On the Characterization of the Algebra of Four Fundamental Boolean Functions

E. W. Chittenden
University of Iowa

Copyright © Copyright 1946 by the Iowa Academy of Science, Inc.
Follow this and additional works at: https://scholarworks.uni.edu/pias

Recommended Citation

Chittenden, E. W. (1946) "On the Characterization of the Algebra of Four Fundamental Boolean Functions," Proceedings of the Iowa
Academy of Science: Vol. 53: No. 1, Article 29.
Available at: https://scholarworks.uni.edu/pias/vol53/iss1/29

ON THE CHARAC'TERIZATION OF THE ALGEBRA OF FOUR FUNDAMENTAL BOOLEAN FUNCTIONS

E. W. Chittenden

Let 0 and 1 denote the null and unit eiements of a Boolean algebra B. The following four functions with argument in B and values in B are of fundamental importance in Boolean algebra. They are: the null function, defined by $0 x=0$; the unit function, defined by $1 \mathrm{x}=1$; the identity function j, defined by $j x=x$, and the complementary function c, defined by the rule, $c x$ is the complement of x. These four functions, $0,1, j, c$, form a tri-operational algebra in the sense of Karl Menger.*

They are easily seen to admit the following tables relative to the combinations; sum represented by f; product, represented by $f \bullet g$; substitution represented by fg , where f and g are any functions.

		I		
	0	1	j	c
0	0	1	j	c
1	1	1	1	1
j	j	1	j	1
c		1	1	c

	$\stackrel{\mathrm{II}}{\mathrm{f} \bullet \mathrm{~g}}$			
	0	1	j	c
0	0	0	0	0
1	0	1	j	C
j	0	j	j	0
c	0	c	0	c

	$\begin{gathered} \mathrm{III} \\ \mathrm{fg} \end{gathered}$			
	0	1	j	c
0	0	0	0	0
1	1	1	1	1
j	0	1	j	c
c	1	0	c	j

These tables suggest the problem: Characterize this algebra of four elements abstractly. Denoting the algebra by B4, we assume (1) that it is tri-operational in the sense of Karl Menger and satisfies his axioms; (2) the algebra is Boolean with respect to the properties of sum and product; (3) there is an element c such that the four elements $c, c c, c+c c, c \bullet c c$ are all distinct and are all the elements of $\mathrm{B4}$; (4) setting $\mathrm{j}=\mathrm{cc}$, and $0=\mathrm{j} \bullet \mathrm{c}, 1=\mathrm{c}+\mathrm{j}$, we assume that $\mathrm{cj}==\mathrm{c}, \mathrm{c} 0=1, \mathrm{c} 1=0$.

These conditions are obviously necessary. We shall show that they are sufficient. The question of independence, or minimum assumptions is open.

Tables I and II are immediate consequences of (1) and (2). We proceed to verify III. The fourth row of this table is given by (4). Since substitution is an associative operation, we have:

$$
\begin{aligned}
& j c=(c c) c=c(c c)=c j=c, \\
& j j=(c c) c c:=c(c c c)=c c=j, \\
& j 0 \equiv c(c 0)=c 1=0 \\
& j 1=c(c 1)=c 0=1
\end{aligned}
$$

The first two rows of the third table follow readily from the formulas:

$$
0 x=(c \bullet j) x=c x \cdot j x, 1 x=(c+j) x=c x+j x
$$

*) Algebra of Analysis, Notre Dame Mathematical Lectures, Number 3 (1944).
the third and fourth rows, tables I and $I I$, together with assumption I, which includes the hypothesis: $(f+g) h=f h+g h,(f \bullet g) h=$ fhegh.

University of Iowa.

