County and the city of Cedar Falls 

as a suitable study area representative of state-wide crash data.  Within this study extent, 

a crash hotspot analysis revealed significant variability in the frequency, severity, and 

adjusted rates of crashes at intersection hotspots.  The analysis of the crash hotspots 

provided data for later analyses, and aided with the development and distribution of the 

visual survey instrument.   

Despite being blocked by many larger communities, the targeted digital 

distribution methods were viable.  Three hundred participants were recruited from 

various special-interest communities.  Clear distinctions between digital communities 

were observed in the responses to demographic and sensation-seeking questions.  For 

instance, academic respondents were the most restrained in self-reporting their driving 

abilities (though they still reported themselves consistently as being above average).  

Motorcyclists overwhelmingly agreed that “[they] like to do frightening things.”  Despite 

their differences, respondents’ average risk perceptions were similar for all communities. 
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The results from the empirical crash hotspot analysis and from the digital survey 

distribution were comparatively analyzed to assess concordance between the objective 

and subjective measures of risk.  The most significant correlations suggested a negative 

relationship between the perception of risk and actual risk rates for bicyclists, 

motorcyclists, and professional operators.  Drivers and general community members 

achieved positive correlations between their perception of risk and the actual risk rate.  

Correlations utilizing the full respondent pool were insignificant, although the correlation 

coefficients were consistently negative for all rate-based risk indices. 

No significant variations were found when comparing perceptions from two 

different images of the same intersection.  A closer examination of the sample 

intersections revealed that the presence of a stop-sign within the image decreased a 

respondent’s perception of risk, while the lack of a stop-sign at the same intersection 

increased the perception of risk.  This result does, however, demonstrate that drivers’ 

perception of risk does vary based on road geometrics. 

The results from this research reveal the complexities of analyzing crash data, the 

challenges of reaching survey participants, and the reality of negative results.  Although 

these results were not conclusive, the findings nonetheless fail to reject the null 

hypothesis: that our individual perceptions of risk are unlikely to bear concordance with 

our actual personal risk exposure as participants in the automotive environment.  
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CHAPTER V 

DISCUSSION 

The methods and results of this research stem from deliberate consideration of 

past literature, current constraints and objectives, as well as future replicability and 

reliability.  This chapter will discuss in detail the compromises made during this research, 

the necessary subjectivities encountered throughout the procedures, and provide 

interpretations of the most interesting results. 

 

Exploratory Regression Analysis 

The design of this research was heavily dependent on the scale of the various 

analyses.  It was critical to both understand and acknowledge the entire history of crash 

reports while also limiting the extent of analysis.  Initial explorations of these data used 

an areal linear regression to assess the statewide data at individual county scales.  The 

key findings were the distinction between urbanized and rural counties and associated 

crash trends, and the expected increase in crash counts resulting from additional miles of 

transnational highways.  Performing the regression analysis demonstrated the potential, 

and limitations of this type of procedure. 

The regression equation included three factors: driving age population, percent of 

urban land area, and length of transnational highway.  Increasing any of these three 

factors coincided with increases in predicted crash counts.  Given increased lengths of 

highway, we should expect an increase in traffic, some of which would be non-resident 



79 
 

 

thru traffic.  This increase in traffic implies an increase in the number of crashes.  Future 

research must consider this effect when interpreting areal analyses of crash data.   

A more surprising observation was the residual error in Polk County.  The capital 

county is Iowa’s leader in population, urban area, and transnational highways.  The 

county also boasts a significant lead in crash reports.  This may seem unsurprising at first, 

but even with factoring for its lead in the model variables, Polk County, and the city of 

Des Moines, suffered 6,000 more crashes than the model results predicted.  This 

underestimation of crashes might be because of heteroscedasticity, or perhaps the high 

number of actual crashes is due to the “intersection” of two national highways (I-80 and 

I-35); due to their configuration, the two interstates actually cross twice in the county! 

Aside from Polk County, many of Iowa’s other urbanized counties had lower 

numbers of crashes than predicted by the model.  This, combined with the fact that urban 

collisions are generally less severe (Eiksund, 2009), suggests that despite the added stress 

from visual clutter and additional traffic, urban driving appears safer than driving in the 

rural countryside.  Perhaps, rural populations take more driving risks compared with 

urban drivers (Cox et al., 2017; Eiksund, 2009; Rakauskas, Ward, Gerberich, 2009).  

Rural risk may be further exacerbated by cognitive underload, a circumstance borne from 

boredom and fatigue (Brookhuis & de Waard, 2010).  These findings support risk 

homeostasis theory, suggesting that drivers could adopt safer driving behaviors in the city 

as compensation for the inherent complexity of the urban environment.  Nonetheless, 

urban areas continue to have the highest absolute number of crashes, with an uncertain 

potential for serious injury and death. 
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Replication of the areal regression at finer scales could provide further 

explanation of the urban-rural divide in Iowa’s crash history.  Unfortunately, census and 

administrative datasets are more difficult to analyze at these smaller scales.  Census tract 

units rarely align with urban administrative boundaries, and even when such data is easily 

joined, there are questions about the margin of error in the American Community Survey, 

at finer scales (Neidert, 2017).  As performed, the areal regression analysis successfully 

summarized a macroscale view of the Iowa crash report data, however the designation of 

crash hotspot sites required the design of a microscale analysis. 

 

Crash Hotspot Analysis GIS Procedure 

There are many methods available for crash hotspot analysis.  Each potential 

model includes necessary subjectivity that permeate the geographic information system 

(GIS) methods, and influence the empirical derivation of risk estimates.  Nuances in these 

subjectivities may have broad effects on the results. Therefore, the interpretation of 

hotspot demarcation and empirical risk estimates warrants a thorough discussion. 

 

Hotspot Demarcation 

The hotspot analysis was developed to provide a static representation of risk 

heterogeneity throughout the road network space.  The Iowa Department of 

Transportation (IaDOT) maintains a statewide Safety Improvement Candidate Location 

(SICL) list.  This list reinforced the findings of the exploratory regression analysis, with 

many of the SICL hotspots falling within an urbanized city.  The list also provided a 
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template for the hotspot procedures in this research; the method was used to assess 

intersections based on the history of crashes occurring within a specified radius.     

The SICL procedure was adapted to fit the county and city scales used in this 

research. The procedure was chosen for its simplicity and appropriateness to the analysis.  

The method was outlined using ArcGIS’s ModelBuilder to enhance its replicability; the 

model derived planar nodes from road line-network data at any scale, and aggregated 

crash records within a parameterized radius from the derived nodes.   

Several alternative models were considered.  One included aggregating crash 

reports to intersections based on nearest Euclidean distances, and another similar model 

would have utilized Voronoi algorithms. These models would eliminate the concerns of 

overlapping buffer radii resulting from the SICL method and would better describe the 

scenario of two similarly busy intersections in nearby space, but would also reduce the 

weighting given to a busy primary road junction flanked by two adjacent frontage-

intersections.  The most precise methodological alternative would include manually 

geocoding crash report data using written reports; however, this would also entail much 

higher sensitivity in data acquisition, data handling, and potential distribution.  

After implementing the SICL method, subjectivities in the parameters of the GIS 

model were found.  The model was most sensitive to the selection of a buffer radius for 

crash report aggregation; there is no alternative to this decision, except use of a different 

model.  The designation of intersection nodes in road line data is also subjective; this 

procedure can be accomplished either geometrically, or through the Network Analyst 

ArcGIS extension.  Network Analyst includes intersections and single line-ends as nodes, 
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whereas the standard Intersect geometric tool only returns intersections of two or more 

lines as a node.  Both required dissolving and planarizing the IaDOT road network data.  

