
University of Northern Iowa
UNI ScholarWorks

Theses and Dissertations @ UNI Graduate College

1997

Fuzzy logic: An analysis of logical connectives and
their characterizations
John F. Hamman
University of Northern Iowa

Copyright ©1997 John Hamman
Follow this and additional works at: https://scholarworks.uni.edu/etd

Part of the Logic and Foundations Commons

Let us know how access to this document benefits you

This Open Access Thesis is brought to you for free and open access by the Graduate College at UNI ScholarWorks. It has been accepted for inclusion in
Theses and Dissertations @ UNI by an authorized administrator of UNI ScholarWorks. For more information, please contact scholarworks@uni.edu.

Recommended Citation
Hamman, John F., "Fuzzy logic: An analysis of logical connectives and their characterizations" (1997). Theses and Dissertations @ UNI.
659.
https://scholarworks.uni.edu/etd/659

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Northern Iowa

https://core.ac.uk/display/222997892?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.uni.edu/?utm_source=scholarworks.uni.edu%2Fetd%2F659&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uni.edu/etd?utm_source=scholarworks.uni.edu%2Fetd%2F659&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uni.edu/gc?utm_source=scholarworks.uni.edu%2Fetd%2F659&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uni.edu/etd?utm_source=scholarworks.uni.edu%2Fetd%2F659&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/182?utm_source=scholarworks.uni.edu%2Fetd%2F659&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uni.edu/feedback_form.html
https://scholarworks.uni.edu/etd/659?utm_source=scholarworks.uni.edu%2Fetd%2F659&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uni.edu


FUZZY LOGIC: AN ANALYSIS OF 
LOGICAL CONNECTIVES AND THEIR 

CHARACTERIZATIONS 

An Abstract of a Thesis 

Submitted 

In Partial Fulfillment 

of the Requirement for the Degree 

Master of Arts 

John F. Hamman 

University of Northern Iowa 

August 1997 



ABSTRACT 

The focus of this thesis is to determine exactly which functions serve as appropriate 

fuzzy negation, conjunction and disjunction functions. To this end, the first chapter 

serves as motivation for why fuzzy logic is needed, and includes an original 

demonstration of the inadequacy of many valued logics to resolve the sorites paradox. 

Chapter 2 serves as an introduction to fuzzy sets and logic. The canonical fuzzy set of 

tall men is examined as a motivating example, and the chapter concludes with a 

discussion of membership functions. 

Four desirable conditions of the negation function are given in Chapter 3, but it is 

shown that they are not independent. It suffices to take two of these conditions, 

monotonicity and involutiveness, as negation axioms. Two characterization proofs are 

given, one with an increasing generator and the other with a decreasing generator. An 

example of a general class of negation functions is studied, along with their 

corresponding increasing and decreasing generators. 

Chapters 4 and 5 provide an analysis of fuzzy conjunction and disjunction functions, 

respectively. Five axioms for each are given: boundary conditions, commutativity, 

associativity, monotone non-decreasing, and continuity. Yager's class of conjunction and 

disjunction functions are each shown to satisfy all five of these axioms. The additional 

assumption of strict monotonicity is added to obtain pseudo-characterizations analogous 

to the characterizations of the negation function. Finally, it is shown that although the 

min function is a conjunction function, it does not have a decreasing or an increasing 

generator. Similar results are obtained in Chapter 5 for disjunction functions, with a 

concluding theorem that the max function has no generators. 



The interactions of these three connectives is the content of Chapter 6. In this 

chapter, negation, conjunction, and disjunction triples are considered that satisfy both of 

DeMorgan's laws. Distributivity of conjunction and disjunction over each other is 

examined. It is then shown that the only conjunction and disjunction pair that satisfies 

the distributivity axiom is the min, max pair. 

In conclusion, Chapter 7 discusses why having unique functions serve as conjunction 

and disjunction is desirable. It also contains a brief discussion of the implication 

connective and some areas for further investigation. 
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CHAPTER 1 

INTRODUCTION 

Although logic is one of the basic underlying areas of mathematics, it has undergone 

relatively few changes throughout the years. Consequently, there are some aspects of 

mathematics which have surpassed the logic available to provide the corresponding solid 

foundations. Therefore, it is important to understand how far traditional logic (classical 

logic) has taken us, and to see where and why fuzzy logic began as well as why it is 

needed. 

Classical logic had its roots in antiquity with Aristotle. In the fourth century B.C. 

1 

Aristotle laid down some of the framework of logic that has remained unchanged for 

centuries. Most of Aristotle's logic was in the form of syllogisms. The most famous of 

these is the following: Socrates is a man; all men are mortal; therefore, Socrates is mortal. 

In the late seventeenth century Gottfried Wilhelm Leibniz made one of the first 

significant contributions to logic since the time of Aristotle. He wished to develop a 

universal system in which all mathematical and scientific knowledge could be encoded 

into symbolic language. Leibniz was unsuccessful in his attempt to do so, but the early 

nineteenth century brought a new form of logic which took on the symbolic and 

mathematical structure that was the beginning of Leibniz's dream. 

As logicians were trying to realize a part of Leibniz's dream by codifying all of 

mathematics into symbolic logic, some of them began to see that their task was in vain. 

One of the more notable personalities to realize some of the intricate problems involved 

was Bertrand Russell, originally a strong proponent of classical logic. He had been 
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working on an exhaustive work, entitled Principia Mathematica, with Alfred North 

Whitehead [9]. While the goal of the book was to reduce all of mathematics to symbolic 

forms, Russell had found a set that could not be encoded into the first order language of 

the time. Russell first wrote of this set to another leading logician, Gottlob Frege, in 

1901 [14, p.125]. The statement, now referred to as Russell's paradox, is framed by the 

following question: Is the set of all sets which are not members of themselves a member 

of itself [ 4, p.663]? Clearly, there are logical problems with this question, but 

mathematically it made sense to ask. Here, therefore, was a clear example of a place 

where classical logic could not support the mathematics. In Principia Mathematica, 

Russell introduced a theory of types which would not allow any statement (or set) to 

refer to itself. In other words, any statement that was self-referential was no longer 

considered to be in the realm of mathematics. However, rather than improving the 

logic, this was restricting the mathematics. If the codification of all mathematics was still 

the desired goal, this was a poor solution. 

Another troublesome paradox which predated Russell's paradox is the sorites 

paradox, attributed to the ancient Greek Eubulides [5, p.328]. In this paradox, a single 

grain of sand is removed from a heap of sand. At some point, the number of grains of 

sand remaining is so small that it could not be considered a heap anymore. At what 

point, then, does this heap cease to be a heap? Formally, this paradox can be phrased as 

follows: If the heap contains x grains of sand, clearly x-1 grains of sand constitute a heap 

as well. By the principle of mathematical induction, it is possible to conclude that any 

number of sand grains constitutes a heap. Since even a single grain of sand would be a 

heap, this is clearly contrary to what the term "heap" would mean. Several other 
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paradoxes and equivalent ones were soon found to further support the idea that there was 

something missing from the supporting logic. 

Russell experimented with what he referred to as "vagueness," in which certain 

statements might not be either true or false. However, in 1920 Jan Lukasiewicz 

pioneered the solution of these paradoxes by allowing truth values other than just "true" 

and "false." He developed what is descriptively called many-valued logic. With this type 

of logic the user is allowed to choose the number of truth values. The number of truth 

values can range from two to an infinite number. Lukasiewicz's dislike of the law of the 

excluded middle was one of the contributing factors that led to the discovery of many­

valued logics. The law of the excluded middle dates back to Aristotle and the origins of 

logic. It simply states that for any statement P, "P or not P" must be true. Aristotle and 

many logicians after him believed that this was a fundamental law of logic that was 

necessarily true. Lukasiewicz disagreed and therefore, in his many-valued logic, this law 

did not always hold. For example, if a statement A was neither true nor false, then the 

statement "A or not A" was not necessarily true. 

Many-valued logics (MVLs) gave a solution to Russell's paradox by simply giving the 

statement "the set of all sets which are not members of themselves is a member of itself'' 

a truth value of 0.5. Since this statement is as true as it is false, its negation also receives a 

truth value of one half. Once this statement was not forced to be either true or false, but 

could be thought of as both partially true and partially false, the contradiction is 

resolved. However, MVLs did not completely resolve all known paradoxes, as can be 

seen by the following analysis of the sorites paradox. 
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To fully understand why MVLs do not resolve the so rites paradox, it is necessary to 

understand the basic operations and structure of a MVL. As noted above, it is possible to 

create a MVL with any desired number of truth values. Consider a MVL that has n truth 

values, remembering that, if desired, n can be infinite. Typically, if n is finite, the truth 

values are assigned the values _i _where i ranges from zero to n-1. Traditionally, 
n-1 

'absolute false' is taken as O and 'absolute true' as 1. Historically, if n is chosen to be 

countably infinite, then rational numbers are used as truth values since the set of rational 

numbers is countably infinite. Occasionally, some authors will use the set of reals 

instead of rationals for an uncountably infinite set. In either case, each statement is 

assigned a unique truth value. Rules are then defined for negation, conjunction, 

disjunction, and implication. From these rules the success of a MVL at resolving the 

paradox can be determined. The rules used here are from Lukasiewicz as found in [3]. 

The negation of a statement P, denoted ~P, has the truth value of one minus the truth 

value of P. If we let [P] denote the truth value of P, then the symbolic notation for the 

truth value of negation is [ ~P] = 1 - [P]. The truth value for the conjunction of P and Q 

is the minimum of the two truth values. Symbolically, [P /\ Q] = min([P], [Q]). The 

truth value for the disjunction of two statements P and Q, on the other hand, is the 

maximum of the two truth values. Thus, [Pv Q] = max([P], [Q]). Finally, the truth 

value of "P implies Q" is given as one minus the truth value of P plus the truth value of 

Q. If this sum is greater than one, "P implies Q" is simply given the value of one. Thus, 

[P • Q] = min(l, 1-[P]+[Q]). 



It is easy to verify that any MVL is closed under these operations. That is, the truth 

value of any statement or any combination of statements is of the form-i-where i 
n-1 

ranges from zero to n-1, or is a rational number if n is countably infinite. 

Logically, the sorites paradox is expressible as a long string of implications. Each 

component of the implication has the following form: if x is a heap then x-1 is a heap. 

Letting P(x) represent the phrase "x grains of sand is a heap" gives the following form to 

each component of the paradox: P(x) • P(x-1). The point of the paradox is that it is 

impossible to distinguish the truth of P(x) from the truth of P(x-1). In other words, in a 

MVL, [P(x)]=[P(x-1)]. The variable can therefore be disregarded as it does not effect the 

truth value of the statement. Thus, the whole string of implications expressing the 

paradox can be symbolized as follows: ( ... (((P • P) • P) • P) • ... • P). Now, what is 

the truth value of P • P? It is simply min(l, 1-[P]+[P]), which clearly equals one. On 

the second iteration, the truth value of the paradox would be the truth value of 

(P • P) • P. As before, the truth value of (P • P) • P is calculated by 
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min(l, 1-[P • P]+[P]). However, [P • P] = 1. Hence, the truth value of (P • P) • P is 

equal to min(l, 1-l+[P]) which is [P]. The third iteration, ((P • P) • P) • P, would 

yield the number one again. Thus, the truth values would form an alternating sequence 

of ones and [P]'s. However, this is clearly an extremely unsatisfactory answer. The truth 

value of the statement "x grains of sand is a heap" should depend not solely on whether x 

is even or odd but rather on the magnitude of x itself. 

Thus, MVLs could not resolve the sorites paradox, and hence the problem of finding a 

complete solution to the known paradoxes of mathematics was left unsolved. To address 
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this problem, Max Black wrote an article in 1937 entitled "Vagueness: An Exercise in 

Logical Analysis," in which he hinted at an idea which was later to become what is now 

called a "fuzzy set" [8, p.33]. The true birth of fuzzy logic came almost thirty years later 

in a paper simply called "Fuzzy Sets." In this paper, Lotfi Zadeh spells out the basis for 

this new type of set [18]. With this new type of set and its corresponding logic, these 

paradoxes were resolved as will be discussed in Chapters 2 and 7. 

