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ABSTRACT

Model Predictive Control (MPC) is a viable control strategy for industrial processes 

that display relatively large variations in the process variable, have complex process 

variable interactions, or display a large amount of process deadtime. The objective of 

using MPC in manufacturing is to reduce overall process variability, the result being an 

increase in process accuracy, precision and efficiency. This study focused on the 

implementation of model predictive control techniques on an industrial sugar cooking 

process. The goal was to implement a successful MPC solution directly on a 

programmable logic controller (PLC) rather than on a personal computer (PC). Although 

there are many commercially available MPC controllers for implementation on a stand­

alone PC, to date there are no control packages for realizing model-based control 

techniques directly on the ubiquitous PLC.

This study implemented and evaluated three PC-based, commercial MPC 

technologies for the sugar cooking process, and a new model state feedback (MSF) MPC 

implementation directly on Rockwell Automation’s Allen-Bradley ControlLogix® PLC.

A standard proportional-integral-derivative (PID) control implementation was used as a 

baseline for comparing the MPC strategies. There were three main areas on which the 

overall comparative analysis focused. These comparison areas were the dynamic 

response of each strategy at startup, including both temperature rise time and overshoot, 

and the steady-state disturbance rejection capabilities of each strategy.

The test results showed that the MPC strategies controlled the sugar cooking 

process better than the traditional PID control method in regards to temperature rise time,
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temperature overshoot, and disturbance rejection based on feed rate disturbances. It was 

seen that the differences between the various MPC strategies was not significant relative 

to temperature overshoot and disturbance rejection. The PLC-based MPC strategy was 

comparable, but not superior, to the PC-based commercial MPC applications. However, 

this strategy has several benefits such as requiring no external hardware, software, and 

communications protocols, which may result in a less expensive implementation than the 

commercial MPC strategies. The PLC-based strategy is also easier and cheaper to 

maintain because it is developed on the existing, well-known control platform with 

existing tools.
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CHAPTER 1 

INTRODUCTION

Model Predictive Control (MPC), a branch of Advance Process Control (APC), has 

been identified as a viable control strategy for production processes that display relatively 

large variations in system controlled output values in comparison to the system’s control 

set point, for processes with appreciable process variable interactions, and for systems 

that display a large amount of process deadtime and/or system disturbances (Willis & 

Tham, 1994). The objective of using APC in manufacturing is to reduce overall system 

controlled output variability regardless of measured and unmeasured system disturbances 

such as product raw material changes, variation in production feed rates, wear on process 

equipment, or random environmental fluctuations. With sustained system output value 

repeatability, the control set point can be confidently moved closer to an actual process 

limit. The benefit being a reduction in quality variability and lost product, which can be 

caused by operating a process at a conservative control set point due to process 

variability. Additionally, as the set point is moved closer to the system specification 

control limit, the result is an increase in process accuracy, precision and efficiency.

Confectionery processing requires precise temperature and moisture control of a 

high-boil, sugar-based formulation product. The system must remain within process 

specifications even with the presence of various measured and unmeasured disturbances 

(weather changes, raw material changes, system steam pressure, and so forth). Capability 

to rapidly increase the sugar-based product’s initial temperature to a final temperature 

with an overall gain of 55 °F in 15 minutes or less, with minimal temperature overshoot, is
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also highly desirable. Standard programmable logic controller (PLC) based proportional- 

integral-derivative (PID) control was originally employed as part of the sugar cooking 

control strategy, but after observing the response of the cooking process due to measured 

disturbances during normal operation, it was evident that PID control could not meet the 

desired cooking specifications. It was decided to pursue advanced process control 

strategies as a means to meet the high-boil sugar cooking specifications.

The objectives of this advanced process control research study were to successfully 

implement viable commercial MPC technologies on the sugar cooking process and to 

develop a new MPC strategy implemented directly on the existing PLC. This study 

implemented and evaluated three PC-based, commercial MPC technologies for the sugar 

cooking process, and developed and implemented model predictive functionality using a 

combination of ladder logic code and function blocks directly on Rockwell Automation’s 

Allen-Bradley ControlLogix® PLC1. The results of these solutions are compared to the 

traditional PLC-based PID control solution.

Ingredient cooking is one of the most common manufacturing processes within the 

food and beverage industry. By properly leveraging the knowledge gained from this 

research study, multiple sectors within the food and beverage industry may be able to 

reduce production costs while improving the quality of many manufactured products.

The results of this study will be applied to the company’s food and beverage 

manufacturing facilities throughout North America.

1 This strategy was developed specific to this application, and is not a commercially available solution.
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Statement of the Problem

The problem of this research study was to design and analyze the performance of a 

PLC-based model state feedback controller implementation for an industrial sugar cooker, 

and to determine its viability in comparison to commercially available PC-based model 

predictive controller implementations applied to the same sugar cooker.

Purpose of the Study

The purpose of this study was to validate the application of PLC-based model 

predictive control for industrial processes that exhibit deadtime behavior and are 

influenced by external disturbances. The objectives of this study that supported this 

purpose were:

1. To develop a PLC-based model predictive control strategy using model state 

feedback techniques.

2. To compare the application results for PLC-based model predictive control 

with commercially available PC-based model predictive controllers on an industrial sugar 

cooker.

3. To validate the use of MPC technologies by statistical comparison to the 

results of standard PID control on an industrial sugar cooker.

Need for the Study

The need for this study was based on the lack of an available model predictive 

control solution that can be applied directly using a typical PLC. Although there are 

many commercially available MPC controllers for implementation on a stand-alone PC 

(VanDoren, 2001, 2002) and large amounts of applications and research literature on PC-
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based MPC strategies (Blevins, McMillan, Wojsznis, & Brown, 2003), to date there are 

no commercial control packages for realizing model-based control using model state 

feedback techniques on the ubiquitous PLC.

Existing, commercially available model-based controllers require a personal 

computer (PC) for operation. Typically the existing process control system utilizes an 

industrially hardened programmable logic controller. As a result, the PC used for the 

MPC functions is an additional piece of hardware that must be purchased, enclosed, and 

maintained. The software run on this PC is also additional to the standard process control 

system. It must be purchased, configured and maintained separately from the base control 

system. Finally, communication drivers must be purchased and configured. These 

additional costs required throughout the life cycle of the system reduce the profitability of 

the process control system. A model-based controller implemented directly on the 

existing, standard process control hardware (the PLC), with the standard process control 

software, requires no additional hardware, software or communications drivers.

Research Hypotheses

The goal of this research study was to develop and evaluate a model predictive 

control strategy for implementation using a programmable logic controller. The 

controller selected for this study was Rockwell Automation’s Allen-Bradley 

ControlLogix® PLC. The ControlLogix® PLC utilizes deterministic programming and is 

compliant with the IEC 61131-3 programming standards. The ControlLogix® PLC is an 

industry standard for implementing control system strategies within many manufacturing 

processes (Group Engineering, 2001).
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The research hypotheses were:

1. It takes significantly less time for the PLC-based model state feedback 

implementation of the MPC controller to reach the final product temperature set point 

than it does for standard PLC-based PID control applied to the same industrial sugar 

cooker.

2. The PLC-based model state feedback implementation of the MPC controller 

experiences less temperature overshoot due to the initial product temperature rise than the 

standard PID control solution.

3. There is a smaller deviation in temperature around the set point, in the 

presence of system disturbances, during steady-state operation for the PLC-based model 

state feedback implementation of the MPC controller than there is for the standard PID 

control solution.

4. The temperature rise time is shorter for the PLC-based model state feedback 

implementation of the MPC controller than it is for the PC-based commercial MPC 

solutions applied to the industrial sugar cooker.

5. The PLC-based model state feedback implementation of the MPC controller 

exhibits less temperature overshoot as a result of the initial product temperature rise than 

the PC-based commercial MPC solutions.

6. The deviation in temperature around the set point, in the presence of system 

disturbances, is smaller for the PLC-based model state feedback implementation of the 

MPC controller than it is for the PC-based commercial MPC solutions.
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Hypotheses Tests

The hypotheses were tested using the following test statistics:

1. A one-way analysis of variance (ANOVA) was used to test for a difference in 

the mean rise times for the different control solutions at the a  = .05 significance level.

The test statistic was the amount of time it takes for the product to reach the final 

temperature, with the different test methods treated as levels of the variable. Specific 

differences among treatments were examined using Tukey’s post hoc test for honestly 

significant difference comparisons. Summary statistics were then used to determine the 

direction of the observed differences.

2. A one-way ANOVA (a  = .05) was used to test for a difference in temperature 

overshoot as a result of the initial product temperature rise for the different control 

solutions. The test statistic was the amount of temperature overshoot, with the different 

test methods treated as levels of the variable. Specific differences among treatments were 

examined using a Tukey’s post hoc test for honestly significant difference comparisons. 

Summary statistics were then used to determine the direction of the observed differences.

3. To test for a difference in deviation in temperature around the set point in the 

presence of system disturbances during steady-state operation for the different control 

solutions, two independent variables were examined. These were the test method (PID 

control, MSF control, MANTRA®, and so forth) and the product feed rate. The product 

feed rate was the system disturbance. It was varied in a prescribed, step-wise fashion. A 

two-way ANOVA (a = .05) was used. Both test method and feed rate were treated as
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fixed factors. The pump speed was treated as a fixed factor due to the fact that speed 

adjustments were only made in fixed increments based on the baseline speed. Only main 

effects were examined. The interactions were not examined because the independent 

variables were not manipulated simultaneously. Specific differences among treatments 

were examined using a Tukey’s test for honestly significant difference comparisons. 

Summary statistics were then used to determine the direction of the observed differences.

Assumptions of the Study

For this study certain assumptions were made that served as the basis for the 

ensuing analysis. These assumptions were:

1. The sugar cooking process was repeatable. Therefore, it would function the 

same, given the same operating parameters, throughout all of the trials performed.

2. The process instrumentation was properly calibrated and the final control 

elements operated as designed.

3. The raw materials used were consistent in quality and distribution throughout 

the trials.

4. The utilities supplied to the sugar cooker (for example the steam supply, 

electrical power and compressed air) were stable, consistent, and free of damaging 

components (such as electrical harmonics and moisture in the compressed air) throughout 

the trials.

5. The same operator was used to operate the sugar cooker equipment throughout 

the trials in order to minimize human error. He operated this equipment consistently
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throughout the trials. No special training or skill set was required for the operator to run 

the equipment. It was assumed that the operator did not adversely affect the process.

6. Unmeasured process disturbances and uncontrollable external influences such 

as fluctuating relative humidity, raw material variances, and mechanical equipment wear 

had an insignificant effect on the process.

7. The commercial applications were correctly implemented, with assistance 

from each application vendor, and performed as advertised. Therefore, these applications 

did not need to be validated, but were assumed to be the standard by which the PLC- 

based MPC controller was validated.

8. The sugar cooker designer properly implemented the existing PID controller 

for the steam supply-modulating valve, and the PID controller was properly tuned to meet 

the control objectives. The properly tuned PID controller was used as the baseline to 

which the MPC techniques were compared.

9. Model predictive control algorithms assume a linear process model (Blevins et 

al., 2003). For this study it was assumed, that the sugar cooking process was linear.

Delimitations of the Study

The following delimitations were inherent in this research study:

1. The study was delimited to an existing sugar cooker, as configured, at an 

undisclosed food and beverage research facility in the Midwest.

2. The study was delimited to a single process, recipe and set of operational 

parameters for the sugar cooker.
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3. The implementation of the PLC-based model state feedback control was 

delimited to Rockwell Automation’s Allen-Bradley ControlLogix® PLC with version 

10.0 software and firmware.

4. The commercial, PC-based MPC applications were delimited to MANTRA® 

from ControlSoft, Inc., BrainWave® from Universal Dynamics, and Process Perfecter® 

from Pavilion Technologies.

5. The PID control was delimited to a single loop, parallel algorithm, 

implemented on the ControlLogix PLC.

Limitations of the Study

The following limitations were applied to this research study:

1. Due to operation costs, the individual trials for each implementation were 

limited by the research facility.

2. No additional trials were run, or data gathered, after the initial testing period 

for each component of the research project. The equipment was decommissioned after 

the trial-runs phase of this study.

3. Due to the sensitive nature of this research and its application to real industrial 

processes, specific recipe and equipment details are not publishable so as to maintain the 

integrity of industrial trade secrets.

4. The company owning the equipment is to remain undisclosed.

Methodology of the Study

The project involved developing an appropriate interface to the existing sugar 

cooking control system for each MPC solution. This included control panel operator
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controls, communication protocols, and bumpless control transfer. The operator controls 

were used to start and stop the process, to switch between manual, PID and MPC control 

of the process, and to set operational parameters such as the process temperature set 

point. Bumpless transfer ensured that the process remained stable during the transition 

from manual to automatic control and vice versa. Appropriate communication protocols 

were established to communicate between the MPC computer and the process controller 

as applicable. For PC-based solutions the PLC functionality remained unchanged. For 

the PLC-based solution a separate subroutine was developed so that the integrity of the 

existing PLC code would not be compromised. Minimal changes were allowed to the 

existing processing system. This ensured that the MPC solution was highly portable for 

implementation on other ingredient cookers.

The cooking process started from an established steady-state condition for each 

trial, and was ramped up to the cooking temperature as quickly as possible without 

experiencing excessive temperature overshoot. The system was not ramped up to 

temperature in less than five minutes. Doing so would have caused the product to bum 

and foul the walls of the heat exchanger, thus reducing heat transfer capacity. The 

controller was then required to maintain that cooking temperature while the process was 

operated through a preset sequence of tests that introduced disturbances into the cooking 

process.

Process Description

1. A high viscosity sugar syrup mixture was blended and heated to a temperature 

of 170°F in an 1800-pound batch mixer (see Figure 1).
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Steam Bridge

Preblend
Tank

Heat
Exchanger

- *  Steam Condensate

Pump
Preheater

PT1 TT5 TT3 TT4

TT2TT1

TT6

PT2

TT1- Product Feed Temp 
TT2- Pre Healer Product Exit Temp 
TT3- Main Heat Exchanger Exit Temp 
TT4- Bridge Temp 
TT5- Steam SupplyTemp 
TT6- Condensate Temp 
PT1- Steam Supply Pressure 
PT2- Main Heat Exchanger Pressure

Figure 1. Sugar cooker process flow diagram.

2. Product was gravity fed to a positive displacement Waukesha pump (product 

feed pump). The product feed pump delivered the sugar syrup mixture at a rate of 8.5 

pounds per minute through a small shell and tube heat exchanger (preheater). The 

product reached a temperature of 220°F at the discharge of the preheater.

3. Product entered the bottom of the sugar cooker shell and tube heat exchanger 

section at a constant flow rate of 8.5 pounds per minute, the product residence time in the 

heat exchanger was approximately 31.5 seconds. The product velocity in the tubes was 

approximately 0.11 feet per second.
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4. Product exited the top of the heat exchanger and flowed down a transition duct 

(bridge) that was at atmospheric pressure. A resistive temperature device (RTD TT4) 

positioned in the bridge provided feedback regarding the product’s discharge temperature 

from the cooker.

5. The control loop modulated a proportional steam supply valve to regulate the 

sugar cooker’s internal vessel pressure, thus controlling the cooking temperature.

6. The desired outcome of the study was to maintain a discharge product 

temperature at the bridge (TT4) of 274°F ±1°F. If product temperature was too low the 

resulting sugar mixture would not caramelize, and would need to be reprocessed. If the 

product temperature got too high the cooker would foul and the product would be 

unusable. Therefore, the usable control limits were ±5°F over short (less than 30 second) 

periods.

7. The product feed rate varied by a maximum of approximately ±25%, as 

determined by downstream equipment. Typical feed rate variations were held between 

5% and 10%. As the feed rate increased the product residence time in the heat exchanger 

decreased. The opposite was the case as the feed rate decreased. The control system had 

to maintain the discharge product temperature at the bridge regardless of feed rate (within 

the ±25% range).

Control Objectives and Analysis Criteria

To evaluate controller performance, the following objectives were established and 

measurable parameters were recorded:
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1. The MPC controller was required to automatically ramp up the product 

temperature in 15 minutes or less.

2. The controller was to maintain a steady-state discharge product temperature at 

the bridge (TT4) of 274°F (±1°F on average) for a period of 10 minutes. A constant 

product feed rate was assumed.

3. The controller was to maintain a discharge product temperature at the bridge 

(TT4) of 274°F (±1°F on average, with a maximum deviation of ±5°F) while the product 

feed rate was varied by approximately ±25% in a prescribed test pattern.

4. The MPC solution was to show consistent start-up without fouling.

Standard PHD control response was recorded and used as a baseline for comparison

against all four model-based controllers.

Definition of Terms

Following are certain terms used throughout this research study that, although not 

unique to this study, have been defined in order that readers have a common basis for 

understanding their use within the context of this research. The following terms were 

defined:

Accuracy -  the difference between the measured and the true value of a quantity.

Advanced process control (APC) -  the application of non-traditional control 

methodologies that “seek to discover, incorporate, and exploit knowledge about raw 

materials, process, product, equipment, instrumentation, and final elements” (Blevins et 

al., 2003, p. 1).
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Bumpless transfer -  the transition from one control mode to another wherein the 

process variable responds with little or no sudden deviations due to the transfer of 

control.

Communication drivers -  software applets that enable data to pass between 

disparate systems.

Control loop -  the method of adjusting the control variable in a process control 

system by analyzing process variable data and then comparing it to the set point to 

determine the amount of error in the system (Bryan & Bryan 1997, p. 1005).

Control horizon -  the number of manipulated-variable moves ahead to be taken into 

account by the model predictive controller (Blevins et al., 2003, p. 363).

Control variable (CV) -  the independent variable manipulated by the controller 

output that in turn adjusts a process actuator so as to reduce the error between the set 

point and the process variable.

Deadtime (0) -  delay from when the control variable is modified to when the 

process variable begins to react detectably to that modification.