For simplicity and replicability, only standard geometric tools were used in the model.   

Accuracy of the road and traffic data introduced additional limitations affecting 

the model.  Principally, the lack of a Z-coordinate prevents full automation of the model 

procedure.  Without the Z-coordinate there is a significant loss of accuracy occurring at 

grade-separated road crossings, such as inner-city elevated freeways.  Fortunately, there 

were a limited number of such crossings in Cedar Falls, and the emphasis on individual 

crash rates deemphasized the role of higher traffic roads typically associated with grade-

separated crossings.  It is noteworthy however, that this rate calculation is reliant on the 

accuracy of average annual daily traffic estimates.  Traffic (and thereby risk) is highly 

variable, not just spatially but temporally too. 

Despite its limitations, the model used in this research is straightforward and 

robust.  The model tools utilized are well-supported in the ArcGIS Desktop environment, 

and the procedure is expected to be replicable using open source software alternatives.  

The GIS model accurately anchored a decade of crash reports in a geographic context, 

and provided a reasonably precise history of crashes at intersections on the planarized 

road network in Black Hawk County. 

 

Empirical Estimation of Risk 

Transforming the history of crash records into a quantifiable measure of risk 

introduced additional subjectivity.  Frequency of crashes, severity of crashes, and the 



83 
 

 

costs of crashes can be measured, but draw very different maps of the automotive 

environment.  The procedures for aggregating these attributes varies between agencies 

and organizations.  To better encompass the dynamic interpretation of risk, several 

indices of risk were used in this research. 

The interpretation of personal risk requires consideration of traffic volume.  

Adjusting crash counts to account for traffic flow significantly redraws the risk hotspot 

map (Figure 20).  This phenomenon is perhaps unsurprising, but often overlooked.  (With 

good reason, most traffic agencies are rightfully advocating for the biggest improvements 

for the smallest investment; these analytical methods, such as Iowa’s Safety Improvement 

Candidate Locations, favor hazardous intersections with traffic flows generally higher 

than the system average, and do little to offset individual personal risk exposure.)  Less 

busy intersections are often host to more than a fair share of crashes, but these sites are 

overlooked due to low traffic volumes.   

The result of the rate calculation is so dramatic that it demands the inclusion of an 

additional threshold – a minimum number of absolute crash counts – to make sense of the  

 

 

Figure 20: Rate vs Frequency.  Two hypothetical intersections demonstrate the 
significance of the rate calculation, and its importance in understanding personal risk. 
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redrawn risk-by-rate map.  Adopting this threshold results in a risk-by-rate map 

highlighting low-traffic road routes, but routes busy enough to be recognized as 

residential and commuter thoroughfares found on many driver’s daily trips.  This aligns 

well with the consideration that most crashes occur remarkably close to home, and 

potentially involve complacency on the part of the driver (“One in three,” 2009).   

Colloquially, people seem quick to point out busy intersections as being 

dangerous intersections, yet the rate calculation demonstrates that less busy intersections 

are equally dangerous to the individual, if not more so.  Perhaps, it is that our affective 

perceptions are not capable of evaluating the significance of this rate calculation.  Or 

perhaps it is an echo of the availability heuristic, where we are more likely to have 

experienced, even able to recall from memory, that lingering sight of wrinkled metal left 

after a crash at a busier intersection.   

 

Survey Methods 

Digital distribution of a survey instrument introduces unique limitations.  As with 

many publicly distributed survey forms, the format is vulnerable to non-response biases 

and is also vulnerable to malicious respondents.  The design of the survey was dependent 

on the framework provided by the Qualtrics platform.  There were also significant 

concerns regarding the introduction of uncontrolled variables in the use of photography 

— the lens of the camera, in effect, becomes the editor.  Despite these limitations, this 

survey methodology provided a means of soliciting individual perceptions of risk across a 

large population within given time and budget constraints. 
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Digital Design 

The digital design of the survey instrument provided many benefits for this 

research.  Nonetheless, all survey designs must accept certain compromises and 

limitations.  The survey was designed to be brief to encourage a higher response rate; 

although the response rate is incalculable due to the distribution methods, it was posited 

that adding any length to the survey questionnaire would have increased the rate of lost 

respondents, or worse, blurred the results due to respondent fatigue.  However, a longer 

survey instrument would have garnered additional demographic data and could have 

assessed a larger bank of image questions. 

The survey was developed entirely within the Qualtrics Research Core survey 

software.  This software provided a powerful platform for the development of survey 

questions, for organizing the layout and flow of the survey, and for incorporating the 

image-based questions.  The software also streamlined the distribution of the instrument, 

provided on-the-fly analytics and visualizations, and enabled exporting the survey 

responses in multiple formats.  The software was more than adequate for this research 

and surpassed expectations.  Potential future research projects should strongly consider 

the use of Qualtrics software above other alternatives. 

 

Use of Imagery 

Embedding photography within the digital survey instrument was a simple and 

replicable method of assessing visual cognition and affective perception.  Images were 

more easily and reliably transferred than video solutions, and much more cost-effective 
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than simulated or on-road driving exercises (safer for participants and researchers too).  

Imagery collection included adequate consideration for the environmental conditions, 

including the sky, sun, weather, and traffic.  The collection procedures, as performed, are 

expected to be successfully replicable in future research. 

There were concerns regarding the camera, mount, and vehicular platform used in 

this research.  Although the equipment used may not have been ideal, it met the 

objectives of replicability.  Part of this replicability includes an aspect of cost-

effectiveness; the chosen camera was consumer-grade and affordable, and the vehicular 

platform readily available.   

The raw images collected were of a higher resolution than the images distributed 

in the survey instrument.  Image resolution was constrained to assure technical reliability 

and consistency across various respondent devices and internet networks.  Although there 

was no restriction on the use of zoom features built into most common mobile devices 

and web browsers, several users commented that the pictures were small.  On the other 

hand, there were only a couple comments expressing technical difficulties with the 

survey instrument or with the loading and display of imagery. 

The use of imagery to provoke driver’s affective perception of risk is still 

arguably experimental, although was successful in obtaining results for this research.  At 

driving speed, drivers can only expect to assess a very narrow field-of-view (Nozzi, 

2003).  Furthermore, in such a high-paced environment, drivers should expect that “first 

impressions are usually the only impressions” (Vanderbilt, 2008, p. 26). 
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Distribution 

The digital distribution method used in this research was chosen to solicit a wide, 

yet targeted audience.  This included an emphasis on the distribution of links through the 

social link-aggregation site, Reddit.com.  Despite an underlying demographic bias 

towards young adult males, subreddit communities represented respondent groups with 

unique interests and perspectives (especially in their responses to items of the Brief 

Sensation Seeking Scale).  Even accepting these biases, the use of Reddit provided more 

diverse respondent demographics than the commonly used convenience sampling of 

college student populations in many published articles (Shatz, 2017). 

Despite the lack of a response rate calculation, the completion rate was a useful 

analytic.  Although the completion rate (69%) seemed low in comparison to traditional 

surveys, it was similar to the completion rate found by Shatz in 2017.  Perhaps the 

expectation of a high completion rate is misguided for this style of distribution; 

respondents who click-through to the survey have no attachment to the results or the 

researcher, and minimal motivation to complete the questionnaire.  Although the 

completion rate might have been improved with monetary compensation, this type of 

motivation might also result in erroneous, or junk, data (Shatz, 2017). 