The intention of this paper is to provide an analysis of the logical connectives in fuzzy 

logic. In order to follow the arguments given, it is assumed that the reader has an 

understanding of how the logical connectives operate in first order predicate logic, as well 

as an understanding of increasing, decreasing, continuous and monotone functions. The 

initial step for understanding fuzzy logical connectives is to understand where the 

problems of classical logic and MVLs lie, which was discussed above. Chapter 2 

introduces fuzzy sets and fuzzy logic with some examples and explanations. Chapter 3 

starts with the simplest logical operator of negation. Negation is the only unary logical 

operator. The negation functions have an important characterization theorem in which 

each negation function has a certain kind of generator and every generator of this kind 

has a corresponding negation function. The focus of Chapters 4 and 5 is to develop 

similar results for the conjunction and disjunction functions, respectively. It is necessary, 

however, to add the additional restriction of strict monotonicity to guarantee a generator 

for both of these functions. In Chapter 6, the interactions of the connectives, such as 

distributivity of conjunction over disjunction and disjunction over conjunction, are 

considered. Finally, the conclusion contains a brief discussion of implication and a 

summary of the work presented in this paper. 



The general organization and several proofs contained in this paper follow the style 

given by Klir and Yuan [6]. A new set of axioms for the negation, conjunction and 

disjunction functions is given, as well as a proof that the max and min functions are the 

unique functions which satisfy all these axioms and the additional axiom of 

distributivity. 

7 
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CHAPTER2 

WHAT ARE FUZZY SETS AND FUZZY LOGIC? 

Like their classical analog, fuzzy sets are simply collections of objects. Unlike 

elements of classical sets, however, some objects belong partly to a fuzzy set and partly 

to its complement. The canonical example of a fuzzy set is the set of tall men. In 

classical set theory, the set of tall men would have a strict restriction on height. For 

example, any man over 6 feet tall would qualify for membership. Hence, if some man 

were 6 feet and 0.5 inches tall he would be in the set of tall men, and any man who is 5 

feet and 11.5 inches tall would not be. Furthermore, a man who is 5.99999 feet tall 

would not be a tall man, but a man who is 6.00001 feet tall would be a tall man. Thus, 

classical sets have a rigid boundary that is often much more rigid than the language which 

the sets are made to represent. 

Most often when a phrase such as "tall men" is used, its intention is much more 

lenient than classical sets allow. In fuzzy sets each element has a degree of membership. 

The degree is the extent to which an element belongs to a set. There is a corresponding 

degree function whose domain is a set of possible elements, and whose range is any 

interval of the real number line (more generally, any partially ordered set is sufficient). 

Commonly this interval is taken to be [0,1], where 1 represents full membership and 0 

represents no membership. If only the two endpoints O and 1 are considered, then fuzzy 

sets become two-valued and are identical to classical sets where everything is either 

completely in the set (a membership value of 1) or completely not in the set 

(a membership value of 0). Using the unit interval aids in interpreting the membership 

function as an extension of classical set theory. Unfortunately, however, it often leads to 
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confusion between fuzzy logic and probability. In this example, every man has a degree 

of membership to the set of tall men. Some man who is 8 feet tall would have a degree of 

membership of 1, while someone who is 6 feet tall would have a degree of membership 

of perhaps .8, and someone who is under 4 feet tall would have a degree of membership 

of .1 or lower. To represent this idea of an element x having fuzzy membership of .8 to 

a fuzzy set A, the following notation is used: A(x) = 0.8. These numbers are arbitrarily 

chosen as an example, and depend upon what is chosen as the membership function for 

the set. The important concept is that an element need not fully belong to a set or to its 

complement but rather an element can belong, with a certain degree of membership, to 

both a set and its complement. Thus, the law of the excluded middle does not hold for 

fuzzy sets. 

The concept of subsethood can be handled in a way analogous to the way 

elementhood is handled. Given two fuzzy sets A and B, A is a subset of B if A(x)::;; B(x) 

for all x in the common domain of A and B. Thus, the fuzzy set of men who are tall 

and bald would be a subset of the fuzzy set of tall men. The most common type of 

subset of a fuzzy set is created by simply adding a modifier to the description of a fuzzy 

set which is called a hedge. In the set of tall men, adding the hedge "very" creates the set 

of very tall men which is obviously a subset of the set of tall men. 

Fuzzy logic follows as an immediate consequence of fuzzy sets. For example, in 

classical logic the statement "A man 6 feet tall belongs to the set of tall men" receives a 

truth value of either true or false. This would depend upon the arbitrary cutoff point 

determined by the classical set of tall men. In fuzzy logic, though, the statement "A man 

6 feet tall belongs to the set of tall men" has a truth value that belongs to the unit 
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interval. In the example discussed above, this truth value would be .8. This number does 

not depend upon a rigid cutoff point but instead upon a membership function. Hence, a 

statement's truth value is dependent solely upon the associated fuzzy set and its 

membership function. 

To continue this idea of a membership function for the set of tall men, suppose that 

the following graph is the graph of a membership function (Figure 1). 

1 

Degree 
of 

Membership 

0 

2 feet Heights 9 feet 

Figure 1: Membership Function for the Set of Tall Men 

This graph represents the degree to which each man (based solely upon his height) is a 

member of the set of tall men. Clearly these same men would also have a degree of 

membership in the set of not-tall men, which is the focus of the following chapter. 
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An interesting question arises when considering the domain of a membership 

function. In the example above our membership function acted on the interval of real 

numbers from 2 to 9 which represented reasonable adult male heights given in feet. Since 

fuzzy sets make no distinction between two people with exactly the same height, the 

domain can be thought of as either an interval of numbers or as a set of people. But what 

is the universe for this domain? A woman who is seven feet tall would also seem to have 

a degree of membership in the set of tall men based on the fact that she is definitely tall, 

but not a man. Hence, just as a short man would have a non-zero degree of membership, 

she would have a membership less than a man of the same height but a greater 

membership than a woman who is five feet tall. This gives rise to the question of what 

the universe is for a fuzzy set. If the universe of the set of tall men is taken to be all 

living creatures, then it is likely that not only would a woman have a non-zero degree of 

membership but so would very tall animals such as giraffes. If the universe was taken to 

be all Homo sapiens, then a woman would have a non-zero degree of membership 

whereas a giraffe would not. Finally, if the universe was taken to be the set of male 

Homo sapiens, then a woman would not have a non-zero degree of membership to the 

set. Thus, the set of objects that constitute the domain of the membership function is the 

set's universe. If two elements belong to the domain of the same membership function, 

they are called comparable elements under the given function . If one or both do not 

belong to the domain they are called incomparable elements under the given function. 

The concept and use of fuzzy sets and fuzzy logic go far beyond this sort of linguistic 

example, however. Many things in life require a certain amount of vagueness, because 

they cannot be neatly fit into a bivalent world in which the law of the excluded middle 
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must hold. An excellent example where fuzzy logic helps interpretation of scientific data 

is in the realm of physics. Physicists are often plagued by interpretations of seemingly 

contradicting results. For example, when light passes through a double slit it has the 

properties of a wave. Light also has momentum and properties of a particle. Thus, the 

question of whether light is a wave or a particle is impossible to answer with classical 

logic [12]. Fuzzy logic, however, can easily resolve the dilemma of whether light is a 

particle or a wave by allowing light to belong to both the set of waves and to the set of 

particles with certain degrees of membership. 

Introducing fuzzy sets and fuzzy logic to resolve both practical and theoretical 

paradoxes leads to interesting questions about how they effect set theory and logic. To 

begin answering these questions, it is necessary to investigate the logical connectives, 

namely negation, conjunction, and disjunction. Negation, because it is a unary operator 

and the easiest to characterize, will be the focus of the following chapter. 
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NEGATION FUNCTIONS 
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If the truth value of a statement is known, it seems reasonable to assume that it should 

be possible to determine a truth value corresponding to the negation of the statement. 

The truth value of the original statement is somewhat subjective, as it depends on both 

the context in which the statement is being used and the chosen membership function. 

Moreover, the truth value of the negation of a statement should be the same for all 

statements with equal truth values. It is important to note at this time a distinction 

between two things that at first glance might seem quite similar. The truth value of the 

negation of a statement of the form "x is an element of A" is actually the degree of 

membership of the element x to the fuzzy complement of the set A and not the degree of 

membership of the negation of an element to a set. As a concrete example, take the 

canonical fuzzy set of tall men. The truth value of the negation of the statement "John 

is tall" is the degree to which John belongs to the set of not tall men (the fuzzy 

complement, within a specified universe, of the set of tall men). Its truth value is not the 

degree to which "not John" belongs to the set of tall men, as "not John" has no specific 

meaning. Once the membership function of a set has been chosen, however, the related 

negation membership function of the set should not be subjective as well. Rather, the 

negation function should be determined by a definite rule based solely upon the 

membership function of the original set. To determine exactly what this negation rule 

should be, it is necessary to look at a few conditions that it must satisfy and then 

consider the functions which satisfy those conditions. 
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Consider a function N which takes elements from [0,1] to [0,1] and acts as a negation 

operator. The negation operator should be a function that is independent of any 

membership function. That is, it should operate on all possible truth values and assign to 

each possible truth value a real number in the unit interval, which will be a truth value as 

well. Let "N(x)" be an abbreviation for "N(A(x))." That is, in the earlier example, 

NGohn) is the degree to which John belongs to the fuzzy complement of tall men. N is 

the negation membership function, and for each value of x its value, N(x), can also be 

thought of as the truth value of the statement "x is not in A" with respect to a given 

universe. Since fuzzy logic is to be an extension of classical logic, the boundary 

conditions of classical logic must be kept. Hence, as a first condition, N(x) = 1 if 

A(x) = 0 and N(x) = 0 if A(x) = 1 where, as is the case in classical logic, 'true' is assigned 

one and 'false' is assigned zero. 

Second, it is reasonable that a change in the truth value of a statement should have an 

opposite effect on the truth value of the negation of the statement. That is, if the truth 

value of a statement increases, the truth value of its negation should decrease. To be as 

general as possible, the demand placed on the negation function is that it will suffice to be 

non-increasing. To formalize this: if A(y) ~A(x), then N(x) ~ N(y). Thus, N should be 

a monotone decreasing function. Note that for it to be meaningful to compare A(x) and 

A(y), x and y themselves must be comparable, that is, they must belong to the domain of 

the same membership function. 

Third, small changes in the truth value of a statement should correspond to small 

changes in the truth value of its negation. That is, there should be no jumps or holes in 



the graph of the negation membership function. Formally, N should be a continuous 

function. 
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Fourth, the negation membership function should be involutory. That is, the 

negation of the negation of a statement should have the same truth value as that of the 

original statement. That is, N(N(x)) = A(x). Notice that N is being used in two 

different senses. When the argument is an element of the domain of a fuzzy set, N (x) is 

taken to mean N(A(x)). If the argument is a real number in the unit interval, like 

N(A(x)), then N(N(x)) is taken to mean N(N(A(x)). This usage will be clear from the 

context. 

In the literature on fuzzy logic it is quite common to simply take N(x) = 1-A(x). 

While this may be one of the easiest to compute, it is evident that this is not the only 

function which satisfies the above requirements. In order to determine all the functions 

which may be candidates for the negation function, it is necessary to convert the above 

ideas into a set of axioms. 

Simply taking each of the above conditions ( boundary conditions, monotonicity, 

continuity, and involutiveness) as axioms may seem appealing. Including all of them, 

however, is unnecessary as the above conditions are not independent of one another. 

This is shown in the following proof, adapted from [ 6, p.52] with notational changes and 

further explanations. 

Theorem 1: If N is an involutory function from [0,1] to [0,1] such that N(x) :s; N(y) 
whenever A(y) :s;A(x), then N is a continuous function which satisfies the classical 
boundary conditions. Moreover, N is a bijection. 
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Proof: 

1. N satisfies the boundary conditions. 

Since the co-domain of N is [0,1], N(0) ~ 1. Furthermore, N(N(0)) ~N(l) by 

hypothesis. But, as N is involutory, N(N(0)) = 0. Hence, 0~N(l). As N(l) ~0, it 

follows that N(l) = 0. Next, since N(l) = 0, applying N to both sides reveals that 

N(N(l)) = N(0). As N(N(l)) = 1, it follows that N(0) = 1. Therefore, both boundary 

conditions are satisfied. 

