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NUTRITIONAL FACTORS IN PLANT GROWTH 
AND DEVEL.:OPMENT 

w. F. LOEHWING 

The large number of recent publications on the physiology of 
plant development reflects a widespread, contemporay inter­
est in this subject. Researches in this area deal chiefly with the 
effects of specific growth substances and mineral nutrients on 
functional and structural ontogeny. The major contributions on the 

physiology of growth substances have already been conveniently 
assembled in certain excellent monographs ( 36, 53, 283, 339, 42,1<) 

and reviews (37, 422, 192). Recent researches on nutrition in re­
lation to plant development have not as yet been comprehensively 

reviewed. Data in this field as a whole are extremely diverse, es­
pecially as they relate to the nutritional cycle of biennial and 

perennial crops (20, 259, 411). In typical annuals, however, cer­
tain common relationships seem to characterize the mineral, carbo­

hydrate and protein metabolism such that a number of generaliza­
tions can be made to aid an understanding of nutrition in rela­

tion to growth despite varietal differences ( M2, 228, 394). 

Interest for many years has centered in the metabolic transfor­

mations characterizing the transition from vegetative to reproduc­

tive activity. Data of various authors working with annuals on 
this phase of nutrient metabolism permit some degree of correla­

tion because plants have commonly been cultured under greenhouse 

conditions which circumvent the more extreme edaphic and met­
eorological variables inherent in field tests. Use of relatively large 

populations of annuals coupled with reasonably uniform cultural 

conditions also give the resulting data a fairly satisfactory degree 

of statistical validity. A review of research on the nutrition of 
annuals may thus serve to assemble a widely dispersed literature 

and perhaps also facilitate correlation of work in this area with 
that on phytohormones. Recent contributions on plant development 
indicate a reciprocal relationship between growth substances of 
the hormone type with the carbohydrate, protein and mineral com­

ponents of plants (5, 16, 2:l, 1 rn, mo, 204, 297, :l99, 408). 

Growth substances arc known to influence enzyme activity (39, 

261, 36:l) and thus bring about qualitati,·e as well ac quantitatin' 
changes in organic synthates and metabolism (93, l:ll). The con­
centration of carbohydrate and nitrogenous components also varie~ 

fil 
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62 IOWA ACADEMY OF SCIENCE [YoL. 49 

with the concentration of growth substances in various parts of 
the plant (5, 141, 252, 253, 254, 366, 390, 431, 447). The forma­
tion of growth substances is not only dependent on a supply of 
inorganic nutrients such as nitrogen (16) but growth substances 
themselves also appear able to induce differences in the content of 
inorganic nutrients (50, 136, 343). In fact since many of the ma­
jor growth responses have already been clearly correlated with 
specific hormonal agents, discovery of the mechanism of interac­
tion of these substances with nutrients in achievement of the 
plant's developmental potentialities constitutes a major problem in 
the physiology of growth. 

1. THE PROBLEMS OF PLANT DEVELOPMENT 

Before proceeding with a discussion of the data on physiologi­
cal ontogeny, it may be helpful to outline certain attributes of 
plant growth as these relate to experimental techniques and inter­
pretation of data. Studies on the physiology of plant development 
are complicated by the fact that, at a given time, similar organs 
of the growing plant are in varying stages of their developmental 
sequence (12, 97, 229, 3,i,2). Unlike the animal, which commonly 

matures as an entity, the typical plant consists of numerous, scat­
tered growing points in the form of apical and lateral meristems. 
These essentially embryonic tissues give rise to a succession of 
new organs in a progressive sequence of time. The resulting or­
gans exhibit quasi-independent growth ( 119) such that neither 
comparable size and age of plants as whole nor of their separate 
parts serve as sound criteria of development similarity (326, 355). 

Briefly, the various parts of a growing plant may display simul­
taneously the entire range of development from youth to senes­
cence. 

This variability arises in part from the fact that during growth 
a single plant alters its own environment in such a way that 
structures appearing in chronological sequence reflect a progres­
sive ecological succession with concomitant differences in meta­
bolism (29, 97, 200, 260). In leaves of species with an erect habit 
there is commonly a vertical progression from mesomorphy of 
mature lower leaves to comparative xeromorphy of mature upper 
leaves on the same stem (19, 145, 245, 395, 416, 441). A rising 
gradient of sap osmotic pressure seems to characterize the mature 
internodes of the stem (92, 383, 395, 398) which is accentuated 
by water shortage ( 145). ·Similarly vertical gradients of enzymes 
(287) hormones (97, 424) and nutrients also occur in stems. Up-
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19"1,2J NUTRITIONAL FACTORS IN PLANT GIWWTH (i3 

per stems and leaves tend to be higher in nitrogen and protein 

content (10, 148, 200, 274, 362, 364, 397) though this gradient 

depends largely on the method of sampling (260, 274). Hydroly­
zable reserve carbohydrates, on the other hand, tend to exhibit a 

higher concentration in basal leaves and stems (29, 200, 397). 

Mineral nutrient ions also commonly display vertical gradients of 
distribution ( 102), such that the concentrations of calcium, sul­

phur and magnesium tend to be greater at lower stem levels (10, 

222, 264,311), while potassium and nitrogen are highest at upper · 

levels ( 32 5). Despite these variations of its different portions, the 
vegetative parts of the plant as a whole gradually shift from r. 

state of predominant anabolism in early life to one of increasing 

catabolism at maturity (21, 84). Due to such variations in com­
position and metabolism of various plant organs, methods of cul­
ture and analysis must be carefully adapted to experimental faC"­
tors concerning which information is sought. The conditions of the 

environment during the entire growth cycle must be accurately 

known and methods of sampling for tissue analyses must be high­

ly selective. 

Correlation of plant response with environment is, however, be­
set with certain difficulties because plants are to a considerable 

degree the products of their past as well as of immediate environ­
ment as shown by studies of so-called "induced" phenomena (273). 

The obvious structural response to the specific morphogenic stim­

ulus of light or temperature may, for example, often occur weeks 

or months after application or perception of such stimuli ( 143, 

274). Thus, the environment under which a response makes its 

appearance may not necessarily be that which induced it, especial­

ly if the environment has changed appreciably during growth ( 12, 

137, 246). Such delay between perception of and response to stim­
ulus (after-effect) is especially evident in influences of the photo­
period upon flowering and in temperature responses of vernalized 
seeds. There is, for instance, considerable experimental evidence 

that conditions of moisture ( 315), temperature and light prevail­
ing during formation of the embryo while still attached to the 
mother sporophyte may be more important to subsequent growth 
of seedlings than the physical factors of the environment pre­

vailing during and after germination (115, lH, 180, 194, 199, 

290, ,143, 444). Though lying beyond the scope of this review, 
the recent theory of phasic development of plants seeks to corre­
late formative response with the external factors of temperature 
and light. It has been demonstrated that these factors may induce 

3

Loehwing: Nutritional Factors in Plant Growth and Development - Paper Prese

Published by UNI ScholarWorks, 1942



64 IOWA ACADEMY OF SCIENCE [Yor .. 49 

qualitative shifts in metabolism and hence of development ('J.28). 

The direct effect of the cm·ironment may be upon enzymatic 

systems and growth substances ( 358), but the grosser structural 

changes following \Trnalization and photoperiodic induction to a 

considerable degree depend upon the nutrient conditions of the 

plant for their full expression. Such effects of physiological in­

duction often provide an explanation of the de,·elopmental differ­

ences frequently found among plants growing in currently com­

parable enYironments ( 108, l 2G, 2iH, 235, 2H9, 429). 

Induced responses must, however, be clearly distinguished from 

those which are non-induced. A brief exposure to a given em·iron­

mcntal stimulus may produce a permanent, qualitative transition 

as in the case of flowering under influence of day length, or mere­

ly a quantitative response which is proportional to the duration 

of the stimulus. The obsen·ation of :\Iurneek (27G) may he cited 

as an example of the latter in which he has shown that elongation 

in the flower stalk of Rudbeckin is proportional to the duration 

of long day stimulus. Though stem elongation in this case is de­

pendent upon long day exposure, it ceases when plants are re­

turned to short day. Hence, growth of the flower stalk in Rud­

beckin is a non-induced phenomenon wl1ich stands in sharp con­

trast to the inductive effeC't of a brief exposure to long day on 

flowering of the same plant (220) .Certain photoperiodic responses 

of vegetath"e structures such as bulbs and tubers of other plants 

similar!~· appear to be of the non-induced type (332, 148). 