The link-tracking (tracing the respondent’s originating community) revealed 

distinctive differences in respondent communities (including within Reddit’s subreddits), 

and was a vital part of this research’s results.  The procedure for tracking links was not 

difficult, but also not straightforward.  Future research could benefit from replicating this 

procedure, and Qualtrics should consider including an interface for such a basic feature. 
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Analysis of Survey Results 

Community Distinctions  

The way in which various communities responded to the survey invitation was 

surprising.  Motorcyclist communities were receptive and participatory, while the pilot 

community was scathing.  Meanwhile, other communities never received the survey 

invitation at all, due to the power and role of individual moderators.   

The role of forum moderators is well understood and often appreciated.  

Moderators serve to protect digital communities and forums from abuse by individuals, 

groups, and even automated spam (Chiregi & Navimipour, 2016; Herring et al., 2002).  

In this research, moderators of some of the largest target communities prevented posting 

of the survey invitation.  This was surprising, especially on Reddit, where users might 

mistakenly believe their ‘vote’ directly controls the type of content that surfaces; 

however, there was obvious gatekeeping occurring within certain target communities 

(Leavitt & Clark, 2014; McGee, 2013). 

The reactions and survey responses received from the pilot community were 

surprising.  Pilots, as a community, were expected to be open to the discussion of risk, 

risk management, and the severity of outcomes (McClellan, 2009).  Risk perception, risk 

management, and human behavior are covered in detail in Chapter 2 of the Federal 

Aviation Administration’s Pilot’s Handbook of Aeronautical Knowledge – required 

reading for any student, private, or commercial pilot.  Despite this, pilots were among the 

most likely respondents to leave the survey incomplete and expressed among the most 

exaggerated self-ratings of driver abilities.  Furthermore, they were among the few 
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communities with statistically significant correlations between their perceived and actual 

risks: as their perception of risk decreased, the equivalent-property-damage-only (EPDO) 

and crash rate indices actually increased.  

Motorcyclists were the most willing to participate in the survey, and equally 

willing to participate in the discussion of risk.  Their community comprised the majority 

of the survey’s respondents, and the greatest range of ages (though their demographics 

did skew toward a younger audience).  Their averaged risk responses were similar to 

other communities, however, they were significantly more inclined “to like doing 

frightening things.”  Like pilots, however, their perceptions of risk were inverse to the 

realities of the EPDO and crash rate indices. 

 

The Brief Sensation Seeking Scale 

The Brief Sensation Seeking Scale (BSSS) did not exhibit significant 

relationships with the individual perceptions of risk.  However, the BSSS did function as 

an interesting tool for examining unique distinctions between communities.  Individual 

items of the BSSS were strongly correlated with certain communities of respondents 

(such as bicyclist’s strong inclination to “become restless when spending too much time 

at home”).  The BSSS also correlated with other attributes of respondent’s demographic 

data (such as self-rated driver ability, and miles driven per year).  Although the BSSS did 

not help address the leading questions and objectives in this research, it could be a useful 

tool for similar behavioral research in the future. 
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Above Average Effect 

The Above-Average Effect has been observed in many studies; this survey 

research has successfully replicated those findings (McKenna, 1993; Svenson, 1981; 

Wohleber & Matthews, 2016).  The effect was observable across all respondent 

communities, and for all demographics (Figure 21).  This subtle, yet pernicious, 

overconfidence among drivers is expected to promote risk-taking driving behaviors and 

complacency towards adopting risk-avoidance strategies (including active defensive 

driving, passive driver education, and closed-course driver training).  The reality is that 

nearly all drivers suffer this effect (even those who have been educated and informed of 

it); in short, we are “unskilled and unaware of it” (Kruger & Dunning, 1999; Vanderbilt, 

2008, p. 61). 

 

 

Figure 21: Visualizing Self-Rating of Driving Abilities 

 



91 
 

 

Perception of Risk 

The perceptions of risk recorded from the survey were consistent across all 

demographics, including communities, ages, and genders.  This consistency, however, 

was not indicative of respondent accuracy.  Respondent’s perceptions of risk were not 

correlated with actual estimates of risk.  Furthermore, although the effect sizes were 

small and statistically insignificant, the correlation coefficients were negative between 

the perception or risk and all risk-rate estimates (suggesting that respondents might 

perceive safer intersections as dangerous, and dangerous as intersections as safe).  This 

has startling ramifications for traffic safety, and risk homeostasis theory. 

Let us first consider the situation if we accept risk homeostasis theory, and believe 

that drivers adjust their habits according to their perceived risk.  The results from this 

research would suggest that drivers drive more safely through intersections where they 

are already the safest!  Conversely, it would also mean that based on their incorrect 

perceptions of risk, that drivers are more complacent and more prone to risky behavior at 

intersections where they already face additional environmental risk!   

These findings do not refute the idea of risk homeostasis.  Drivers under added 

stress, such as when driving in unfamiliar places, are still likely to adjust their behavior 

accordingly.  Drivers might also adjust their behavior to suit heavy traffic, or adverse 

weather.  We must, however, acknowledge that risk homeostasis is not a catchall for all 

circumstances, and that drivers in familiar and comfortable settings are less able to 

accurately adjust their “target risk” (Wilde, 2001, p. 42).   We can still agree with Dr. 

Wilde however, that reducing driver’s target risk would improve traffic safety overall. 
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One might dismiss these findings because of the lack of statistical significance.  

Such a reader should review the work of Ezra Hauer, and his writing, The Harm Done by 

Tests of Significance (2004).  Although there was limited testable significance between 

actual and perceived risks, there was consistency.  Respondent’s perceptions were 

inversely correlated for all of the risk-rate indices.  Respondents were more accurate in 

predicting the crash frequency of an intersection; respondents rated higher frequency 

crash sites, and generally busier intersections, as having higher risk (these same sites 

generally represent the lowest levels of personal risk exposure).  At the very least, this 

lack of significance only serves to support the argument that drivers are unable to 

perceive their actual risk exposure on the road. 

 

Summary of Discussions 

The discussions in this chapter have briefly reviewed and interpreted results from 

the regression analysis, hotspot demarcation, and survey distribution.  These discussions 

considered the assumptions and limitations of the chosen methods, and potential 

implications of the survey response data.  Although many of the data were statistically 

insignificant, the results remain relevant to understanding the perception of drivers.   

The regression analysis and hotspot demarcation procedures were both aimed 

toward developing empirical estimates of risk.  Aside from the inherent subjectivity of 

these procedures (e.g., choosing regression factors and scales, and delimiting hotspot 

radii), these processes revealed the contrast between absolute measures of crash 

frequency and an adjusted crash rate.  Although busy intersections often host more 
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crashes, this does not imply that they pose the greatest levels of personal risk.  Drivers 

should be aware of the effect of this rate calculation on their personal risk exposure. 

The survey questionnaire demonstrated the viability of using targeted digital 

recruitment methods, as well as the use of imagery to record respondent perceptions.  The 

survey results suggest that digital communities possess unique, underlying demographics. 

The Brief Sensation Seeking Scale, although not strongly associated with perceptions of 

risk, clearly outlined the distinctions between survey communities.  This suggests that 

targeted digital surveys could be useful in future sociocultural survey research.   

The survey results also revealed key considerations about drivers’ perceptions, 

both of the environment, and of themselves.  Respondents overwhelmingly rated their 

own driving ability as significantly above average (a replication of results from past 

research publications).  Respondents’ perceptions of risk were affected by characteristics 

of the environment; most clearly, respondents felt that stop-signs increased their safety.  

This finding suggests that drivers account for environmental factors when considering 

their exposure to risk.  This accounting however, does not indicate accuracy. 