2. N is continuous. 

First, observe that N is a bijection. To see surjectiveness, take ae [0,1]. Then, as N is 

involutory, N(N(a)) = a. Hence a has a pre-image, namely N(a), under N. Since a was 

chosen arbitrarily, N is surjective. For injectiveness, take, N(a) = N(b). Then 

N(N(a)) = N(N(b)) or a= b. Since a and b were chosen arbitrarily, N is also injective. 

To show continuity, suppose that there is a point z at which N is discontinuous. Since 

N is a monotone function, and using the idea of a greatest lower bound, it can be 

shown that both the left and right hand limits exist at z (for a full proof of this consult 

[15, p.94]). Since N is discontinuous at z, it must be that either the left or the right 

hand limit is not equal to N(z). Without loss of generality, assume that the left hand 

limit does not equal N(z). Then, since N is monotone decreasing, 

y = lim N(x) > N(z). Hence, there exists a q (for example, q = y+ N(z)) such that 
x• z- 2 

y> q> N(z). Since N is surjective, there must exist ape [0,1] such that N(p) = q. As 

N(p) > N(z), p < z. But if p < z, then as N is monotone decreasing, N(p) ~ lim N(x). 
x• z-



Hence q ~ y, contradicting that y > q. Therefore, N cannot have any points of 

discontinuity, and thus it is a continuous function. • 
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As Theorem 1 proves, the four imposed conditions are not independent. It is therefore 

sufficient to take just the conditions of monotonicity and involutiveness as axioms. 

Axioms of Negation 

1. N is a monotone decreasing function. 

2. N is an involutory function. 

Clearly, from Theorem 1, all functions that satisfy Axioms 1 and 2 will necessarily 

satisfy the boundary conditions and be continuous. There are obviously many functions 

from [0,1] to [0,1] which satisfy these two axioms. In fact, there are two characterization 

theorems describing these functions. To help prove the first of these the following 

lemma will be used. The lemma was also taken from [6, p.57] with notational changes. 

Lemma 2: Every negation function N has exactly one fixed point. 

Proof: 

For a to be a fixed point of N it must satisfy the equation N(x)-x = 0. Because of the 

boundary conditions on N, it is clear that N(0)-0 = 1 and N(l)-1 = -1. Since N is a 

continuous function and-xis a continuous function, N(x)-x is a continuous function. 

Therefore by the intermediate value theorem, it follows that there is a root of N(x)-x; call 

this root a. To see that a is unique, assume that there is another root p. Without loss of 

generality, assume that that a< p. Then as N is monotone decreasing, N(P) ~ N(a). 

Combining these results yields that N(P)-P <N(a)-a. This contradicts that N(P)-P = 0 = 

N(a)-a. Hence a is unique. • 
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In the following characterization theorem of fuzzy negation functions, a function g 

from [0, 1] to 9t is needed which satisfies the following criteria: g(0) = 0, g is strictly 

increasing, and g is continuous. A function which satisfies these criteria is called an 

increasing generator, and will be used in characterizing both conjunction and disjunction 

functions in subsequent chapters. The following theorem, modified from [6, p.484], has a 

shorter proof of the direct implication as well as some notational changes. 

Theorem 3: N is a fuzzy negation function if and only if there exists a strictly increasing, 

continuous function g from [0,1] to 9t such that g(0) = 0 and N(a) = g -I (g(l)-g(a)) for all 
a e[0,1]. 

Proof: 

1. Direct implication 

Let N be a fuzzy negation function. It then follows from Lemma 2 that N has a 

unique fixed point p, where p < 1. Let h be any continuous strictly increasing 

surjective function from [0,p] to [0,c] where c is any fixed positive real number. The 

function g: [0,1] • 9t can then be defined in terms of has follows: g(a) = h(a) for 

ae[0,p); g(a) = 2c-h(N(a)) for ae[p,1]. 

The function g is clearly continuous at all points other than p as the functions h 

and N are both continuous. To see that g is continuous at p, note that in the first 

interval, lim g(x) = lim h(x) = h(p) ash is continuous. Hence, lim g(x) = h(p) = c. -~ -~ -~ 
In the second interval, g(p) = 2c-h(N(p)) = 2c-h(p) = 2c-c = c. Since hand N are 

themselves continuous, lill! g(x) = c as well. Hence, g is continuous at p and so it is 
x• p 

continuous at all points of [0,1]. Next, g(0) = h(0) = 0. Third, g inherits the property 
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of being strictly increasing from the fact that h is strictly increasing, N is injective and 

N is therefore strictly decreasing. 

Finally, it remains to be shown that N(a) = g -l (g(l)-g(a)) for all aE [0,1]. First, 

from the definition of git follows that g maps elements from [0,1] to [0,2c]. Since g is 

strictly increasing, g -l exists and g -l: [0,2c] • [0,l]. Note that on [0,c), g -l is 

defined by g-1 (x) = h-1 (x). Further, since N is involutory, g -l on [c,2c] is defined 

by g -l (x) = N(h -l (2c-x)). Take a e[0,l]. If a e[0,p), then 2c-h(a) E (c, 2c], as 

h(a) < h(p) = c. Then, by definition of g, g-1 (g(l)-g(a)) = g -l (2c-h(N(l))-h(a)) = 

g -l (2c-h(a)) = N(h -i [2c-(2c-h(a))J) = N(h -i (h(a))) = N(a). Hence, N(a) = 

g -i (g(l)-g(a)) for all a e[0,p). 

If a e[p, 1], then g-1 (g(l)-g(a)) = g -l [2c-(2c-h(N(a)))J = g -i [h(N(a))]. Since N(p) = 

p and N(l) = 0, h(N(a)) E [0,c]. Hence, by the definition of g-1
, g-1 [h(N(a))J = 

h-1 [h(N(a))J=N(a). 

Thus, N(a) = g -l (g(l)-g(a)) for all a e[p,1]. Hence, for every fuzzy negation 

function N there exists an increasing generator g such that N(a) = g-1 (g(l)-g(a)) for all 

aE [0,1]. 

2. Inverse implication 

Assume that N is described as in the hypothesis. Then, since g is strictly increasing, 

it is easy to see that N: [0,1] • [0,1]. Next, for any a, b e[0,1], if a< b then g(a) < g(b) 

since g is assumed to be strictly increasing. Therefore, g(l) - g(a) > g(l)-g(b). Since g is a 

strictly increasing function on [0,1], g -i exists on [0, g(l)J and is also strictly increasing. 
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Hence, g -I (g(l)-g(a)) > g -I (g(l)-g(b)). But g -I (g(l)-g(a)) = N(a) and g-1 (g(l)-g(b)) = 

N(b), so that N(a) > N(b). Hence, N satisfies one of the two conditions necessary to be 

a fuzzy negation function. 

Finally, to see that N is involutory, take a e[0,1]. Then, N(N(a)) = 

g -1 [g(l)-g(N(a))] = g-1 {g(l)-g[g -I (g(l)-g(a))]} = g -i ( g(a)) = a. Hence, N is 

involutory. Therefore, N is a fuzzy negation function. • 

In an analogous fashion, as Theorem 4 shows, it is possible to determine a decreasing 

generator for a fuzzy negation membership function. A decreasing generator is a 

functionffrom [0,1] to iRsuch that/(1)=0,fis strictly decreasing, andfis continuous. 

Decreasing generators will also be used in subsequent chapters. The proof of the 

following theorem is also taken from [6, p.61] with notational changes. 

Theorem 4: N is a fuzzy negation function if and only if there exists a strictly decreasing, 
continuous functionffrom [0,1] to iRsuch that/(1)=0 and N(a) = f- 1 (f{0)-/(a)) for all 
a e[0,l]. 

Proof: 

1. Direct implication 

According to Theorem 3 a function N is a fuzzy negation function if and only if 

there exists an increasing generator g such that N(a) = g -I (g(l)-g(a)) for all a e[0,1]. 

Letf [0,1] • iR be given by:/(x) = g(l)-g(x). Then clearly /(1) = 0 and, since g is 

strictly increasing,[ must be strictly decreasing. Further,fis also clearly continuous, 

making[ a decreasing generator. Since g(l) is a constant, it is easy to see thatf-1 (a) = 



g-1 (g(l)-a) = g -i (j{0)-a). Therefore, N(a) = g -I (g(l)-g(a)) = 1-1 (g(a)) = 

1-1 (g(l)-(g(l)-g(a))) = 1-1 (j{0)-f(a)), as /(0) = g(l). 

2. Inverse implication 
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Given a decreasing generator I described as above, define a function g: [0, 1] • m as 

follows: g(x) = /(0)-f(x). Since I is strictly decreasing and continuous, it is easily seen 

from the definition of g that g(0) = 0, g is strictly increasing, and g is continuous. 

Hence, g is an increasing generator. Now, g(l) = /(0) and g -i (a) = 1-1 ((j{0)-a). Hence, 

N(a) = 1-1 (j{0)-f(a)) = g -I (j{a)) = g -I (j{0)-g(a)) = g -I (g(l)-g(a)). By Theorem 3, 

g -I (g(l)-g(a)) is a fuzzy negation function, and therefore N(a) = 1-1 (j{0)-f(a)) is also a 

fuzzy negation function. • 

The question of what are some examples of fuzzy negation functions now arises. The 

standard negation function originally used by Zadeh is N(a) = 1-a [18]. Several authors, 

such as Yager, Sugeno, Schweizer, and Sklar, have found more general classes of which 

the standard fuzzy negation is a member. A common example of a general class of fuzzy 

negation functions (that is, a class of functions satisfying the two negation axioms) is the 

class of functions N(a) = ( 
l-a w Jl/w 

--w- where ro and A are real numbers greater than 0 
1+).a 

( 
l-a w Jl/w 

and -1 respectively. Note that if w = 1 and ,1, = 0, then w reduces to the 

1+h 

standard negation function 1-a. 



These functions can be shown by routine but careful computation to be both 

involutory and monotone decreasing, and hence are in fact fuzzy negation functions. 

Like all negation functions, they will also have both an increasing and a decreasing 

generator. An increasing generator g(a) = ~ ln(l + Aa '°) was given in [6, p.60], but the 
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demonstration was not shown. From the definition of git is clear that it is an increasing 

generator. To see that g also in fact does generate the above fuzzy negation function, 

consider g -I (g(l)-g(a)), as suggested by Theorem 3. To find g -I (a), let 

1 
y = A ln(l + Aa'°). Then, A y = ln(l + Aa'°), so that e'"Y = 1 + Aa'°. Hence, 

a = (
e'"Y'l -1) 1/ro 

11. After interchanging the variables y and a, it follows that 

= ..!_(eln(l+A)-ln(l+hw) _ 1) = l-a = N(a). 
[ ]

1/w ( m )1/m 
"" l+Aam 

The decreasing generator for this negation function can be found, as the proof of 

Theorem 4 suggests, by letting /{a) = g(l)-g(a). This yields 

/{a) = ; ln(l + A)-_!_ ln(l + Aa '°) = ; 1 
( 

1 
+ \) . With a little computation, it can be 

11. A 11. 11\ 1 + Aa 

seen that f -I is given by: ["1 (a) = [ ~ (1 e:,. - 1) r· TO see that f also generates 

( 

m ) 1/m /::m , consider/-
1 

(j{O)-f{a)): 
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= [_!_( 1 + "- -1)]11ro 
"- 1 + Aa(l) 

[ ( )]

1/(1) 
1 1 + "- 1 + Aaro 

= A 1 + Aa ro - 1 + Aa ro 

= [_!_( A - Aa (I)) ]
11

(1) 

"- 1 + Aaro 

( 
1 w ) 1/w 

= 1 ;;aw = N(a). 

( 

w ) 1/w 
Hence it has been shown that the function N(a) = /:;aw has both an increasing 

and a decreasing generator. 

The graph below (Figure 2) shows (1) this fuzzy negation function when A= OJ = 1, 

(2) the traditional negation function N(a) = 1-a (which is the general negation function 

when A = 0 and ro = 1) and (3) this fuzzy negation function when A = 10 and OJ = 4. 