Derivative action (D) -  the controller output changes that are proportional to the 

rate of change of the error between the set point and the process variable.

Feed forward control -  a control algorithm used to manipulate the control variable 

based on a measurement of a disturbance variable so as to proactively cancel the effects 

of the disturbance.

Feedback control -  a control algorithm used to reduce the error between the set 

point and the process variable, e.g., a PID controller.
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Gain (K) -  ratio of the resultant change in the process variable to a step change in 

the control variable. Therefore, K = (%APV / %ACV).

Heartbeat pulse -  a time-based pulse train issuing from one controller and 

communicated to another to indicate that the originating controller is still operational. On 

loss of the heartbeat the control algorithm is switched to the receiving controller.

Human-machine interface (HMI) -  is the means by which the operator controls the 

process equipment. Typically this is a graphical interface.

Integral action (I) -  the controller output changes that are proportional to the 

integral of the error between the set point and the process variable.

Measured disturbance variable (DV) -  a parameter that affects the control system 

response, is measured by the system controller, but not managed by the controller, and is 

included as feed forward variable to the system controller.

Multiple-input, multiple-output (MIMO) -  A process having multiple input 

variables that control the process in such a manner as to affect multiple output variables. 

For example the moisture and density of a powder are controlled by the flow rate through 

a drying chamber with a given drying temperature, where flow rate and temperature are 

both inputs to the system, and moisture and density are the required outputs.

Model predictive control (MPC) -  “model-based control of future trajectory of a 

process variable from the changes of control variables” (Blevins et al., 2003, p. 421).

Non-linear system -  the deadtime, time constant, or gain are not constant, but are a 

function of time, direction, operating point, or load.

OLE -  Object Linking and Editing.
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OPC -  OLE for Process Control. A standard communications protocol used to 

communicate between industrial processes.

Precision -  the short term maximum variation in the output for the same input 

approached from the same direction and at the same conditions. See also Repeatability.

Prediction horizon -  the range in scans of process output prediction (Blevins et al., 

2003, p. 363).

Process control - refers to the equipment and methods used to automatically 

measure and manipulate the conditions of continuous and batch processes.

Process variable (PV) -  the controller input to be maintained at a specified set point. 

Typically a process output such as pressure, temperature, flow or level.

Programmable logic controller (PLC) -  an industrialized computer with specially 

designed architecture for interfacing to field devices that is used to scan inputs and 

manipulate outputs based on specific algorithms, sequences, and conditions.

Proportional action (P) -  the controller output changes that are proportional to the 

change in error between the set point and the process variable.

Proportional-integral-derivative (PID) control -  A continuous-mode controller that 

uses proportional, integral, and derivative actions to determine the control variable output 

based on the amount of error, its change over time, and its rate of change (Bryan & Bryan, 

1997, p. 1018).

Repeatability -  the short term maximum variation in the output for the same input 

approached from the same direction and at the same conditions. See also Precision.
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Reproducibility -  the long term maximum variation in the output for the same input 

approached from the same direction and at the same conditions.

Resolution -  the minimum change in the input in the same direction that will cause 

a detectable change in the output.

Response time -  the amount of time it takes a process to settle acceptably after an 

initial process disturbance.

RTD -  Resistive Temperature Device.

Scan time -  the time interval between successive controller updates of the system 

variables.

Sensitivity -  the ratio of the steady-state change in output to the change in the input.

Set point (SP) -  The target output value for the process variable.

Single-input, single-output (SISO) -  A process having a single input variable that 

controls the process in such a manner as to affect a single output variable. For example 

an oven uses gas flow to the burner (single input) to control the temperature of the oven 

(single output).

Time constant (x) -  for first order systems forced by a step or an impulse it is the 

amount of time required for the process variable to reach 63.2% of its steady-state value, 

after deadtime, as a result of a change to the control variable. The time constant is the 

fraction of the total change in the output variable as a function of time and is expressed as 

an exponential response term, l-exp(-t/x). When t = x, the resulting response time is 63% 

of the total change.
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Tuning -  adjustment of the proportional, integral, and derivative mode settings for 

modifying the behavior of a PID controller. Adjusting of model parameters for 

modifying the behavior of a model-based controller.

Unmeasured disturbance variable (dV) -  a parameter that affects the control system 

response, is typically not measured or managed by the system controller, and thus not 

accounted for in the control system.

Summary

Advanced automation solutions seek to extract optimum value from existing 

manufacturing assets. The goals of such an endeavor may include increased product 

consistency, decreased start-up time, increased production rate, decreased 

feedstock/utility consumption, and process mastery. Model-based control is a proven 

technique of advanced control that predicts future changes to a process and makes 

preemptive control adjustments to keep the process on track. MPC provides continuous 

model-based control of end-product quality, automated adjustment to changing 

environmental and feed conditions, and the ability to observe and respond in a 

coordinated and consistent fashion to a multivariate problem. MPC is appropriate for 

implementation on systems that exhibit complex interactions, complex dynamics, 

economic trade-offs made daily with limited tools, or tight quality control -  where 

increased quality means increased profits.

For the sugar cooking process the ability to control the product temperature in an 

accurate and timely fashion is particularly important. If the product temperature rises too 

far above the set point, the possibility of solidifying the product inside the heat exchanger
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exists. If the product temperature falls too far below the set point, the final moisture 

specification will be too high and product quality compromises such as texture variations 

will occur. Additionally, the product feed rate changes relative to downstream equipment 

conditions. These unpredictable conditions can cause feed rate variations of a maximum 

of approximately ±25% throughout a production run. This variation is known to have a 

dramatic affect on temperature control.

Different commercially available advanced control techniques were implemented on 

a sugar cooker to determine a baseline by which to validate advanced regulatory control 

techniques applied directly on a PLC. Three options were investigated from the range of

(Sicommercial MPC software packages. These were ControlSoft, Inc.’s MANTRA , 

Universal Dynamics’ BrainWave®, and Pavilion Technologies’ Process Perfecter®. A 

model state feedback solution was developed and implemented directly on a 

ControlLogix® PLC using ladder logic and function block programming. The PLC-based 

solution was validated against the commercial MPC applications. These solutions were 

compared to the PID control algorithm currently used on the sugar cooker.

There are several benefits of direct PLC implementation as opposed to a PC-based 

implementation. These include no external hardware required, no additional software 

required, no communications (such as OPC) required, easier to maintain at the plant level, 

and reduced implementation costs. These benefits coupled with the additional benefits 

inherent to model predictive control strategies will be leveraged across numerous 

production facilities throughout the food and beverage industry.
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In the remainder of this document, Chapter 2 lays the foundation for this research 

through a review of PID control, a brief discussion on the ubiquitous nature of the 

industrial PLC, an overview of advanced process control history and techniques, and an 

assessment of some of the commercially available model-based solutions. The chapter 

concludes with a look forward to the development of a model-based solution designed for 

application directly on a PLC. Chapter 3 discusses in detail the development and 

application of the model state feedback algorithm on an industrial PLC. The advantages 

and limitations to this approach are examined along with the implementation of several 

commercially available PC-based solutions. The results of each of these solutions are 

described in Chapter 4. These results are compared to each other and to the standard PID 

approach using analysis of variance, appropriate post hoc tests and summary statistics. 

Finally, conclusions are drawn and recommendations made in Chapter 5 based on the 

statistical analysis and the research experience.
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CHAPTER 2 

REVIEW OF RELATED LITERATURE 

This chapter will review the major advances in regulatory control that lead up to the 

development of a PLC-based model predictive controller for application in industrial food 

processes. The chapter begins with an overview of proportional-integral-derivative 

control, the most fundamental control algorithm used today. A review of recent advances 

in programmable logic controllers follows. These advances make it possible to construct 

the advanced control algorithms directly in the PLC. A review of current advanced 

process control techniques then builds the foundation for application of the model state 

feedback algorithm. The chapter concludes with a review of commercially available 

advanced process control solutions for implementation on a personal computer, and looks 

forward to the development of an advanced control solution built directly on an industrial 

programmable logic controller instead of a personal computer.

“It is proven that intensive, well-organized use of advanced process control (APC) 

can substantially increase the profitability of a plant. One of the key effects is reducing 

the ever-present variations in the process more than standard controllers or the operators 

can do” (Eder, 2003b, p. 1). Reduced process variability has a direct, positive benefit on 

the process. When the variability is reduced the process may be operated closer to the 

process set point or limit. This shift in the mean operating point results in a more 

efficient and cost effective operation. Figure 2 illustrates how shifting the set point 

translates to benefits as seen on a trend recording of a typical process variable. The full 

benefits of this shift are only achievable using advanced control techniques.
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Figure 2. Benefits derived from using advanced process control to reduce variability.

In the food and beverage industry reduced process variability and operation closer to 

specifications directly affect the cost of goods sold. Government regulations, such as 

USDA requirements, dictate the limits for such parameters as moisture content and 

product net weight. By operating closer to the specified limits a company would for 

instance be able to sell more water on average and produce less overweight packages, 

thus reducing the amount of product effectively given away to the consumer.

In an effort to reduce process variations and increase process efficiencies, there are 

three main methods of control on which advanced process control techniques are applied. 

These are:

1. Regulatory control, which is provided when a process variable needs to be 

maintained at a given target value, and a standard PID regulatory controller provides 

insufficient control response.
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2. Constraint control, which is developed when there is no exact target set point 

given, but only an operational direction. The variable in question needs to be moved in 

this direction until a limitation is encountered.

3. Optimization techniques, which are applied when both positive and negative 

influences exist on an objective and the optimal operating point, that is, the point where 

these positive and negative influences just balance out must be found.

This study focuses on the first type of control, specifically regulatory control. The 

following sections outline the regulatory control methods investigated for the industrial 

sugar cooker. These included standard PID regulatory control and several model 

predictive regulatory controllers.

Proportional-Inte gral-Derivative Control

The proportional-integral-derivative (PID) control algorithm is ubiquitous in 

today’s process industries. It is a simple and easy to implement regulatory control 

algorithm that uses feedback to generate a control output which causes a corrective effort 

to be applied to a process to reduce the error between the desired process value and the 

actual process value. The PID algorithm observes the value of the error between the set 

point and the actual process state, the integral of the error over a recent time interval, and 

the current derivative of the error to determine the magnitude and duration of the 

corrective action required to eliminate the error. The P, I and D values, or terms, depend 

on the characteristics of the actual process and must be properly tuned to yield a 

satisfactory control response. The proportional term causes a larger control action to be 

taken for a larger error. The integral terms adds to the control action if the error has
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persisted over the recent time interval. The derivative term modifies the control action if

the error is changing rapidly with time. Figure 3 shows the control block diagram for a

typical PID controlled process.

PID
CDon.trqner_ (C).___

PVcv
K >K >

Feedback Signal

Plant 
Process (P)

where,
C: process controller
P: physical plant process to be controlled
SP: desired set point
PV: actual process value
CV: control value to the process actuator
e: error between the SP and PV
d: effects of an external system disturbance
P,I,D: control terms applied to the error to modify the CV

Note that P indicates both the process and the proportional term in the PID 
controller depending on context.

Figure 3. PID control system block diagram for the parallel PID algorithm.

There are three basic configurations of the PID algorithm, as shown in Equations 1, 

2 and 3. The ideal algorithm in Equation 1 is the most mathematically straightforward, 

but is difficult to implement in real-world controllers. The parallel algorithm shown in 

Equation 2 uses three independent calculations for the proportional, integral, and 

derivative constants. This configuration is designed so that the values of the various
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constants do not affect each other. However, this makes the algorithm difficult to tune. 

Lastly, the series algorithm, or interacting algorithm, given in Equation 3 is designed so 

that a portion of the output of one calculation is used in the input to the next calculation. 

This is the most common algorithm used in industrial control.

P: proportional term in percent (%) gain
I: integral term in minutes
D: derivative term in minutes
e: error between the set point and the process variable
t: time

The details and applications of these algorithms can be found in most control 

systems text books, as well as in Bryan and Bryan (1997), Gerry and Shinskey (2000), 

Harrold (1999), Lefkowitz and Beiler (1996), Johnson and Malki (2002) and VanDoren 

(1998).

PID Loop Tuning

The simplicity of the PID algorithm makes it easy to understand, implement, and 

diagnose when it doesn’t perform optimally. Optimizing the performance of a PID loop 

involves tuning for both servo response (set point changes) and regulation (load

(1)

(2)

dt
(3)

where,
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rejection). Tuning a PID controller is the process of selecting the correct complement of 

proportional, integral and derivative actions to achieve a desired closed-loop 

performance. Tuning minimizes the detrimental effects of disturbances, interactions, 

control valve dead band and process deterioration over time. It is the “largest, quickest, 

and least expensive improvement one can make in the basic control system to decrease 

process variability” (Blevins et al., 2003, p. 183). However, according to Chia and 

Lefkowitz, “tuning control loops has been a problem since the earliest applications of PID 

control. It has been noted that a significant fraction of PID control loops in plant 

operations are not properly tuned” (VanDoren, 2003, p. 203). Buckbee (2002) shows 

how poorly tuned control loops cause increased operational costs.

There are many different tuning methods. Harrold (1999) gives a number of useful 

guidelines for manually tuning PID control loops. However, manually tuning control 

loops is a time consuming and often difficult endeavor. A more efficient way to collect 

and analyze process data for proper loop tuning is to use software developed specifically 

for loop tuning. One such software package is INTUNE® from ControlSoft, Inc. 

(Lefkowitz & Beiler, 1996). Loop tuning software packages provide a simple and quick 

method for detailed analysis of process loops. Features such as diagnostic reporting, 

tuning for a particular process and performance objective, estimates of performance and 

robustness, and predicted response plots are all part of a typical loop tuning software 

package. Chia and Lefkowitz (VanDoren, 2003) further indicate that the value of these 

packages is evidenced by their increased sales and integration into both PLC-based and
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stand-alone PID controllers. Additional PID tuning algorithms and methods are available 

in McMillan (2000) and Parker (2002).

Limitations of the PID Algorithm

Aggressive tuning techniques notwithstanding, there are certain conditions for 

which a PID controller is ill suited and can not be adequately tuned to meet the system 

control objectives. Tzovla and Mehta (2000) point out that it is “difficult to adequately 

control multiple-input multiple-output processes, processes with constraints and/or 

disturbances, and processes with associated complex dynamics using conventional PID- 

based approaches” (p. 1). The PID algorithm was designed for stable, robust, linear 

processes with a single input and single output parameter.

One of the most difficult problems to overcome with a feedback controller is 

process deadtime. Deadtime is the delay between the application of a control effort and 

its first effect on the process variable. It is typically a result of transport delays between 

the actuating device and the sensing device in a process. During the deadtime the process 

does not react to any controller efforts. Therefore, any attempt to manipulate the process 

variable before the deadtime has elapsed inevitably fails. The design of a feedback 

controller is such that it will always attempt to minimize the error in the process variable. 

Thus the controller overcompensates for the error by continuing to manipulate the control 

variable during the deadtime. This results in inaccurate error suppression and ultimately 

failed control efforts.

There are numerous well-developed techniques for improving the effectiveness of a 

PID controller, such as gain scheduling for set point dependent processes, cascaded loops
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for interacting variables, and the Smith predictor for deadtime-dominant processes 

(Boyce & Brosilow, 1996; Gerry, 1998; VanDoren, 2003). However, even with these 

enhancements and proper tuning, the PID controller is typically incapable of controlling 

processes with large variability, process changes after startup, highly interactive variables, 

or long deadtimes. The fundamental problem with the PID controller is that the control 

action is based on the instantaneous error between the set point and the process variable 

without taking into account the effects of previous control actions to which the process 

has not yet responded. Kay and Thompson (1998) and VanDoren (2002) suggest that the 

most effective method for overcoming these issues is using model-based control. This 

method will be discussed in detail later in this chapter.

Programmable Logic Controllers

As with the PID algorithm for analog control, the programmable logic controller 

(PLC) has become an industry standard for discrete control systems. The PLC is 

essentially a simplified, industrially hardened computer. It has input/output structures 

specifically designed to acquire real-world information such as temperatures, pressures, 

positions, and composition, and to control real-world outputs such as valves, relays, and 

indicators. Several programming languages are available for developing applications on a 

PLC. The most common are ladder logic and function block diagrams. Ladder logic is a 

direct implementation of the hardwired relay logic from which the PLC was developed. 

All PLCs are capable of being programmed using this language.

The PLC is used throughout industry for controlling a wide variety of 

manufacturing processes such as packaging, batching, mixing and refining. It was
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originally developed to replace relay logic control systems. These systems were 

hardwired control systems that were not easily changed once installed. The PLC was 

developed to offer a method for developing these same control algorithms using software 

that is easily changed and manipulated as required by the process. For a complete 

overview of the PLC and its programming see Bryan and Bryan (1997), Godena and 

Colnaric (August, 2000), Johnson and Malki (2002), Martin (2002) and Rockwell 

International Corporation (2002).

Over the years PLCs have become standardized. Today all PLCs perform a 

standard set of functions and routines that are common throughout industry. Examples 

include timers, counters and mathematical functions. One of these common functions is 

the PID control loop algorithm. In a standard PLC the proportional, integral and 

derivative constants are programmed into a function block in the PLC that then executes 

the PID algorithm using the selected input and output (such as a temperature and steam 

control valve). The integration of analog process control functions, such as the PID 

control loop algorithm, allows the PLC to provide a complete manufacturing control 

system solution. For this reason it is on this platform that we wish to develop advanced 

control techniques.

Rockwell Automation’s ControlLogix®

The ControlLogix® PLC from Rockwell Automation allows programming in both 

ladder logic code and function block diagrams. A ControlLogix® program may be written 

using integrated ladder logic subroutines and function block diagrams. The system
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maintains and updates all data values, including model predictions, in a tag data table that 

may be monitored in real-time or via an off-line log using a data collection system.