Up to the present time it has been customary to consider the 

growth cycle as comprising primarily a vegetatiYc and reproduc­

tive phase. There has been a general tendency to regard flowering 

( anthesis) as the beginning of the reproductive phase. A current 

issue of great interest in physiological studies concerns the exact 

point at which the most significant metabolic changes occur in the 

transition from vcgctati,·c growth to flowering. Recent data indi­

cate that the period between inception of flower primordia and 

bud formation rather than the period of anthesis in which fertil­

ization occurs is the better physiological criterion of and index to 

the onset of reproduction ( 120, 216, 270, 320, :137, :H5G. HSG, 419). 

The tendency of the layman to designate the obvious appearance 

of blossoms as the beginning of reproduetion is understandable, yet 

such a landmark is unsatisfactory from the physiological stand­

point. Though the differentiation of flower initials involves the 

least conspicuous of the formative changes connected with flower-
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1942] NUTRITIONAL FACTORS IN PLANT GROWTH 65. 

ing, this stage is critical in development from the metabolic view­
point. Appearance of floral primordia marks initiation of a quali­
tatively different type of metabolism. Many of the nutritional 
transitions hitherto correlated with flowering ( anthesis or blos­

soming) actually occur much earlier, namely with origin of the 

flower parts (313, 331, 409). On a formative basis, flower incep­
tion characteristically also marks a transition in rate of vegetative 

development and elongation of the main axis or shoots of typical 

annuals ( 45, 202, 320, 393). Differences in prc-anthesis and post­
anthesis physiology are also sufficiently marked to warrant these 
as sub-divisions of the flowering phase itself (216, 272, 320). 

Further, the physiologist also finds it necessary to distinguish 
sharply between flowering and fruiting. The functional attributes 

of fruit formation differ as much from flowering as the latter 

differs from vegetative growth (103, 112, 220, 319). Fertilization 

is commonly accepted as the beginning of the fruiting phase even 

though pollination without gametic fusion is in many cases known 
to result in parthenocarpic fruits. Experimental parthenocarpy 

provides a convenient method of differentiating the physiology of 
fruit from that of seed formation. 

The method of sampling and expression of data are also im­

portant (84, 86, 113, 181, 425). The constituents of the entire 
plant must be known in absolute amounts rather than in mere 

percentages in order to check the changes in total weights through­
out the growth cycle (285, 289, 329, 410). A chronological record 
of rates of increase in separate portions of the plant provides a 
much clearer picture of metabolism, and these, when combined with 

leaf area and root volume, give a fairly clear picture of the meta­
bolic efficiency of individual structures as well as of the plant as 

a whole ( 19). The point of the preceeding remark is perhaps best 
illustrated by the relation between mineral and organic constituents 

of the plant. Though salts continue to increase in absolute amounts 

throughout most of the plant's life, their percentages usually de­

crease because the rate of complex organic syntheses accelerates 

rapidly prior to maturation (73, 222, 302, 304, 309,). The record of 

absolute amounts of salts usually shows a progressive increase 

whereas percentages thereof often fall during growth of the plant. 

Though salt absorption eventually ceases during senescence, the 

percentage composition curve alone does not reveal this fact. A 

localized record of absolute amounts of specific inorganic ions 

makes compositional shifts immediately discernible in point of 
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time and place, data which are important aids in distinguishing 
cause and effect. Many helpful suggestions as to metabolic effi­
ciency are obtained by expressing composition and syntheses in 
terms of unit leaf weight or area (19, 362). Such a record, for 

example, unmistakably reveals the vertical gradient of increasing 

leaf dry weight per unit of surface. Photoelectric areameters now 
prodde a more convenient method of surface determination than 

the older tedious planimetric measurements ( 147, 197, 435). Mea­
surements of aggregate absolute weight in a large number of 
plants helps to minimize sampling errors and avoids the inade­

quacies of percentage composition ( 8-1, 410). Continuous growth 

records promise to clarify many as yet obscure points on develop­

mental physiology. To insure the best results, however, such ex­
periments must be arranged with due regard to a sequential rec­

ord of the environment and localized tissue analyses in terms of 

actual rather than mere percentage composition throughout the 
growth cycle. 

Certain details of technique are imposed in studies of plant de­
velopment, due to the fact that scattered growing points are the 
active loci of hormone secretion and formative change. Plant 

tissues of unlike secretory function arc not usually organized in the 

form of separate glands as in animals but are usually closely 
interwoven structurally. This type of organization presents ex­

perimental difficulties and often renders gross physico-chemical 
tissue analyses inappropriate in studies of plant development. It 

necessitates such highly localized sampling that use of refined 
procedures of micro-analysis often become necessary ( 19, 84, 86, 

285, 289, 326, 362). Recent developments in spectographic an­
alysis ( 1 '1•6) , histochemistry and use of artificially activated iso­

topes ha,·e already provided the biologist with microtechniques of 

great value in analysis of small samples. Root analyses are also 

essential to a comprehensive grasp of the metabolic characteristics 
of the plants as a whole, an operation which is greatly facilitated 
by liquid and gravel cultures from which roots are readily re­
trievable. Such cultures provide a substrate far more uniform in 
composition and more amenable than soil to control of tempera­
ture, hydrion concentration, salts, water supply, microflora and 

other edaphic factors. Sand and gravel cultures apparently ap­
proximate the cor:ditions of natural soils sufficiently to make the 
data of such studies of ,·alue in actual agronomic practice. Inclusion 

of data on root composition in recent studies on growth has 
brought to light a number of important top-root interrelationships. 
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In studies of development, attention focuses largely upon for­
mative tissues, namely upon meristematic cells from which plant 

structures originate. It is the task of the physiologist to identify 

the metabolic factors which cause the morphological differences 

observable among cells arising from a common meristem (392). 

Since changes in metabolism of initially equipotential cells arising 

from a meristem must precede structural differentiation, the de­
velopmental physiologist is chiefly concerned with those proto­
plasmic changes which underlie the contrasted growth patterns of 

tissues. Such protoplasmic conditions must be precisely correlated 
with the environmental factors which bring them about in order 

that the investigator may understand the complete sequence of 

events and be able to check his interpretations. Existing co11tribu­

tions of plant anatomy and morphology have already implemented 
the structural phase of the developmental problem but more de­

tailed studies on metabolism and specific morphogenic inductors 
are needed to bridge the remaining gaps in our knowledge of the 

relationships between environment and plant structure. In the en­

suing review, attention is given to a number of papers which aim 
especially to correlate form and function with nutrition. 

2. WATER RELATIONSHIPS 

Water content of rapidly enlarging seedlings rises to a maxi­
mum as soluble food reserves of the seed are translocated to the 

young shoot and root. In pot culture experiments in which the 
rate of water consumption can be compared with water content 
of tissues, it is evident that in the earlier phases of vegetative de­

velopment water intake readily compensates transpiration since 

maximal tissue hydration occurs well before flowering (19, 216, 

362). As the growing plant achieves independence by means of its 

own organic syntheses, rapid water absorption and protein forma­
tion become its predominant metabolic characteristics. They induce 

a high degree of succulence in newly formed tissues. As vegeta­
tive growth progresses and as carbohydrate components of the 
plant begin to increase, moisture content begins to decline slowly 
but progressively in all parts except young leaves and stem tips 
even under conditions of uniform availability of water in the sub­

strate. At this time absorption of water and transpiration are ap­
proximately balanced even though an age factor manifests itself 
as a somewhat more rapid diminution of moisture in older as com­
pared with younger leaves. Upper leaves maintain their moisture 
supply at the expense of lower leaves and roots, (75, 215). Re-
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duction in moisture per unit dry weight characteristically pro­
.gresses with the age of all vegetative parts even under conditions 

of uniform water supply ( 19, 71, 92, 362, 402, 441). This dif­
ferential between old and younger leaves in degree of hydration 

or percentage moisture is associated with the emergence of a 

vertical gradient of increasing xermorphy as leaves mature. Fully 
developed leaves at upper levels exhibit lower moisture content 
per unit area and fresh weight ( 245), a fact which suggests that 

the meristem from which they originate is also undergoing a shift 

in water balance. 