The key result of this research suggests that drivers are not accurate in their 

perception of risk in the automotive environment (Figure 22).  This finding contributes to 

our understanding of risk homeostasis, and enables us to improve future traffic safety 

interventions, through engineering, enforcement, or education.  Such interventions will, 

unfortunately, remain secondary to the responsibility of each individual driver.  Everyone 

contributes to risk on the road, and everyone can promote traffic safety. 
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Figure 22: Mapping Risk-Rate Indices and Perceived Risk. Surveyed junctions in Cedar 
Falls show a lack of concordance between risk perception and actual risks along common 

residential connectors and commuter thoroughfares.



95 
 

 

CHAPTER VI 

CONCLUSIONS 

Traffic Safety 

To increase traffic safety, and to prevent unnecessary injury and death, our society 

must strive towards a culture that prioritizes safety for all participants in the automotive 

environment (Ward et al., 2010).  This is not new thinking, as during the proliferation of 

American car culture it was noted that “[accident prevention] can only come through the 

joint and cooperative efforts … of the great majority of Americans” (Bennet, 1950, p. 

372).  We have tried the four E’s (education, enforcement, engineering, and emergency 

response), and yet we return our focus back to the fifth E: Everyone (IaDOT, 2013, p. 1).  

This means you too, dear reader, because “the sad truth is that the way we drive is 

responsible for a good part of our traffic problems,” including the unacceptably high 

counts of crashes resulting in serious injury and death (Vanderbilt, 2008, p. 128).   

We lie to ourselves about the extent of our traffic safety problems, and the cause.  

When involved in a crash, “drivers tend to explain accidents by circumstances which 

have least culpability compatible with credibility” (Baker, 1967, p. 591; Vanderbilt, 

2008, p. 72).  We even cast blame from ourselves onto vulnerable children.  In a London 

study, children were held accountable for their involvement in a crash in 78% of cases; 

further, any observable reduction in children-pedestrian crash types over the last several 

decades is likely just a side effect of fewer children walking, and more riding in cars to 

school every day (Hillman, Adams, & Whitelegg, 1990).  The shirking of responsibility 
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is not solely the fault of the car driver; rather there is an overall willingness evident 

throughout our society.  Take for example, cases where we cast blame onto cars 

themselves (Figure 23), such as when newspapers reported a pickup incredulously 

driving itself through the front doors of a Wal-Mart shopping center (Abrams, 2016; 

Boroff, 2016; Hider, 2016; Maricle, 2016; Rodgers & McGowan, 2016).  Three were 

killed by the truck in that “accident” (another point to be driven home shortly).  The 

unfortunate reality is that cars (and trucks) don’t kill people; people kill people.  

Clearly, the problem with traffic safety is the drivers.  What is needed is a traffic 

safety culture, but even then, that type of program must start with the individual.  We 

need to provide self-knowledge solutions.  This solution demands an increased effort to 

 

 

Figure 23: Headlines from a 2016 crash.  The crash resulted in 3 fatalities and 2 injuries 
— the driver was not among the fatalities. 
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demonstrate the potential for human error, and to make apparent the resulting 

consequences (Reason, 1990, p. 248).  What we need is to instill in drivers the “sustained 

realization that every time you step on the throttle, death gets in beside you, hopefully 

waiting for his chance” (Furnas, 1935, p. 21).  This type of self-knowledge is already 

alive and well, on full display during the winter time, when despite terrible conditions, 

drivers actually get in significantly fewer wrecks (Hillman et al., 1990). 

One easy start to these self-knowledge solutions is through simple use of 

language.  We should call a spade a spade, and rarely is a crash an accident despite what 

you might read in the papers.  This sensitivity to language is free (Stewart & Lord, 2003).  

Furthermore, the idea of affecting this language is not new, as in 1976, Ilya Ehrenburg 

lamented the evolution in language that transformed car crashes from ‘catastrophes’ into 

‘accidents.’  Before Ehrenberg, and before crashes were catastrophes, the colloquial term 

was most poignant: people called fatal crashes motor-killings (“Nation roused,” 1924; 

Mars et al., 2013).  The call for accurate language has already been reignited in our 

generations, led by the efforts of the Transportation Alternatives organization in their 

2015 #CrashNotAccident social media campaign (Badger, 2015; Zumhagen, 2015).  

There are simpler and more direct solutions to reducing dangerous driving.  The 

severity of judicial punishments could be increased, and cars could be built with stringent 

speed governors (using either or both traditional radio-wave or modern satellite 

technologies).  We can save lives, but as a society we lack the social and political 

willpower to make it happen.  We willingly choose to accept unregulated freedom of 

mobility in exchange for rampant death and destruction (Humes, 2016, p. 132). 
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Unbridled Optimism 

Many detractors of traffic safety (and yes, they do exist) would argue that the 

concerns expressed in this thesis are oversold.  These types would suggest that 

engineering will eliminate the danger of our cars, and that automation will even supplant 

the driver.  Such thoughts are optimistic at best, and downright wrong at their worst. 

Improvements in safety technologies rarely reach their predicted potential.  Safety 

technologies generally appear to increase our risk-taking behaviors.  Wilde (2001) would 

interject his theory of risk homeostasis at this point.  Taken a step further, Peltzman 

(1975) suggests that the consequences of this increased risk taking are mostly felt by 

innocent parties (pedestrians, cyclists, and other drivers).  Aside, safety technologies are 

already available and often ignored; a significant number of crash injuries are to victims’ 

heads, yet no one seems to be pushing for a helmet law (Vanderbilt, 2008, p. 265). 

Automation in driving has become a trendy new topic of its own.  Amidst the 

excitement and optimism, boosters promise an improvement in injuries and fatalities just 

as soon as we can eliminate the driver.  This could be five years, or fifty, but many of 

these automation enthusiasts are content to sit back and wait while their friends and 

family buzz recklessly through the countryside.  Even if this automation arrives within 

the decade, however, there is no guarantee of eliminating the human driver.  People like 

to be in control (and especially like to be in control of their risk).  Gambling on a future 

where people, governments, and engineers all see eye to eye seems a risky business all of 

its own.  In the meantime, the death toll is still climbing. 



99 
 

 

There is another hidden truth in this story: the reality that the planet will likely 

never support one car for every person.  The implication, then, is that we must go beyond 

optimism.  We must go beyond traffic safety, and take aim at reducing automobility in 

favor of more sustainable public and active transit alternatives.   

The issues inhibiting a transportation revolution are partly structural but also an 

ingrained part of our culture (Ladd, 2008).  The personal car has replaced nearly every 

alternative, and thereby made the car a compulsory asset in the rural and suburban United 

States (Gorz, 1973).  The American highway acts as a centrifugal force acting against our 

daily and personal spaces (Dimendberg, 1995; Jackson, 1984).  This centrifugal age of 

“hypermobility” has embedded itself in our economies, and encouraged increasing wealth 

disparity, social dispersion, and anonymity.  Meanwhile, our newborn suburbs have 

become placeless symbols of our newly adopted “McCulture” (Adams, 1999, pp. 95–96). 

 

Practical Solutions 

There are simple solutions to reversing the damage of our car culture (including 

the impacts to our environments, the sprawling of our cities, and the social and economic 

inequities).  Something as simple as choosing to own and drive smaller cars would have 

significant implications for revitalizing dense urban spaces, and also address the closely 

related issue of expansive parking accommodations.  Above all, however, we must seek 

to “reinstate the pedestrian” as a vital cornerstone of our places — we must rebrand the 

automotive environment as a human-friendly environment (Mumford, 1968, p. 8). 
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The first key to reducing our transportation footprint (and our transportation risk) 

is to reduce our daily trip distances.  Before we ever face the choice of whether to drive 

or walk, we first choose where to live.  That choice has control over our daily travel 

distances, and influences our modal choices.  Reducing our daily travel distance to the 

point where walking, cycling, or public transit are preferable to a daily drive saves us a 

significant amount of risk (Lucy, 2003).  This effect is compounded by removing 

yourself from the road during the most dangerous driving hours of the day: the commute.  