Rockwell International Corporation (2002) states that unlike many other PLC 

systems the ControlLogix® facilitates deterministic (i.e., fixed timing) execution and 

scheduling of the ladder logic subroutines and the function block diagrams. A ladder 

logic routine may execute sequential logic functions that are not time critical such as a 

communications watchdog, parameter setting and calculations, initialization, mode 

switching, and fault handling using non-deterministic execution. During this non- 

deterministic execution a function block diagram may be called by the ladder logic 

routine and deterministically executed as a part of the overall program. The entire 

program may represent a multivariable model predictive controller with appropriate 

timing, bumpless mode switching, control algorithm execution and other necessary 

features ensuring correct and robust operation in real-time. This ability to perform 

deterministic routines is a key factor in developing the advanced control solution 

presented in this research.

Advanced Process Control

Process control is all about understanding and controlling change. Changes or 

variations in raw materials, equipment performance, production rates, utilities, ambient 

conditions and process set points all necessitate the use of process controllers. Nothing 

remains constant during actual plant operations. Controlling the outcome of these 

changes provides opportunity for increased efficiency, decreased operating costs and 

improved product consistency and quality. While the PID algorithm is capable of
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controlling the vast majority of industrial processes, it is due to its lack of ability to 

control deadtime dominant systems and systems with multiple interacting input and 

output variables that advanced process control techniques have been a major focus of 

development over the past two decades. “Advanced process control is the intelligent, 

well-managed, intensive use of technology, systems, and tools based on sound process 

knowledge, with the objective being to deliver substantial benefits to plant operations in a 

most cost-effective and timely manner” (Eder, 2003a, p. 1).

Advanced process control (APC) has historically been achieved using the 

computational power and speed of PCs and UNIX machines. Traditional PLCs have not 

supported the required floating-point math or precise timing necessary to implement 

advanced algorithms. Because of this, with the exception of fuzzy logic that does not 

require precision timing, APC has not been realized on the PLC platform. APC has been 

implemented on some industrial distributed control systems (DCS) such as Emerson’s 

DeltaV® and Honeywell’s TDC3000®. However, DCSs are very expensive to own and 

maintain for single processes. They are typically used as a plant-wide control system in 

plants where the processes have a single purpose and are integrated from beginning to 

end. In the food and beverage sector this situation is typically not the case. Here 

processes tend to be stand-alone, flexible systems that require individual PLC-based 

control systems. As a result, APC applications in the food and beverage industry to date 

have been implemented using personal computers communicating to the PLC over a 

control network. Barnes (1996) illustrates this hybrid method of PC-based APC 

communicating with a standard PLC.
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Types of Advanced Process Control

There are a number of APC algorithms. Each has seen some degree of industrial 

success. This section will briefly outline some of the many types and applications of 

APC technology in use today.

Perhaps the most common APC method is Fuzzy Logic. Fuzzy logic is a 

mathematical technique for set theory computation. It allows control system designers to 

develop control systems based on a set of grammatical rules that are then transferred to 

numerical sets for computation of a control effort. These systems have become a 

standard for regulatory control and simple optimization in the process industries. Fuzzy 

logic algorithms are now built in to many PLCs as a standard tool.

Artificial neural networks (ANN) are loosely modeled on biological reasoning. 

They are capable of learning through assigning levels of importance to connections 

between processing nodes. Given a proper configuration of nodes and connections, 

ANNs are capable of modeling any controllable system. ANNs are typically reserved for 

optimization techniques due to the intensive engineering required to develop a system, 

though they can be used for regulatory and constraint control.

Expert systems use sophisticated search methods to associate large quantities of 

human knowledge that have been codified in a database. They are designed to simulate 

human reasoning and are typically used as a decision maker or advisor for solving 

complex problems by drawing on these vast quantities of compiled knowledge. Expert 

systems are often found functioning as on-line plant maintenance advisors to technicians, 

forecasting potential problems based on current conditions and past experience.
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Model predictive control (MPC) is another branch of APC that focuses mainly on 

regulatory and constraint control. Control algorithms are based on mathematical models 

of the process system. The controller then uses the model to predict future response 

requirements based on current conditions. This allows the controller to compensate for 

process lags and interactions that are beyond the capability of a PID controller. This 

research is focused on the application of model-based predictive control techniques.

APC Applications in Industry

Advanced process control techniques have been in use in industry for over 20 years. 

The installed base includes applications of artificial neural networks, fuzzy logic and 

other rule-based systems, model-based predictive control, and others. Following are a 

representative sampling of industrial applications using various advanced techniques.

This is by no means an exhaustive overview of the successes realized with these 

technologies.

Studebaker (1995) has shown how internal model control (IMC) techniques have 

been utilized for controlling long deadtime (approximately 90 minutes) in an oil cracker 

while taking tarry residual oil and converting it to useful products. The improved control 

resulted in a $600 per day savings, generating an effective payback in less than 25 days. 

Chia and Brosilow (1991) showed similar results in applying a multivariable IMC 

technique to a heavy oil fractionator. It was shown that the advanced control techniques 

were able to handle output constraints and provide decoupled control much better than 

the traditional methods employed by Shell Oil. IMC techniques have also been used to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

reduce throttle pressure on a load increase in a utility boiler while maintaining maximum 

megawatt control, a task previously unachievable (Studebaker, 1995).

Molson Brewers in Canada uses model predictive control to establish boil 

consistency in the wort kettles during the beer brewing process. The process is 

considerably upset by the addition of hops, changes in atmospheric conditions and 

venting fan operations. These random changes coupled with the formula differences of 

the various products make it impossible for PID controllers to maintain control of the 

system. Implementing the model-based controller increased production capacity by 12% 

(Kay & Thompson, 1998). Similar results have been experienced in a variety of 

industrial processes including temperature control in beverage bottling, flow control in air 

separators and scrubbers, feed rate control during ore grinding operations, and numerous 

others (VanDoren, 2001).

Artificial neural networks have also enjoyed a great amount of success in 

controlling and optimizing industrial processes. One of the most frequent utilizations of 

this technology is in developing virtual sensors that can measure physical parameters that 

are traditionally difficult to measure. Helps and Griffen (1994) developed a virtual 

temperature sensor for accurately determining the internal mold cavity temperature of an 

injection molding operation. The mold cavity temperature is distorted by the cooling 

water jackets in the mold, making infrared and other traditional temperature sensing 

methods inaccurate. The virtual analyzer was shown to overcome these environmental 

difficulties in accurately measuring the internal mold cavity temperature profile. Guinan, 

Kelly, and Semrad (1998) have further shown that virtual analyzers can be coupled with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



35

ANN control algorithms to effectively control nitrogen oxides emissions from a power 

station. An 18% to 21% reduction in emissions was realized by using the combined ANN 

technologies. In the food and beverage industry the author has used ANN technology in 

evaporation and drying operations. Evaporation and drying require tight control over 

temperatures, pressures and flow rates, all of which are interacting. Neural network 

control of these parameters has lead to increases of up to 0.4% moisture and 5% 

throughput while reducing energy consumption by up to 4.5%.

It should be noted that all of the applications discussed to this point have been 

developed and run on a personal computer rather than an industrial PLC. Historically 

these types of solutions have required deterministic timing and computing power that was 

not available in PLCs. As a result the only APC solution available for implementation 

directly on a PLC to date is fuzzy logic. The reason that fuzzy logic has been successful 

on a PLC platform is that a complex mathematical model of the process is not necessary. 

Instead, the control algorithms are rule-based. Anderson, Blankenship, and Lebow 

(1988) and Manesis, Sapidis, and King (1998) have each shown that fuzzy logic can be 

successfully integrated into an existing PLC to enhance PID control and wastewater 

treatment respectively. Blevins et al. (2003) also show that fuzzy logic control can be 

successfully applied on a secondary computer communicating with a PLC. Their system 

was successful for controlling the temperature of a chilled water refrigeration unit that 

was frequently exposed to large unmeasured load disturbances and large set point 

changes. They have also successfully controlled the moisture of a drying oven in a
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continuous dyeing operation for solid-color tufted carpeting while eliminating carpet 

overheating due to temperature overshoot during set point changes.

Hundreds of other detailed examples on applying advanced control techniques to 

industrial processes can be found throughout the literature. See Griffen (1995); Tay 

(1996); Demoro, Axelrud, Johnson, and Martin (1997); Manesis et al. (1998); Huzmezan, 

Gough, Kovac, Le, and Roberts (1999); Havener and Unrau (2001); Huzmezan, Dumont, 

Gough, and Kovac (2001); Martin (2002); Blevins et al. (2003); or VanDoren (2003) for 

a sampling of various industrial applications.

Model-Based Control 

“The advanced control technology with the best track record to date for increasing 

plant efficiency and capacity is the model predictive controller” (Blevins et al., 2003, p. 

93). The model predictive controller is a model-based control system. Model-based 

control systems employ a mathematical model of the process for developing and 

implementing the control system. Controller design is based on the adjustment of that 

model to predict future process response and calculate the control action required to reach 

and maintain a set point.

Model-based controllers are of particular interest for use on complex processes with 

significant deadtimes that typically cause PID-based controllers to overcompensate and 

lose control of the process. Improved control performance is achieved through basing the 

control action on the mathematical model of the process, including deadtime, so that the 

control action takes into consideration the effects of past control actions that have not yet 

appeared in the process variable (due to deadtime), as well as the long-term consequences
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of the currently calculated action. The mathematical model is adjusted to compensate for 

changes in the process characteristics so that the controller can maintain control under 

various operating conditions (Universal Dynamics Technologies Inc., 1998a).

A mathematical model is a relationship between the inputs and outputs of a system 

that is expressed in terms of mathematical equations. Figure 4 shows a block diagram for 

a generic process. The process has certain external input variables, given by u(t), that 

affect the internal state of the system. The process also has certain output variables, given 

by y(t), that cause some external action. Inputs can either be controlled variables that are 

deliberately manipulated, or disturbance variables that are not controllable by the process 

controller. The types and number of system variables present, as well as the output 

response to a change in the inputs, affects the type of mathematical model required to 

develop an effective model-based control system.

Inputs, u(t) System orw Process (P) w-► Outputs, y(t)

Figure 4. Model-based controller block diagram.

Several process models are of importance in controlling typical industrial processes. 

First principle models are based on fundamental relationships such as mass or energy 

balances, thermodynamic equations, etc. These are typically expressed as differential 

equations in the time domain, and are called state-space models. By applying the Laplace 

transform to these models and expressing them in the s-domain, the calculus-based 

differential equations may be converted to algebraic equations for easier computation and
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manipulation in digital processing systems such as PCs and PLCs. These models are 

known as transfer function models.

Often times the fundamental relationships in a process are not known and not easily 

derived. In these cases the process model is developed based on empirical methods that 

capture the input-output relationships in the process. Step tests are performed wherein 

the process actuator is instantaneously increased or decreased a prescribed amount and 

the process response to that change is recorded. The shape of the process response curve 

dictates the type of mathematical model, or transfer function, used to describe the system.

Brosilow and Joseph (2002) discuss several common single-input, single-output 

(SISO) transfer functions found in industrial processes. Their discussion includes:

1. The gain model that is used when the system dynamics are negligible. In this 

model the system input is multiplied by a preset gain to obtain the system output.

2. The integrator is used when there is an accumulation of mass or energy in the 

system. Level control is a common application of this model, for example a tank level 

control with independent inflow or outflow.

3. Time delay models are used to describe systems that incorporate transport lags 

caused by flow through pipes, transmission delays, etc. These are also known as 

deadtime dominant systems.

4. First-order lag models apply to systems where the accumulation of mass or 

energy is dominated by one term, such as with many temperature control systems. These 

systems include both a gain and a time constant.
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5. A second-order system has a second-order polynomial in s in the denominator, 

where s is the Laplace operator. Oscillatory systems are characteristic of second-order 

systems, where the oscillations are controlled by a damping factor (£,).

Table 1 summarizes these models and their transfer functions. There are many 

other process models that describe particular features seen in empirical modeling. 

Examples include lead-lag models that approximate differentiation, and inverse response 

models that describe processes that have an initial response opposite to the final process 

change. Specific mathematical model development depends on the actual process 

response curve.

Table 1

Mathematical Process Models and Transfer Functions

Model Type Time Domain Representation Laplace Domain Representation

Gain

II 1 y(s) = Ku(s)

Integrator y(t) = fu(t)dt t \ u (s)y(s) =
s

Time Delay j— ii <“
F 1 CD y(s) = e-0su(s)

First-Order Lag
dy T. 

x— + y = Ku 
dt

y(s) -  u(s) 
xs + 1

Second-Order x2 d Y + 2x^ dy + y = Ku 
dt dt

y(s) = 2 2 o s :  . u(s)
x s +2x^s + l

The fundamental idea behind model predictive control is to use information 

generated by a model of a controllable process to control the process variables as close to 

the target or set point as possible, or to control the entire process to a specific objective.
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Therefore, the process model is the most critical component of a model predictive control 

system. Dynamic models are frequently used to describe process behavior over a period 

of time and predict future values of the controlled signals based on current controller 

output and feed forward signals. The controller output is typically calculated such that 

the process variables follow a desired trajectory.

Several requirements must be met to successfully apply a model-based control 

strategy. Rivera (1999a) indicates that these include:

1. The system must be internally stable. Bounded inputs to the control system 

must result in bounded outputs elsewhere in the control system.

2. The system must be proper. The controller must not differentiate step changes 

(e.g., avoid subjecting step inputs to pure derivative action).

3. The system must be causal. The controller must not require prediction, i.e., it 

must rely on past and current measurements of the process.

One of the most common models used to describe real industrial processes is a 

combination of the first-order lag model and the time delay model called the first-order 

plus deadtime (FOPDT) model. It describes the open-loop response of many process 

systems. Equation 4 shows the mathematical model.

Ke~0s
PV = ^ - C V  (4)

TS +  1

where,
K: process gain
0: process deadtime
t: process time constant
s: Laplace operator
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For a first-order plus deadtime process, the process model is based on the following 

three parameters:

1. Deadtime is the elapsed time from when the control variable is modified until 

the initial reaction to that modification is seen in the process variable.

2. Time constant is defined as the amount of time required for the process 

variable to reach 63.2% of its steady-state value as a result of a change to the control 

variable. It is a measurement of how fast the process variable will approach steady-state 

after the initial deadtime period.

3. Process gain is the ratio of the magnitude of the resultant steady-state change 

in the process variable to a step change in the control variable (Equation 5).

Gain(K) =
%APV
%ACV

(5)

6 3 '

ControlControl Output
Process Variable

« Time Constant Time

>

^ D e a d  Time

Figure 5. Parameters for a first-order plus deadtime process model.
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A FOPDT mathematical model is perhaps the most common process model in the 

food and beverage industry. For most processes this model is simply developed using 

empirical data. The temperature control loop for the sugar cooking process that is the 

focus of this research is one such process. There are several model-based algorithms 

capable of controlling this system. An overview of four of these methods is discussed in 

the following section. Additional details on model-based algorithms can be found in 

Entech Control Engineering Inc (1993), Bequette (1998), and Isaksson (1999).

All of the model-based predictive control algorithms discussed in this research 

follow the general block diagram shown in Figure 6 and are developed based on the 

parameters shown in Figure 5. The particular control algorithms vary between the APC 

methods, but the control structure remains consistent.

CV PV
K >K >

Estimated Effect o f Disturbances (de)

Plant 
Process (P)

Process 
Model (PM)

Model-Based 
Controller (C)

Figure 6. Model-based controller block diagram.

Model State Feedback Control

Model state feedback (MSF) control provides a practical way of implementing 

model-based controls systems. The MSF algorithm has the advantages of relative ease of
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design for totally decoupled control, simplicity of its implementation, its flexibility with 

regard to specifying control system behavior when controls saturate or are lost by 

equipment malfunction or by being placed into manual operation, and its ability to be 

tuned either on-line or off-line. The algorithm was developed by to overcome the 

practical limitations of internal model control application. The limitations center on the 

inability of the internal model control algorithm to handle control effort constraints, such 

as a valve being limited to 80% of its full-open range. The MSF algorithm accounts for 

the actual control efforts applied, rather than determining the control based only on the 

disturbance estimate and the set point, as is the case with the internal model control 

algorithm.

Mhatre and Brosilow (n.d.) have shown that in MSF, the control efforts are 

generated through a linear combination of both past and present model states. This can 

make the computing power for on-line control effort computation orders of magnitude 

less than that of other MPC algorithms that use on-line optimization or objective 

functions to compute the control efforts. Substantial operating efficiency gains are also 

achievable by allowing for a single algorithm to control all the units of integrated 

processes, even when units have widely varying time constants. Operational flexibility is 

maintained with the MSF algorithm because of its ability to allow both control efforts and 

outputs to be conveniently switched between automatic and manual operation.

Another advantage of the MSF algorithm is that even though it gives exactly the 

same control efforts as the lead-lag implementation of an internal model control system in 

the absence of control effort saturation, it does not require explicit inversion of the
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process model. The MSF structure automatically compensates for past control effort 

saturation because the model states from which the control effort is computed always 

reflect the applied control. While the MSF structure automatically compensates for past 

control effort saturation, it does not automatically compensate for future control effort 

saturation. A small filter time constant relative to the process time constant can cause the 

algorithm to fail to compensate for the possibility of future control effort saturation. This 

can result in highly oscillatory responses. However, with the MSF algorithm it is a 

relatively simple task to temporarily adjust the MSF filter time constant on-line to bring 

the controls within the constraint set. Future control efforts can be compensated for by 

either using an algorithm that projects controls into the future assuming that disturbances 

remain constant, such as in most MPC algorithms, or by selecting the filter time constant 

large enough so that future control effort saturation does not cause problems (Brosilow & 

Joseph, 2002). The derivations of the model state feedback algorithm and the filter time 

constant calculations are given in Appendix A.