There is frequent reference in the literature and substantial 

agreement on the occurrence of marked alterations in internal water 
balance during flowering (19, 89, 159, 160, 187, 191, 202, 225, 

226, 258, 259, 292, 306, 350, 362). Sharp division of opinion 

exists, however, as to the time of inception and duration of this 
shift which clearly indicates a significant alteration in general 

metabolism as well as a distinct transition from the previous 

slow decline in moisture characteristic of earlier vegetative growth. 

Some of the discrepancies on this point are attributable to methods 
of analysis. Most investigators have relied on measurement of per­
centage moisture content of tissues sometimes at rather wide1y 

separated intervals. Investigations in which daily water consump­
tion is accurately measured ( 89) show a transitory but profound 
reduction in rate of water absorption in the period of flower bud 

formation. It is abrupt in onset, occurring at the time of low 
-carbohydrate supply to the root. Water absorption rises again 

with subsequent increase in root carbohydrates with an accom­
panying improvement in the top-root ratio but water balance does 

not again achieve the previous levels of the vegetative phase. 

A thorough investigation of water balance during growth of 
wheat has recently been made by Bakhuyzen (19) who also re­
views the general literature on this subject. Though Bakhuyzen 
associates marked alteration in water balance with flowering, he 
states that "our data do not show at exactly what moment the 
loss of water from leaves, stems and ears occurs, whether at stam­
ination or at fertilization of ovaries" of wheat grown under con­
stant conditions in a twenty four hour day. He correlates the 
change in moisture with fertilization, yet his own data as well as 
those of other workers indicate that inception of the shift in 
moisture occurs prior to anthesis rather than at fertilization (1·5, 

89, 125, 167, 356). 
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As flowering is approached, the moisture curve of lower 
leaves per unit area tends to shift in the direction of water loss 

in lower leaves while upper leaves may yet be gaining in unit 
moisture content (258, 259, 355). Lower leaves of wheat cease to 
gain in moisture as early as at the twentieth day, at which time 
floral primordia may already be found. This alteration in water 

content of lower leaves precedes anthesis by ten to fourteen days 
in wheat under optimal conditions of moisture supply. The change 

in gradient of the water curve in lower leaves of cereals and other 

plants is sometimes quite abrupt. The pre-flowering drnp in 
moisture content is often associated with and hence a convenient 

index to the presence of flower primordia or young buds in many 
annuals (215, 216, 362, 355). On the basis of recent work, it 

thus appears that the initial change in the direction of lower 
moisture content is associated with inception of flower buds rather 

than with full an thesis ( 89, 167) as heretofore maintained by 
many authors. 

Reduction in tissue moisture becomes more pronounced general­

ly as flowering reaches its ascendency. This tendency results in a 

rise in osmotic pressure of tissue fluids due in part to concentra­
tion of residual solutes. The increase in osmotic pressure is, how­
ever, incapable of arresting the trend of progressive dehydration 
as shown by continuation of water loss in spite of very appreci­
able increments in inorganic solute concentration in the sap at this 

time. We cannot escape the inference that forces other than os­

motic pressure play an important role in internal water balance 
(19, 259, 295, 362, 406). Studies on drought and cold resistance 
have shown the importance of hydrophilic colloids to plant sur­

vival under these adverse circumstances ( 106, 164, 398). The re­
cent work of Smirnov ( 362) demonstrates that cell colloids are 
fully as important in regulation of moisture content under norm-al 
conditions of growth as they are in plant survival during drought 

and low temperature ( 340). His data show that normal vegeta­

tive growth is characterized by high colloid and high moisture 
content of tissues, which with high nitrogen (protein) usually pro­
duces a condition of considerable succulence in the actively grow­

ing shoot. 

The increase in transpiration and depressed rate of water entry 
entail a drop in moisture content of cells during flowering with a 
comparable increase in soluble salts of the cell sap. When the 
concentration of soluble salts exceeds certain critical values, as it 
does in older leaves, there is an abrupt diminution of hydrophilic 
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colloids accompanied by a further and commensurate drop in 

moisture content of these tissues. Smirnov ( 362) suggests that 
precipitation of a large portion of cell colloids at high salt con­
centrations is the probable underlying cause of the sudden, co­

incident reduction in moisture of older leaves (13, 222). It has 
been shown that highly hydrated protein gels are close to the pre­

cipitation point and sensitive to slight changes in hydrion and salt 

concentrations ( 13). Confirmation of Smirnov's interpretation is 

found in the fact that dried powders of young but fully developed 
leaves can regain hygroscopically almost all their original moisture 

when exposed to a humid atmosphere ( 190), whereas this is not 
true of old leaves high in salts. This high degree of hygroscopicity 

can hardly be attributed to the salts known to occur in plant 

tissues in view of the fact that hygroscopicity diminishes with the 
rise in electrolyte content of older leaves. Measurements of sap 

viscosity, surface tension and the hygroscopicity of dried tissues 

in a moist atmosphere are convenient indices of colloid content as 
they check well with direct measurements of tissue colloids. 

Hygroscopicity of dried leaf material and high colloid content are 
pronounced in young leaves, conditions which suggest a highly 
peptized state of hydrophile constituents in the intact condition 
(295). Smirnov's observations lead to the conclusion that incre­

ments in water retentivity of leaves due to osmotic pressures 

arising from water loss are more than offset by the salting out 
of hydrophile colloids. Inability of the latter to retain previously 

adsorbed water leads to a commensurate drop in tissue moisture. 

The salting out of colloids by the rising concentration of elec­
trolytes during drying seems to be in the nature of an exchange 
mechanism whereby previously adsorbed enzymes are liberated. 

Enzymes in the free form become hydrolytically active, initiating 

conversion of insoluble to soluble organic reserves ( 100). Hydrion 
changes during this period may also influence the course of 
enzyme action ( 132, 133). The salt effect observed during incip­

ient drying thus involves. initially the precipitation of organic 
colloids with a sharp reduction in their hydrophilic properties and 
retentivity of tissue moisture (17, 60, 125, 299, 313, 334, 3<1<8, 
359, 365, 369). Subsequently, displacement of adsorbed enzymes 
by the rising concentration of electrolytes leads to hydrolysis of 
insoluble reserves. Hydrolysis of food reserves in older basal 
leaves is soon followed by translocation to upper and younger 
portions of the shoot as well as to reproductive structures. Loss 
of organic reserves from lower leaves seems to preclude the pos-
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sibility of later restoration of organic synthesis and hence of water 
balance. Lower leaves consequently tend to become chlorotic, to 

dry and absciss. Upper leaves. temporarily maintain their water 
and nutrient supply at the expense of those below (19, 75, 245). 

As the result of accumulation of organic and inorganic solutes, 

a state of physiological dryness arises. Walter ( 415) suggests 
that hydrolyses by very virtue of their increase of osmotic pres­

sures of the cell sap accentuate the effects of dehydration by 

creating a state of physiological dryness which accelerates the 
metabolic trends induced by original water losses. Briefly, the de­
gree of effective tissue hydration can be lowered by gain in sol­
utes without actual water loss. The resulting rise in osmotic 

pressures is, however, insufficient to restore normal water balance 
to judge from continuation of the drying process and increments 

in dry weight percentage throughout the phase of solute accum­

ulation. Progressive drying leads eventually not only to an accel­
eration in hydrolysis of reserves but also to diminished formation 

of polysaccharides and proteins. There exists a great body of data 
sustaining the general thesis that reduction in tissue moisture oper­
ates to stimulate enzymatic hydrolyses and to impede condensation 
of soluble amino acids and monoses (3, 9, 22 49, 52, 65, 158, 169, 

184, 255, 259, 287, 288, 307, 330, 3'14, 345, 359, 362, 365, 369, 

404, 405, 415, 432, 436). 