Figure 2: Negation Functions 

A list of examples of negation functions is given in Appendix A. This large number of 

negation functions gives rise to the question of which function may best serve as the 

negation membership function. The answer depends not only upon the context of the 

question but also upon what the other fuzzy operators are. 
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After finding generators for the negation function, it is natural to ask whether similar 

results can be obtained for the other logical operators. The focus of the following 

chapter is to determine whether fuzzy conjunction functions can be characterized in 

terms of increasing and decreasing generators as well. 



CHAPTER4 

CONJUNCTION FUNCTIONS 
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In the last chapter a class of negation functions was defined from the co-domain of a 

membership function to an interval of the real number line. That is, they were maps 

from an interval onto an interval. The focus of this chapter is to construct a function 

from a pair of intervals to a single interval in a way that can be interpreted as fuzzy 

conjunction functions. Again, for simplicity of interpretation, the intervals will always 

be taken to be the unit interval [0,1]. However, any interval on the real number line 

would work with the appropriate boundary adjustments. 

The first consideration that the fuzzy conjunction function, C, must satisfy is a 

specification of the type of elements in the domain of C. The function C is to be a means 

of measuring how much a particular element belongs to a combination of two fuzzy sets. 

For example, if the statement "John is tall" has a truth value of .8 and the statement 

"John is thin" has a truth value of .7, then C measures the extent to which John is tall 

and thin. Thus, C is a function from the Cartesian product of two membership 

functions' co-domains to the unit interval, that is from [0,1] x [0,1] to [0,1]. The notation 

"C(a, b)" is taken to mean "C(A(x), B(x))" where A(x) = a and B(x) = bare the degrees 

to which x belongs to the fuzzy sets A and B, respectively. Thus, x must be an element 

of both A and B for it to be in the domain of C. 

Since C is to be a generalization of the classical conjunction, it must also satisfy the 

classical boundary conditions. It must satisfy the minimal conditions of C(0, 1) = 0, 
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C(l, 0) = 0, C(0, 0) = 0 and C(l, 1) = 1. However, the classical conditions imply more 

than just these four relations. Classically, conjoining a statement with a true statement 

has no effect on the truth value of the statement. Formally, C(a, l)=C(l, a)=a for all 

a e[0,1]. Similarly, conjoining any statement with a false statement is false. That is, for 

all a e[0,1], C(a, 0) = C(0, a) = 0. 

Third, to comply with the classical conjunction, C must be symmetric (or 

commutative). That is, C(a, b) = C(b, a) for all a, be [0,1]. The final property inherited 

from the classical conjunction is associativity. That is, C(a, C(b, c)) = C(C(a, b), c) for all 

a, b, c E [0,1]. 

Additionally, if the truth value of either one of the arguments is increased, the truth 

value of the conjunction should not decrease. That is, the function C should be 

monotone non-decreasing in both arguments. Formally, a1 :::; a2 and 61 :::; 62 imply 

Finally, small changes in the arguments of the conjunction function should result in 

small changes in the functional values. Thus, the function C should be continuous. Each 

of these conditions will serve as an axiom of conjunction, which are summarized below. 

Axioms of Conjunction: 

1. Boundary Conditions: C(a, 1) = a = C(l, a) and C(0, a) = 0 = C(a, 0). 

2. Commutativity: C(a, b) = C(b, a). 

3. Associativity: C(a, C(b, c)) = C(C(a, b), c). 

4. Monotone Non-Decreasing: a1 :::; a2 and 61 :::; 62 imply C( a1 , 61 ):::; C( a2 , 62 ). 

5. Continuity. 



Functions satisfying conditions 1 through 4 are called triangular norm functions or 

simply t-norms. These functions were originally studied independently of fuzzy sets. 

Schweizer and Sklar [10] and [11], as well as Ling [7], for example, worked with 

characterizing t-norms in various ways. A strict t-norm is a t-norm that is continuous 

and satisfies strict monotonicity. Strict monotonicity is defined as follows: a1 < a2 and 

b1 < b2 imply C( a1 , b1 ) < C( a2 , b2 ). Thus, every fuzzy conjunction is at-norm and 

every strict t-norm is a fuzzy conjunction function. 
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Several authors, including Yager, Ling, Schweizer, and Sklar, have been trying to 

create general classes of functions which satisfy the conjunction axioms. The idea is that 

in various applications one should have a variety of conjunction functions to choose 

from and then use the one that best fits the data. A general class of continuous t-norms is 

Yager's class defined as follows: CP (a, b) = 1-min(l, [(1-a)P +(1-b )Pf P) for p~ 1 [16] 

and [17]. To be a conjunction function, CP (a, b) must satisfy the five axioms of 

conjunction. This is shown in the following theorem. 

Theorem 5: Any function in the Yager class, defined by 
CP (a, b) = 1-min(l, [(1-a)P +(1-b )Pf P) for p~ 1, satisfies the axioms for fuzzy 

conjunction functions. 

Proof: 

1. Boundary conditions 

If b = 1, then CP (a, 1) = 1-min(l, [(1-a)P + (1-1 )P f P) = 1-min(l, (1-a)) = 1-(1-a) = a. 

Also, CP (1, a) = a. Similarly, CP (0, a) = 1-min(l, [(1-0)P + (1-a)P f P) = 

1-min(l, [1+(1-a)P f P)=l-1=0. Finally, CP (a, 0)=0. 



2. Commutativity 

The symmetry in the definition of CP (a, b) clearly shows that CP is commutative. 

3. Associativity. 

Assume, for this case, that [(1-b )P + (1-c )P f P ~ 1 and [(1-a)P + (1-b )P f P ~ 1. 

Then cp (a, cp (b, c)) = 1-min(l, [(1-a)P + (1-Cp (b, c) )Pf P) 

= 1-min(l, [(1-a )P + (1-(1-min(l, [(1-b )P + (1-c )P f P) ) )P f P) 

= 1-min(l, [(1-a)P + [(1-b)P +(1-c)P] fP) 

= 1-min(l, [(1-a)P + (1-b)P +(1-c)P f P) 

= 1-min(l, [([(1-a )P + (1-b )P f P )P + (1-c )P f P) 

= 1-min(l, [(1-(1-[(1-a )P + (1-b )P f P )P + (1-c )P f P) 

= 1-min(l, [(1-(1-min(l,[(1-a )P + (1-b )P f P) )P + (1-c )P f P) 

= 1-min(l, [(1-CP (a, b) )P + (1-c )P f P) 

= Cp ( Cp (a, b),c). 

The other three cases follow in an analogous manner. 

4. Monotone Non-Decreasing 

Choose a and b such that a~b. Then 1-a~ 1-b and (1-a)P ~ (1-b )P. Thus, 

[(1-a)P +(1-c)P f P ~[(1-b )P +(1-c)P f P. From this it follows that 

1-min(l, [(1-a)P +(1-c)P fP) ~ 1-min(l, [(1-b)P +(1-c)P fP). Hence, 
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CP (a, c) ~ CP (b, c). Since CP is commutative, it follows that it is monotone non-

decreasing in each argument. Finally, if a1 ~ a 2 and 61 ~ 62 , then 

5. Continuity. 

Continuity of CP follows from the fact that each of the functions in the definition of 

C is itself continuous. • 

To understand what these functions represent, it is important to view them 

graphically. Since CP is a function from [0,1] x [0,1] to [0,1], the graph of CP is a three 

dimensional surface. The truth values of the two arguments are given along the x and y 

axes and the truth value of their conjunction is given along the z axis. Figure 3 shows the 

graphs of four different Yager conjunction functions. As the value of p increases the 

membership value of the conjunction increases (given along the z-axis). This can be seen 

by noting that the first derivative of the functions in the Yager class with respect to p are 

all positive. 

A natural question to ask when considering these graphs is what is the interpretation 

of the value p. In his article "On a General Class of Fuzzy Connectives," Ronald Yager 

[16, p.241] suggests an answer to this question as follows: 

Noting first that by the logical statement' S1 and S2 'we are requiring or 

demanding the simultaneous satisfaction of both conditions S1 and S2 • It is a 

common phenomenon in spoken language to strongly emphasis the 'and' when 
we are demanding strong satisfaction to these two conditions. Thus, by the 
'strength' of an 'and' we shall mean how strongly we are demanding this 
simultaneous satisfaction. We suggest that in the 'and' operator we can consider 
the parameter pas inversely related to the strength of the 'and'. 
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p = 1.5 p=3 

Figure 3: Graphs of Functions in Y ager's Class of Conjunctions. 

Taken from ( 6]. 

p=S p = 10 
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If p = oo, then the function CP reduces simply to the min function, which is the least 

"demanding" or weakest conjunction function (for a proof of this, see Appendix D). To 

understand what Yager means by strength, consider how close the truth values of a and b 

have to be to 1 before the truth value of the conjunction is nearly 1. For example, if a = b 

and CP (a, b) ~0.9, what is the minimum value of a when p = 1? A simple calculation 

reveals that a ~ .95. With the same conditions and p = 10, a~ .9067, a lower (weaker) 

condition. Hence, the strength of a Yager conjunction function CP can be defined as 

follows: s( CP) = 1/ p where s( CP) = 0 when p = oo. Of course, the Yager class is just 

one example of a class of conjunction functions. Appendix B lists several other examples 

of conjunction functions. 

If an additional axiom is added to the list of conjunction axioms to make them strict t­

norms, namely the axiom of strict monotonicity, then it is possible to find generators for 

conjunction functions in a fashion similar to what was done for fuzzy negation functions. 

In other words, as with negation functions, there will be two pseudo-characterization 

theorems, one involving decreasing generators and one involving increasing generators, 

for a fuzzy conjunction function. The statement and proof of the pseudo­

characterization theorem for decreasing generators is easier and is therefore presented 

first. As noted in the previous chapter, a decreasing generator is a function/from [0,1] to 

ill such that.1{1)=0,/is strictly decreasing, and/is continuous. In the proof of Theorem 6 

and several later proofs the idea of the pseudoinverse, p·1l, of a function f is useful and is 

defined as follows: 
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{

1 for a e(-oo,0) 

J'·1
) (a)= f-1(a) for a e[0,/(0)] 

0 for a E (/(0),oo) 

where /"1 is the ordinary inverse off 

Note that since f is continuous, J'·1
) will also be continuous. In all subsequent 

discussions involving the pseudoinverse J(-t) of a function/, the reader should check that 

the correct part of the definition of J{-t) is used. Returning now to the issue of 

generators, the proof of the following pseudo-characterization theorem is unique to this 

paper although it uses ideas presented in [1], [10], and [11]. While Schweizer and Sklar 

[10] consider a binary operator on [0,1] x [0,1], their proof assumes the existence of a 

decreasing generator f with domain [0, 1] which may allow /{0) to be infinite. Since 

generators are to be continuous functions, this is clearly contradictory. Therefore, in 

Theorem 6, the domain of the fuzzy conjunction function C will be (0,1] x (0,1]. The 

reader will see the importance of this restriction by noting that the definition off 

involves the In function which is not defined at zero. A function, such as fin the 

following theorem, that serves as an decreasing generator but does not have the closed 

unit interval as its domain, is called an open-ended decreasing generator. 

Theorem 6: 1. If a binary operation Con (0,1] x (0,1] to [0,1] is a conjunction function 
with strict monotonicity then there exists an open-ended decreasing generator 

f :(0,1] • ITT such that C(a, b) = J'·1
) (j{a)+/{b)). 2. Iff [0,1] • ITT is a decreasing 

generator, and if C: [0,1] x [0,1] • [0,1] is given by C(a, b) = J(-t) (j{a)+/{b)), then C is a 

fuzzy conjunction function. 

Proof: 

1. In [10, p.71] the following theorem is proven: Given a strict fuzzy conjunction 

function C, there exists a continuous, strictly increasing function h from [0,1] onto [0,1] 
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(so that h(0) = 0 and h(l) = 1) such that C(a, b) = h(-l) (h(a) • h(b)) for all a, be [0,1], 

where h(-l) is, as before, the pseudoinverse of h. Now, remembering that 

C: (0,1] x (0,1] • [0,1], define a function f:(0,1] • m by /(a)= -ln h(a). From this and the 

definition of pseudo inverse it can easily be shown that [Hl (a)= h (-i) ( e -a). 