Commercially Available Model Predictive Control Solutions

“It is fair to say that at the process unit level, model-based predictive control is the 

de facto standard technology for advanced control and optimization. It is effective in the 

majority of cases” (Dormer, 1998, p. 4). There are several proven MPC products on the 

market with hundreds of applications worldwide, as noted by Chia and Lefkowitz (1997), 

Blevins (2001) and Hartman (2002). This section will briefly identify and describe three 

such products. These particular products were used in this research for comparison with 

the PLC-based MSF implementation developed for the sugar cooker PLC.
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ControlSoft MANTRA®. MANTRA® is designed as a process control software 

package without any hardware dependence. According to ControlSoft, Inc. (2000), it 

brings the power of a distributed control system (DCS) to the PC/PLC world and allows 

end users to easily configure complex control strategies. From constructing, editing, and 

configuring control loops to monitoring, tuning and optimizing, the software offers all the 

powerful features associated with a DCS. Among its unique features, the product offers 

self-tuning PID and model predictive controls. MANTRA® is a complete, modular 

control system consisting of powerful CPUs, a mix of intelligent analog and digital I/O 

modules, and bundled engineering and application software which includes control logic 

programming, HMI, and loop optimization tools. The controller supports both local and 

remote I/O links, and is peer-to-peer network-ready on Ethernet.

The model predictive features of MANTRA® are based on the internal model 

control (IMC) algorithm. The EMC programming block is used to control a single process 

variable by manipulating a single controller output (similar to a PID control block). The 

EMC controller has an advantage over PED controller when the process has a large 

deadtime or long time constant. The IMC provides predictive control on an error signal 

calculated from the process variable and set point values compared with the output of an 

internal model of the process. The Coordinated Control (CC) programming block uses 

multiple IMC models to control a single process variable by manipulating as many as 

three different controller outputs. The goal of the CC block is two-fold. First, the block 

needs to reject any disturbances to the process. Second, to optimize the three controller 

outputs for long-term steady-state control (ControlSoft, Inc. 2000).
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In implementing IMC control, the control effort is chosen so that the model outputs 

are forced to follow desired trajectories. The algorithm assumes that there are no control 

effort constraints, and that the disturbances and set points will remain constant during the 

current sampling interval. The estimate is updated each sampling interval. While this 

may potentially cause control effort saturation, the advantage of IMC is the ease with 

which it can be designed to achieve desired behavior (e.g., non-interaction) and tuned to 

accommodate anticipated modeling errors.

The desirable features of EMC are that the control designer can tailor the response as 

needed, and know how the control system will respond in the absence of control effort 

constraints and modeling errors. When modeling errors do occur, they can be 

compensated by slowing the control effort response, without changing the process 

characteristics (e.g., overdamping the response). Further, if the designer has some 

knowledge of the process variability then timing methods for the IMC controller can be 

applied to assure stability and performance. The major disadvantage of IMC is in dealing 

with control effort constraints. Hitting constraints can cause the standard lead-lag 

implementation to yield responses that are very sluggish, or have significant overshoot 

followed by a sluggish return to set point, or exhibit a pseudo inverse response, all 

depending on the current operating point and the tuning of the controller (Coulibaly,

Maiti, & Brosilow 1992). Coulibaly et al. (1992) and Rivera (1999b) give a complete 

derivation of the IMC algorithm.

The MANTRA® product has been successfully implemented in a wide variety of 

industries and applications. Within the food and beverage sector the author has seen

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



47

MANTRA® applied to complex temperature profile control on extruders and final 

product moisture control in drying operations. Both systems suffer from deadtime issues 

as well as interacting variables. The controller successfully overcame these issues.

Universal Dynamics BrainWave®. The BrainWave® controller is an adaptive 

model-based controller that is designed to outperform PID controllers on deadtime 

dominant processes or processes with interactions and feed forward variables. The 

BrainWave® algorithm learns the process response to specified control actions. It then 

uses a model of this response to predict control actions that will drive the system to 

achieve and maintain process set points as quickly as possible.

The BrainWave® controller uses discrete time Laguerre functions to recursively 

determine at each time step a liner model of the process. The on-line Laguerre based 

identification algorithm has a number of parameters that are predetermined for the 

designer in order to minimize design efforts. A simple recursive least-squares estimation 

is used to choose the best fit of the Laguerre network that matches the process dynamic 

response, and to determine each individual Laguerre orthonormal parameter term. An 

essential issue is that the Laguerre state space that models the process can reflect only a 

self-regulating, or stable, dynamic system response (Huzmezan et al., 1999).

The main practical advantage of this methodology is the minimal amount of prior 

knowledge required to commission a process control loop. Essentially a rough estimate 

of the time delay, the dominant time constant and the process gain are all that are required 

to design the control system. This greatly reduces the time for setup and commissioning.
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There are several theoretical advantages gained from the use of an orthonoimal 

series representation of process dynamics. The Laguerre model is an output-error 

structure, is linear in its parameters, and preserves convexity for the identification 

problem. This allows the use of a simple recursive least-squares algorithm to generate the 

control output. The use of an orthonormal series representation also effectively 

eliminates, or greatly reduces parameter drift due to the influence of unmodeled 

dynamics. The model complexity can be easily changed on-line with minimal disruption 

to the process. This is a very difficult thing to do with a transfer function 

implementation. The Laguerre model is stable as long as the unmodeled dynamics are 

stable. There are also some downsides to using an orthonormal series in adaptive control. 

One problem is the loss of physical insight to the process. Poles and within some limits, 

zeros are usually easy to interpret, and are well known to control engineers. However, it 

is difficult to give a Laguerre spectrum such immediate physical interpretation. Another 

problem comes from the use of an unstructured model. This issue arises when the 

frequency content of the excitation signal used during identification phase is incompatible 

with the choice of the Laguerre pole and the process dynamics. This can result in 

unwanted artifacts in the identified response (Gough, 2003). A detailed derivation of the 

BrainWave® algorithm can be found in Huzmezan et al. (1999).

Typical BrainWave® applications in the food and beverage industry include color 

control of a product during the roasting process, final product moisture control of drying 

operations, and feed rate balancing and disturbance rejection on a production line. The
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BrainWave® controller was able to successfully decouple the process interactions and 

control for deadtime in these applications.

Pavilion Process Perfecter®. Artificial neural networks (ANN) are noted as being 

the second best approach to control system design. A controller design based on 

fundamental physical principles mathematical model is the best method (Helps & Griffen, 

1994). ANNs represent a set of powerful mathematical techniques for modeling, control 

and optimization, in which models learn process behavior directly from process data. The 

Process Perfecter® controller uses an ANN based model of the process to control the 

output actuators. Most MPC applications rely on linear dynamic models of the process, 

even though most processes are non-linear. This approach is acceptable when the process 

operates at a single set point and the controller is mainly used to reject system 

disturbances. When the process set point is not static, such as in many chemical and food 

processing applications, linear MPC systems have difficulty making the transition from 

one set point to another, resulting in poor control performance. The non-linear ANN 

model used by Process Perfecter® provides better control over these non-linear regions.

Unmeasured disturbances are common in industrial processes due to external 

influences that cannot be controlled such as ambient humidity, wear on bearings or 

product flow rates in adjacent equipment. These disturbances frequently have significant 

effects on process outputs and controllability. In such cases, process control efforts often 

cannot be accurately predicted from the independent process input variables alone. To 

enhance prediction accuracy, a common ANN modeling practice is to include dependent 

process output variables as inputs to the model. Including these variables almost always
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benefits prediction accuracy, and is generally acceptable if  the model is used only for 

prediction. However, the process gains necessary for optimization, sensitivity analysis 

and other process characterizations are almost always incorrect in these models. Process 

Perfecter® overcomes this issue by using a newly developed ANN called the Focused 

Attention Neural Network (FANN) to allow steady-state models to obtain accurate 

predictions and gains in the presence of unmeasured disturbances. The FANN 

architecture uses dependent process variables as feed forward estimations of unmeasured 

disturbances. These estimates are used together with the independent variables as inputs 

to the ANN model. This allows the process gains to be correctly calculated as a function 

of both the feed forward variables (i.e., disturbances) and the independent variables. An 

expansive overview of the FANN architecture is found in Keeler, Hartman, and Piche 

(1996).

The quantity and quality of process data ultimately determines the structure of an 

ANN model. According to Piche, Sayyar-Rodsari, Johnson, and Gerules (2000), two 

types of data are readily available in the process industries:

1. Historical data. The values of the inputs and outputs of most processes are 

saved at regular intervals to a database. Most processing companies retain this historical 

data associated with their plant for several years.

2. Plant test data. Open-loop plant testing is a well-accepted practice for 

determining the process dynamics of an MPC application. Most open-loop tests are 

performed by manipulating a single input, then waiting until the process settles to a 

steady state. Multiple input moves may improve the quality of the dynamic models.
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The Process Perfecter® controller uses an empirical, linear dynamic model 

developed using the step test data. Historical data is used to build a non-linear steady- 

state model. An advanced form of gain scheduling is then used to combine the linear 

dynamic and non-linear steady-state models to compute the MPC control output. 

Typically the historical data was not used in model development because it was hard to 

extract and was collected under closed-loop conditions, thus removing the dynamic 

nature of the process. But relying only on step test data means that only linear dynamic 

models can be developed. Historical data is typically not useful for developing dynamic 

models. However, the addition of the historical data allows for non-linear steady-state 

model development showing the relationship between the inputs and the outputs for 

varying operating conditions.

Developing process models using ANNs is a very time intensive task. This has the 

effect of significantly increasing the cost of an installed solution. Because of this high 

cost, Process Perfecter® is typically not used for regulatory control, but rather is used for 

process optimization. Additionally, Process Perfecter® has found the most success in the 

petrochemical industries where there is a very high return on investment due to high 

margin products. However, Process Perfecter® has been successfully implemented in a 

variety of other industries as well. In the food and beverage industry the author has used 

this technology to control and optimize final product moisture in spray dryers and 

ammonia compressor deployment in large refrigeration plants.
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Looking Forward to A PLC-Based Model Predictive Controller

All of the commercially available model-based controllers are PC-based. Because 

these do not run on the standard industrial control platform (i.e., the PLC) the control 

system requires additional hardware, software and communications to perform the 

advanced control functions. Because the PC is used as the platform for the APC 

algorithms, there are several benefits seen with the direct PLC implementation that are 

not achievable with these commercial applications. The benefits of the PLC-based 

solution include:

1. No external hardware (such as a PC) required

2. No additional software required

3. No communications (such as OPC) required

4. Easier to maintain at the plant level

5. Reduced implementation costs

The realization of these benefits will be discussed in detail in Chapter 5.

As previously stated, the PLC is the accepted industrial platform for robust control 

algorithm execution. Currently the standard control algorithm used in the PLC is the PID 

controller. When this control algorithm is insufficient for accurately controlling a 

process, an advanced process control system may be required. The ability to directly

replace the PID controller in the PLC with an APC control scheme can provide the

benefits listed above. The study outlined in the next chapters implements the model 

predictive control functionality directly on a PLC with the model state feedback algorithm 

using a combination of ladder logic and function block programming.
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Model-Based Controller Tuning

As with PID control, a model-based controller must be properly tuned to achieve 

optimal operation. Several techniques have been developed for tuning MPC controllers, 

based on specific objectives. These can be found in Stryczek (1996); Shridhar and 

Cooper (1998); and Wojszni, Blevins, Gudaz, and Mehta (2001). In each case, the 

tuning is achieved by adjusting the gain, deadtime and time constant values appropriately.

Summary

This chapter has briefly discussed some of the key aspects of process control in the 

food and beverage industry. The ubiquitous nature of the PLC-based implementation of 

the PID controller was established, along with some of the limitations of the PID 

algorithm to real industrial processes. Various advanced process control techniques have 

been developed over the years to address these limitations. One such APC technique is 

model-based or model predictive control. The MPC solution is based on a mathematical 

model of the system under test. The model is typically derived from empirical data 

generated during step tests. One such model-based algorithm is the model state feedback.

Several commercial MPC software packages are available for developing model- 

based control solutions. These commercial packages have the distinct disadvantage of 

being PC-based rather than being implemented on a PLC, the industry standard control 

platform. The application of a model-based controller directly on a PLC would have the 

advantages of requiring less additional hardware, software and communications 

protocols. This research looks at the development of the model state feedback algorithm 

implemented directly on a PLC.
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CHAPTER 3 

RESEARCH METHODS 

Model predictive controllers use a mathematical model of the process to predict the 

effects of the current control actions. The ability to model where the process is going to 

be and how the process variables will react to the control actions allows the controller to 

aggressively move the process to achieve the desired process parameters. This chapter 

overviews the sugar cooking process used in this study, and the various control 

algorithms applied. The development of the model used for the predictive controllers will 

be discussed, as well as the key issues in designing and implementing each control 

strategy. The methods for collecting the process data will also be outlined.

The design of this study was experimental. The goal of the study was to implement 

and analyze three commercial and one experimental model predictive control algorithms 

for a sugar cooking process. To accomplish this, a Hohberger sugar cooker was used as 

the test system on which the control algorithms were applied. The sugar cooker was 

controlled by a standard industrial PLC that also served to collect the process data 

generated during the experiment trials.

The experimental trials followed a procedure whereby the sugar cooker was 

individually controlled by each of the MPC control paradigms, as well as by a standard 

PID control algorithm. During each trial, a predefined sequence of process tests was 

performed. The process temperature set point, the modulating steam valve position, the 

actual process temperature, and the product feed rate were collected, recorded, and stored 

for each trial at a one second acquisition rate.
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Process Description 

The high-boil sugar cooking process starts by mixing an 1,800 pound batch of 

product consisting of com syrup, water and selected dry ingredients in a steam-jacketed 

mixing tank. The product inside the preblend mixing tank is heated to a target 

temperature of 170°F and contains approximately 12% moisture (see Figure 7).

Steam

Preblend
Tank

Heat
Exchanger

- *  Steam Condensate

Pump
Preheater

PT1 TT5 TT3 TT4

TT2

PT2

TT<5

TT1- Product Feed Temp 
TT2- Pie Heater Product Exit Temp 
TT3- Main Heat Exchanger Exit Temp 
T T 4  Bridge Temp 
TT5- Steam SupplyTemp 
TT6- Condensate Temp 
PT1- Steam Supply Pressure 
PT2- Main Heat Exchanger Pressure

Figure 7. Sugar cooker process flow diagram (reprint of Figure 1).

After the syrup mixture has reached the 170°F target, it is pumped from the steam- 

jacketed mixing tank through a preheater that raises the product temperature to 

approximately 220°F (±4°F). The preheater reduces the heat transfer duty of the cooker 

heat exchanger. The product is then pumped to the Hohberger cooker heat exchanger
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section. A Waukesha positive displacement pump running at 83 RPM is used to pump 

the syrup mixture. The product velocity in the tubes is 0.111 ft/sec. At this pump speed 

8.5 pounds per minute of syrup mixture is delivered to the Hohberger cooker. The 

Hohberger cooker consists of two main sections: (a) a heat exchanger is used to elevate 

the product temperature to the desired set point, and (b) a vacuum chamber is used to 

assist in removing product moisture.

The heat exchanger is a shell and tube style heat exchanger with a rating of 150 psi 

at 400°F for both the shell and tube. The heat exchanger is engineered to take product at 

220°F and produce 20 pounds per minute of product at a final cook temperature in the 

274°F range. For the research trials the 8.5 pounds per minute delivery rate to the heat 

exchanger section resulted in approximately a 31.5 second resident time as the product 

traveled through the heat exchanger. A steam line is plumbed to the heat exchanger and 

serves as the heat media. It is metered to the heat exchanger through a Worcester steam- 

modulating flow valve. The steam-modulating flow valve is equipped with a positioner 

that provides valve position feedback with a resolution of 0.1%. By controlling the 

position of the steam-modulating flow valve, the Hohberger heat exchanger shell pressure 

can be directly controlled. High-boil product temperature is a function of the heat 

exchanger shell pressure. As the steam valve opens the shell side of the cooker heat 

exchanger is pressurized with saturated steam. For a feed pump speed of 83 RPM, 

experience has shown that a cooker pressure of 78.5 psi (which corresponds to a saturated 

steam temperature of 323°F) provides enough temperature differential to obtain the 

necessary heat transfer to reach a cooked sugar temperature of 274°F. When the process
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is run in the manual mode the operator uses a saturated steam table to determine the 

steam valve position required to achieve the necessary cook temperature. For a clean heat 

exchanger and any given feed pump speed there will be a unique cooker pressure (and a 

corresponding unique saturated steam temperature) to reach a cooked sugar temperature 

of274°F.

A rapid start can cause the steam valve to open momentarily to 100%. This leads to 

a layer of overcooked or brown sugar getting burned onto the exchanger tube walls, 

which causes fouling. To visualize this, consider the illustration in Figure 8. Three tubes 

are shown in cross-section. Laminar flow is illustrated in the top tube, with a velocity 

profile that is zero at the tube wall and maximum in mid tube.

Figure 8. Temperature profiles of the heat exchanger tubes.
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A temperature profile with low heat flux is illustrated in the middle tube. This 

might correspond to an exit temperature of 270°F. Note that there are temperatures above 

270°F near the wall.

A temperature profile with high heat flux is illustrated in the bottom tube. This 

might correspond to an exit temperature of more than 280°F, which is known to cause 

fouling. Note that now the temperature near the tube wall is much higher than the flow- 

averaged temperature of 280°F. This causes brown (burned) sugar and fouling. Fouling 

increases the heat transfer coefficient from the steam to the sugar, requiring higher steam 

temperatures (i.e., pressures) to achieve 274°F. A minimum startup time of five minutes 

was set for this application in order to avoid the potential for fouling.

A product temperature RTD with 0.1 °F accuracy is positioned 12 inches from the 

exit end of the heat exchanger and provides feedback on the product final cook 

temperature. Product exiting the heat exchanger is gravity fed over a weir into an 

atmospheric separation chamber (shaped like a bowl) positioned along side the heat 

exchanger section. Mounted directly below this holding chamber is a second chamber 

almost identical in size and shape to the top holding chamber. An access hole exists 

between the two chambers and a vertical plug valve is modulated to increase or decrease 

the amount of product flow, via gravity, from the upper chamber to the lower chamber. 