It also saves money, and as a bonus, cycling or walking doubles as daily exercise. 

A second key is to push for reasonable legislation.  With adequate social and 

political willpower, we can modify the incentives to favor transit and pedestrianism.  We 

should increase the price for parking (Shoup, 2017), charge roads and gas taxes that cover 

the cost of maintenance, and we could lower speed limits and give right-of-way to 

pedestrians and cyclists.  We can do all of these things and more, which would not only 

reduce the social and economic externalities of automobility, but also reduce the 

associated risks.  Less cars means less crashes, and increased pedestrianism results in 

better behaved drivers (Speck, 2013, p. 98; Vanderbilt, 2008, p. 85) 

Let us ignore the big picture for now.  Let us ignore the environment, and our 

escalating consumption of natural resources.  Let us ignore our sprawling urban capitals, 

our dwindling natural spaces and rising obesity.  Let us ignore the simple economics, and 

the social inequities of casting a luxury good as a necessity.  Instead, let us reiterate our 

focus on traffic safety, on the thousands killed every year, and the millions injured.  We 

are the most dangerous creatures in our automotive environment, and we hold the keys.  
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APPENDIX A 

DATA SAMPLES 

Table A1: 
Exploratory Regression Data Inputs 
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Table A2: 
Sample Rows and Key Columns of Survey Data 
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Table A3: 
Risk Estimates for Survey Photography.  Columns show ranks of empirical risk (scaled to 
match survey); additional columns show aggregations of surveyed risk perceptions 
(overall, by community, and by low and high sensation seeking scores). 
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APPENDIX B 

LAB AND FIELD MATERIALS 

Computer Hardware 

ACER CB3-111 Chromebook (Figure B1) 

• Intel Celeron 2.16 GHz Single-Core 

• 2 gigabytes DDR3 RAM memory 

• 16 gigabytes Solid State Drive  

 

• Benchmark. Browserbench.org/Speedometer 

o Test 1: 25.6 +- .28 (1.1%) 

o Test 2: 24.3 +- .81 (3.3%)  

 

Dell Precision T1700 Workstation (Figure B2) 

• Intel Xeon E3 1245, 3.40 GHz Quad-Core 

• 64-Bit Processor and Operating System 

• 32GB RAM 

• NVIDIA Quadro K600 Graphics Display Adapter 

 

• Benchmark. Browserbench.org/Speedometer 

o Test 1: 129.8 +- 1.3 (.96%) 

o Test 2: 132.2 +- 1.3 (.96%) 
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Computer Software 

ACER Chromebook CB3-111 and Dell Precision T1700 

• Google Chrome Web Browser 62.0.3202.94  

• Google Drive Based Applications 

o Google Docs 0.10 

o Google Sheets 1.20 

o Google Slides 0.10 

• Qualtrics Research Core Cloud-Based Software Suite 

 

ACER Chromebook CB3-111 

• ChromeOS Operating System 61.0.3163.120 

 

Dell Precision T1700 Workstation 

• Windows 10 Professional 

• Microsoft Professional Productivity Suite 16.0.8730.2046 

o Word 

o Excel 

o Powerpoint 

• ARCGIS Suite 10.4.1 

o ArcMap 

o Network Analyst Extension 

• Adobe Photoshop CS2 
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• Adobe Acrobat DC Professional 

• GNU Image Manipulation Program 2.8.16 

• Inkscape 0.92.2 

• RStudio 0.99.442  

• TIBCO Spotfire S+ 8.2.0 

 

 

 Figure B1: Acer Chromebook Portable Workstation; banana for scale (Alfonso, 2013). 

 

 

Figure B2: Dell Precision T1700 and Dual Monitor Configuration 
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Field Equipment 

Kawasaki Vulcan Nomad 1600D “Classic Tourer”, 2007 (Figure B3) 

• 1552 cc (94.70 cu.in.), liquid-cooled  

• 4-stroke Single Overhead Cam, 50-degree V-Twin-cylinders  

• 5-speed transmission, shaft-driven final drive 

• Dual hydraulic front disc brakes (300mm), single rear hydraulic disc (300mm) 

• Curb mass: 832lbs 

• Modifications: 

o Cobra Steel Lightbar (#04-0442) 
o Vance & Hines Bagger Slash-Cut Dual Exhaust (#18369) 
o Cobra Tubed Sissy Bar Luggage Rack (#02-3501)  

 

 

Figure B3: Kawasaki Vulcan.  Vehicular platform used for photography in this research 
(Photo taken June of 2017, Highway NC-28; 35.439679 N, 83.785046 W). 
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ACTIVEon CX Action Camera (Figure B4) 

• 5MP CMOS 

• Full High Definition (FHD) 1080p Video Mode 

• F/2.4 

• 4 Field-of-View settings: Narrow, Medium, Wide, Super-wide (170°) 

 

USA Gear Roll Bar and Handlebar Action Camera Mount 

• Tripod Screw and Pivot Action Style Camera Mounting 

 

 

Figure B4: Camera Equipment: Cobra Lightbar, Handlebar Mount, and Action Camera.  
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APPENDIX C 

HOTSPOT ANALYSIS PYTHON SCRIPT 

Overview 

In this research, crash-record data points were assigned to intersection points 

according to their spatial location within buffered polygons.  However, the creation of the 

buffered polygons for each intersection point resulted in many overlapped polygons; this 

resulted in crash records being double-counted through assignation to multiple 

intersections.   Further exploration revealed, that in many cases, these overlapping buffers 

were a result of secondary intersections near to a much larger, primary intersection.  

Therefore, it was deemed best to eliminate this overlap, and to do so by preserving the 

polygon-buffer with the highest average annual daily traffic (AADT). 

This python script runs within the ArcGIS ArcPy code environment.  It requires 

an input table of polygon features with overlapping areas; within this research, these 

polygons are derived from buffered junction points which have been processed with the 

Union tool (“Junction_Union”).  The Union tool splits polygons into smaller fragments 

wherever two or more polygons overlap (Figure C1).  The script adds Centroid X and Y 

coordinates for each polygon fragment, then creates the output table 

(“Junction_Centroid”) by dissolving the union-polygons based on these coordinates.  The 

dissolved output has no overlaps, but also no other attributes. 

 An iterative loop moves through each row of the Centroid output table; for each 

Centroid feature, a second loop accesses rows of the original Union polygons.  It  
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Figure C1: Union Tool Input and Output Example (Environmental Systems Research 
Institute, 2017). 

 

compares and records the highest AADT amongst identical and overlapping polygon 

fragments, and then records this as the primary Junction ID (or “PrimJ”). The resulting 

Centroid output table has no overlaps, and features two key attributes, a Junction ID and 

the highest observed AADT.  This output is Dissolved using these key fields, resulting in 

the complete reconstruction of the primary junction buffers. 