Clearly,/(1) = 0. Next, [inherits the property of being continuous from the fact that 

both hand ln are continuous functions. Finally,fis strictly decreasing as both ln and h 

are increasing, so that -ln h must be strictly decreasing. Thus,fis an open-ended 

decreasing generator. Further, it is then easy to verify that h(a) = e -/(a) and 

h(-l) (a)= f(-1) (-ln a). Thus, C(a, b) = h(-i) (h(a)• h(b)) = [Hl (-ln(e-/(a) • e-/(b)) = 

f(-1) (-ln( e-/(a)-/(b))) = f(-1) (Ila) +/(b)). Therefore, every strictly increasing fuzzy 

conjunction function has an open-ended decreasing generator. 

2. Suppose f exists as described above. To see that C(a, b) E [0, 1] it is helpful to split the 

interval [0, 2/(0)] into the two subintervals [0,/(0)] and (f{0), 2/(0)], and then use the 

second and third parts of the definition of the pseudoinverse. To show that C(a, b) 

= p-i) (f{a)+/(b)) is now a conjunction function the five conjunction axioms must be 

shown to be satisfied. 

A. Boundary Conditions 

C(a, 1) = 1(-l) (Ila)+ /(1)) = p-l) (Ila) +0) = p-l) (Ila)) = r-1 (Ila)) = a as /(a) E [0,/(0)]. 

If a< 1, then C(0, a) = p-i) (f{0) + /(a)) = 0 as /(0) + /(a) E (f{0), oo ). If a = 1, then 

C(0, a)= 0 from the above boundary condition. 



B. Commutativity 

C(a, b)= ['·1l (f(a)+fib))= ['·1l (1(6)+/(a))=C(b, a). 

C. Associativity 

C(a, C(b, c)) = ['·1l (/(a) + /(C(b, c))) = p·1l (/(a) +j(J'·1l (fib) + /(c)))) = 

['·
1l (/(a) + fib)+/(c)) = ['·1l (j(J'·1l (/(a) +fib))) +/(c)) = ['·1l (/(C(a, b)) +/(c)) = 

C(C(a, b), c). 

D. Monotone Non-Decreasing 

Assume 0~ a1 ~ a2 and 0~ 61 ~ 62 • Then/(a1)~/(a2 ) and/(61)~/(62 ) since/is 

monotone decreasing. Hence/(a1) + /(b1)~/(a2)+/(bz). However, since/is 

monotone decreasing, the fact that p-t) is also decreasing follows from the 

definition of pseudoinverse. Therefore, J(-t) if( a1)+/(b1)) ~ p-t) (f(az) +/(bz)). 

Thus, by the definition of C, C(a" 61) ~C(a2 , bz). 

E. Continuity 

The continuity of C is evident from the continuity of both f and p·1l • 

Hence, C(a, b) = J(•t) (/(a) +fib)) satisfies the axioms necessary to become a 

conjunction function. • 
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The following pseudo-characterization theorem, whose proof is original to this paper, 

shows that every fuzzy conjunction function also has an increasing generator. Since 

Part 1 uses Theorem 6 the domain of C will again be (0,1] x (0,1], and since the increasing 

function g is defined in terms of the open-ended decreasing function f the domain of g 

will be (0,1]. An increasing function, such as gin the following theorem, which satisfies 



the properties of being an increasing generator except that the domain is not the closed 

unit interval, is defined to be an open-ended increasing generator. 

Theorem 7: 1. If a binary operation Con (0,1] x (0,1] to [0,1] is a fuzzy conjunction 
function with strict monotonicity then there exists an open-ended increasing generator 
g: (0,1] • 9t such that C(a, b) = g(-1) (g(a) + g(b)-g(l)) for all a,bE (0,1]. 2. If 
g: [0,1] • 9t is an increasing generator and if C: [0,1] x [0,1] • [0,1] is given by 
C(a, b) = g(-1) (g(a) + g(b)-g(l)) then C is a fuzzy conjunction function. 

Proof: 

1. Given a strict fuzzy conjunction function C [10] guarantees that there exists a 

continuous, strictly increasing function h from [0,1] onto [0,1] (so that h(0) = 0 and 
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h(l) = 1) such that C(a, b) = h(-i) (h(a). h(b)) for all a, bE [0,1] where h(-i) is, as before, 

the pseudoinverse of h. Define a function g:(0,1] • 9t by g(a) = ln(h(a)). To see that g is 

in fact an open-ended increasing generator, note that g is strictly increasing as both In and 

h are strictly increasing, and g is continuous as In and h are continuous. The 

pseudoinverse of g, g(-l) (a)= h(-ll(e")can be found from the definition of g. Also note 

that h(a) = eg(a) and hHl(a) = gHlQna). Thus, C(a, b) = h(-i) (h(a) • h(b)) = 

h(-l) ( eg(a) • eg(b)) = h(-l) (eg(a)+g(b))= g(-1) Qn(eg(a)+g(b))) = g(-1) (g(a)+g(b)). Since 

g(l) = 0, C(a, b) = g(-i) (g(a)+g(b)) = g(-1) (g(a)+g(b)-g(l)). Therefore, every strictly 

increasing fuzzy conjunction function has an open-ended increasing generator. 

2. A straightforward check of the five axioms, similar to the proof of Part 2 in Theorem 

6, shows that if C(a, b) = g(-1) (g(a)+g(b)-g(l)), then C: [0,1] x [0,1] • [0,1] and is a fuzzy 

conjunction function. • 
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There are, however, some conjunction functions which are not strict t-norms. 

Consequently, it is not possible to find generators for all fuzzy conjunction functions. 

Consider the min function. It clearly satisfies all the axioms of conjunction, but it is not 

strictly increasing. Therefore, it is not a strict t-norm. The first part of the following 

theorem, originally given in [7, p.197] and with notational changes here, shows that the 

min function has no decreasing generator h where min(a, b) = h(•l} (h(a)+h(b)). The 

second part, which is original to this paper, shows that the min function cannot have an 

increasing generator h where min(a, b) = h(-i) (h(a)+h(b)-h(l)). 

Theorem 8: The min function has no decreasing or increasing generator. That is, there 
does not exist any continuous monotone function h:[0,1] • 9t such that 
min (a, b) = h(·l) (h(a)+h(b)) or min(a, b) = h(•l} (h(a)+h(b)-h(l)). 

Proof: 

Suppose that a function h exists such that min(a, b) = h(•l} (h(a)+h(b)). Since 

min(a, 0) = 0 = h (-l} (h(a) + h(0)) for all a E [0,1], h(0) = h(a) + h(0), or h(a) = 0 for all 

a e[0,l]. Thus h must be the constant function 0. However, min(l, 1) = 1, while 

h(•l} (h(l) + h(l)) = h(-ll(0+ 0) = 0. Since h= 0 ,this is a contradiction. Therefore the 

min function cannot have a generator h where min(a, b) = h(•l} (h(a) + h(b)). 

Next, suppose that a function h exists such that min(a, b) = h(•l} (h(a)+h(b)-h(l)). 

Since min(a, 0) = 0 = h(·l) (h(a) + h(0)-h(l)) for all aE [0,1], h(0) = h(a) + h(0)-h(l), or h(a) 

= h(l) for all aE [0,1]. However, if a< b, then min(a, b) = h(·l} (h(a) + h(b)-h(l)) = 

h(•l} (h(l)+h(b)-h(l)) as h(a) = h(l). Thus, min(a, b) = h(·l} (h(b)) = b, a contradiction as 

a< b. Therefore the min function cannot have a generator h where min(a, b) = 

h(·1l(h(a) +h(b)-h(l)). • 
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This theorem shows us that it is impossible to have a general result about all 

conjunction functions identical to Theorem 3, in which every negation function was 

found to have both a decreasing and an increasing generator. The other reasonable 

restriction to place on conjunction functions is in how they operate with other logical 

connectives. To this end, the next chapter investigates the disjunction function. Chapter 

6 will then study the interactions between fuzzy negation, conjunction, and disjunction 

functions. 



CHAPTERS 

DISJUNCTION FUNCTIONS 
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In Chapter 4 t-norms were studied as a general class of conjunction functions. In this 

chapter an analog for the disjunction function ("or") will be discussed in a similar 

manner. 

The first condition that the fuzzy disjunction function, D, must satisfy is a 

specification of the type of elements in the domain of D. The function D is to be a means 

of measuring how much a particular element belongs to a union of two fuzzy sets. For 

example, if the statement "John is tall" has a truth value of .8 and the statement "John is 

thin" has a truth value of .7, then D measures the extent to which John is tall or thin. 

Hence, D is a function from the Cartesian product of the co-domains of two 

membership functions to the unit interval, that is from [0,1] x [0,1] to [0,1]. "D(a, b)" is 

taken to mean "D(A(x), B(x))" where A(x) = a and B(x) = b are the degrees to which x 

belongs to fuzzy sets A and B respectively. Thus, x must be in either the domain of A 

or in the domain of B for it to be in the domain of D(a, b). 

Since D is to be a generalization of the classical conjunction, it must also satisfy the 

classical boundary conditions. It must satisfy the minimal conditions of D(0, 1) = 

D(l, 0) = D(l, 1) = 1 and D(0, 0) = 0. As in Chapter 4, the classical conditions imply 

more than just these four relations. Classically, combining a statement and a false 

statement with a disjunction has no effect on the truth value of a statement. Formally, 

D(a, 0) = D(0, a) = a for all a e[0,1]. Similarly, combining a statement with a true 

statement is necessarily true. That is, for all a e[0,1], D(a, 1) = D(l, a) = 1. 
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Further, to comply with the classical disjunction, D must be symmetric (or 

commutative). That is, D(a, b) = D(b, a) for all a,bE [0,1]. The final property inherited 

from the classical disjunction is associativity. That is, D(a, D(b, c)) = D(D(a, b), c) for all 

a, b, CE [0,1]. 

Additionally, if the truth value of either one of the arguments is increased, the truth 

value of the disjunction should also be increased. That is, the function D should be 

monotone non-decreasing in both arguments. Formally, a1 ~ a2 and b1 ~ b2 imply 

D( a1 , b1 ) ~D( a2 , b2 ). 

Finally, small changes in the arguments of the disjunction function should result in 

small changes in the functional values. Thus, the function D should be a continuous 

function of two variables. Each of these conditions will serve as an axiom of disjunction, 

which are summarized below. 

Axioms of Disjunction 

1. Boundary Conditions: D(a, 1) = 1 = D(l, a) and D(0, a) = a = D(a, 0). 

2. Commutativity: D(a, b) = D(b, a). 

3. Associativity: D(a, D(b, c)) = D(D(a, b), c). 

4. Monotone Non-Decreasing: a1 ~ a2 and b1 ~ b2 imply D( ai, b1 ) ~D( a2 , b2 ). 

5. Continuity. 

A function that satisfies conditions 1 through 4 is called a triangular conorm function or 

simply a t-conorm. T-conorms, like t-norms, were studied independently of fuzzy sets by 

Schweizer and Sklar [10] and [11], as well as Ling [7]. If a function is a continuous 

t-conorm with strict monotonicity it is called a strict t-conorm. 



Authors have been trying to generalize the functions which satisfy the axioms of 

disjunction for the same reasons they have been working with conjunction functions. 

One example of a general class of continuous t-conorms is Y ager's class defined as 
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follows: DP (a, b) = min(l, [(a)P +(b )Pf P) for p~ 1 [16] and [17]. To be a disjunction 

function, DP (a, b) must satisfy the five axioms of disjunction. This is shown in the 

following theorem. 

Theorem 9: Any function in the Yager class, defined by DP (a, b) = 

min(l, [(a )P + (b )P f P) for p ~ 1, satisfies the axioms for fuzzy disjunction functions. 

1. Boundary conditions. 

Ifb = 1, then DP(a, 1) = min(l, [(a)P +(l)P f P) = min(l, [(a)P +1 f P) = 1, as 

[(a)P+lfP~l. Also, DP(l,a) = 1. Similarly, DP(0,a) = min(l,[(0)P+(a)P fP) = 

min(l, a) = a. Finally, DP (a, 0) = a. 

2. Commutativity. 

The symmetry in the definition of DP (a, b) clearly shows that DP is commutative. 

3. Associativity. 

Assume, for this case, that [(b )P + (c )P f P :s; 1 and [(a )P + (b )P f P :s; 1. Then 

DP (a, DP (b, c)) = min(l, [(a )P +(DP (b, c) )P f P) 

= min(l, [(a )P + [(b )P + (c )P] f P) 

= min(l, [([(a )P + (b )P f P )P + (c )P f P) 



= min(l, [(min(l,[(a)P + (6 )P f P) )P + (c )P f P) 

= min(l, [(DP(a, b))P +(c)P f P) = Dp{DP(a, b), c). 