The condition of the plant in flower is one of water disbalance 
and general moisture insufficiency. Despite uniformity of water 

supply, the percentage moisture of tissues continues to fall. This 
fact in association with internal redistribution of water implies in­
adequacy of absorption by the root. Even before anthesis water 
loss is above the compensation level but it is further displaced by 

increases in transpirational surface of flowers in bloom. At this 

stage, the net assimilation rate (355, 392) of the plant as a whole 
undergoes a diminution parallel to the drop in tissue moisture 

( 75, 76), a fact which indicates the importance of water in the 

developmental cycle (238). The rate of stem elongation also falls 
at this time (240) and development of the absciss layer in the 
young pedicel may become evident. Sap acidity changes also occur 
as water content of tissues diminishes. Acidit~· of tissue fluids first 
increases in lower leaves and eventually involves younger leaves 

at progressiYely higher levels (113). Bakhuyzen (18) states that 
the primary cause of death of an annual plant which has flowered 

is the great loss of water at the time of flowering which reduces 
the general assimilatory rate of the plant (240). 
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It would appear, however, that there are a number of other 

factors which contribute to the ultimate decline of typical annuals, 

important among which are the radical changes in internal dis­

tribution of nutrients (70, 240, 265, 266, 267, 268, 275, 362), 

modifications in structure of vascular tissues (75, 76, 314, 333, 

360, 386, 388, 434), and reduction in the rate of absorption by 
the root. The unfavorable water balance in the flower phase is 

temporary but of such magnitude as to be critical ( 19) as shown 
by the known sensitivity of plants to slight alterations in external 

water supply at this stage ( 64, 338, 372). Alternations in internal 

moisture, osmotic pressures, and distribution of nutrients are the 
most conspicuous metabolic phenomena associated with the shift 

from the vegetative to the reproductive state (332, 333), yet this 

does not necessarily imply that they are the primary causes of 

reproduction ( 270). Flower-forming substances such as florigen 
and probably carotinoids play a more direct role than nutrients in 
the initiation of this important developmental shift ( 53, 85, 117, 
211, 212, 213, ?15, 216, 248, 269, 271, 272, 277, 280, 335, 401, 

408). 

The early fruiting or post-fertilization phase is characterized by 

a temporary restoration of water and nutrient balance due to a 
renewal of anabolic processes. It has been suggested that the in­

tensity of the anabolic impulse determines whether or not the 
plant can overcome and survive the heavy nutrient demands of de­
veloping fruits (278). In annuals, however, the renewal of ab­

sorption and synthesis is transitory, soon giving way in vegetative 
parts to a final reduction in water and nutrients which terminates 

in senescense and death. 

3. MINERAL NUTRIENTS 

In so far as the present review is primarily an attempt to out­
line the major shifts in nutrient balance during the normal growth 
cycle of common annuals, no attempt is made to discuss either the 
specific physiological role of individual nutrient ions or the path­

ology of mineral malnutrition. The bibliography of the vast liter­
ature on the effects of variable nutrition has been assembled by 
Niklas and Hock (286). Older works on mineral nutrition have 
been summarized in the classical monographs by Czapek (73), 
Honcamp (156), Kleberger (185), and Wolff (437). We have 
good current and critical reviews of this subject in the Annual 
Reviews of Biochemistry (125, 149, 354, 367, 375), in Fortschritte 
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der Botanik (312), and in other publications (41, 127, 135, 151, 

236, 353, 361). 

The mechanism of salt absorption has for many years been a 

subject of debate among physiologists. The earlier concept that 

transpiration played the major role in root absorption ( 109, 341) 

was vigorously challenged by results of numerous experiments in 

which no correlation could be found between the two processes 
(249). Hoagland and his associates have recently adduced evi­

dence which reconciles many of the earlier apparent discrepancies 
The California workers present a convincing array of experimen­

tal data on the role of aerobic respiration of the root in the ab­

sorption of inorganic nutrients (152, 375, 376). They have been 
abundantly sustained by other workers in the thesis that salt ab­

sorption is directly dependent upon aerobic respiration of the root 
system (7, 8, 38, 46, 55, 59, 63, 144, 152, 164, 166, 223, 22,1', 

225, 226, 285, 303, 312, 316, 379, 381, 385). These observations 
correlate well with the known benefits of soil aeration in plant 

growth ( 4, 7, 8, 57, 58, 68, 101, 186, 208, 209, 210, 249, 384, 

419). 

The experimental verification of the absorption of inorganic 

materials as a function of root respiration to a large degree im­

proves our understanding of the plant's ability to accumulate in­
organic ions against an internal concentration gradient, a process 
which obviously requires a sustained source of available energy. 

Particular significance attaches to experiments on salt absorption 
by excised roots and other tissues which are entirely free from 

the transpiration factor. Use of such materials not only permits 

excellent control of experimental conditions but also accurate 

measurement of respiratory and absorption rates. The close corre­
lation between respiration and initial salt intake fully justifies the 

conclusion of a cause and effect relationship between the two 
processes (48, 373, 374, 377, 378, 382). Hoagland (150) points 

out that though initial salt absorption is not a function of trans­
piration, the latter process over a long period of time may be in­
directly effective in so far as salts may be moved from root to 
shoot by the transpiration stream thereby presumably facilitating 
additional absorption. Neither does Hoagland overlook the role 

of transpiration in regulating the concentration and aeration of 
the soil solution in the immediate vicinity of the root system or 
rhizosphere. 

The maintenance of aerobic respiration in the actively absorbing 
root is normally dependent upon a carbohydrate as well as upon 
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oxygen supply and it would be expected that any factor inter­

fering with the flow of these materials to the root would tend to 

diminish nutrient intake (70). There is now an appreciable amount 

of evidence showing that fluctuations in rate of absorption by 
roots during the course of plant development are ascribable to the 
alterations in oxygen and carbohydrate supply. The root is de­

pendent upon the shoot for its carbohydrates. When these are low 

in roots there is not only a reduction in rate of absorption (70) 

but also a relative decrease in rate of root growth, such as is often 
found in plants under conditions of high nitrogen supply. During 

rapid expansion of the shoot under normal conditions of growth, 

it commonly appears to pre-empt the major portion of the car­
bohydrates thus leaving the root with an inadequate supply. Fluc­
tuations in top-root ratios at various stages of growth indicate 

that these two portions of the plant do not develop commensurate­
ly. Slow root enlargement and absorption are coincident with a 

preanthesis stage of low root carbohydrates ( 89). The carbon di­

oxide tension in the soil is known to rise as the result of root 

respiration and there is evidence that this diminishes absorption 

through changes in root permeability which involve resistance to 
water movement from epidermis and cortex to the xylem ( 198). 

Thus part of the beneficial effect of soil aeration is attributable 

to removal of carbon dioxide (193, 218, 385) even though ac­
cumulation of this gas is less critical than shortage of soil oxygen 

(285). Further Brewig ( 43, 44) reports certain significant effects 

of the transpiring shoot upon root permeability. His data indicate 

a diminution in root permeability with reduction in rate of trans­

piration. As a result, root permeability and water absorption tend 
to vary directly with transpiration. He is of the opinion that the 

roots of the intact plant are much more permeable than excised root 
systems. Hoagland ( 150) also stresses the need for more informa­

tion on the effects of metabolism and reproduction in the shoot on 

the activity of root cells (33, 56, 140, 421). The work of Steward 

(374) indicates the necessity of an oxygen supply for salt reten­

tion as well as for absorption ( 19). The fact that soil aeration 

sometimes proves ineffective ( 177) or even injurious (208, 209) 

indicates, however, that factors other than respiration may play 

an important part in water and salt absorption (26, 10,1', 249, 

384). Ulrich ( 400) has recently demonstrated an interesting case 
of buffer action in the root by means of organic acid formation. 

When roots absorbed cations in excess of anions carboxylic acid 

increased but acids disappeared if anion absorption predominated. 
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Cnder favorable growing cond;tions subsequent to germination, 

the phase of rapid vegetative enlargement in typical annuals is 
characterized by progressive increments in absolute amounts of in­

organic elements, carbohydrates and proteins. As the increase in 
organic synthates accelerates, the proportion of ash on a percent­
age basis begins to fall even though absolute amounts of the lat­

ter may continue to rise until well toward maturity (30I). Plants 

often tend to absorb the major portion of their total mineral sup­
ply in very early life (2I, 426) and early absorption is in general 

in excess of current needs when the external supply is favorable. 