The lower chamber is under vacuum in the 6-12 inches of water range. As product drops 

into the lower chamber, additional moisture is removed with vacuum. The target
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moisture is 3.2%. The product is gravity fed from the lower chamber to a positive 

displacement pump that transfers the high-boil product to further processing.

The system steam header pressure was set at a minimum operating point of 110 psi 

to provide optimum system stability. A lower steam header pressure would not provide 

enough energy to adequately control the sugar syrup cooking process. The process steam 

was controlled via a Worcester Pulse Air HI modulating valve with encoder position 

feedback mounted in the cooker steam supply line.

Process Parameters

There are several process parameters that define the control system. The process set 

point (SP) is the target for the process variable. For the Hohberger cooker in this 

application the SP was 274°F. The process variable (PV) is the variable being controlled 

by the system. In this application the PV was temperature in degrees Fahrenheit. The 

process control variable (CV) is the output from the control system to the actuator. In this 

application the CV was the steam valve position (open) in percent. The measured process 

disturbance variables (DV) are the parameters that are measured and included as feed 

forward variables to the process controller. In this application there is only one DV, the 

feed rate (measured as pump speed) in RPM. The unmeasured process disturbance 

variables (dV) are the parameters that are typically not measured by the system controller, 

and thus not accounted for in the control system. For this particular system one dV is 

measured for off-line analysis. This dV is the cookers internal steam pressure in pounds 

per square inch. However, the steam pressure is not accounted for in the control system, 

and so remains a true dV from a control perspective. Attempts were made to hold all
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other potential disturbance variables, such as product moisture and operational 

constraints, constant throughout the trials.

Temperature Control Loop

The primary goal of the sugar cooking process control was to maintain a constant 

temperature at the bridge RTD (TT4). The temperature recorded at RTD TT4 was 

regarded as the process variable (PVt) for the temperature control loop. To obtain the 

desired cook temperature (temperature set point SPt), the controller sent a signal to the 

modulating steam valve positioned in the steam line supplied to the cooker heat 

exchanger section. Steam valve position was designated as the temperature control loop 

control variable (CVr). It was the variable that the controller was manipulating in order 

to maintain a precise process output relative to the process set point (SPt).

Pressure Control Loop

An alternate control method for maintaining system cook temperature is to control 

the system pressure. An electronic pressure transmitter (PT2) mounted in the vent line 

recorded the heat exchanger internal vessel pressure. The pressure recorded at transmitter 

PT2 was regarded as the process variable (PVp) for the pressure control loop. To 

indirectly obtain a desired cook temperature, a pressure control loop was used to maintain 

a predetermined pressure set point (SPp). The pressure control loop generated a signal 

that was sent to the same modulating steam valve as with the temperature control loop.

As with the temperature control loop, steam valve position was designated as the pressure 

control loop control variable (CVp).
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Research Temperature Control Method

Note that the temperature and pressure control options are mutually exclusive as 

only one can be in control of the modulating steam valve at any given time. For this 

application the researcher focused mainly on direct temperature measurement and control 

rather than controlling temperature via pressure measurement and control2. Therefore, 

throughout the remainder of this document the system variables will be referred to 

without the temperature subscript (for example CV instead of CVj). However, for clarity 

when discussing pressure control, the subscript will be used (for example CVp).

During operation the process is generally maintained at a constant production feed 

rate and must quickly react to environmental and product changes that disturb the process 

control system. The major exception to this occurs when the downstream equipment 

conditions change due to unexpected stoppages or increased production rate 

requirements. During these events the Hohberger cooker is required to adjust the 

production feed rate to compensate and maintain a rate equal to the downstream 

equipment. Maximum changes in production feed rate of ±25% are possible, though 

typical feed rate changes are between 5% and 10%.

The main concern for the system operator is to quickly achieve and then maintain a 

desired temperature set point while minimally overshooting the set point during the start­

up ramp. The desired temperature of 274°F is optimal for the boiled sugar as it creates a 

candy that is clear and flavorful. Any temperature above 285°F is not acceptable as the

2 The exception to this was Process Perfecter®. That controller used pressure control for starting the 
process and then switched to temperature control, as described in the appropriate section on page 89.
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candy turns dark brown and tastes burned. Temperatures below 268°F lead to a cloudy 

candy without satisfactory taste. Additionally, the final moisture specification can be too 

high and product quality compromises such as texture variations due to insufficient 

caramelization may occur. The best range for temperature is between 273°F and 275°F. 

Maintaining this two-degree range had proven difficult for the existing control system 

operation and had caused the test duration to sometimes be shortened due to a lack of in­

specification sugar. Finally, if the product temperature rises too quickly, the product may 

bum onto the inside of the tubes, causing the heat exchanger to lose its heat transfer 

characteristics. Temperature limits were set at ±5°F deviation from set point.

Controller Implementation

Figure 9 shows the overall system block diagram for the sugar cooking process.

The system is comprised of a PLC; an operator interface; an industrial PC used for MPC 

control, programming, and data acquisition; and the sugar cooker as depicted in Figure 7. 

The various communication protocols used throughout the system are also shown.

Process

MPC - RSLogix PC

DeviceNet - I/O
TCP/IP

Control Panel

Figure 9. Sugar cooking process system diagram.
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Controller Interface

Each PC-based process controller was required to interface with the existing PLC- 

based control system according to the following criteria:

1. Communications were to be established to interface with the Allen-Bradley

ControlLogix® PLC using Allen-Bradley’s RSLinx® OPC server. An Allen Bradley 6181 

industrial PC equipped with the Windows NT® 4.0 (Service pack 3) operating system was 

provided to run the APC application software. The OPC server was configured for a 5 

second update interval. Table 2 lists the control and instrumentation tags configured on 

the OPC server.

Table 2

OPC Group and Item Structure

Group
Group
Type APC Tags PLC Tags

HOHInput Input, PLC Watchdog PLC Watchdog Timer.ACC
Polling Manual Mode Status N22_PV_STATUS [0]. 10

Mode Status A PC C ontrolO N
Set Point APC_TEMP_SP_FINAL
Process Variable APC_Hoh_Bridge_TEMP_TT 4
Control Variable APC_Steam_V alve_Pos_Actual
Tieback
Feed Forward Variable APC_Feed_Pump_RPM_CMD
Disturbance Variable A P C V  essel_Steam_PRES_PT2

HOHOutput Output, Watchdog APC_Heart_Beat
Notify Control Variable APC_V alve_Position_CMD
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2. An existing Allen-Bradley PanelView® 1000 touchscreen control panel was 

used to enable the interface between the operator and the process/controller. The 

PanelView® 1000 communicated with the ControlLogix® PLC Ethernet port using 

TCP/IP protocol. The operator entered the following parameters and commands from the 

control panel:

• The process set point (final product temperature of 274°F).

• The selected control mode (PID, MPC, or Manual) for the product 

temperature loop in the PLC logic.

Each MPC controller supplied the following interface with the existing PLC-based 

control system:

1. The MPC controller provided to the PLC the following control signals:

• The command output signal for the heat exchanger’s steam supply 

modulating valve.

• A heartbeat pulse. The heartbeat was a pulse train with a 50% duty cycle 

and a 10 second period. It was generated and set to the PLC to allow the 

PLC to verify communication with the MPC controller. If the heartbeat 

pulse was lost the PLC automatically switched to PLC-based PID 

control.

2. The PLC provided to the MPC controller the following essential functionality 

to provide graceful startup and shutdown of the MPC controller:

• The process set point (final product temperature of 274°F).
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• A request for MPC control.

• Bumpless transfer and set point tracking. PLC programming ensured 

proper (bumpless) switching between control modes. If MPC was 

switched on, the currently measured value for a PV became the new set 

point for the controller. This meant that the current process situation 

was frozen, and that no sudden automatic changes would happen. It was 

then up to the Operator to put in new set points, if needed. When MPC 

was switched off, the last position of the CV was be copied into the 

existing controller, effectively keeping the process where it was (set 

point tracking).

Test Method and Analysis Criteria

All controller trials on the sugar cooker were conducted with the technical 

engineering purpose of evaluating the overall accuracy of the model-based controllers 

used in this research for advanced regulatory control. The overall responses of quickly 

achieving product set point after start-up, and maintaining product temperature at a 

desired set point after the introduction of a product feed rate disturbance were main 

technical evaluation parameters for the study. Each potential solution was evaluated 

based on a set of fixed criteria, as outlined below.

To objectively evaluate controller performance the following objectives were 

established and measurable parameters were recorded:
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1. Before the controller was initiated, the process was allowed to stabilize. The 

steam valve was moved to 30% open and TT4 was monitored until the temperature was 

approximately 220°F.

2. After PID/MPC control had been requested, the controller automatically 

ramped up the product temperature to 274°F. The goal was to do this in less than 15 

minutes, but not less than five minutes. The actual response time for each trial was 

recorded.

3. The process was then held at the steady-state condition for approximately ten 

minutes. During this time the controller was evaluated on its ability to maintain a steady- 

state discharge product temperature at the bridge (TT4) of 274°F (±1 °F on average). A 

constant product feed rate was assumed.

4. Disturbance model tests were performed once the controller showed that it 

could hold the process at the steady-state condition. The controller was required to 

maintain a discharge product temperature at the bridge (TT4) of 274°F (±1°F on average, 

with a maximum deviation of ±5°F) while the product feed rate was varied by 

approximately +25% in a prescribed test pattern. System disturbances were introduced by 

altering the product feed rate through the heat exchanger. The feed rate was manually 

increased in two approximately 12% intervals, to 93 RPM and 103 RPM. At each 

interval the process was allowed to stabilize and then evaluated on its ability to maintain 

the process variable at the set point. The feed rate was then returned to the original speed 

and the process was allowed to stabilize before it was manually decreased in two
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approximately 12% intervals, to 73 RPM and 63 RPM. At each interval the process was 

again allowed to stabilize, then evaluated on its ability to maintain the process variable at 

the set point. Finally, the feed rate was returned to the original speed and the process 

again stabilized and evaluated.

5. The controller was evaluated on its ability to demonstrate consistent start-up 

without fouling.

PID control response was recorded and used as a baseline for comparison against all 

four model-based controllers. The data from the individual trials was recorded using the 

standard on-line data logging functions in Allen-Bradley’s RSLogix® 5000 programming 

software. The data analysis will be presented in Chapter 4.

PLC-Based PID Temperature Control

The first method employed to control the sugar cooking temperature was a standard 

PID (Proportional, Integral, Derivative) instruction in the PLC ladder logic code. The 

cooker and associated equipment were ultimately controlled using Allen-Bradley’s 

ControlLogix® hardware platform with communications to distributed field I/O devices 

over a DeviceNet® network. The DeviceNet® network communicated with Allen-Bradley 

1794 DeviceNet® distributed field I/O and served as the link to the Hohberger cooker 

analog and digital I/O points. The central ControlLogix® hardware platform also 

included an Ethernet/IP network link to communicate to higher-level computer-based 

systems. PLC ladder logic code for the Logix® 5550 processor was written using Allen- 

Bradley’s RSLogix® 5000 software (version 10.00). DeviceNet® network configuration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



68

was established using Allen-Bradley’s RSNetWorx® for DeviceNet® configuration 

software (version 4.01).

The PID instruction utilized in the PLC, like any traditional PID controller, has the 

limited capability of monitoring only one PV and controlling only one output or CV at a 

time. The PID instruction continuously calculates the process error based on the present 

value of the system process variable relative to the SP. Additionally, the PID instruction 

has no practical way of interpreting a long process deadtime that may be naturally 

inherent in the system. As a result, the process error continues to increase during the 

deadtime, which in turn causes the PID to continue to drive the CV well beyond what is 

required to reach the SP once the deadtime has passed. For the Hohberger cooking 

application this eventually lead to a severe temperature overshoot condition. To limit the 

amount of inevitable overshoot, an upper limit constraint was configured in the PID 

instruction logic. Additionally, the PID instruction cannot successfully predict how a 

randomly occurring measured (or unmeasured) disturbance will affect a future system PV 

value.

The ControlLogix® used the parallel PID controller configuration. The controller 

was setup for direct acting, dependent control with no biasing and a 0.25 second update 

frequency. The integral term was defined in repeats per second and the derivative term 

was defined in minutes. In order to avoid over cooking the product, the PID controller 

output was limited to a maximum of 55% open. It was also found that a controller output 

less than 30% open could not further cool the product due to the input from the preheater
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that held the product at 220°F. Therefore the PHD controller output was clamped at a 

minimum of 30% open.

A ramp phase was programmed into the PID controller for implementation during 

the initial temperature rise to set point. The ramp function was used to prevent steam 

pressure saturation which caused the steam-modulating valve to fully open. A fully open 

valve would have added too much energy to the cooker and caused the temperature to rise 

too rapidly resulting in a loss of control. The ramp function increased the temperature set 

point in 4°F increments from 230°F (the temperature at the preheater) up to the set point. 

When the temperature of the batch was stable for 15 seconds, the next incremental 

increase was implemented.

The overall cooking process displayed a non-linear response in heating the sugar 

product from its initial temperature to its final temperature. A 5% steam valve change 

produced a different degree of temperature change depending on what temperature range 

of the process was being examined. An attempt was made to reduce the effect of the 

system non-linear gain by writing a basic gain schedule in the PLC code. This amounted 

to using the current PV value to decide what gain values the PID instruction would use to 

calculate the CV move. As the process variable increased to different predefined stages, a 

new set point and set of proportional, integral, and derivative parameters were written to 

PID gain registers in the PLC PID instruction. For a valve position between 30% and 

40% moderate acting PID parameters were used to bring the temperature to within 

approximately 4°F of the set point. Slow acting PID parameters were used for a valve 

position between 40% and 50% to conservatively bring the temperature the rest of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

way up to the set point with minimum overshoot. Fast acting PID parameters were then 

used to maintain the set point during steady-state operation.

PID Loop Tuning

A key element for any PID controller is proper tuning. Well-tuned PID loop control 

results in tighter tolerances in quality, reduced scrap and reduced downtime. Without the 

correct proportional, integral and derivative gains the controller will be unstable and will 

not be able to meet the control objective. There are several methods for acquiring correct 

PID parameters. It was not the purpose of this research to investigate these methods. 

Rather, ControlSoft’s INTUNE® PID tuning software package was used to calculate an 

effective value for proportional, integral and derivative gain used in the PID instruction. 

INTUNE® is a collection of software tools that are used to start-up, diagnose and 

maintain the health of PID loops.

The initial, tuned PID controller results on the Hohberger cooker showed that PID 

control was not acceptable for driving the process to the temperature set point within the 

specified time and maintaining an overshoot limit of 5°F. It took about 25 minutes to 

stabilize the temperature within +2°F of SP. Disturbances were generated in order to test 

PID control. The feed rate was increased to 93 RPM then dropped to 73 RPM. The 

increase of feed rate caused a temperature drop to 269°F (from 274°F). The drop in feed 

rate caused a large temperature increase and as the temperature reached and passed 

281°F, the system was forced to shut down to avoid fouling the cooker. From this result, 

it was clear that PID controller could not compensate for the disturbances. It was, 

therefore, determined that advanced process control techniques were required to maintain
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the specified control of the Hohberger cooker throughout its range of operating 

conditions.

It should be noted that prior to any advanced process control investigation, proper 

PID tuning must be established to determine whether the physical system is able to be 

controlled using standard PID methods. Advanced control techniques should only be 

implemented when standard control techniques (such as PID) cannot perform acceptably. 

Using advanced control techniques when standard control techniques are sufficient incurs 

unwarranted additional system design and implementation costs.

Model-Based Temperature Control 

The remaining software control platforms used in this research study were 

developed using model predictive control principles. The process model is based on 

differential equations that represent the dynamic relationship between the control actions 

and the resulting process variable responses. The first step in developing an accurate 

process model is to generate the model parameters. The mathematical structure of the 

model and the model parameters are obtained by performing a series of off-line step tests 

to the physical process. This is typically accomplished by manually changing the 

controller output (CV) while observing the response of the PV and recording the process 

deadtime, time constant and gain. Tuning is then achieved by adjusting these model 

parameters on-line.

A well-tuned MPC application will make adjustments to the process similar to those 

of an experienced operator -  a few moves initially followed by a wait period with little or 

no further moves. If there were no disturbances acting on the process the differential
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equations would exactly predict the process response to the controlled moves, and could 

be resolved to determine the exact control moves required to achieve the process goal. 

However, due to naturally occurring disturbances there will always be some error 

between the set point and the process variable. Any error in the process state is corrected 

by feedback from the process variable measurements each control interval. This 

compounded feedback, from the prediction model and from the process measurements, is 

part of what makes model predictive control so robust. The result is that the dynamic 

models need not be infinitely precise for the controller to function well.

The first set of step tests was performed to discover the relationship between the 

product temperature and steam valve position. This involved manually commanding the 

steam valve position to move a specified percentage of its full range while measuring the 

cooker temperature response. For the trials a steam valve change was performed and the 

change in the sugar temperature at RTD TT4 was recorded. Figure 10 shows the results 

of these step tests. These resulted in an average process gain of approximately 3, an 

average process deadtime of approximately 30 to 40 seconds, and a process time constant 

of approximately 100 to 120 seconds.