The other three cases follow in an analogous manner. 

4. Monotone Non-Decreasing. 

Choose a and b such that a~ b. Then (a )P ~ (6 )P . Thus, 

[(a )P + (c )P f P ~ [(b )P + (c )P f P . From this it follows that 

min(l, [(a )P + (c )P f P) ~ min(l, [(b )P + (c )P f P). Therefore, DP (a, c) ~DP (6, c). 

Since DP (a, b) is commutative, it follows that it is monotone non-decreasing in each 

argument. Finally, as in the proof of Theorem 5, if a1 ~ a2 and b1 ~ b2 then 

5. Continuity. 

Continuity of DP (a, b) follows from the fact that each of the functions in the 

definition of DP is itself continuous. • 
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To understand what these functions represent, it is important to view them graphically. 

Since DP is a function from [O, 1] x [O, 1] to [O, 1 ], the graph of DP is a three dimensional 

surface. In Figure 4, as in Figure 3, the truth values of the two arguments are given along 

the x and y axes and the truth value of their disjunction is given along the z axis. Figure 4 

shows the graphs of four different Yager disjunction functions with p values of 1.5, 3, 5, 

and 10. Note that as the value of p increases the value of the disjunction decreases. This is 

exactly opposite to what happens with the Yager class of conjunction functions. For a 

proof of this, note that the first derivative of DP with respect to p is negative. 
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If p = oo, the function DP reduces simply to the max function (for a proof of this see 

Appendix D), which is the most "demanding" disjunction function. The reason for this is 

that in the case of disjunction functions, the interpretation of the value p is the opposite of 

the interpretation for p in the conjunction functions. A strong disjunction function means 

that the truth values of both a and b must be close to zero for the disjunction truth value to 

be close to zero. That is, for disjunctions, the strength is directly proportional to the value 

of p. The strength function s, defined in Chapter 4, can be applied to the Yager disjunction 

as well. Here, s( DP) = p. Of course, the Yager class is just one class of disjunction 

functions. Appendix C lists several other examples of classes of disjunction functions. 

It is possible to find generators for some disjunction functions as was done for the 

conjunction functions. As noted earlier, an increasing generator is a function g from [0,1] 

to 9{ such that g(0) = 0, g is strictly increasing, and g is continuous. An open-ended 

increasing generator is an increasing generator that does not have the unit interval as its 

domain. In the following proof and in several later proofs the idea of the pseudoinverse, 

g(-l}, of a function g will again be useful. To recall, it is defined as follows: 

{

0 for a E (-oo,0) 

g(-1l(a)= g-1(a) for a E[0,g(l)] 

1 for a E(g(l),oo) 

where f 1 is the ordinary inverse of g. 

Note that since g is continuous, g(-i) will also be continuous. As noted in Chapter 4, in all 

discussions involving the pseudoinverse, the reader should check that the correct part of 

the definition is being used. The proof of the following pseudo-characterization theorem is 

original to this paper but combines ideas found in [10], [11], and [1]. 



Theorem 10: 1. If a binary operation Don [0,1) x [0,1) to [0,1] is a strictly increasing 
fuzzy disjunction function then there exists an open-ended increasing generator 

g: [0,1) • iR such that D(a, b) = g(-l) (g(a)+g(b)). 2. If g: [0,1] • iR is an increasing 
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generator, and if D:[0,1] x [0,1] • [0,1] is given by D(a, b) = g(-i) (g(a) +g(b)), then Dis a 

fuzzy disjunction function. 

Proof: 

1. In [11, p.179] Schweizer and Sklar show that every strict t-norm determines a strict t­

conorm and every strict t-conorm determines a strict t-norm. This is seen by the following 

rule: S(a, b) = 1 - T(l-a, 1-b), where Sis a strict t-conorm and Tis a strict t-norm. By use of 

this theorem, we see that for an arbitrary strict fuzzy disjunction function D(a, b), 

D(a, b) = 1 - T(l-a, 1-b) for some strict t-norm T. Theorem 6, however, established that 

every strict t-norm on (0,l]x(0,1] could be written in the form T(a, b) = /(-1) (f{a)+/(6)) 

for some open-ended decreasing generator f Hence, D(a, b) = 1 -p-i) (f{l-a) + fil-b)). Now 

define a function g:[0,1) • iR by g(a) = fil-a). Then it is easy to verify thatfia) = g(l-a), 

g(-t) (a) = 1- jHl(a) and jHl(a) = 1-g(-t) (a). Note that g is continuous as/is continuous, 

and that g is strictly increasing since /is strictly decreasing. Finally, since g(0) = ./(1) = 0, g 

is an open-ended increasing generator. To conclude, note that D(a, b) = 

1-p-i) (f{l-a)+fil-b)) = g(-t)(f{l-a)+fil-b) = g(-tl(g(a)+g(b)). 

2. Suppose g exists as defined above. To see that D(a, b) E [0,1], it is helpful to split the 

interval [0, 2g(l)] into the two subintervals [0, g(l)] and (g(l), 2g(l)], and use the second and 

third parts of the definition of the pseudoinverse. To show that g(-t) (g(a)+g(b)) is a fuzzy 

disjunction function, the five disjunction axioms must be shown to be satisfied. 



A. Boundary Conditions 

If a> 0, then D(a, 1) = g(•t) (g(a) + g(l)) = 1 as g(a) > g(O) = 0 so that 

g(a)+g(l)e(g(l), oo). Ha= O,thenD(a, 1) = g(·1l(g(O)+g(l)) = g(·1l(O+g(l)) = 

g(·l) (g(l)) = g"l (g(l)) = 1. 

D(O, a) = g(•t) (g(O)+g(a)) = g(•t) (O+g(a)) = g(•t) (g(a)) = g·1 (g(a)) = a. 

B. Commutativity 

D(a, b) = g(•t) (g(a)+g(b)) = g(•t) (g(b)+g(a)) = D(b, a). 

C. Associativity 

D(a, D(b, c)) = g(•t) ( g(a) + g(D(b, c))) = g(•t) ( g(a) + g(g(•t) ( g(b) + g(c)) = 

g(·1l(g(a) + g(b)+g(c)) = g(·1l(g(g(·1l(g(a) + g(b))) +g(c)) = g(·1l(g(D(a, b)) +g(c)) = 

D(D(a, b), c). 

D. Monotone Non-Decreasing 

Assume 0~ a1 ~ a2 and 0~ b1 ~ b2 • Then g(a1) ~g(a2 ) and g(b1) ~g(bz). Hence 

g(a1) + g(b1)~g(a2 )+g(bz). Sincegismonotoneincreasing,sois g(·1l. Thus, 

g(·1l(g(a1) +g(b1))~ g(·1l(g(a2 )+g(bz)), orD(ai,bi)~D(a2 ,bz). 

E. Continuity 

The continuity of Dis evident from the continuity of g and hence that of g(•t). 

Thus, D(a, b) = g(•l) (g(a)+g(b)) satisfies the axioms necessary to become a conjunction 

function. • 
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The following pseudo-characterization theorem shows that a fuzzy disjunction function 

also has an open-ended decreasing generator. 
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Theorem 11: 1. If a binary operator Don [0,1) x [0,1) to [0,1] is a strictly increasing fuzzy 
disjunction function then there exists an open-ended decreasing generator f: [0,1) • 9t 

such that D(a, b) = f(-tl (f(a)+f(b)-/(0)). 2. If/: [0,1] • 9t is a decreasing generator, and if 

D: [0,1] x [0,1] • [0,1] is given by D(a, b) = p-i) (f(a)+f(b)-/(0)), then Dis a fuzzy 

disjunction function. 

Proof: 

1. Given a strict t-norm T, [10, p.71] guarantees that T(a, b) = h(-l} (h(a)• h(b)) for all 

a, be [0,1], where his a continuous, strictly increasing function from [0,1] onto [0,1]. 

Schweizer and Sklar show that every strict t-conorm Dis of the following form: D(a, b) = 

1-T(l-a, 1-b) for some strict t-norm T. Therefore, given a strictly increasing disjunction 

function D, D(a, b) = 1-T(l-a, 1-b) = 1-h(-1) (h(l-a) • h(l-b)). Define a function/: [0,1) • 9t 

by fia) = ln(h(l-a)). Then h(a) = e/(l-a), p-1> (a) = 1-h(-ll( ea), and h(-l) (a) = 1- [H> On a). 

Note that since 1-a is decreasing /is decreasing, and since both hand ln are continuousfis 

continuous. Therefore, f is an open-ended decreasing generator. Next, D(a, b) = 

sincefi0) = 0, p-1>(j(a)+f(b)) = p-1>(j(a)+f(b)-/(0)). Hence,everystrictlyincreasingfuzzy 

disjunction function D can be written as follows: D(a, b) = p-1
> (f(a) +f(b)-/(0)). 

2. A straightforward check of the five axioms, similar to the proof of Part 2 in Theorem 

10, shows that D: [0,1] x [0,1] • [0,1] and that Dis a fuzzy disjunction function. • 

As expected, there are some disjunction functions which are not strict t-conorms. 

Thus, just as in the case of conjunction functions, there exists disjunction functions 

which do not have either an increasing or decreasing generator. The following theorem, 

original to this paper, shows that the max function has no generator. 
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Theorem 12: The max function has no increasing or decreasing generator. More 
generally, there does not exist any continuous monotone function h:[0,1] • iR such that 
max(a, b) = h(-t) (h(a)+h(b)) or max(a, b) = h(-t) (h(a)+h(b)-h(0)). 

Proof: 

Suppose that a continuous monotone function h exists such that max(a, b) = 

h(-1) (h(a)+h(b)). Since max(l, a) = 1 = h(-t) (h(l)+h(a)) for all aE [0,1], h(l)=h(l)+h(a). 

Thus, h(a) = 0 for all aE [0,1]. Hence, h(-t) (h(l)+h(a)) = h(-t) (0+0) = 0 as h(0) = 0. 

But, h(-t) (h(l)+h(a)) = h(-t) (h(l)+0) = 1 -:t:- 0, providing a contradiction. Thus, the 

supposition that h exists must be false. 

Next, suppose that a function h exists such that max(a, b) = h(•t) (h(a) + h(b)-h(0)). 

Then max(a, 1) = 1 = h(·1l(h(a)+h(l)-h(0)). Thus, h(l) = h(a)+h(l)-h(0) or h(a) = h(0). 

Hence, his a constant function. Now if b<a, a= max(a, b) = h(-t) (h(a)+h(b)-h(0)) = 

h(-t) (h(0)+h(b)-h(0)) = h(-t) (h(b)) = b. Since, b>a, this is a contradiction. Therefore, 

the supposition that such an h exists must be false. • 

As was the case for conjunction functions, it is not possible to characterize all fuzzy 

disjunction functions by generators. As is shown in Chapter 6, however, it is possible to 

reduce the number of functions to be considered as disjunction functions. In Chapter 6, 

additional restrictions will be placed on the conjunction and disjunction functions, 

namely that of DeMorgan's laws and distributivity. 
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CHAPTER6 

INTERACTIONS OF THE CONNECTIVES 

After studying each of the connectives individually, the only remaining restrictions 

are in how the fuzzy negation, conjunction, and disjunction functions interact with each 

other. Because of the desire to make fuzzy logic have some of the same properties as 

classical logic, satisfying DeMorgan's laws is a useful feature. DeMorgan's laws state that 

N(C(a, b)) = D(N(a), N(b)) and N(D(a, b)) = C(N(a), N(b)). Any conjunction function 

C and disjunction function D that satisfy these two relations is called a dual triple with 

respect to the negation function N. More concisely, < N, C, D > is called a dual triple. 

The question arises as to how to create triples of functions that will be dual triples. 

The process is straightforward as the next two theorems show. Part 1 of the proof of 

Theorem 13 was taken from [6, p.84] with notational changes, while Part 2 is original to 

this paper. 

Theorem 13: Given any conjunction function C and any negation function N then, if 
D(a, b) = N(C(N(a), N(b))), <N, C, D > is a dual triple. 