In early vegetative stages under conditions of constant supply, 
nitrogen, potassium and phosphorus commonly increase faster than 
calcium, iron, magnesium and sulphur due in part to the relative 
immobility of the latter group of elements within the plant (I I, 
28, 54, 134, 222, 32I, 328, 329). With increasing age, the per­
centage of calcium and nitrogen tends to fall somewhat more rap­

idly than other elements in typical annuals such as sunflower 

(329), barley (289), and wheat (42, 250). It is interesting to 
note that when nitrogen is available both as nitrate and ammonium 

salts the latter may be absorbed more rapidly in early development 
of small grains whereas the rate of nitrate intake may reach its 
peak at flowering (370). 

Bakhuyzen ( I9) points out that fertilization with inorganic 

salts apparently does not raise the rate of photosynthesis per 
unit leaf area but that the beneficial effects of fertilization re­

sult from leaf area increase (98, 123, I96). The gain in potash, 
phosphorus, and sulphur evidently parallels protein formation on 

the one hand while on the other, calcium and magnesium increases 

are associated with photosynthesis and dry weight gain (19). 

Differentiation and growth of floral structures apparently in­

duce a systemic change in metabolism ( 6), evidenced in part as 

a reduction rate of water and salt absorption by the roots as al­

ready noted (38, 70, I25, 243, :JI2, 3I4, 329). Recent studies of 

respiration in relation to salt and water absorption suggest that 

lowered intake is attributable to impaired root respiration ( 59, 

I 70, 303). Subsidence in the rate of root respiration is most 

commonly due to a progressive reduction of free oxygen and ac­

cumulation of carbon dioxide in the soil atmosphere ( 198, 296). 

Under such conditions, anaerobic respiration may be initiated but 

it is evidently not conducive to water or nutrient absorption (I 52, 

22,1). Prolonged root anaerobiosis may in certain instances even 
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result in formation of cortical air spaces due to tissue necrosis 
(237). The factor of diminished permeability of root tissues also 

becomes important at the time of flowering (30, 43, 44, 15, 198, 

222, 383). 

The percentage drop in salt content usually noted in roots prior 
to and during early anthesis is not wholly ascribable to increase 

of organic materials but represents an actual diminution in rate 

of salt entry. Determinations of inorganic nutrients per unit dry 
weight rather than percentage salt content are necessary for the 
immediate detection of this change in root activity ( 121, 410) . 

The root at this time lapses into a state of retarded absorption 
of both salts and water thus accentuating tissue dehydration 

throughout the plant ( 89). Several investigators have observed 

that salt intake up to the time of flowering is approximately com­

mensurate with rate of supply but that it then begins to fall off 
(70, 86). As the fall in water content of roots and flowering tops 
becomes more pronounced, there occurs a marked redistribution of 

salts throughout the entire plant ( 387). Entire shoots commence 
to lose an appreciable proportion of their nutrient reserves to the 
roots (51, 82, 83) while at the same time salts also tend to ac­

cumulate at floral loci. At this stage of growth, roots appear to be 
active competitors of the flower buds for the labile nutrients of the 

shoot despite the relatively high respiratory intensity in floral 
tissues (25, 195). The flowering phase in some instances is mark­

ed by a transitory excretion of inorganic nutrients which can be 

resorbed during the phase of renewed growth subsequent to 
flowering ( 51). 

The method of sectional sampling and sequential analysis at 
various stages of growth, in such a manner that a comprehensive 

balance sheet may be maintained at all times of net assimilative 

gains, discloses that with the onset of reverse translocation in the 
reproductive phase roots become the competitors of young fruits 
for the soluble reserves flowing outward from the leaves (51, 60, 
67). Quantitative analysis, however, shows that the sum of specific 
elements accumulated in the fruits plus the residues thereof in the 
foilage usually does not balance out to the original total of the 
vegetative shoot (60, 83, 250). The discrepancy has, often without 
actual proof, been attributed to loss by leaching and accumulation 
in roots. In experiments including periodic root analyses, two ma­

jor trends become evident; namely, actual translocation of organic 

and inorganic nutrients from the shoot to the root during repro-
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duction, and the eventual excretion by the root into the substrate 
of appreciable quantities of potassium, nitrogen and sometimes of 
phosphorus (2, 87, 153, 159, 160, 161, 163, 172, 175, 233, 301, 
430). Reserve translocation of electrolytes precedes that of organ­
ic reserves ( 83). 

In the early stage of fruit formation immediately following fer­
tilization, there is frequently a temporary restoration of moisture 
and nutrient balance due to rise in water and salt absorption by 
the root and renewal of organic syntheses in upper leaves. Ref­
erence has frequently been made in agronomic literature to the 
efficacy of fertilizer placement and soil aeration just preceding or 
during the flowering phase (14, 15, 24, 69, 77, 79, 80, 88, 91, 94, 
99, 114, 118, 176, 178, 217, 279, 281, 293, 300, 328, 329, 336, 
337, 346, 445). The favorable response to such treatment is evi­
dently ascribable to the transitory improvement of absorption and 
synthesis shortly after fertilization. It appears, however, that the 
developing fruits appropriate the major portion of the new mater­
ial because translocation continues to be oriented primarily to re­
productive rather than to vegetative structures. Leaves obtain little 
if any of the additional nitrogen as shown by experiments in which 
nutrient distribution is accurately followed by determination of 
absolute amounts in various parts of the plant at this time ( 19). 
Fruits function as nutrient sinks to such a high degree that as. 
they continue their growth, they absorb not only the current or­
ganic and inorganic food supply but rob vegetative parts of proto-­
plasmic constituents beyond the limits of survival. Eventually re­
verse or downward translocation becomes evident as the aggregate 
concentration of inorganic nutrients of the entire shoot falls dis­
tinctly below that of the early fruiting phase (83, 84, 250, 410). 
Reverse or downward translocation of potassium, nitrogen and. 
phosphorus from shoot to root with appreciable excretion to the 
soil during maturation phases has been reported in a great variety 
of plants (82, 86, 107, 187, 210, 213, 215, 216, 277, 410). Down­
ward transport and root excretion of nutrients has already been 
reviewed elsewhere by the author (210). 

The nutrient relationships of developing seeds and fruits though 

in some respects similar to vegetative parts are nevertheless dif­

ferent from those of vegetative organs. Fruit enlargement is char­

acterized by an early, rapid intake of water and nitrogen which 

often subsides abruptly (11, 40, 95, 139, 189, 201, 203, 205, 219, 
221, 231, 249, 274, 290, 446). Under conditions of favorable sup-
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ply, the mineral components of dry fruits and of seeds in general 

appear to vary independently of the reserves available to them 

from vegetative parts (226, 267). Seeds are known to be high in 
nitrogen, phosphorus, magnesium and potassium (31, 244, 251, 

440) but comparatively low in calcium and sulphur (11, 27, 222, 

347), while fruits are relatively high in potassium, calcium and 
phosphorus ( 73) as compared with vegetative organs. Fruits evi­
dently can serve as a local nitrogen source for developing seeds 

{ 60). Vegetative parts tend to be fairly high in organic sulphur 
and phosphorus. Seeds and fruits on the other hand are higher in 

inorganic phosphorus and sulphur ( 188, 264). Fertilizer placement 
during the reproductive phase tends to increase the nitrogen, 

phosphorus and potassium but not the calcium content of develop­

ing onlles (241, 407, 418). Despite obvious size increments, early 
stages of fruit and seed development are often accompanied by 

temporary loss in actual dry weight which may represent not only 
loss of carbohydrates as a result of respiration ( 247), but some 
.actual excretion of mineral elements ( 161). 

'J.. PROTEINS AND CARBOHYDRATES 

A. Vegetative Stage 

The initial vegetative phase of growth is distinctly anabolic with 
a high rate of organic syntheses and absorption of mineral nu­
trients (202, 250, 289). The actively growing plant is high in 
water and nitrogen with protein and protoplasmic syntheses as 
the dominant nutritional feature at this stage ( 42, 188, 27 4). If 
dry weight and nitrogen increments during early growth are plot­
ted graphically, the nitrogen curve commonly rises more steeply 

than that for dry weight, reflecting an increase in percentage of 
nitrogen on a dry weight basis (19, 157, 206, 2112, 329, 412, 413). 

Nitrogen increments precede dry weight gains during the phase of 
most rapid enlargement, a relationship which suggests the impor­
tance of nitrogen for the production of new tissues (19, 412, 413). 