The second set of step tests determined the relationship between the product 

temperature and the feed forward disturbance expressed as a feed rate in RPM. For the 

trials this disturbance was achieved by varying the speed of the Waukesha feed pump that 

pumped product to the inlet of the heat exchanger section. By varying feed pump speed, 

the change in product feed rate simulated a random system disturbance. As seen in 

Figure 11, this resulted in a gain of approximately -0.8, with a deadtime for the feed
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forward model of approximately 50 seconds, and a time constant of approximately 75 

seconds.
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Figure 11. Feed forward model parameter bump tests.
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These step tests were performed at the beginning of the MPC trials and were used in 

developing each of the various control strategies. However, there is no global design 

solution that exists for model predictive controllers. Each controller must be customized 

to achieve the desired behavior based on the characteristics of both the process and the 

applied MPC algorithm. There are several performance issues that need to be considered 

for each application. These include how aggressively and how long the controller should 

work to eliminate errors. An aggressive controller can rapidly minimize process errors, 

but requires dramatic control actions to do so. This can rapidly wear out or even damage 

control actuators. A less aggressive controller spares the actuator at the expense of 

rapidly eliminating the process errors. For the sugar cooking process the initial 

temperature rise time was limited to a minimum of five minutes. A more aggressive 

temperature increase would cause the product to bum and be unusable.

The bridge temperature was directly affected by changing steam pressure and mass 

flow of syrup through the system. The syrup feed pump speed was a good indication of 

the syrup mass flow through the sugar cooker. Using the data from the step tests of the 

sugar cooker, the transfer functions in Equations 6 and 7 were identified to model the 

process. These transfer functions represented all model information available to design, 

tune and integrate the controllers.

(6>

T^ r a e " ' PS (7)
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where,
Tsp: set point temperature control
Tff: feed forward disturbance temperature control
P: steam pressure
PS: pump speed
s: Laplace operator

MANTRA® Temperature Control

After the manually initiated step response tests were conducted on the sugar cooker 

system, MANTRA® Application Developer was used to program an advanced system 

controller for the sugar cooking process. Numerous input blocks were programmed to 

bring in all pertinent system variables such as the process variable (bridge temperature at 

TT4) and the product feed rate derived from the feed pump speed. A Ramp function 

block was programmed to maintain temperature control and reduce the possibility of 

temperature overshoot. The Ramp function block varied the heat exchanger steam valve 

position (system control variable output) by 2% every three minutes. The Ramp function 

remained in control until TT4 reached 260°F, or until the steam valve position achieved 

50% open for a total of five consecutive minutes. At the completion of the Ramp 

function, the control automatically switched over to the Coordinated Control function 

block. Figure 12 shows the block diagram for the MANTRA® application.

For the sugar cooker trials, the Coordinated Control function block was chosen as 

the focal point of the control strategy. The Coordinated Control function block is used to 

control a single process variable using multiple controller outputs in automatic mode 

based on the PV - SP deviation, internal models and tuning. The controller used a first 

order lag with deadtime internal process model and first order filters (total of up to 12
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tuning parameters) to calculate the controlled output. Each controlled output is calculated 

such that the process variable follows a first order lag trajectory when approaching the set 

point value. In the case of controlling sugar temperature, only one of the controller 

outputs was used. It was linked to the heat exchanger steam supply modulating valve.

i | f £ |m 9 P n
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Figure 12. MANTRA® controller block diagram.

The Coordinated Control function block required measured tuning values to be 

entered in the configuration table. These parameter values were the overall model gain, 

model deadtime, and model time constant. The previously recorded step response fit the 

curve of a first order system with an approximate process gain of 3.3, a deadtime value of 

30 seconds and a time constant value of 180 seconds. The overall system filter time 

constant was set at 50 seconds. The filter time constant determined the speed of the 

controller action.
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The Coordinated Control function block has the capability to monitor a random 

system disturbance and factor this value into the control algorithm output. The 

Coordinated Control function block converts a system disturbance to an overall feed 

forward gain. The feed forward gain is also defined by the deadtime, time constant and 

gain due to a step command in the feed rate. A feed forwarded value for deadtime of 80 

seconds, a time constant of 100 seconds and an overall process gain o f-0.45 were used 

based on the previously outlined step test results.

After configuring the MANTRA® controller, the system was placed on-line. A total 

of five trials were conducted and the data recorded. For specific details on the 

MANTRA® controller functions and implementation see ControlSoft, Inc. (2000). 

BrainWave® Temperature Control

For the sugar cooker trials, the BrainWave® software package was loaded on to the 

same PC on which the MANTRA® controller had been utilized. Figure 13 shows the 

general block diagram for the BrainWave® controller. Regarding integration, the 

BrainWave® controller does not have an associated software language protocol, so it did 

not have to be programmed to perform its control function. Instead of programming, 

there were three configuration steps that were required to place the controller online.

In step one, OPC communication links were established to allow data transfer between 

the PLC processor and the BrainWave® controller. The controller received status inputs 

from the system through the PLC for real system parameters such as the bridge product 

temperature TT4 (process variable PV) and the product feed rate derived from the product

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



78

feed pump speed (feed forward variable FF13). The controller CV output signal was 

mapped to the PLC output register for the steam-modulating valve. Additional links were 

configured as watchdog timers to warn the PLC if the controller inadvertently shutdown.

Feed Forwards 

0 0 0

Set Point
BrainWave

CV Main Plant 
(CV-PV)

Process Variable

Figure 13. BrainWave® controller block diagram.

Step two consisted of entering scaling values in a data conditioning dialog screen. 

In this screen data formats were established for all of the tags configured during step one. 

Each tag’s description was entered along with its raw value range, engineering value 

range and filtering criteria.

Step three required configuring parameter values for deadtime, time constant and 

process gain for both the steady-state model and the feed forward disturbance model.

3 The loop controller had the capability to monitor two additional feed forward variables, but in the sugar 
cooking trials these two feed forward variables were not used.
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These values were calculated from the manual step response curves generated in previous 

trials. For the main steady-state model the initial estimated values were 45 seconds for 

deadtime, 120 seconds for the time constant, and an approximate process gain of 2.6. For 

the feed forward model the initial estimated values were 50 seconds for deadtime, 75 

seconds for the time constant, and an approximate process gain o f-0.65. Based on the 

entered parameter values, BrainWave® automatically chose a model from a predefined 

group of over a hundred models to best control the process. For specific details on the 

BrainWave® controller and its implementation see Universal Dynamics Technologies Inc. 

(2000).

BrainWave® was then placed on-line to control the process. A total of five 

commissioning trials were conducted and the data from the trials were recorded. During 

the commissioning trials, the controller successfully predicted the position for the steam 

valve in order to reach the desired set point of 274°F for the bridge temperature (TT4). 

Steam valve positioning was based entirely on the selected model and did not require a 

ramp function, timing function, or control based indirectly on pressure feedback from the 

heat exchanger.

Process Perfecter® Temperature Control

The final commercial controller implemented was Process Perfecter® from Pavilion 

Technologies. It was also loaded on to the same PC as the previous software packages.

As with the other MPC controllers, the step response models in Process Perfecter® 

include the process gain, the time delay before the PV responds, and a dynamic 

representation of how fast the PV moves to the next steady-state.
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The overall Pavilion control strategy was divided into two distinct components. 

First, a pressure control model assisted by a preset timing function was used to control the 

initial increase of the sugar product temperature. When the preset six-minute timer 

expired, system control automatically switched from the pressure control model to a 

temperature control model. The temperature control dynamic model accounted for 

disturbance changes in the system such as the feed rate change produced by varying the 

speed of the product feed pump.

The logic for controlling the preset timing function and toggling between pressure 

and temperature control is administered through a Runtime Application Engine® (RAE®). 

RAE® applications are used as real-time moderators that can implement logic, equations 

or different models. Specifically in the cooker project, two RAE® applications enabled a 

one-button start of the sugar cooker process. Process Perfecter® gets instruction from one 

of the RAE® applications and starts up on pressure control with a desired pressure set 

point target. After a specified wait time for pressure to reach target, the other RAE® 

application triggers Process Perfecter® to switch to temperature control with a desired 

target. Timing is also changed for temperature control at this point.

During the plant tests a nonlinear behavior was evident for the responses of pressure 

and temperature to CV changes. A nonlinear gain model using an artificial neural 

network was built from the data from those tests. Process Perfecter® is the only one of the 

MPC solutions with the ability to directly implement a non-linear model. The responses 

to changes in feed rate were noted to be linear and were implemented as a constant gain 

model.
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Five trials were conducted using the Process Perfecter® controller. The data was 

recorded for off-line analysis with the other MPC solutions. For specifics on controller 

design using Process Perfecter® see Pavilion Technologies, Inc. (2002).

Model State Feedback Temperature Control

The main goal of the model state feedback controller was to demonstrate the 

capabilities of the ControlLogix® PLC to control temperature in the sugar cooker using 

the standard function block library. The focus was on linear model predictive feedback 

and feed forward control. The implementation consisted of two function block diagrams, 

one main ladder code routine, and input and output ladder routines. The function block 

diagrams provided the control output calculations in automatic and manual (tracking) 

modes. The main ladder routine addressed internal parameter calculations, initializations, 

bumpless transfer and standard interface to the controller configuration parameters. The 

input and output routines provided interface to the process variables. See Appendix B for 

ladder logic routines and Appendix C for function block routines.

The function block diagram of the controller implementation is shown on Figure 14, 

and the control parameters are given in Table 3. The functionality of the controller is 

similar to a Smith Predictor or Internal Model Controller with model predictive feed 

forward compensation.
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DV
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Pd1

MPC

FFFM Pd2

where,
MPC: model predictive process controller
P: physical plant process to be controlled
M: mathematical process model
FM: compensator
FF: feed forward
HLL: high-low limiter
Pdl,Pd2: process disturbance lags 

Figure 14. Model state feedback controller block diagram.

Table 3

MSF Controller Parameters

Parameter Value Units

Feedback Gain 2.9 °F / %
Feedback Time Constant 100 Seconds
Feedback Deadtime 25 Seconds
Feed Forward Gain -0.8 °F / RPM
Feed Forward Time Constant 75 Seconds
Feed Forward Deadtime 40 Seconds
Filter Time Constant 85 Seconds
CV Minimum 0 Percent
CV Maximum 100 Percent
CV Rate of Change Limit 100 % / Second

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



83

The advanced control routines were programmed as subroutines in the 

ControlLogix® program and were set up as a periodic task. Periodic tasks in 

ControlLogix® execute program subroutines deterministically. Deterministic execution 

of a program assures that the elapsed time between two subsequent executions of the 

program is kept constant by the processor. Deterministic execution is assumed in the 

implementation and must be assured when the program is executed so that the deadtime 

array timing is maintained. One-second controller sampling time was selected for the 

sugar cooker controller. The model predictive control program may be copied or 

duplicated to control as many loops as needed within a single ControlLogix® processor so 

long as deterministic execution is assured, i.e., without overloading the processor.

After the control algorithm was developed, five commissioning trials were made.

As with the other solutions, the process was driven to 274°F, and the response time and 

overshoot were recorded. The controller was then evaluated on its ability to maintain the 

process at set point during feed rate disturbances.

Summary

This chapter presented a detailed description of the sugar cooking process, 

including the physical constraints and operational considerations that must be observed in 

order to produce an acceptable product. Traditional PID control of this process has 

proven inadequate based on production experience and analytical tests. Advanced 

process control techniques using a model of the sugar cooking system as the basis for 

control should be able to provide better control, in terms of both set point tracking and 

disturbance rejection, than PID control. Three commercial, PC-based MPC packages and
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one new PLC-based MPC solution were separately integrated into the sugar cooking 

process and tested for accuracy of the control objectives.

The MPC solutions were designed using actual process parameters obtained from 

open-loop step tests. The solutions were then integrated using standard communication 

protocols to send and receive data from the sugar cooking PLC. Necessary system 

information was tracked to provide a smooth transition between control modes and to 

ensure that the control algorithms were properly operating. In addition, an appropriate 

operator interface was developed as an add-on screen to the existing control panel.

A prescribed set of process tests were performed with each controller wherein the 

process was rapidly brought up to temperature from a known start condition in order to 

assess the set point tracking capability of each control method. A series of disturbance 

tests were then initiated with each controller to determine the controller’s ability to reject 

disturbances and maintain the process set point. The data from these tests were collected 

using the on-line data logging functionality of the PLC programming software. The 

results of the process tests for each controller system and the analysis are presented in 

Chapter 4.
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CHAPTER 4 

PRESENTATION AND ANALYSIS OF DATA

This chapter presents the results of the research on applying model state feedback 

advanced control techniques directly on a ControlLogix® PLC to control an industrial 

sugar cooking process. The model state feedback MPC method was compared to the 

results of four industry accepted control methods applied to the same sugar cooking 

process. These methods included standard PLC-based PID control and three PC-based, 

commercially available MPC controllers. The PC-based controllers were ControlSoft’s 

MANTRA® controller, Universal Dynamics’ BrainWave® controller, and Pavilion 

Technologies’ Process Perfecter®.

The purpose of this study was to determine the viability of applying MPC 

techniques directly on an industrial PLC. Six research hypotheses were developed as a 

result. The research hypotheses were:

1. It takes significantly less time for the PLC-based model state feedback 

implementation of the MPC controller to reach the final product temperature set point 

than it does for standard PLC-based PID control applied to the same industrial sugar 

cooker.

2. The PLC-based model state feedback implementation of the MPC controller 

experiences less temperature overshoot due to the initial product temperature rise than the 

standard PID control solution.

3. There is a smaller deviation in temperature around the set point, in the 

presence of system disturbances, during steady-state operation for the PLC-based model
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state feedback implementation of the MPC controller than there is for the standard PhD 

control solution.

4. The temperature rise time is shorter for the PLC-based model state feedback 

implementation of the MPC controller than it is for the PC-based commercial MPC 

solutions applied to the industrial sugar cooker.

5. The PLC-based model state feedback implementation of the MPC controller 

exhibits less temperature overshoot as a result of the initial product temperature rise than 

the PC-based commercial MPC solutions.

6. The deviation in temperature around the set point, in the presence of system 

disturbances, is smaller for the PLC-based model state feedback implementation of the 

MPC controller than it is for the PC-based commercial MPC solutions.

To summarize, these hypotheses stated that the MSF control implementation would 

perform better than the other control methods in regards to temperature rise time, initial 

temperature overshoot, and disturbance rejection during steady-state operation. Various 

statistics were used to test these hypotheses, as delineated in this chapter.

The standard PID control response was recorded and used as a baseline for 

comparison against all four model-based controllers. As expected, all four model-based 

controllers performed to specification. The standard PhD control did not. There were two 

main areas on which the overall comparative analysis focused. These were the dynamic 

response of each strategy at start-up (temperature rise time and initial temperature 

overshoot), and the steady-state disturbance rejection capabilities of each strategy based 

on process feed rate changes. The comparison results are discussed in detail below.
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Method of Data Collection and Analysis 

The production run test set for each control strategy consisted of one trial set point 

tracking start-up run and four complete trial runs. Each complete trial run covered 

approximately two hours and included both dynamic set point tracking and disturbance 

rejection during steady-state conditions. Five different control strategies were 

investigated. The test data were thus collected from 25 trial production runs at one- 

second intervals.

Based on the production trials, summary statistics were calculated for rise time and 

overshoot during set point tracking, and for settling time and temperature deviation 

during disturbance rejection tests for each of the control strategies. The integrated 

squared error and normal error distribution were also determined for each control 

strategy. Reference Appendix D for the tabulated production trial data.

The research hypotheses were tested using analysis of variance (ANOVA). Tukey’s 

post hoc test for honestly significant difference comparisons and the summary statistics 

were used to explore the differences resulting from the ANOVA. A one-way ANOVA 

was used to analyze the dynamic response of temperature rise time for the control 

strategies. A second one-way ANOVA analyzed the temperature overshoot for the five 

control strategies. A two-way ANOVA was used to analyze steady-state disturbance 

rejection based on a preset pattern of feed rate changes for each control strategy.

Analysis of the Collected Data 

One of the most important aspects of process analysis is to have a clear 

understanding of what is to be achieved and how it will be measured. The goal of
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regulatory control is to maintain a controlled parameter at a specified set point. The 

performance criteria are centered on measuring the dynamic responses of the controlled 

parameter while attempting to achieve the set point, and the steady-state response while 

attempting to maintain the set point. According to Universal Dynamics Technologies Inc. 

(1998b), the most important criterion for measuring steady-state performance is offset 

from set point. In measuring dynamic performance there are three common criteria, these 

are peak error, rise time and settling time. The peak error is the maximum deviation from 

set point due to a transient response. Rise time is how long it takes the process to reach 

the set point the first time. Settling time is the amount of time required for the process 

variable to settle within a specific dead band around the set point after a process 

disturbance or change.

Another important performance criterion is integrated squared error (ISE). ISE is 

the square of the total net deviation from set point, and is calculated by integrating the 

square of the instantaneous error between the set point and the process variable (see 

Equation 8). The algorithm weights large errors more heavily than small errors, but does 

not differentiate between negative and positive errors. Unlike algorithms that average 

offset errors, the ISE returns a large value for oscillating loops. Dividing the total ISE by 

the total number of error samples normalizes the ISE. Normalized ISE was calculated 

and reported in this research.

(8)
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Performance of Final PIP Control

The PID control strategy did not meet the control specification for both the 

temperature set point tracking phase as the product temperature was initially ramped up to 

the set point, and the disturbance rejection phase as the product feed rate was changed. 

Figure 15 shows a typical production run using the PID controller. The system showed 

unacceptable overshoot and oscillation. Over the five trials the controller achieved an 

average start up time of 28.75 minutes and recorded a maximum initial overshoot (due to 

temperature ramping) of 11°F with an average overshoot of 8.6°F. Due to the limited run 

time available for each trial, the PID controller was only able to run in a steady-state 

condition for approximately five minutes. However, during this time the controller did 

maintain control of the process to within ±1°F as required.
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Figure 15. Standard PID system response.
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The PID control strategy also did not meet the specified control response to the feed 

rate disturbances. The disturbance response to product temperature resulting from the 

product feed rate showed an average settling time of 5.8 minutes with an average 

deviation of 2.8°F and a maximum deviation of 8.3°F. The normalized integrated 

squared error was 12.8. Due to the limited run time available for each trial, the feed rate 

changes often had to be made before the system fully stabilized and returned to steady- 

state conditions. This was especially true when the feed rate was decreased. As a result, 

the data may be skewed favorably for the PID control strategy. The posted response time 

would have been greater had the run lengths afforded the necessary time for the system to 

fully stabilize. Additionally, the integrated squared error would have been higher. A 

visual inspection of the production run data shows that indeed the controller was not 

capable of controlling the system within the specified parameters.