Proof: 

1. D is a disjunction function. 

Note first that since N: [0,1] • [0,1] and C:[0,1] x [0,1] • [0,1], it follows from the 

definition of D and the fact that N is involutory that D: [0,1] x [0,1] • [0,1]. 

A. Boundary Conditions 

D(a, 1) = N(C(N(a), 0)) = N(0) = 1 and D(0, a) = N(C(l, N(a))) = N(N(a)) = a. 



B. Commutativity 

D(a, b) = N(C(N(a), N(b))) = N(C(N(b), N(a))) = D(b, a). 

C. Associativity 

D(a, D(b, c)) = D(a, N(C(N(b), N(c)))) = N(C(N(a), N(N(C(N(b), N(c)))))) = 

N(C(N(a), C(N(b), N(c)))) = N(C(C(N(a), N(b)), N(c)), as C is a conjunction 

function and therefore associative. But, N(C(C(N(a), N(b)), N(c)) = 

N(C(N(N(C(N(a), N(b)))), N(c))) = N(C(N(D(a, b)), N(c))) = D( D(a, b), c). 

Therefore, D(a, D(b, c)) = D(D(a, b), c). 

D. Monotone Non-Decreasing 

Note that a1 ~ a2 and b1 ~ b2 imply that N(a1) ~N(a 2 ) and N(b1) ~N(b2 ). 

Thus, C(N( a1), N(b1)) 2: C(N( a2 ), N(b2 )). Hence 

N(C(N(a1), N(b1)))~N(C(N(a2 ), N(b2 ))), orD(apb1) ~D(a2 ,b2 ). 

E. Continuity 
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Since both N and Care continuous functions, N(C(N(a), N(b))) is continuous and 

thus D is continuous. 

2. < N, C, D > is a dual triple 

By definition, D(a, b) = N(C(N(a), N(b))). Letting the negation function operate on 

each side of the equality yields N(D(a, b)) = C(N(a), N(b)) since N is involutory. 

This is one of DeMorgan's laws. To obtain the other law, simply note that 

D(N(a), N(b)) = N(C(N(N(a)), N(N(b)))) = N(C(a, b)). • 



As expected, an identical result is obtained if disjunction and negation functions are the 

two initially prescribed functions: a corresponding conjunction function can then be 

found so that all three functions form a dual triple. The statement of Theorem 14 was 

given in [6, p.86], but the proof is original to this paper. 

Theorem 14: Given any disjunction function D and any negation function N then, if 
C(a, b) = N(D(N(a), N(b))), <N, C, D> forms a dual triple. 
Proof: 

1. C is a conjunction function. 

As in the proof of Theorem 12, it can be seen that C: [0,1] x [0,1] • [0,1]. 

A. Boundary Conditions 
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C(a, 1) = N(D(N(a), 0)) = N(N(a)) = a and C(0, a) = N(D(l, N(a))) = N(l) = 0. 

B. Commutativity 

C(a, b) = N(D(N(a), N(b))) = N(D(N(b), N(a))) = C(b, a). 

C. Associativity 

C(a, C(b, c)) = C(a, N(D(N(b), N(c)))) = N(D(N(a), N(N(D(N(b), N(c)))))) = 

N(D(N(a), D(N(b), N(c)))) = N(D(D(N(a), N(b)), N(c))), as D is a disjunction 

function and therefore associative. However, N(D(D(N(a), N(b)), N(c))) = 

N(D(N(N(D(N(a), N(b)))), N(c))) = N(D(N(C(a, b)), N(c))) = C( C(a, b), c). 

Hence, C(a, C(b, c)) = C(C(a, b), c). 

D. Monotone Non-Decreasing 
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E. Continuity 

Since both N and Dare continuous functions, N(D(N(a), N(b))) is continuous and 

thus C is continuous. 

2. <N, C, D > is a dual triple 

By definition, C(a, b) = N(D(N(a), N(b))). Letting the negation function operate on 

each side of the equality yields N(C(a, b)) = D(N(a), N(b)) since N is involutory. 

This is one of DeMorgan's laws. To obtain the other law, simply note that 

C(N(a), N(b)) = N(D(N(N(a)), N(N(b)))) = N(D(a, b)). • 

In addition to being relatively easy to create, these dual triples have an interesting 

relation to the generator functions studied in previous chapters. If a single generator is 

chosen (either increasing or decreasing), the negation, conjunction, and disjunction 

functions that are created will form a dual triple. This is shown in the following 

theorem, taken from [6, p.86] with modifications. 

Theorem 15: If an increasing generator g: [0,1] • 9t generates a negation function, a 
conjunction function and a disjunction function, then they form a dual triple. 

Proof: 

The negation, conjunction, and disjunction functions generated by the increasing 

generator g are given respectively as follows: 

N(a) = g-1 (g(l)-g(a)); C(a, b) = g<-1
> (g(a)+g(b)-g(l)); D(a, b) = g<-1

> (g(a)+g(b)). 

To see that DeMorgan's first law holds, first consider N(C(a, b)) where a>O. 



N(C(a, b)) = g-1 (g(l)-g(C(a, b))) = g-1 (g(l)-g(g<-1
l (g(a)+g(b)-g(l)))) = 

g-1 (g(l)-( g(a) + g(b)-g(l))) = g-1 
( 2g(l)-g(a)-g(b)) = g <-1

l ( 2g(l)-g(a)-g(b)) = 

g <-1l ( g(l)-g(a) + g(l)-g(b)) = g <-1l (g(g-1 (g(l)-g(a))) +g(g-1 (g(l)-g(b)))) = 

g<-1
l (g(N(a))+g(N(b))) = D(N(a), N(b)). If a= 0, then both N(C(O, b)) = 1 and 

D(N(O), N(b)) = 1 as N(O) = 1. 

To see that DeMorgan's other law holds, consider N(D(a, b)). 

N(D(a, b)) = g-1 (g(l)-g(D(a, b))) = g-1 (g(l)-g(g<-1
l (g(a)+g(b)))) = 

g-1 (g(l)- g(a)-g(b)) = g <-1l (g(l)-g(a)-g(b)) = g <-1l ((g(l)-g(a)) + (g(l)-g(b))-g(l)) = 

g <- 1l (g(g-1 (g(l)-g(a))) + g(g-1 (g(l)-g(b)))-g(l)) = g <-1l (g(N(a)) +g(N(b))-g(l)) = 

C(N(a), N(b)). Therefore, by definition, <N,C,D > is a dual triple. • 
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Since each connective has a decreasing generator as well as an increasing generator, an 

analogous theorem holds for decreasing generators. The proof is original to this paper. 

Theorem 16: If a decreasing generator f generates a negation function, a conjunction 
function and a disjunction function, then they form a dual triple. 

Proof: 

The negation, conjunction, and disjunction functions generated by a decreasing 

generator fare given below. 

N(a) = /-1 (f{O)-j{a)); C(a, b) = [Hl (/{a)+ /(b)); D(a, b) = p-1
> (f(a)+ /(b)-/(0)). 

To see that DeMorgan's first law holds, consider N(C(a, b)). 

N(C(a, b)) = /-1 (f{O)-j{C(a, b))) = /-1 (/{0)-/(/-1 (j{a)+ /{b)))) = /-1 (j{O)-/{a)-/{b)) = 

p-1
> (j{O)-/{a)-/{b)) = JH> (/{O) -/{a)+ /{0)-/{b)-/{O)) = 



p-1l (/ (f-1 (f{0)-/(a))) + f (f-1 (f{0)-ffe)))- f (0)) = [Hl (f (N(a) + f (N(b)) - f(0)) = 

D(N(a), N(b)). 

For DeMorgan's second law, consider N(D(a, b)). 

N(D(a, b)) = /-1 (f{0)-/(D(a, b))) = f-1 (f{O)-j([Hl (f(a)+ f(b)-f(0)))) = 

/-
1 (f{0)-(f (a)+ f (b)-f (0))) = /-1 (21(0)-f (a)-f (b)) = [Hl (21(0)-f (a)-f (b)) = 

[Hl (/(0)-f(a)+ f(0)-f(b)) = [Hl (f{/-1 (/(0)-/(a)))+ f(f- 1(/(0)-f(b)))) = 
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f-1 (j{N(a)) + f(N(b))) = C(N(a), N(b)). Therefore, by definition, <N,C, D > is a dual 

triple. • 

There are other ways in which these fuzzy operations interact with each other. Three 

of the most common ways are: the law of the excluded middle, the law of contradiction, 

and the laws of distributivity. Each of these laws hold in classical logic. As discussed in 

the first chapter, the law of the excluded middle states that D(a, N(a)) = 1. One version 

of the law of contradiction states that C(a, N(a)) = 0. Third, there are two laws of 

distributivity: conjunction distributes over disjunction, and disjunction distributes over 

conjunction, that is, C(a, D(b, c)) = D(C(a, b), C(a, c)) and D(a, C(b, c)) = 

C(D(a, b), D(a, c)). It is straightforward (again using the definition of the pseudoinverse) 

to verify that the dual triples constructed in Theorems 15 and 16 satisfy the law of the 

excluded middle and the law of contradiction. As discussed in Chapter 1, however, it is 

not reasonable or necessarily desirable to assume that the law of the excluded middle 

holds. Distributivity, however, is one of the ways in which the conjunction and 
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disjunction interact in a very useful way. The following theorem shows that if we have a 

dual triple which satisfies the law of the excluded middle and the law of contradiction, 

then it cannot satisfy the distributive laws. The proof below, taken with modifications 

from [6, p.87-88], shows that no dual triple can satisfy all three of the above mentioned 

laws. 

Theorem 17: Let < N, C, D > be a dual triple which satisfies the law of the excluded 
middle and the law of contradiction. Then < N, C, D > does not satisfy the distributive 
laws. 

Proof: 

Assume that the distributive law C(a, D(b, c)) = D(C(a, b), C(a, c)) holds. Lemma 2 in 

Chapter 2 guarantees that the negation function N will have a unique fixed point e. 

Clearly e cannot be 0 or 1, as N(0) = 1 and N(l) = 0. Thus, eE (0,1). Now, D(e, e) = 

D(e, N(e)) = 1 by the law of the excluded middle. Similarly, C(e, e) = C(e, N(e)) = 0 by 

the law of contradiction. Hence, C(e, D(e, e)) = D(C(e, e), C(e, e)) or C(e, 1) = D(0, 0). 

Consequently, e = 0. This is a contradiction, since eE (0,1). • 

In fact, there is only one pair of functions satisfying the fuzzy conjunction and 

disjunction axioms where each distributes over the other. The following proof, original 

to this paper, shows that the min, max pair is the only such pair. 

Theorem 18: The min and max functions are the unique functions such that the 
conjunction function distributes over the disjunction function and the disjunction 
function distributes over the conjunction function. 
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Proof: 

Let a and b be elements of [0,1], where a5 b. C(a, b) ~ C(a, a) = C(D(a, 0), D(a, 0)) = 

D(a, C(0, 0)) = D(a, 0) = a. Thus, C(a, b) ~a. But a= C(a, 1) ~C(a, b). Hence 

C(a, b) = a whenever a5b. This result, along with the fact that C is commutative, shows 

that C must be the min function. 

Let a and b be elements of [0,1] where a5b. D(a, b) 5D(6, b) = D(C(b, 1), C(b, 1)) = 

C(b, D(l, 1)) = C(b, 1) = b. Thus, D(a, b) 56. But b = D(0, b) 5D(a, b). Hence 

D(a, b) = b whenever a5b. This result, along with the fact that Dis commutative, 

shows that D must be the max function. 

Finally, it is necessary to show that the min and max functions do in fact distribute 

over each other. Assume that a5b5c and a,b,ce [0,1]. Then min(a, max(b, c)) = 

min(a, c) = a = max(a, a) = max(min(a, b), min(a, c)). Also, max(a, min(b, c)) = 

max(a, b) = b = min(b, c) = min(max(a, b), max(a, c)). The other cases follow in an 

analogous manner. Thus, the min and max functions distribute over each other. • 

If the additional axiom of distributivity is added to the list of axioms for fuzzy 

conjunction and disjunction functions, Theorem 18 shows that there is a unique function 

which satisfies each of the conditions. This corresponds exactly with what Zadeh had 

originally taken to be the conjunction and disjunction functions in his original paper on 

fuzzy sets [18]. 