The rapid rise in percentage nitrogen in early growth is a common 
phenomenon and it has been termed "Vorauseilen des Stickstof­
fes" by German workers ( 19). High nitrogen content is associated 
with high moisture content and succulence of tissues ( 19, 29, 89, 

200, 257, 260). The percentage nitrogen drops with maturity of 
older leaves and the appearance of upper, younger xeromorphic 
foliage (19). 

Reference has already been made to the existence of a rising 
gradient of percentage nitrogen in the progression from basal to 
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upper stems and leaves (IO, 29, 105, 274), a statement which may 
at first seem in conflict with the well known increase in xero­

morphy of the higher portions of the shoot. High nitrogen per­

centages of upper portions of the shoot are found when young 
tissues of this region are included in analyses. When comparisons 
are made only between fully developed basal and upper leaves, 
however, the latter have a lower moisture and nitrogen content 
per unit dry weight ( 19, 260, 362). We have here an instance of 

the necessity of comparing physiologically similar structures if 
erroneous inferences are to be avoided. These relationships explain 

the possibility of diminishing succulence of upper leaves despite 
the commonly observed rising gradient of nitrogen concentration 

in the progression from basal to upper stems and leaves. 

During the vegetative phase of growth, there is an intimate 
connection between carbohydrates and protein synthesis. Not only 

are carbohydrates and nitrogen used in the synthesis of proteins, 
but a portion of the soluble monoses evidently provide the res­

piratory energy necessary for the chemical reduction of nitrates 

as an antecedent to protein formation. In fact in young plants, 

the supply of soluble sugars appears largely to condition the rate 

of protein synthesis (261, 262, 263, 362, 442). Obviously also. 
the availability of oxygen is essential to the respiratory oxidation 
of a portion of the carbohydrates but is usually not a limiting 

factor in early growth as it is later. Mothes (261, 263) has shown 

that all conditions, such as light, photosynthesis, and open stom­
ata, which tend to raise internal oxygen tension favor protein for­
mation. Conversely, protein hydrolysis is accelerated by a low in­

ternal oxygen supply, and by low water content in later develop­

ment as already mentioned in the preceding section on mineral 
nutrients. 

Thus photosynthesis as a source both of carbohydrates and oxy­
gen is closely bound up with nitrate reduction and protein synthe­
sis. It may also be recalled that aerobic respiration in the root is 
essential to intake of nitrates and other inorganic ions. When the 
supply of carbohydrates in the root is low, nitrogen absorption and 
consequently protein formation in the plant are both retarded. 

During the later phases of active vegetative growth, the plant 

rapidly accumulates carbohydrate and appears to become relative­

ly less efficient in protein than in carbohydrate elaboration ( 19) 

as shown by a rise in the carbon-nitrogen ratio (148). Due ap­

parently to the great carbohydrate demand during expansion of 
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the shoot, a progressively smaller portion of the carbohydrate 

supply reaches the root in the course of vegetative development 
such that the root often, if not characteristically, reaches a crit­

ically low carbohydrate supply just prior to flowering (89, 215, 
216, 399). Reduction in absorptive activity of the root occurs at 
this time as shown by a pronounced but transitory diminution of 

water and salt intake ( 89). 

The conspicuous stages in the nutrition of the vegetative plant 

thus comprise an initial anabolic phase in which intake of inor­

.ganic nutrients and synthesis of proteins is rapid. In the second 
phase, the accumulation of carbohydrates is rapid while the rate 
·of protein synthesis gradually subsides. As flowering is approach­
·ed a third or catabolic phase becomes evident in which hydrolyses 
·of reserves begin to overbalance syntheses, and a general internal 

redistribution of nutrients is initiated. Though conditions of en­
vironment and nutrient supply to a considerable degree determine 

the exact time of the shift from predominantly anabolic to cata­

bolic activity, the transition is characteristically associated with 
flowering and it is commonly initiated prior to an thesis ( 89). 

4 (b) The Flowering Stage 

As previously stated, the onset of flowering is associated with a 

systemic change in water and mineral nutrient balance. An equally 
profound redistribution of organic synthates accompanies the 
change in inorganic nutrients at this time. Root carbohydrates. 

-especially soluble sugars, evidently become low enough to impair 

-salt and water absorption to such an extent that neither water 

nor nitrogen intake by roots appears to cover the requirements of 
the shoot (19, 61, 89, 187, 230, 294). Continued transpiration 

·consequently entails progressive reduction in moisture content 

which in turn impairs gas exchange and initiates hydrolysis of or­
:ganic reserves (260, 362). At this stage nearly three fourths of 
the total carbohydrate reserve of leaves may be in the soluble 
-state which is about triple the sugar content of foliage in the veg­
etative phase (74, 367). Foliar respiration also falls despite the 

increase in soluble sugars. There is then a drop in general assim­
ilative efficiency (19, 47, 89, 433) of the plant as a whole. 

As hydrolysis of food reserves continues, leaves are gradually 
·depleted of their organic and inorganic nutrients. These flow into 
the stem and accumulate in appreciable amounts at floral loci. 
Depletion of foliar nutrients, organic and inorganic, and reverse 
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translocation thereof during flowering are coincident with a gen­

eral subsidence in the respiratory rate of vegetative organs (35, 
65, 122, 439) especially of leaves which fall to a very low res­
piratory level during an thesis ( 362). The rate of nutrient deple­
tion accelerates as respiratory activity falls, a correlation which 
suggests that respiratory energy is essential to nutrient retention 

( 19). This concept correlates with the role already ascribed to 
respiration in the absorption of water and salts by roots as well 

as with the acceleration of absorption by soil aeration ( 55, 57, 58, 
63, 165, 208, 209). Older leaves have lower rates of respiration 

and evidently are lower in oxidases (284, 362). They do not re­

gain much protein nitrogen even under adequate supply (259). 
Due to loss of power to synthesize proteins, senescent leaves ac­

cumulate acid amides and ammonia (285, 362). Mothes (259), 

however, stresses the necessity of distinguishing between the res­

piratory responses of young and old leaves. He points out that 

respiration falls more rapidly in older leaves as drying progresses. 

High respiratory losses of carbohydrates during flowering are 

often the cause of a reduction in rate of dry weight gain and de­
pression of protein synthesis in the plant as a whole (19, 171, 
368). Decline in the rate of respiration to a considerable degree 

results from the impaired gas exchange accompanying progressive 
reduction in water content of vegetative tissues during the repro­
ductive phase (34, 247, 417). Floral structures, on the other hand, 

have a high respiratory rate, a condition which may underlie ac­

cumulation of water and solutes at reproductive loci during re­
verse translocation (25, 195, 414). Such functional transitions 
precede and later continue pari passu with the morphological de­
velopment of flower and fruit. Floral loci also become centers of 
auxin formation. The presence of auxins apparently favors carbo­

hydrate accumulation (5, 390, 424). 

Reduction in rate of protein synthesis has a two-fold origin, 

namely reduction in free internal oxygen due to subsidence in the 
rate of photosynthesis and reduction in respiration due to im­
paired entry of atmospheric oxygen associated with progressive 
tissue dehydration. Moth es ( 263) has shown the dependence of 
protein synthesis upon internal oxygen tension, and a reduction in 
rate of synthesis commensurate with decline in photosynthesis. 
Smirnov' s data ( 362), in turn, show a correlation between the 
rates of respiration and protein synthesis in sunflower and to­
bacco (90, 121, 125, 128). It is consequently probable that 
photosynthetic oxygen favors protein formation by acceleration of 
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aerobic oxidation of carbohydrates. Smirnov points out that in the 
early life of annuals, protein synthesis parallels and hence is 
presumably dependent upon the concentration of monose sugars. 
During reproduction, however, protein production ceases to be 
proportional to the soluble sugar content but instead parallels the 
foliar respiratory rate ( 327, 380). Thus in the vegetative phases 
carbohydrate supply is the controlling factor in protein synthesis 
while oxygen supply becomes regulatory in the reproductive phase. 
Smirnov adduces quantitative data in support of his contention 
that respiratory energy is essential to protein formation during 
reproduction. He points out that the common commercial practice 
of decapitating or "topping" tobacco plants to remove the inflor­
escence prevents the sharp drop in foliar rate of respiration and 
protein synthesis ordinarily encountered during flowering of in­
tact plants. Exfloration and removal of fruits in tomato and 
cotton, like topping in tobacco, reinitiates nitrogen and water ab­
sorption ( 70, 266, 267, 359). There is considerable interaction 
among plant parts during this stage as shown by the fact that 
defoliation and exfloration materially alter the course of enzyme 
action (32, 305, 359, 362). Further evidence for the correctness 
of Smirnov's interpretations is found in the differences in the 
amounts of carboxylic acids which distinguish intact and decapita­

ted plants. The former are high and the latter low in specific 

organic acids, a contrast reflecting differences in mode of respira­

tion. 