 

Preparation of Workspace 

⋅ arcpy.AddGeometryAttributes_management("Junction_Union", "CENTROID") 
⋅ arcpy.env.workspace = "D:\2017F\Thesis\Thesis_Junctions.gdb" 
⋅ arcpy.env.outputCoordinateSystem = 

arcpy.Describe("Builder/Builder_2_BlackHawk_Union").spatialReference 
⋅ arcpy.Dissolve_management("Builder/Builder_2_BlackHawk_Union", 

"Builder/Builder_2_BlackHawk_Centroid",["CENTROID_X", "CENTROID_Y"]) 
⋅ arcpy.AddField_management("Builder/Builder_2_BlackHawk_Centroid", 

"PrimeJunction_OID", "LONG") 
⋅ arcpy.AddField_management("Builder/Builder_2_BlackHawk_Centroid", 

"HighestAADT", "LONG") 
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Reset/Prime Columns 

⋅ with 
arcpy.da.UpdateCursor("Builder/Builder_2_BlackHawk_Centroid",["CENTROID_X",
"CENTROID_Y","PrimeJunction_OID","HighestAADT"]) as rowsCentroid: 

⋅ for rowC in rowsCentroid: 
⋅ newAADT = -12345678 
⋅ newPrimJ = 87654321 
⋅ rowC[3] = newAADT 
⋅ rowC[2] = newPrimJ 
⋅ rowsCentroid.updateRow(rowC) 
 
 

Iterative Loop to Select Highest AADT Buffer 

⋅ with 
arcpy.da.UpdateCursor("Builder/Builder_2_BlackHawk_Centroid",["CENTROID_X",
"CENTROID_Y","PrimeJunction_OID","HighestAADT"]) as rowsCentroid: 

⋅ for rowC in rowsCentroid: 
⋅ refCentroidX = rowC[0] 
⋅ refCentroidY = rowC[1] 
⋅ newAADT = -1 
⋅ newPrimJ = -1 
 
⋅ with 

arcpy.da.SearchCursor("Builder/Builder_2_BlackHawk_Union",["CENTROID_
X","CENTROID_Y","ORIG_FID","SUM_AADT"]) as rowsUnion: 

⋅ for rowU in rowsUnion: 
⋅ if rowU[0] == refCentroidX: 
⋅ if rowU[1] == refCentroidY: 
⋅ if rowU[3] > newAADT: 
⋅ print("Will update PrimJ --- RowU: ",rowU[3]," > 

New AADT:",newAADT) 
⋅ newAADT = rowU[3] 
⋅ newPrimJ = rowU[2] 
⋅ else: 
⋅ print("Preserved Existing Data --- RowU 

:",rowU[3]," < ",newAADT) 
⋅ rowC[3] = newAADT 
⋅ rowC[2] = newPrimJ 
⋅ rowsCentroid.updateRow(rowC) 
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APPENDIX D

HORIZONTAL IMAGE RECTIFICATION

Due to stability issues with the tripod style ball-mount, some raw images included 

tilt from the true horizon.  This was corrected in the GNU Image Manipulation Program.  

Imagery was imported, then rotated (often less than 5°).  A selection box was created 

using a fixed aspect ratio (matching the ratio of the raw image).  The image was cropped 

to this selection box, then exported to the Joint Experts Photographic Group image format 

(“.jpg”).  This method avoided image distortion, and limited loss of viewshed.

Step 1: Import Raw Photography Step 2: Rotate to Align Horizon

Step 3: Delineate Cropped Area Step 4: Export to JPG Web Image

Figure D1: Horizontal Image Rectification Procedure
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APPENDIX E 

SURVEY IMAGERY 
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Figure E1: Survey Imagery 
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Figure E2: Survey Imagery (continued) 
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APPENDIX F 

SURVEY QUESTIONNAIRE 

  This survey aims to research the perception of risk in driving environments.  The 
questionnaire begins with a short demographic section.  Following this, participants are 
presented with 23 photographs of road intersections, and asked to rate the risk of each 
intersection.  
 
This survey should only take 5-10 minutes of your time, requires minimal personal 
information, and poses very little risk to participants.  Due to the nature of digital 
communications the security of these forms cannot be guaranteed; however, once 
received, survey results will remain secure and completely anonymous.  The Institutional 
Review Board at the University of Northern Iowa has reviewed and verified these 
statements.  The survey is voluntary, and may be stopped at any time. 

o I am willing to participate in this survey. 

o I am not willing to participate at this time. 
 

  Are you 18 years of age or older? 

o Yes o No 
 

  Do you have a valid driver's license? 

o Yes o No 
 

  What is your gender? 

o Male o Female o Other 
 

 

  Are you a resident of the United States? 

o Yes o No 
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  What is your age? 

o 18 

o 19 

o 20 

o 21 

o 22 

o 23 

o 24 

o 25 

o 26 

o 27 

o 28 

o 29 
 

o 30 

o 31 

o 32 

o 33 

o 34 

o 35 

o 36 

o 37 

o 38 

o 39 

o 40 

o 41 
 

o 42 

o 43 

o 44 

o 45 

o 46 

o 47 

o 48 

o 49 

o 50 

o 51  

o 52 

o 53 
 

o 54 

o 55 

o 56 

o 57 

o 58 

o 59 

o 60 

o 61 

o 62 

o 63 

o 64 

o 65 or older 

 

  What age did you receive your first driver's license? 

o Before Age 14 

o 14 

o 15 

o 16 
 

o 17 

o 18 

o 19 

o 20 
 

o 21 

o 22 

o 23 

o 24 
 

o 25 

o Over Age 25 
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  Approximately, how many miles do you drive in a typical year? 

o Less than 5,000 miles. 

o Between 5,000 and 10,000 miles. 

o Between 10,000 and 20,000 miles. 

o Over 20,000 miles. 
 
 
  Please rate your driving ability: 
 

Far above 
average 

Moderately 
above 

average 

Slightly 
above 

average Average 

Slightly 
below 

average 

Moderately 
below 

average 
Far below 
average 

o  o  o  o  o  o  o  
 
 
  Please respond to the following statements. 
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I would like to explore strange places o  o  o  o  o  
I get restless when I spend too much 

time at home o  o  o  o  o  

I like to do frightening things o  o  o  o  o  

I like wild parties o  o  o  o  o  
I would like to take off on a trip with 
no preplanned routes or timetables o  o  o  o  o  

I prefer friends who are excitingly 
unpredictable o  o  o  o  o  

I would like to try bungee jumping o  o  o  o  o  
I would love to have new and exciting 

experiences, even if they are illegal o  o  o  o  o  
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  Different intersections pose varying levels of risk of a car crash.  The following 
section will present 23 photographs of various suburban intersections.  We would like 
your estimation of risk at the given intersections, recorded on a multiple-choice scale 
from below average risk to above average risk.  The photography is not meant to be 
misleading in any way; feel free to respond as quickly as possible, providing us with 
your first impressions. 

  Estimate the risk of a car crash at the following intersection: 

 

Far below average   Far above average 

o  o  o  o  o  o  
 

  (Intersection Question Structure Repeated for Each of 23 Images) 

 

  Please enter your birth year: 

________________________________________________________________ 
 

  Do you have any comments, suggestions, or feedback for this study? 

________________________________________________________________ 
________________________________________________________________ 
________________________________________________________________ 
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APPENDIX G 

RESPONDENT COMMENTS 

Hypotheses 

Blind Spots Raise Threat 

 I look at sight lines and obstructions.  If there are obstructions to the drivers being able 
to see oncoming and threat-traffic when they are parked at the stopsign/light/driveway 
line, then that is a recipe for them to try and pull out past the line and hit cylists and 
pedestrians, as they try to get out far enough to see the traffic. 

 
Risk = Severity 

 It's not so much the "chance of a collision" as the severity of the collision. Stop sign 
intersections are likely for a fender-bender, but faster roads are more likely for a 
serious crash.  

 
Low Traffic = Low Risk (caveat, familiarity = negligence) 

 No traffic at ANY of these intersections so they all look relatively safe. 