As the product feed rate was decreased below the nominal feed rate, the disturbance 

rejection control during steady-state operation showed that the PID controller started to 

experience instability. Instability occurs when the controller loses the ability to reject a 

disturbance or maintain control of the process at the set point. As a result, the process 

variable oscillations continue to increase to an unacceptable level. For the Hohberger 

cooker, a decrease in feed pump speed resulted in a different disturbance process gain. 

This is due to the non-linear heating dynamics of the cooker. The PID controller could 

not compensate for the differing process gain between increasing and decreasing the 

product feed rate. The PID controller was tuned to compensate for product feed rate 

increases. As a result, the process never fully stabilized when the product feed rate was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



91

decreased. Additionally, the operator was unable to let the process run for an extended 

period of time at the lowest feed rate because the initial process variable oscillations were 

too large at that speed. Had the process been allowed to continue running in that 

condition, the product temperature would have exceeded acceptable limits and caused 

fouling.

It should also be noted that the product temperature in the cooker rose to 

unacceptable levels during both the initial temperature ramping phase and the feed rate 

disturbance phase. With temperatures exceeding 280°F the possibility existed that the 

process cooker tubes fouled, as well as the product cooked at these temperatures being 

unusable. In typical plant operations human intervention would have prevented the 

product from reaching these temperatures. However, for the purposes of these trials the 

PID controller was allowed to fully control the process, regardless of the product 

temperature.

Performance of Final MANTRA® Control

The MANTRA® control strategy exhibited marginally acceptable control 

performance in regards to the specified dynamic response parameters. The MANTRA® 

control strategy achieved an average process rise time of 14.5 minutes and recorded a 

maximum initial temperature overshoot (due to temperature ramping) of 0.4°F with an 

average temperature overshoot of 0.2°F. The system response from the final trial is 

shown in Figure 16.
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Figure 16. ControlSoft MANTRA® system response.

The MANTRA® control strategy met the control specification in regards to feed rate 

disturbances. The disturbance response in product temperature as a result of the product 

feed rate showed an average settling time of 4.3 minutes with an average deviation of 

1,2°F and a maximum deviation of 4.1 °F. The normalized integrated squared error was 

2 .2 .

The MANTRA® controller did bring the product temperature up to set point with 

less than the specified maximum overshoot and within the specified rise time, however, 

the start up time only had a margin of approximately 0.5 minutes. The extended time for 

MANTRA® to achieve temperature set point can be attributed to how the control strategy 

was applied. A ramp function block with a pre-determined timing sequence was used to 

control the initial heating profile. This approach was used to simplify modeling the non­

linear response of the steam valve position.
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Additionally, MANTRA® exhibited less variation to an increase in product feed rate 

than in reacting to a decrease in product feed rate. A limitation with the MANTRA® 

controller is that only one set of process gains can be applied per feed forward model in 

the controller. The control strategy used with the Hohberger cooker tuned the model 

predictive parameters to reject an increase in feed rate with the assumption that a decrease 

in feed rate would have the same gain parameters. While this was an appropriate 

assumption for the MANTRA® control strategy, it resulted in less precise control during 

decreases in product feed rate.

Performance of Final BrainWave® Control

The BrainWave® control strategy achieved an average rise time of 5.5 minutes and 

recorded a maximum initial temperature overshoot of 3.0°F with an average overshoot of 

1.7°F. The BrainWave® controller did cause some temperature overshoot for a time 

period of approximately 90 seconds, but the controller also took advantage of a model 

that ramped the process up in the fastest time. This was the fastest response time of all 

the APC strategies employed. Visual inspection showed that the product did not foul the 

cooker tubes as a result of the fast temperature rise. However, it is assumed that a slightly 

faster rise time would result in fouling. The system response from the final trial is shown 

in Figure 17.

The disturbance rejection response in product temperature, as a result of the product 

feed rate changes, showed an immediate response (settling time = 0) with an average 

deviation of 1.0°F and a maximum deviation from set point of 3.2°F. The normalized 

integrated squared error was 1.1.
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Figure 17. Universal Dynamics BrainWave® system response.

The BrainWave® model took into account the non-linear gain characteristic of the 

steam valve position (control output). This meant that the controller would be flexible 

enough to adjust to different temperature set points and still maintain target performance. 

For extremely non-linear processes several sub-models may be programmed to 

compensate for the changing gain requirements over preset regions of control. For 

example, the valve range could be divided into pseudo-linear segments and each segment 

could then be controlled via distinct model parameters. Switching logic would be used to 

operate through the various gain regions.

Performance of Final Process Perfecter® Control

The Process Perfecter® control strategy achieved an average rise time of 8.4 minutes 

and recorded a maximum initial overshoot (due to temperature ramping) of 1.7°F with an
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average temperature overshoot of 1,4°F. The system response from the final trial is 

shown in Figure 18.
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Figure 18. Pavilion Technologies Process Perfecter® system response.

The disturbance response in product temperature as a result of the product feed rate 

changes recorded an immediate response with an average deviation of 0.8°F and a 

maximum deviation of 2.8°F. Note that the Process Perfecter® neural network models 

rejected the feed rate decreases better than any of the other APC strategies. The 

normalized integrated squared error was 0.8.

An examination of the recorded results, particularly the integrated squared error, 

shows that the dynamic models used in Process Perfecter® maintained the tightest control 

during feed rate disturbances. Better control of the process during a decrease in feed rate 

could have been achieved by developing a neural model for both an increase and a 

decrease in product feed rate. For this application the decrease in feed rate was not
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specifically targeted, but was still learned to some extent by the neural network models. 

Additionally, the dynamic properties of the constructed steady-state models would allow 

it to maintain acceptable control for any set point change throughout the entire non-linear 

region of the steam valve range.

Performance of Final Model State Feedback Control

The Model State Feedback control strategy achieved an average rise time of 6.6 

minutes and recorded a maximum initial overshoot (due to temperature ramping) of 2.9°F 

with an average overshoot of 2.3°F. The system response from the final trial is shown in 

Figure 19.
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Figure 19. Model state feedback system response.

The disturbance response in product temperature as a result of the product feed rate 

changes recorded an immediate response with an average deviation of 0.9°F and a
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maximum deviation of 4.2°F from set point. The normalized integrated squared error 

was 1.4.

The Model State Feedback (MSF) control strategy did not have the fastest, most 

accurate dynamic response, or the best disturbance rejection during steady-state 

operation. Visual inspection showed that it did meet the control specifications and was 

comparable to the other APC control strategies. As with the other regulatory-based APC 

methods, the MSF control strategy had more difficulty rejecting a decrease in product 

feed rate than in rejecting an increase in product feed rate, due to the process non- 

linearity.

Overall Performance Analysis

Figure 20 is a compilation of the individual performance graphs for each of the 

control strategies using a typical production run for each. This graphical comparison 

shows visually that the four MPC strategies significantly outperformed the standard PID 

control with gain scheduling. It additionally shows that the four MPC strategies 

performed similarly, and that each of them would be an acceptable strategy for the sugar 

cooker.

Figure 21 compares the normal distribution of error for each of the control strategies 

evaluated. When comparing recorded data, especially integrated squared error (see 

Figure 22), it is seen that Process Perfecter® performed with the most precise control. 

However, Process Perfecter® was not as accurate as the other methods; its control tended 

towards a lower operating temperature than specified by 0.4°F. The most accurate 

control was achieved by the MANTRA® controller, though it did not have as tight or
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responsive control as the other methods. It is apparent from these graphs that PID control 

was much less precise than the MPC strategies. It is also seen that the MPC strategies 

exhibited much tighter control than PID, resulting in less overall system error.
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Figure 20. Overall system response comparison.
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Figure 22. Integrated squared error comparison.

Analysis of the Hypotheses Tests 

Three analyses were performed to support the research hypotheses. The collected 

data was analyzed using the S-PLUS® Student Edition version 4.5 release 2 statistical 

software, published by International Thompson Publishing Company. The following test 

statistics were used:

1. A one-way fixed ANOVA was used to test for a difference in the mean rise 

times for the different control strategies at the a  = .05 significance level. Specific 

differences among treatments were examined using Tukey’s post hoc test for honestly 

significant difference comparisons. Summary statistics were then used to determine the 

direction of the observed differences.
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2. A one-way fixed ANOVA (a  = .05) was used to test for a difference in 

temperature overshoot as a result of the initial product temperature rise for the different 

control solutions. Again, the specific differences among treatments were examined using 

a Tukey’s post hoc test for honestly significant difference comparisons and summary 

statistics were used to determine the direction of the observed differences.

3. To test for a difference in deviation in temperature around the set point in the 

presence of system disturbances during steady-state operation for the different control 

solutions, two independent variables were examined. These were the control strategy and 

the product feed rate. The product feed rate was defined as the system disturbance, and 

was varied in a prescribed, step-wise fashion. A two-way ANOVA (a  = .05) was used. 

Both test method and feed rate were treated as fixed factors. The feed rate was treated as 

a fixed factor due to the fact that speed adjustments were only made in fixed increments 

based on the baseline speed. Only main effects were examined. The interactions were 

not examined because the independent variables were not manipulated simultaneously. A 

Tukey’s post hoc test for honestly significant difference comparisons and summary 

statistics were used to determine the direction of the observed differences.

Table 4 lists the dynamic control summary statistics calculated based on the 

production trials for each control strategy. The steady-state control summary statistics are 

shown in Table 5. The results of each hypothesis test are detailed in the following 

sections.
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Table 4

Application Strategy Dynamic Control Results and Comparison

Max. Initial
Method_____________M ftise_Time___ S D /q se Time___ Overshoot___ Overshoot SDpyershoot

PID 28.8 min. 2.5 min. 11.0°F 8.6°F 2.7°F
MANTRA® 14.5 min. 1.0 min. 0.4°F 0.2°F 0.12°F
BrainWave® 5.5 min. 0.29 min. 3.0°F 1.7°F 0.82°F
Perfecter® 8.4 min. 0.29 min. 1.7°F 1.4°F 0.45°F
MSF 6.6 min. 0.54 min. 2.9°F 2.3°F 0.39°F

Table 5

Application Strategy Steady-State Results and Comparison

Msettling Max.
Method Time Mfemp SDxemp MAbsErr SDAbs Err Deviation ISE

PID 5.8 min. 273.8°F 3.6°F 2.1°F 1.1°F 8.3°F 12.8
MANTRA® 4.3 min. 274.0°F 1.5°F 1.2°F 0.52°F 4.1°F 2.2
BrainWave® N/Aa 273.9°F 1.0°F 0.96°F 0.39°F 3.2°F 1.1
Perfecter® N/Aa 273.6°F 0.8°F 0.78°F 0.24°F 2.8°F 0.8
MSF N/Aa 274.1°F 1.2°F 0.86°F 0.36°F 4.2°F 1.4

a Process responded to disturbances too quickly to see a process lag.

Temperature Rise Time Hypothesis Test

Research Hypotheses 1 and 4 (Chapter 1, p. 5) were tested by running an ANOVA 

on the difference in the mean rise times for the five control strategies. The ANOVA 

showed that there was a highly significant difference between the different control 

strategies (F4f2o -  301.8,/? «  .05, Table 6).
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Table 6

Fixed Effects ANOVA Results fo r Temperature Rise Time

Source d f SS MS F _ P

Control Strategy 4 6640799 1660200 301.8238 p  « . 0 5
Residuals 2 0 110011 5501

The Tukey honestly significant difference comparison was used to generate 95% 

simultaneous confidence intervals for linear combinations of the control methods.

Tukey's method found no significant difference between model state feedback control and 

BrainWave® control, or between model state feedback control and Process Perfecter® 

control. All other control methods were determined to be different from one another at 

the .05 level (Tukey's, critical point = 2.99, Table 7).

Table 7

Tukey’s Post Hoc Test fo r Temperature Rise Time

Comparison______________Estimate_____Std. Error Lower Bound Upper Bound

PID - MANTRA® 853 46.9 713.0 993.0s
PID - BrainWave® 1400 46.9 1260.0 1540.0
PID - Perfecter® 1220 46.9 1080.0 1360.0
PID - MSF 1330 46.9 1190.0 1470.0
MANTRA® - BrainWave® 543 46.9 403.0 683.0
MANTRA®-Perfecter® 369 46.9 229.0 510.0
MANTRA®-MSF 476 46.9 336.0 616.0
BrainWave® - Perfecter® -174 46.9 -314.0 -33.2
BrainWave® - MSF -67 46.9 -207.0 73.4
Perfecter® - MSF 107 46.9 -33.8 247.0

a Comparisons differ at p < .05 in the Tukey honestly significant difference comparison.
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Based on the observed differences in Table 7, an examination of the mean rise time 

(Table 4) for each control strategy showed that the MSF, BrainWave®, and Process 

Perfecter® control methods reached the set point temperature faster than either standard 

PID control or MANTRA® control. Each of these methods, as well as the MANTRA® 

strategy, were within the required rise time criterion of 15 minutes. The PID control 

strategy was unable to achieve the required criterion.

Temperature Overshoot Hypothesis Test

A second ANOVA was run on the difference in the peak temperature overshoot for 

the five control strategies in order to address Research Hypotheses 2 and 5. The ANOVA 

showed a highly significant difference between the control strategies (F4 20 -  3 2 .5 3 ,/?«  

.05, Table 8).

Table 8

Fixed Effects ANOVA Results fo r  Temperature Overshoot

Source d f s s MS F P

Control Strategy 4 219.4536 54.86340 32.52822 p  « .0 5
Residuals 20 33.7328 1.68664

The Tukey honestly significant difference comparison was used to generate 95% 

simultaneous confidence intervals for linear combinations of the control methods. 

Tukey's method found significant differences only between PID control and each of the 

MPC control strategies (Tukey's, critical point = 2.99, Table 9). Significant differences 

were not observed between the different MPC strategies.
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Table 9

Tukey’s Post Hoc Test for Temperature Overshoot

Comparison Estimate Std. Error Lower Bound Upper Bound

PID - MANTRA® 8.38 0.821 5.92 10.8003
PID - BrainWave® 6.90 0.821 4.44 9.360a
PID - Perfecter® 7.24 0.821 4.78 9.700a
PID - MSF 6.36 0.821 3.90 8.820a
MANTRA® - BrainWave® -1.48 0.821 -3.94 0.978
MANTRA®-Perfecter® -1.14 0.821 -3.60 1.320
MANTRA®-MSF -2.02 0.821 -4.48 0.438
BrainWave® - Perfecter® 0.34 0.821 -2.12 2.800
BrainWave®-MSF -0.54 0.821 -3.00 1.920
Perfecter® - MSF -0.88 0.821 -3.34 1.580

a Comparisons differ at p < .05 in the Tukey honestly significant difference comparison.

An examination of the peak temperature overshoot for each control strategy showed 

that the PID controller experienced significantly more temperature overshoot than any of 

the MPC strategies as shown in Table 4. The PED control method experienced a 

maximum temperature overshoot of 11°F, and thus was unable to achieve the required 

criterion of less than 5°F temperature overshoot. Each of the MPC strategies did meet 

this criterion.

Feed Rate Disturbance Hypothesis Test

A two-way ANOVA was run to examine the disturbance rejection capabilities for 

the five control strategies in order to address Research Hypotheses 3 and 6. The ANOVA 

showed a highly significant difference between the control strategies (F4J 31 = 22.40,p  «  

.05, Table 10). The ANOVA also showed a significant difference between the speed 

disturbances (F4,131 = 3.26, p  = .014, Table 10).
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Table 10

Fixed Effects, 2-Way ANOVA Results fo r Feed Rate Disturbance

Source d f SS MS F  p

Control Strategy 4 31.10278 7.775696 22.40414 p « . 05
Speed 4 4.52304 1.130761 3.25806 0.013889
Residuals 131 45.46554 0.347065

The 95% simultaneous confidence intervals for linear combinations of the control 

methods were calculated using the Tukey honestly significant difference comparison. 

Significant differences between PID control and each of the MPC control strategies were 

observed (Tukey's, critical point = 2.77, Table 11). The MPC strategies did not show 

significant differences between each other in regards to rejecting feed rate disturbances. 

Table 11

Tukey’s Post Hoc Test for Feed Rate Disturbance Rejection

Comparison Estimate Std. Error Lower Bound Upper Bound

PID - MANTRA® 0.875 0.157 0.439 1.3 l a
PID - BrainWave® 1.11 0.157 0.675 1.55a
PID - Perfecter® 1.3 0.157 0.86 1.73a
PID - MSF 1.21 0.157 0.779 1.65a
MANTRA® - BrainWave® 0.236 0.157 -0.199 0.672
MANTRA® - Perfecter® 0.421 0.157 -0.0147 0.856
MANTRA®-MSF 0.34 0.157 -0.0959 0.775
BrainWave® - Perfecter® 0.185 0.157 -0.251 0.62
BrainWave®-MSF 0.104 0.157 -0.332 0.539
Perfecter® - MSF -0.0812 0.157 -0.517 0.354

a Comparisons differ at p < .05 in the Tukey honestly significant difference comparison.
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Confidence intervals for linear combinations of the feed rate changes were not 

examined. It was not important to evaluate one feed rate compared to another across all 

control strategies (for example 83 RPM for all methods vs. 103 RPM for all methods). In 

actual application a single control method would be implemented and would be required 

to perform to specification for any valid feed rate. It is not the case that multiple control 

methods would be applied to the process. Therefore, it was only important to observe 

differences in the control strategies across all feed rates.

Examination of mean absolute error, due to feed rate disturbances, (Table 5) for 

each control strategy showed that the PID controller experienced more temperature 

deviation than the MPC strategies. The PID control strategy was unable to achieve the 

required criterion of less than 1°F deviation on average. The MANTRA® controller was 

also unable to maintain and average deviation of less than 1°F, though it did experience 

significantly less average deviation than the PID controller. Each of the other MPC 

methods met this criterion.