As diastatic action of starch is accelerated by incipient drying 

of the tissues, there is at first an accumulation of sucrose ( 362). 

As dehydration becomes more pronounced, starch hydrolysis yields 

increasing amounts of glucose. The starch-sucrose reaction is re­

versible, starch synthesis predominating when water balance is 

favorable but there is no reconversion of glucose to starch with 

moisture restoration ( 158). Schulze ( 348) reports formation of a 

protease activator in Phaseolus and Nicotiana at the time of 

flowering which is either inactivated or eliminated during the 

fruiting stage. Though a post-floral restoration of water balance 
occurs as a result of renewed carbohydrate and protein synthesis, 

neither they nor the moisture content rise to the pre-floral level. 

Other active enzymatic constituents of the flowering phase may 

undergo similar modifications and thus contribute to the tempor­

arily improved water balance commonly observed in the early 
fruiting phase.· 
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In addition to the foregoing functional factors influencing the 

water economy of the flowering shoot, there also occurs a compli­
cating structural modification in the conductive elements ( 207, 

241, 360, 427). The work of several investigators (183, 333, 434) 
reveals a subsidence in cambial actfrity which originates in vicin­

ity of the floral buds and commonly extends progressively outward 

therefrom toward the base of the stem ( 318, 360). Phloem forma­
tion especially seems to be reduced and when this results in a 

small pedicel, fruit setting is impaired ( 64). This resultant im­
pairment of conduction appears to retard the redistribution of nu­
trients during the period of reverse translocation. Poor mobility 

of calcium and inadequacy of movement thereof from leaves to 

reproductive loci, may also impair flower and fruit formation 

(222). Struckmeyer (386) finds that plants in flower, when re­

stored to a vegetative photoperiod, recommence normal cambial 
activity and growth ( 434). Evidence of circulatory difficulties 

(75, 76) and inadequacy of nutrient supply in the flowering phase 
is found in the studies on drought sensitivity. Several investigators 

have found plants more susceptible to permanent injury from 

water shortage during flowering than at any other growth phase, 
a functional response which evidently results from vascular in­

adequacy or failure of the type reported in histological researches 

(338, 372). 

In summary it may be stated that vegetative development is 

marked by rapid absorption of salts and water, rapid accumula­
tion of carbohydrates and proteins. The respiratory and net as­
similatory rates are high. During flowering, there is initiated a 

general trend toward reduction in water content (322, 323), res­
piration (362), photosynthesis (368) and rate of protein forma­

tion ( 260) in vegetative structures. There follows a profound 
hydrolysis of food reserves and a general redistribution of sol­

uble, organic and inorganic nutrients (313, 351). At the expense 

of leaves and stems, foods accumulate in flower buds as their 
respiratory rate rises (25). Structural modifications of the stem 
and reduction in the absorptive activity of roots commonly leave 
the flowering shoot temporarily at a critically low water level. 
The plant is especially susceptible to drought injury at this time 

(338, 372), thereafter either failing to resume growth or un­
dergoing permanent structural modification despite subsequent 
restoration of moisture. The systemic redistribution of nutrients 

and alterations in anabolic efficiency of the plant are sequential 
to disturbed water balance characterizing the flowering stage. 
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Certain nutritional changes involved in blossoming or anthesis of 

floral organs themselves are equally rapid but of a localized 
nature. Food reserves previously mobilized in the perianth and 

accessory floral structures are commonly translocated to the sex 
organs with surprising rapidity just prior to anthesis (66, 213, 

214, 256, 310, 349). In terms of the floral tissues per se, the 

morphological and nutritional transformations of anthesis are very 
profound (291) but in terms of immediate metabolic effects on the 

plant these changes are local rather than systemic (66, 256, 291, 

310). The nutritional aspects of typical floral gynoecia and and­
roecia have already been discussed elsewhere (Ill, 168, 182, 
211, 213, 214, 357, 420). Far-reaching systemic stimulation, how­

ever, results from the processes of fertilization and the ensuing 

grand period of fruit enlargement (278, 362). 

4 ( c) Fruiting Phase 

In a discussion of nutrition in relation to plant development, it 

is convenient to distinguish flower and fruit formation even though 

their separation may at first appear both artificial and arbitrary 

in light of the natural sequence of the processes (120). It may 
be argued that the phenomena of fruit formation are largely a 

progression of the processes initiated at flowering. FormatiYely. 
however, the pistil prior to pollination and fertilization usually 
lapses into a condition of relative stasis which commonly culmin­

ates in flower abscission in the absence of pollination. Pollination 
alone, however, often retards flower abscission and may stimulate 
rapid parthenocarpic growth of the ovary. To this the physiologi­
cal stimulus of pollination is normally added that of fertiliza­

tion of the ovules. Thereafter ovary and ovule enlargement is 

often extremely rapid due to food and water intake. The general 

resurgence of metabolic activity which occurs subsequent to sex­
ual union is sufficiently profound to justify a distinction between 
the physiology of flowering and fruiting, particularly from the 
standpoint of nutrition (266, 267, 272, 362). 

Fertilization of flowers serves as a systemic stimulus to renewed 
absorptive and anabolic activity (78, 96, 241, 278, 348, 362, 420). 

The root system undergoes enlargement and exhibits accelerated 
absorption of salts and water, frequently reabsorbing a portion if 
not all of the nitrogen and potassium previously excreted during 
flowering ( 51, 82, 86). After flowering, young leaves renew pro­
tein synthesis (258, 259). Transpiration subsides, respiration 
rises and there ensues temporarily a better water balance in all 
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tissues. From a nutritional standpoint, the early phases of fruiting 
somewhat resemble those of the vegetative phase ( 368). Though 

not yet fully understood, the initiation of the vegetative cycle in 
developing ovules may serve as a stimulus to renewal of such ac­
tivity in adjacent tissues (MS). The growing ovule itself exhibits 
a vegetative metabolism temporarily of a parasitic character and 
at the expense of reserves within the parent sporophytae ( 19). 
Restoration of moisture in tissue in early fruiting phases is asso­

ciated with improved respiration and renewed synthesis of pro­
teins and higher saccharides largely by condensation of soluble pro­

ducts (3, 9, 158, 160, 202, 255, 404). 

Developing ovaries function as centers of nutrient deposition 

due apparently to their high respiratory metabolism. During the 
phase of their most rapid enlargement, young fruits preempt in­

coming inorganic nutrients largely to the exclusion of vegetative 
parts of the shoot. In fact, in heavily fruiting types such as the 

tomato and cotton, the current rate of supply through the root 
system appears inadequate, resulting in a heavy demand upon 

the nutrient reserves of the vegetative organs to sustain fruit 

growth. The depletion of leaves especially at the base of the shoot 
may attain starvation levels, resulting eventually in their death 
and abscission before fruits have achieved maturity (266, 267). 
Chibnall ( 60) has shown the failure of pod formation in the ab­

sence of asparagine. After the major increments in fruit size have 
occurred, carbohydrate influx is rapid ( 71, 72). Fruit respiration 

tends to fall as enlargement subsides, followed in fleshy fruits by 
the color changes of the fully ripe fruit ( 129, 352). 