 As a motorcycle rider I find intersections where someone could pull out in front of 
me as particularly risky.  I've also been rear ended twice at simple 4 way lights in 
town due to driver distraction.  Residential uncontrolled are usually pretty low due to 
the number of cars and low speed limit, but people familiar with the neighborhood 
rarely stop completely or look for cross traffic.   Hopefully my answers show this. 

 

Markings Mean Safe... 

 It seems like most of the pictures were on streets that did not have double yellow 
centerlines... I would think that alone would keep them off the lowest notch. I didn't 
see any with vision potentially blocked by vegetation or objects. 

 I rated intersections as more dangerous when driving lanes were not clearly 
marked[…], options to proceed were not clear, [...] 

 2-way stop v's 4-way stop would make a significant difference to the risk 
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...Though Not Always 

 It would be nice to know, statically, how dangerous each type of intersection is, 
especially for motorcyclists. I believe it is when a smaller road tee's into a larger road, 
with only a stop sign to control traffic flow. 

 It would be interesting to see what the empirical risks for these intersections are, or at 
least for intersections with and without traffic lights (and more or less obstruction to 
visibility).   It's somewhat unclear to me whether traffic lights (presumably placed at 
high-traffic intersections) increase or decrease risk as running one by mistake 
probably leads to a crash. 

 
Traffic Potential 

 that was interesting. I looked at the total traffic potential and the opportunity to 
intersect. Protected turn lanes are typically somewhat dangerous. Sight lines play a 
big role, too. 

 I rated intersections as more dangerous when [...] my perceived number of vehicles 
was higher. 

 More lanes, more dangerous the intersection. Hello from /r/motorcycles! 

 
Limitations 

Qualtrics “Random” 

 I noticed some intersections are pictured twice from multiple angles/approaches. I 
only notice this because those photos are sequential. If more spread out it would be 
easier to fool me (and others). :) 

Additional Factors in Risk 

Demographics 

 An option to identify the survey taker as a professional or amateur driver might yield 
more interesting information. 
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Time of Day / Sun, Conditions 

 I agree with you assertion that motorcyclists assess risks differently to car drivers. 
Since we are far more vulnerable the cost of even a minor accident is high. If might 
help your survey if you could include other vehicles, since this also has an important 
bearing on how dangerous an intersection might be. Also weather and the time of day 
are important factors.  

 Knowing the direction of travel at each intersection would be helpful as the time of 
day and direction of the sun can play a major role in the safety of an intersection and 
the ability of the drivers to see clearly. I was only able to make opinions based on that 
moment in time, roadway markings, lights and signs and current conditions at the 
time of the picture. All of which can play a factor but are not always the most 
important things to consider. 

 
Intersection Sample 

 Where do you live for that many 4 way intersections to have no stops in any of the 
ways ? 

 There should be more variety. They all seem like they are from the same town in the 
US. My main concern is when the roads are too wide - it makes them feel safer when 
they are not. 

 
“Traffic or Situations” 

 Hard to judge based on a photograph. Moving images would be better 

 It's hard to evaluate the intersections based on a photo, I couldn't really see as well as 
I could if I was there - things like whether or not it was a four way stop or if it was 
crowded or if cars were likely to make a U-turn.. etc.  But that's not the fault of the 
study.  

 At least one photo did not encompass a complete intersection.  Pretty much all 
intersections were average because I assumed daytime traffic.  Some could have used 
better signage or striping.  No traffic or speed limit sign information was provided 
though.  It's more like driving at 3a.m.  Very safe as there were no cliffs or 
construction sites.  This is a pretty incomplete driving situation to assess. 

 The pictures make it hard to tell exactly what's going on. You can judge risk based on 
lines of sight, traffic volume of road, and other factors that are hard to capture from a 
single picture." 
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Speed Limits 

 Hard to tell which intersections will be dangerous without knowing the speed limits 
of the roads intersecting. 

 Having some speed limit signs would help assess the different risk levels. 

 No speed limit indicators, couldn't tell if 4 way stop or not, no way to have much 
indication of traffic volume or time of day.  

 
Respondent Fatigue 

 After about the 8th intersection I stopped caring 
 

Photos 

Other stop signs / 4-way Identification 
 Some of the intersection photos didn't make it easy to determine what types of traffic 

control features were present. 

 Hard to tell if other traffic had stop signs as well. 

 It was difficult to gauge a lot of the stop sign regulated intersections. I couldn't 
see/tell if it was an all way stop or not. 

 I think the photos seem overly biased toward semi-rural or residential areas.  Also in 
many cases, I couldn't tell whether there were stop signs on the crossing streets in 
many cases.  2-way stop v's 4-way stop would make a significant difference to the 
risk 

 
Small/Blurry 
 Pictures of the intersection are inadequate to accurately judge the intersection. The 

images appear distorted and make it difficult to determine rough distances and 
potential clearances. Recommend updated pictures, diagrams, or different 
intersections. 

 The photos are quite small.  It's difficult to make out detail. 

 Wide angle lens distorts depth of field significantly. 
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Perspective 
 If I were to conduct this experiment again, I'd use the same vehicle and driver with a 

dash or head mounted camera to capture images more consistently representing what 
drivers would see in real time." 

 It is very difficult to estimate the dangers because the pictures do not show the 
amount of overview you have of the roads on the left and right. 

 Perspective is important. Without knowing how high the camera was, it is difficult to 
tell whether roadside obsticals would block the view of oncoming or crossing traffic. 
Picture 1 is a good example. Combined with the distortion from the camera lens, the 
grass berm on the right and bushes to the left could make seeing cross traffic difficult 
without entering the intersection. 

 camera angle seems low, estimates are based on still images without seeing further 
into the intersection from the right left from and behind. Chance of accidents are 
always there. Some was easier to identify blind spots many looked the same 4 way 
intersection. Some where 3 way intersection, which helps identify threat or chance of 
oncoming vehicle. 

 

Foreigner Perception? 

 As a UK driver most of my decisions were based on UK rules, so may not apply to 
the USA 

 Non-American responses may differ significantly from American responses since 
they're less familiar with US intersection design 

 "Not sure how useful allowing us forrinurs to participate, VERY different road setup 
i.e. very few intersections, more lots of roundabouts. differnet rules on what happens 
at these places too. 

  

What is Average? 

 Intersections have to be rated above average or below average. What if I consider the 
intersection to be average? 

 It's not so much the "chance of a collision" as the severity of the collision. Stop sign 
intersections are likely for a fender-bender, but faster roads are more likely for a 
serious crash.  

 most intersections are the same and same level of control. 
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 The questions are in relation to "average".  Average of all images shown? Average of 
any given intersection in the US?  Average based on my experiences?  It seems a bit 
too open to interpretation. 

 There is no "average" option on the estimate of how dangerous the intersection is. 

 

Shared Experiences 

 The vehicle that one drives must play a large role in predicting dangerous 
circumstances. While on my motorcycle, many of these scenarios would be alarming. 
In contrast, being in a car would warrant a different assessment. 

 
Self-ascribed a higher risk 

 As a newbie rider i tend to feel more risky going through intersections 

 I drive very seldomly and live in a large metro area. My education level is a 2nd year 
college student. 

 
Self-described their driving experience or abilities  

 I ride Motorcycles on the road more than driving a car. 

 "I'm on 41st year of driving and 50th year of riding motorcycles. I have never had any 
fear of a motorized vehicle be it land, sea or air (I was a Coast Guard rescue boat 
captain and have solo'ed in a single engine plane. I have also road raced motorcycles 
with WERA for over 20 years). The only thing that frightens me on the road is other 
drivers, most of who I find woefully inadequate at the operation of a vehicle. I lived 
in Germany for a year...they treated driving as a privilege and obtaining a license was 
similar to a pilots license in the US.   We should adopt that policy!" 