Chapter 7 will reveal why this result is useful, and will discuss some areas that are still 

. . . 
open to mvest1gat10n. 



O-IAPTER7 

CONCLUSION 
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In Chapter 1 some motivational ideas for fuzzy logic were given. Chapter 2 then 

provided an introduction to fuzzy sets and fuzzy logic. Chapters 3, 4, and 5 provided 

axioms and some pseudo-characterization theorems about fuzzy negation, conjunction, and 

disjunction functions, respectively. In Chapter 6, the interactions of these three classes of 

fuzzy functions were investigated. Now it is important to summarize into a single listing the 

desirable axioms for the basic connectives in fuzzy logic. 

Axioms for the Basic Fuzzy Logic Connectives 

1. The Negation Function is monotone decreasing. 

2. The Negation Function is involutory. 

3. The Conjunction Function satisfies the classical boundary conditions. 

4. The Conjunction Function is commutative. 

5. The Conjunction Function is associative. 

6. The Conjunction Function is monotone non-decreasing. 

7. The Conjunction Function is continuous. 

8. The Disjunction Function satisfies the classical boundary conditions. 

9. The Disjunction Function is commutative. 

10. The Disjunction Function is associative. 

11. The Disjunction Function is monotone non-decreasing. 

12. The Disjunction Function is continuous. 

13. The Negation, Conjunction, and Disjunction Function form a dual triple. 

14. The Conjunction and Disjunction Functions distribute over each other. 
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Recall from Theorem 17 that if Axiom 13 is accepted, and if <NC, D> satisfies both 

the law of the excluded middle and the law of contradiction, then Axiom 14 cannot be 

accepted. Further, Theorem 18 shows that the min and max functions are the unique 

functions which satisfy all fourteen axioms. In fact, Axiom 13 is not needed to demonstrate 

the uniqueness of these functions, but it does place a restriction on the type of negation 

functions allowed. 

There are two main reasons for selecting the min and max functions as the unique 

conjunction and disjunction functions. The first is that when fuzzy logic is used to model a 

problem, it is quite common to tty to "best fit" the data by changing both the membership 

functions involved and the functions used for the connectives. If, however, the only suitable 

conjunction and disjunction functions are the min and max functions, respectively, then one 

needs only to adjust the membership function. By doing so, it is much easier to evaluate 

whether fuzzy logic is indeed the best way to model a situation. Second, the min and max 

functions have the desirable property of being idempotent. That is, conjoining a statement 

to itself with either a conjunction or disjunction does not alter the truth value of the 

statement. Thus, a statement A has the same truth value as "A and A" and as "A or A." 

The following theorem, taken from [6, p.63], shows that the min function is the only 

idempotent conjunction function. 

Theorem 18: The min function is the only idempotent conjunction function. 

Proof: 

dearly, min(a, a) = a for all aE [0,1], and is thus idempotent. Assume that there exists 

another conjunction function C such that C is idempotent. Then, for any a,bE [0,1], a~b 

implies a = C(a, a)~ C(a, b) ~ C(a, 1) = a by monotonicity and the boundary- condition. 



Hence, C(a, b) = a =min (a, b). Similarly, b~a implies C(a, b) = b = min(a, b). Therefore, 

the min function is the unique idempotent conjunction function. • 
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In an identical fashion, it is easy to see that the max function is the only idempotent 

disjunction function. Thus, in regard to reducing the conjunction and disjunction classes to 

just the min and max functions, taking idempotentcy as an axiom for the conjunction and 

disjunction functions has the same effect as distributivity. In this sense, idempotency and 

distributivity, in the presence of the other axioms, each imply the other. 

There are other reasons for desiring the min and max functions as the conjunction and 

disjunction functions. For example, in [13] Dubois and Prade give an interesting discussion 

of the suitability of the min and max functions as the best conjunction and disjunction 

functions because the correspondence between these two functions and the way in which 

various population samples think of "and" and "or." 

These are the axioms only for the basic connectives of negation, conjunction, and 

disjunction. The fuzzy connective implication is more open to interpretation as to which 

properties are desirable and which are not. J. F. Baldwin and B. W. Pilsworth give an 

excellent axiomatic approach to implication in [2, p.216], in which they conclude: 

The motivation for this paper has been the recognition that there are two 
complementaiy principles in determining what is an appropriate rule for implication 
when used for approximate reasoning with fuzzy logic. In the first place it is 
important to consider what are the essential properties of implication that satisfy an 
intuitive understanding of its meaning so that inappropriate implication rules can be 
rejected. In the second place, it is not necessaiy to specify a unique rule for 
implication. On the contraiy, the choice of implication law, from the set of those 
which satisfy the above-mentioned intuitive properties is a problem of modeling to 
suit the needs of particular applications. 

The implication for MVLs was discussed in the analysis of the sorites paradox in Chapter 

1. Although a similar rule for implication can be used in fuzzy logic, the paradox does not 

arise. The reason is not because of a difference in the implication function, but rather in the 
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way truth values are considered. In a MVL, the initial stage of the paradox assumes that the 

heap of sand is a heap is totally true and not a heap is totally false. The problem arises when 

considering at what stage does the heap cease being totally a heap? In fuzzy logic, even at 

the initial stage there is a certain degree of "non-heapness," and removing a single grain 

raises this degree of non-heapness. In a MVL, the sum of the degree of heapness and the 

degree of non-heapness must be one. This is not so in fuzzy logic. It is possible that the 

degree of non-heapness increases while the degree of heapness stays at one. It is this sort of 

thinking that avoids this and similar paradoxes. 

Thus, fuzzy logic clearly plays a role in expanding the ideas of classical logic to resolve the 

paradoxes found in classical logic. The first step towards the general acceptance of fuzzy 

logic is to provide a solid foundation for the connectives of fuzzy logic. In doing so, having 

found unique functions which can serve as reasonable conjunction and disjunction functions 

eases the task of modeling real world situations with fuzzy logic. This, of course, is a useful 

way to show the applicability of fuzzy logic. Later steps in the development and applications 

of fuzzy logic might involve such matters as determining what might be appropriate fuzzy 

functions corresponding to a semantics for quantification theory (the predicate calculus) and 

to both the syntax and semantics of first-order, possibly fuzzy, mathematical theories. 
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Name 

Klir & Yuan [6] 

Standard Negation [18] 

Sugeno [6] 

Yager [17] 

APPENDIX A 

NEGATION FUNCTIONS 

N(a) = 

1-a 

( J
l/w 

1-a"' 

l+h"' 

(1-a"' )1/w 

Decreasing 
generator 
/{a)= 

-ka+k (k>O) 

1-a"' 

Increasing 
generator 

g(a) = 

a 

ka 

a"' 
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APPENDIXB 

CONJUNCTION FUNCTIONS 

Name C(a, b) = Decreasing Increasing 
generator generator 

f(a) = g(a) = 
1 

(t. >0) Dombi [6] 

[(~-1)' +(j;-1Jr (;-1)A None 

Dubois & ab 
(A E[0,1]) 

Prade [6] max(a,b,1.) None None 

Frank [6] 
logAll+ (<•-~i:b-i)}A >0,A .el) -ln( A.a -1) 

A-1 None 

ab 
(A ~0) ( a ) Hamacher 1.+(1-1.Xa+ b+-ab) 

-ln None l +(1-l)a 
[6] 

Schweizer max(o,{a/4 + b/4 -1)1'/4) (J :t: 0) 1-aA aA 

&Sklar1 [6] 

Schweizer 1-[( 1- a Y + ( 1- b Y -( 1- a Y ( 1- b )/4 JI 
A 

1 [ ).]1/)· None 

&Sklar' [6] 
n 1-(1-a) 

(,1, >0) 

Schweizer 
ex~ -~ln~>- +Jlntj}h) (A >0) llnalA None 

&Sklar1[6] 

Schweizer ab a-A -1 -A 
(A >0) -a 

&Sklar4 [6] (al. +b). -a).b).rA 

( 0 a + b + hb -1) (A >-1) ~ ln[I + l(I - a)] I~ !+A ] Weber [6] max , 
1 + A. A, ,1, l+l(l-a) 

Yager [17] 1-min (1, [(1-aY + (1- b Yr).) (A >0) (1-af 1-(1- af 

lm(l+A) 
1 

Yu [6] max[0,(1+1.Xa+b-1)-1.ab] (A >-1) 
-ln(l + A.a) 

A l+Aa A 



Name 

Dombi [6] 

Dubois & 
Prade [6] 

Frank [6] 

Hamacher 
[6] 

Schweizer 
& Sklar1 [6] 

APPENDIXC 

DISJUNCTION FUNCTIONS 

D(x,y) = 

1 

1+[(~-lr +(!-lr r· 
(A >0,A ;t: 1) 

1- (l-a)(l-b) (;1E[01]) 
max((l- a),(1- b),;1) ' 

[ 

(,,il-a_1)(,,il-b_1)] 
1-log 1 1 + 

/1, ;l-1 

a+ b +(), - 2)ab 

1. + (1.-l}ab 

(A >0) 

(A >0) 

1-max(0,(1-a)'- +(1-b)'- -1)1
;,. 

(;1:;t:0) 

Decreasing 
generator 

!(a) = 

(.!. )-i. 
- -1 

a 

None 

None 

None 

-(1- a}'-

Schweizer [ai- + b'- + a'-b'- ]11
'-

&Sklat" [6] 
None 

Schweizer 
& Sklar' [6] 

Schweizer 
&Sklar4 [6] 

Yager [17] 

Yu [6] 

1- ex~ - ~ln(l- a)!'- + lln(l- b)I'- )
1
;,.) 

(A >0) 

(1-a)(l-b) 
I ). ). ). ). )I/). \(1- a) + (1- b) - (1- a) (1- b) 

(A >0) 
min (1,(a'- + b'- t,.) (A > 0) 

min [1,a + b + 1.ab] (A >-1) 

None 

1 1 (l+A) 
A 11\1+ Aa 

Increasing 
generator 

g(a) = 

(
1 )-i. 
--1 
a 

None 

-ln (
At-a -1) 
A-1 

1-(1-a)'-

lln(l-a)I'-

1 
-ln(l+h) 
t. 
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APPENDIXD 

PROOF1HAT C =MIN AND D =MAXWHENp=oo p p 

Lemma 19: limmin[l, (aP + bP )11PJ = max(a, b) where a, bE [0,1]. 
p• oo 

Proof (original to this paper): 

If a or b is equal to zero, the result clearly holds. If a = b, then, as 211P • 1 as p • oo , 

the result holds. Assume, without loss of generality, that O < a < bl.et (aP + bP )11P =Q. 

Th 1. l Q 1. ln(aP + bP) 1. aPlna+ bPlnb /l'H . al' l) en 1m n = 1m ---- = 1m ----- ,. osp1t s ru e 
p• oo p• o:> p p• o:> a p + bP 

= lim (a/b)Plna+lnb 
p• 00 (a/b)P + 1 

= 1n b as O < (alb) < 1. 

From this it follows that limQ = lim(aP + bP )11P = b = max(a, b). Therefore, 
p• oo p• oo 

limmin[l, (aP +bP )11P] = min[l, lim(aP +bP )11P] = min(l, b) = b = max(a, b) as 
p• oo p• oo 

o < a< b. • 

Theorem 20: The Yager conjunction class CP(a, b) = 1-min(l,[(l-a)P +(1-b)P fP) (p~l) 
reduces to the min function when p = oo . 

Proof: 

Take a, bE [0,1]. Then lim CP (a, b) = lim 1-min(l, [(1-a )P +(1-b )P f P) 
p• o:> p• oo 

= 1-min(l, lim[(l-a )P +(1-b )P f P) 
p• o:> 

= 1-min(l, max((l-a), (1-b))) (Lemma 19) 

= min(a, b). • 
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Theorem 21: The Yager disjunction class DP (a, b) = min(l, [aP + bP f P) (p~ 1) reduces to 
the max function when p = oo • 

Proof: 

Take a, be [0,1]. Then, lim DP (a, b) = lim min(l, [aP + bP f P) 
p• oo p• oo 

= min (1, lim[aP +bP f P) 
p• oo 

= min(l, max(a, 6)) 

= max(a, b). • 

(Lemma 19) 
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