Pearsall (298) has shown that stem elongation may cease tem­
porarily during flowering and again during fruit enlargement due 
to food demands of these structures. Absorptive activity of the 
root subsides even in a favorable substrate as the carbohydrate 
supply from the shoot diminishes in the course of fruit growth 
( 70, 298). Subsequently growth of roots and apical meristems also 

ceases as reserves are preempted by fruits ( 70, 240). The en­
suing moisture and protein shortages appear more critical than 
curtailment of electrolytes in causing the senescence and ultimate 
death of the plant. Luxury consumption of salts can tide the plant 

over longer periods of electrolyte than of water shortage. The un­
remitting continuance of transpiration precludes accumulation of 
any appreciable water reserves in annuals. When nutrient and 
water relations of biennials, perennials and succulents are com­
pared with those of annuals, the survival capacity of the former 
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group during periods of enforced drought appears to depend pre­
dominantly upon superior regulation of water economy by avoid­
ance of that degree of desiccation which prevents resumption of 
normal metabolism with renewal of water supply. Annuals are 
unable to avail themselves of water even when available due to 

absorptive failure of the roots after the nutrient demands of en­
larging fruits become persistent and exceed certain critical magni­

tudes. Leaves lose the power of direct protein synthesis and the 
ability to reform proteins from proteolytic residues even in the 

presence of carbohydrates ( 2 57). Loss of potassium has also been 
stressed as a specific factor capable of inducing foliar senescense 
( 173). There ensues a sudden and final upturn in percentage dry 

weight of shoot tissues which soon begin to manifest symptoms of 
senescence as their moisture content falls to progressively lower 

levels. The terminal stages of vegetative parts are characterized 
by leaching of appreciable quantities of root electrolytes into the 

substrate and extreme desiccation of the shoot despite some ab­
sorption of water from fruits prior to completion of the absciss 

layer in the pedicles (2,tO). 

Desiccation of fruits entails increased resistance to gas exchange 
with attendant alterations in respiration which shifts appreciably 
from aerobic to anaerobic (247, 417) with production of volatile 
hydrocarbons ( 40) in certain fleshy types. Tissue dehydration 

and lowered respiration appear to underlie subsidence of nutrient 
absorption of maturing fruits, an effect which is evidently also 

accentuated by mechanical obstacles to translocation resulting 
from cambial failure ( 386, 388). Pope ( 315) reports an ingenious 
experiment in which he shows that if desiccation of the developing 
barley kernel is prevented, no dormancy occurs and that it is 
possible to obtain seedling transplants in fifteen to twenty days 
after pollination. 

One of the most outstanding contrasts between the maturation 
of vegetative structures and seeds is the difference in response to 
diminution of moisture. Loss of moisture in vegetative parts results 
in hydrolysis of organic synthates while the same condition induces 

condensation thereof in seeds (232, 285, 324) as shown by the 
rapid conversion of amino acids to proteins (391) and of sugars 
to starch. Young fruits and seeds are high in non-protein nitrogen 
which is rapidly synthesized into proteins which accumulate in 
the form of insoluble reserves. Proteolytic activity subsides dur­
ing maturation of seeds apparently due in part to increasing re­
sistance of the proteins to enzyme hydrolysis (317). It is appar-
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ently the formation of hydrophilic polysaccharids and proteins 
with considerable bound water during maturation which protects 
seeds and fruits against an excessive water loss comparable to that 
sustained by leaves and stems and thus insures survival of the 
reproductive structures ( 352). Kidd ( 179) points out that arrested 
development of the maturing seed and e\'en delayed germination 
of the moist seed are due to an inhibitory partial pressure of 
carbon dioxide in embryo tissues which induces a state of narcosis. 
Carbon dioxide narcosis of seeds depresses metabolism to a state 
of dormancy but without destructive injury such that when 
moisture and oxygen are restored, the developmental processes are 
renewed in germination ( 179). 

5. SUMMARY 

On a nutritional basis, the post-germinative developmental cycle 

of typical annuals may be conveniently subdivided into four diff­
erent periods. The first comprises the high absorptive-high ana­
bolic vegetative phase of rapid water and salt intake, rapid or­
ganic syntheses, maximal water content, and generally high res­
piratory level. Formatively this first phase represents the expan­
sion or enlargement of vegetative primordia. The second or 
flowering phase represents an alteration in metabolism which en­
tails structural differentiation. Functionally it is a period of low­
ered metabolism. Compared with the anabolic phase, respiration, 
absorption, water content, and organic syntheses are all lower in 
all vegetative parts. Reverse translocation of organic and inor­
ganic syntheses takes place from leaves and stems to flowers, 
fruits and roots. Formatively, this phase comprises differentiation 
of flower primordia, enlargement of flower buds and anthesis. The 
third phase is one of temporarily renewed absorption and ana­
bolism. Formatively it is the period of early fruit development. 
This merges gradually into the fourth or maturation phase in 
which seeds and fruits ripen while vegetative organs senesce and 
eventually die as a result of nutrient depletion and desiccation. 

The initial systemic alteration in nutrition following the typical­
ly anabolic metabolism of early vegetative growth is correlated 
with a paucity of root carbohydrates and a resultant diminution in 
absorption. A cycle of progressive tissue dehydration and trans­
location of reserves ensues. Though developing seeds and fruits by 
virtue of their higher oxidation potentials form the chief centers 
of nutrient accumulation, roots seem to compete with them for an 
appreciable portion of the soluble reserves in the early fruiting 
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phase. The final senescence of stems and leaves is attributable to 
loss of water and food reserves following subsidence in respiratory 
activity of these structures. The food and water demand of fruits 
especially in heavily fruiting species exceeds the absorptive ca­
pacity of the root system which may also be largely drained of its 
reserves by nutrient excretion during maturation. The condition is 
one of inadequacy of food absorption and translocation in later 
stages of reproduction which is accentuated by failure of the cam­
bium to continue production of new vascular elements. Assimilative 
powers of vegetative parts are lost as gas exchange is progressive­
ly impaired and oxidation potential reduced in the course of shoot 

dehydration. 

The foregoing discussion represents an attempt to trace the ma­
jor events in the nutritional ontogeny of typical herbaceous an­
nuals but as stated in the introduction, it is not intended to con­
vey the impression that these nutritional factors are the prime or 
causative agents in shaping the structural ontogeny of the plant. 
Under ordinary conditions of nutrition, light (138) and tempera­
ture prevailing during early growth have much to do with the 
number of vegetative primordia laid down and hence also with the 
number of leaves and nodes eventually formed by the plant (124, 
371). Nutrients available during this vegetative (or vernalization 
phase (273) as the nomenclature of the phasic development con­
cept designates this temperature-sensitive stage) do, however, de­
termine the size of the vegetative organs developed under stimulus 
of temperature (336). 

With reference to flowering, it may similarly be said that the 
photoperiod in conjunction with temperature rather than food de­
termines the date and number of flower primordia (1, 5:J, 248). 
In this case also, however, the available nutrients may determine 
the course of growth and maturation of the reproductive organs 
(23, 24, 42, 155, 282, 308). In fact, on the basis of recent ex­

'periments it seems that photoperiodic induction itself may not oc­
cur in the absence of a source of carbondioxide for photosynthesis 
during the induction period (297). Food eventually determines the 
number of flowers which develop as well as the number and size 
of fruits which are set and mature. Considerations of the latter 
sort underlie the practice of repeated or late fertilizer placement 
since it is known that readily assimilable phosphorus and nitrogen, 
for example, applied in the early flowering phase may increase 
the number of fertile flowers and the yield of fruit. Went ( 42:J) 
reports the need for low night temperatures as an essential factor 
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in setting of tomato fruits ( 32). Mineral deficiencies during growth 
may, of course, impede or prevent differentiation or develop­
ment of structural primordia even under proper stimulus of 
temperature and photoperiod (162, 396). Inadequate nitrogen in 
early growth, for instance, results in smaller plants and fewer if 

any flowers as compared with ample nitrogen supply. Under such 
conditions of malnutrition the plant is incapable of normal re­
sponse to light and temperature. 

The primary internal response of the plant to the known mor­
phogenic factors of the environment is probably in the production 
of specific growth substances and these may consequently be con­
sidered the factors which determine the developmental or qualita­
tive phases of its ontogeny. Certain highly localized redox systems 
also play a part in structural differentiation ( 403). The quantita­
tive expression of these phases, on the other hand, is a function 
of the food supply. Stated in another way, the developmental 
potentialities of the plant are implemented by its organic and in­
organic nutrients. Under conditions of nutrient deficiency the 
plant may not be capable of the normal developmental response 
to morphogenic factors of the environment, or if it is, it may yet 
be incapable of causing the growth of primordia which have been 
differentiated. In the light of recent evidence (12, 246, 275), it 

appears as if nutrients must give way to growth substances or 
hormones as the basic factors in development and differentiation 
though they retain their primary position as factors underlying 
growth in the sense of elongation and increase in size. 
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