 Long haul trucker here, almost three years experience. 

 My primary transport is a Kawaski En500, followed by a Ford F-250. 

 No accidents or tickets (moving or not) in my entire driving career. 
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APPENDIX H 

STATISTICAL CODING AND TESTS 

Processing completed in the RStudio R coding environment (R Core Team, 2013). 

 

Brief Sensation Seeking Scale Correlations 

Inter-item Multicollinearity 

## Correlations 

> df <- data.frame(Survey_ DATA) 
> mCorr <- data.frame(df$BSSS1, df$BSSS2, df$BSSS3, df$BSSS4,  
+     df$BSSS5,df$BSSS6, df$BSSS7, df$BSSS8) 
> cor(mCorr, mCorr) 
## Output Omitted 
 
 
## Correlation P-Values Matrix (Rinker, T., 2012; Zoonekynd, V., 2012) 
 
> df <- data.frame(Survey_ DATA) 
> cor.test.p <- function(x){ 
+     FUN <- function(x, y) cor.test(x, y)[["p.value"]] 
+      z <- outer(colnames(x), colnames(x),  
+  Vectorize(function(i,j) FUN(x[,i], x[,j]))) 
+     dimnames(z) <- list(colnames(x), colnames(x)) 
+     z} 
 
> cor.test.p(mCorr) 
# Output Omitted 
 
 
Variable Inflation Factor Test 

## Multicollinearity Test using Variable Inflation Factor  
## (Naimi, Hamm, Groen, Skidmore, and Toxopeus, 2014) 
 
> df <- data.frame(Survey_ DATA) 
> vifcor(cbind(df$BSSS1, df$BSSS2, df$BSSS3, df$BSSS4, df$BSSS5, df$BSSS6,  
+     df$BSSS7, df$BSSS8)) 
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## Output: 
-- No variable from the 8 input variables has collinearity problem.  
 
The linear correlation coefficients ranges between:  
min correlation ( V4 ~ V2 ):  0.008529956   max correlation ( V8 ~ V4 ):  
0.4871724  
 
---------- VIFs of the remained variables --------  
  Variables      VIF 
1        V1  1.274485 
2        V2  1.250898 
3        V3  1.590967 
4        V4 1.442226 
5        V5  1.261420 
6        V6  1.602118 
7        V7  1.290714 
8        V8  1.726975 
 
 
Cronbach’s Alpha 

> alpha(x = BSSSItems) 
 
## Output: 
 
Reliability analysis    
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd 

0.71 0.71 0.73 0.24 2.5 0.025 3.2 0.69 
        
Confidence Intervals lower alpha upper    
  0.66 0.71 0.76    

 
Item raw_alpha std.alpha G6(smc) average _r S/N alpha se 
BSSS1 0.70 0.70 0.71 0.25 2.4 0.026 
BSSS2 0.72 0.72 0.72 0.27 2.5 0.024 
BSSS3 0.64 0.64 0.67 0.21 1.8 0.032 
BSSS4 0.69 0.70 0.71 0.25 2.3 0.027 
BSSS5 0.70 0.70 0.71 0.25 2.4 0.026 
BSSS6 0.65 0.65 0.67 0.21 1.9 0.030 
BSSS7 0.69 0.69 0.71 0.24 2.2 0.027 
BSSS8 0.64 0.65 0.66 0.21 1.8 0.032 
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Descriptive Demographic Data and Correlations with BSSS Items 

> df <- data.frame(Survey_ DATA) 
> cor.test(df$BSSS1, df$DrvExp) 
> cor.test(df$BSSS2, df$DrvExp) 
## Repeated for each correlation (BSSS Items 1 through 8 and the BSSS total score, 
## for Age, Experience, Ability, and Risk Perception. 
 

Community Correlations 

## Linear Model using BSSS Items to Predict Community Affiliation 

> df <- data.frame(Survey_ DATA) 
> fit <- lm(as.numeric(df$Link.Tracking)~df$BSSS1+df$BSSS2 
+     +df$BSSS3+df$BSSS4+df$BSSS5+df$BSSS6+df$BSSS7+df$BSSS8) 
> summary(fit) 
 
## Output Omitted 
 
## A Cellular Reference Model was used to identify distinctions between Communities  
## and their response to BSSS items (Ogorek, 2012).  Data was first prepared using  
## Microsoft Excel.  This included duplicating the survey response rows (this  
## unfortunately inflates the sample size and degrees of freedom of ## this test).  The  
## Link-Tracking attributes of the duplicated entries were replaced with “A1”; this  
## assured it would be treated first in the Linear Model (and thus, used as a Reference  
## Cell representing the aggregate response to the BSSS survey question Items).   
 
> df <- data.frame(Survey_ DATA_PrepForReferenceCellModel) 
> fit <- lm(BSSS1 ~ df$Link.Tracking) 
> summary(fit) 
 
## Output 
 
Call: 
lm(formula = df$BSSS1 ~ df$Link.Tracking) 
 
Residuals: 
Min        1Q    Median       3Q       Max  
-3.4205  -0.4000   0.0526   0.6967   1.4000  
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Coefficients: 

    
 

Estimate Std. Error t value Pr(>|t|) 
 

(Intercept) 4.30333 0.04802 89.607 < 2e-16 *** 
df$Link.Tracking Academic -0.04246 0.17997 -0.236 0.813553 

 

df$Link.Tracking Bicyclist 0.09667 0.15928 0.607 0.544148 
 

df$Link.Tracking Driver -0.30333 0.23565 -1.287 0.198514 
 

df$Link.Tracking General -0.35596 0.19678 -1.809 0.070964 . 
df$Link.Tracking Motorcyclist 0.11718 0.07651 1.531 0.126189 

 

df$Link.Tracking Professional -0.70333 0.1921 -3.661 0.000273 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.8318 on 593 degrees of freedom 
Multiple R-squared:  0.03865, Adjusted R-squared:  0.02893  
F-statistic: 3.974 on 6 and 593 DF,  p-value: 0.0006578 
 
## The reference cell model was repeated for each Item of the BSSS,  
## and for the composite score of the BSSS. 
 
 

Correlations between Subjective and Objective Risk by Photograph 

## Results were recorded manually for correlations between each communities’  
## perception of photography, and for each of 5 measures of risk. 
 
> df = data.frame(RiskEstimatesForSurveyPhotography) 
> cor.test(df$CR, df$ACAD) 
 
## Output 
 
Pearson's product-moment correlation 
 
data:  df$CR and df$ACAD 
t = -0.58778, df = 18, p-value = 0.564 
alternative hypothesis: true correlation is not equal to 0 
95 percent confidence interval: 
 -0.5465595  0.3250292 
sample estimates: 
       cor  
-0.1372296  
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## Correlation test repeated for severity rate, EPDO rate, crash frequency, and average  
## severity.  These correlations were then repeated for each community, academics,  
## bicyclists, drivers, general, motorcyclists, and professionals, and for low and  
## high BSSS scores. 

Comparison of Different Perspectives of the Same Intersection 

## Paired T-Test 
 
> df = data.frame(IntersectionVariance) 
> t.test(df$N, df$W, paired=TRUE) 
 
## Output 
 
 Paired t-test 
 
data:  df$N and df$W 
t = -0.89171, df = 8, p-value = 0.3986 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 -0.4542311  0.2008978 
mean of the differences  
             -0.1266667  
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