It should be noted that for each ANOVA the variation in the PID controller was 

more than four times larger than the variation of the smallest MPC strategy variation for 

the variable under test. This violates the homogeneity of variance assumption. However, 

when groups are of equal sample size the ANOVA is typically robust enough to 

overcome this departure from homogeneity (Box, 1954).

Summary

Industrial sugar cooker production trials using five different control strategies were 

carried out. The control strategies included standard PLC-based PID control, three PC-
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based commercial MPC controllers, and PLC-based MPC control using the model state 

feedback algorithm. Statistical analyses were performed on the resulting data sets from 

each control strategy.

Analysis of the data showed that the PID control strategy was not able to meet the 

defined performance criteria. The PID controller did not successfully bring the product 

up to the set point temperature without significant overshoot within the required time. 

Additionally, the PID controller was not able to maintain the process set point within the 

required dead band during system disturbances.

All of the implemented MPC control strategies did meet the defined performance 

criteria. The data analysis also showed that there was not a significant difference in the 

operational results of the different MPC control strategies with regard to temperature 

overshoot and disturbance rejection during feed rate changes. A significant difference 

was demonstrated in rise time for the MANTRA® controller.

The hypotheses that the MSF control strategy would reach the final temperature 

faster, with less overshoot, and would reject system disturbances better than the PID 

controller were validated. However, the hypotheses that the MSF control strategy would 

outperform the three commercial MPC strategies for these same parameters were not 

proven. It was shown that the four MPC strategies operated similarly (i.e., no significant 

statistical differences) in regards to the performance criteria.
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

This study focused on the implementation of model predictive control techniques on 

an industrial sugar cooking process. The goal was to test an MPC solution directly on a 

PLC rather than on a PC. This study implemented and evaluated three PC-based, 

commercial MPC technologies for the sugar cooking process, and a new MPC 

implementation using a combination of ladder logic code and function blocks directly on 

Rockwell Automation’s Allen-Bradley ControlLogix® PLC. The implementation results 

from these MPC solutions outperformed traditional PLC-based PID control.

Additionally, the PLC-based MPC solution compared favorably to the PC-based 

commercial applications, though it did not outperform the commercial MPC strategies as 

hypothesized.

The results and data analysis reported in Chapter 4 provide several interesting 

insights into the use of model predictive control technologies, specifically as applied to 

the sugar cooking process. The following section reviews the experimental research 

carried out in this dissertation. Observations will be discussed, including both positive 

and negative outcomes resulting from the application of the MPC technologies used in 

this research study. System development issues for each MPC strategy will also be 

detailed. Conclusions will be drawn based on the specific research findings. 

Recommendations for further study and refinement will be made, along with a brief look 

at the industrial potential of the MSF algorithm implemented directly on the PLC as 

detailed in this research.
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Study Overview

The sugar cooking process mixed a batch of product consisting of com syrup, water 

and selected dry ingredients in a steam-jacketed mixing tank. The product inside the 

mixing tank was heated to 170°F. The syrup mixture was pumped from the tank through 

a preheater that raised the product temperature to approximately 220°F. A Waukesha 

positive displacement pump nominally running at 83 RPM was used to pump the syrup 

mixture to the Hohberger cooker heat exchanger section at a rate of 8.5 pounds per 

minute. The Hohberger cooker was a shell and tube style heat exchanger designed to take 

product at 220°F and produce a maximum of 20 pounds per minute of product at a final 

cook temperature of 274°F. A steam line served as the heating media for the cooker. 

Steam was metered to the heat exchanger through a Worcester steam-modulating flow 

valve. By controlling the position of the steam-modulating flow valve, the heat 

exchanger shell pressure was directly controlled. High-boil product temperature is a 

function of the heat exchanger shell pressure.

This study was done to test an alternate and superior control method to the PLC- 

based PID controller utilized on the sugar cooking process. The existing PID control 

solution was shown to be inadequate for controlling the dynamics of the sugar cooking 

process, or for rejecting process disturbances during steady-state operation. Model-based 

control strategies have been utilized throughout industry to overcome these control 

deficiencies seen in traditional PID controllers. The existing model-based controllers 

require a PC for operation rather than operating on the existing PLC. The additional 

hardware and software required for the MPC solution adds to the implementation cost,
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reducing the profitability, for the sugar cooker. Therefore, this study was additionally 

pursued to address shortfalls in the existing advanced process control solution 

possibilities. Although there are many commercially available MPC controllers for 

implementation on a stand-alone PC, to date there are no control packages for realizing 

model-based control techniques directly on the ubiquitous PLC.

The following model-based control strategies were evaluated in this research:

1. MANTRA® is an advanced control system from ControlSoft, Inc. It is a full­

blown, configurable control system with more than 90 function blocks, configurable 

faceplates, and function block programming. The MPC functionality is based on the 

internal model control algorithm.

2. BrainWave®, from Universal Dynamics Inc., is an advanced regulatory 

controller designed specifically to deal with deadtime dominant systems and systems with 

a high degree of variable interactions. The model incorporates feed forward signals to 

compensate for the variable interactions. While it is model based, the mathematical 

technique used allows the model to be updated during on-line, closed loop operation.

This means the models stay correct and change if the process does.

3. Pavilion Technologies’ Process Perfecter® is an artificial neural network based 

solution that offers fully dynamic models, simultaneous solution of multivariable control 

problems, and fully integrated optimization techniques to drive operations to maximum 

profit. It supports nonlinear process representation on any model parameter.

4. The model state feedback algorithm provides model predictive control 

functionality using a combination of ladder logic code and function block programming
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on the ControlLogix® PLC using the native PLC programming tools. The function blocks 

execute the model predictive functions. The ladder code provides for parameter 

assignments, auto-manual-track bumpless switching, controller initialization, 

communications, real-time parameter changes, fault handling, and redundancy-watchdog. 

Deterministic timing, as supported by periodic tasks in the ControlLogix® PLC, was 

required for accurate calculations.

Using these control strategies, the following research hypotheses were tested:

1. It takes significantly less time for the PLC-based model state feedback 

implementation of the MPC controller to reach the final product temperature set point 

than it does for standard PLC-based PHD control applied to the same industrial sugar 

cooker.

2. The PLC-based model state feedback implementation of the MPC controller 

experiences less temperature overshoot due to the initial product temperature rise than the 

standard PID control solution.

3. There is a smaller deviation in temperature around the set point, in the 

presence of system disturbances, during steady-state operation for the PLC-based model 

state feedback implementation of the MPC controller than there is for the standard PID 

control solution.

4. The temperature rise time is shorter for the PLC-based model state feedback 

implementation of the MPC controller than it is for the PC-based commercial MPC 

solutions applied to the industrial sugar cooker.
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5. The PLC-based model state feedback implementation of the MPC controller 

exhibits less temperature overshoot as a result of the initial product temperature rise than 

the PC-based commercial MPC solutions.

6. The deviation in temperature around the set point, in the presence of system 

disturbances, is smaller for the PLC-based model state feedback implementation of the 

MPC controller than it is for the PC-based commercial MPC solutions.

To summarize the hypotheses, there were three main areas on which the overall 

comparative analysis focused. These comparison areas were the dynamic response of 

each strategy at startup, including both temperature rise time and overshoot, and the 

steady-state disturbance rejection capabilities of each strategy. The comparison results 

are presented here.

Tests of the sugar cooking control strategies were performed wherein the process 

temperature was ramped up to the set point as quickly as possible while still maintaining 

control of the system and resulting in minimal temperature overshoot. A disturbance was 

then introduced to the process by changing feed rate in a predefined manner, during 

which the process controller was evaluated on its ability to reject the disturbance and 

maintain the process temperature at the set point. Each of the five control strategies was 

subjected to the same test procedure.

The test results showed that the MPC strategies controlled the sugar cooking 

process better than the traditional PID control method in regards to temperature rise time, 

temperature overshoot, and disturbance rejection based on feed rate disturbances. It was 

seen that the differences between the various MPC strategies was not significant relative
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to temperature overshoot and disturbance rejection. However, it was shown that the 

MANTRA® controller did not perform as well as the other MPC strategies for 

temperature rise time. Based on these results, Research Hypotheses 1-3 above were 

supported by the data. However, Hypotheses 4-6 were not supported. The PLC-based 

MPC strategy was shown to be comparable, but not superior, to the PC-based commercial 

MPC applications.

Constructive Observations 

There are several advantages to implementing model-based control techniques 

directly on the system PLC. This section discusses advantages discovered with this 

application of the model state feedback algorithm. Also noted are general advantages of 

model predictive control discovered as a result of this study.

One of the major advantages of the model state feedback control strategy employed 

directly on the PLC was the fact that no external communication protocols were required. 

Each of the other MPC control strategies required the communication protocols between 

the PLC and the PC to be properly configured prior to development and implementation. 

All three of the PC-based MPC strategies experienced difficulties during the 

communication configuration process that negatively affected development time. These 

difficulties were avoided with the PLC-based solution.

It should be noted that the internal steam pressure fluctuations of the shell and tube 

heat exchanger were not considered in any of the implemented control strategies. The 

pressure was assumed to be constant throughout the trials. However, the pressure did not 

remain constant during the trials, as shown by the disturbance variable (dV) in Figure 20
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(Chapter 4, p. 98). This variable was used as an unmeasured disturbance to the 

controllers to verify robustness; the actual vessel pressure was recorded for analytical 

purposes. The MPC strategies were shown to be robust by accurately controlling the 

process temperature without accounting for all of the process system disturbances, such 

as internal vessel pressure.

During the test runs, it was observed that the actual process dynamics were 

somewhat different than the model developed for the MPC strategies. The actual gain of 

the steam valve was lower than the calculated model gain; the dead time for feed rate was 

also shorter than calculated from the step tests. These parameters were not modified for 

the operational model parameters with any of the MPC strategies. This was for the 

purpose of testing the robustness of the MPC solutions. A good, robust MPC strategy 

should be able to handle reasonable modeling errors. In contrast, using incorrect PID 

parameters will cause a PID-based control system to become unstable. Acceptable 

performance from a model-based controller should be obtained simply by changing the 

tuning time constant (Chia & Lefkowitz, 1997). This robustness feature is critical for 

real-time plant applications, as often plant engineers may not have the time and resources 

to modify the selected model. The test cases in this study indicate that the MPC solutions 

were robust.

It is possible to tune any of the MPC strategies to target specific control responses. 

For example, if it were determined that no overshoot was preferable to a minimum startup 

time, provided that the startup time met the 15-minute requirement, then the controller 

could be tuned to ramp up to temperature more slowly and use the set point as a
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constraint rather than a target. Conversely, the controller could be tuned to ramp up to 

temperature as quickly as possible and allow some degree of overshoot if the goal is a 

rapid startup. This tuning capability is not constrained to the dynamic aspects of the 

control system. Particular control responses can be tuned for steady-state operation as 

well. To illustrate, the system could be tuned such that the set point is treated as a hard 

constraint rather than an operating target. This would cause the process to trend below 

the set point, but not exceed the set point on a feed rate change. No such specific control 

responses were targeted for any of the trial runs in this study.

Implementation Issues 

While the MPC strategies are much more accurate and capable of controlling 

systems that are deadtime dominant, have excessive noise profiles, contain interacting 

variables, and so forth, there are also a few disadvantages with this technology. One side 

effect of model-based control that is apparent throughout the various MPC trial runs is 

valve jitter. Jitter is when process actuator movements come in rapid succession. The 

valve (or other actuator) appears not to settle at a particular operating position. Jitter is a 

result of continuously predicting a new operating set point for the actuator, based on the 

process model, and subsequently commanding the actuator to move to this new set point. 

This causes increased wear on the mechanical components of the actuator, possibly 

resulting in increased maintenance requirements. It is possible to reduce jitter by 

lengthening the controller update interval. The slower the update interval, the less often 

the actuator will be commanded to move. However, slowing down the controller will 

also result in less accurate control. Considering the performance charts in Chapter 4 it is
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seen that the valve had considerably more jitter for the MPC solutions than it did for the 

PhD solution. However, it is these predictive actuator moves that allow the MPC 

strategies to maintain tighter control than the PhD controller.

Each control strategy exhibited poorer control when the feed rate was decreased, as 

opposed to increasing the feed rate. This was due to unexpected non-linear process 

dynamics. As stated in chapter one, the process was assumed to be linear. The 

controllers were designed based on this assumption. No specific efforts were made in 

this study to overcome this difficulty.

It was also noted that the control accuracy for all of the control strategies seemed to 

deteriorate throughout the day, likely due to process equipment heating. As the 

equipment was run continuously it tended to hold an increased amount of heat. This 

additional heat load changed the process characteristics, which caused increasing 

inefficiencies in each control strategy over the course of consecutive trials. It is believed 

that using the current ambient process equipment temperature as a feed forward variable 

in each of the control strategies would have solved this problem. Without this additional 

process information the controller had no way of compensating for the changes to the 

process model caused by heating.

System Development Characteristics 

While not part of the statistical analysis, system development characteristics are of 

key importance to the long-term implementation potential of each strategy. Advanced 

process control techniques are often able to control difficult processing systems better 

than conventional control algorithms. However, MPC strategies are not all targeted at
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controlling the same types of processes or providing the same development tools. 

MANTRA® is a viable software solution for deadtime and coordinated control problems 

of minimal size and complexity. It is also designed to be a complete control strategy, not 

just a model-based controller. BrainWave® provides an elegant replacement to difficult 

PID problems, including deadtime and coupled-variable problems. However, it is only 

designed for regulatory control. Process Perfecter® is most appropriate for large systems 

with multiple coupled actions and poor coordination of set points. It is typically used for 

system optimization problems. The model state feedback algorithm is a viable solution 

for single-output only systems, implemented directly on a ControlLogix® PLC, where 

space or cost is a factor. However, this solution requires extensive process and electrical 

engineering expertise to understand and modify.

Development time required to build and implement each separate control strategy is 

another important development characteristic. MANTRA® and BrainWave® performed 

well as regulatory controllers and each required less than one week engineering time to 

commission a trial for this project. The pre-established model bases allows for quicker 

integration with these two control packages. A distinct disadvantage of the artificial 

neural network based approach used by Pavilion was that it took a considerable amount 

of engineering effort to develop and implement the control strategy. A typical application 

takes from weeks to months of engineering time. The initial MSF strategy took 

considerable time to design, and required an in-depth understanding of control theory. 

However, similar future implementations of the MSF strategy will require a similar 

amount of time as the MANTRA® and BrainWave® solutions.
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Lastly, the cost of the developed system needs to be taken into account. The most 

cost effective control solution is one that can be applied directly on the PLC where no 

additional hardware or software is required, such as with PID control and the MSF 

algorithm in this research, and thus no additional system costs are incurred. The cost of 

other MPC solutions tends to vary in direct proportion to the strategy’s scope of control 

and capabilities. In this research the MANTRA® product was the least expensive PC- 

based solution at approximately $5,000 per control loop. The BrainWave® solution was 

list priced at approximately $20,000 per system, although this includes control 

capabilities for replacing up to four PID control loops. The most expensive, and most 

capable system, was Process Perfecter® at approximately $75,000 per installation for an 

unlimited system application. It should be noted that these prices are list prices for the 

software. Additional costs for hardware and engineering also need to be considered.

Conclusions

Based on the results of the study, it is concluded that the model state feedback 

algorithm may be successfully implemented on a ControlLogix® PLC to control an 

industrial shell and tube style heat exchanger applied to cooking sugar syrup used in 

confectionary products. The MSF controller exhibited superior operational results 

compared to the standard PID-based controller in regards to reduced temperature rise 

time, overshoot minimization, and feed rate disturbance rejection. The MSF model 

predictive controller compared favorably to the commercially available MPC strategies 

studied for these same parameters.
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Using an advanced control solution for the sugar cooking process resulted in several 

benefits, both financial and product related. These benefits included:

1. The tighter control limits reduced the amount of product that was wasted due 

to improper processing.

2. Energy usage was reduced due to less large temperature swings in the process.

3. More consistent product was produced that was closer to the target recipe.

4. The advanced automation reduced the amount of manual labor required to run 

the process.

5. More stable process control was established.

6. Process efficiency was increased.

Although the MSF solution was not found to perform superiorly compared to the 

PC-based MPC solutions, it was found to perform equally as well, thus making it a viable 

control solution for the industrial sugar cooker. Additional benefits were realized by 

implementing the advanced control solution directly on the ControlLogix® PLC. These 

included:

1. No external hardware (such as a PC) was required.

2. No additional programming software was required.

3. No special communications protocols (such as OPC) were required.

4. It was easier to maintain at the plant level because the solution was developed 

on a well-known platform using standard tools.

5. Implementation costs were significantly reduced due to the elimination of the

external hardware and software.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



120

Recommendations for Further Study 

The results of this study warrant the following recommendations for future research. 

First, it should be noted that the shell and tube type heat exchanger used in this research is 

only one type of industrial cooker, and that sugar cooking is only one cooking process. 

Another common cooker is a scrape surface heat exchanger. This type of cooker is 

commonly used for cooking dairy-based products. The operation of the scrape surface 

type cooker is very similar to the shell and tube style cooker. However, there are 

differences in the process dynamics as a result of the different mechanics in the system. 

The application of the PLC-based MSF algorithm to other types of industrial cookers and 

products is recommended.

As previously noted, the internal vessel pressure in the sugar cooker was considered 

constant and was not compensated in any of the control strategies. However, the recorded 

steam pressure was not constant. It is believed that the MPC strategies would have 

controlled the process temperature with even greater accuracy if the internal vessel 

pressure were used as a feed forward variable in the control scheme. It is recommended 

that the internal vessel pressure fluctuations be integrated into the MPC controllers, and 

system accuracy be reevaluated.

The temperature control for the sugar cooking process was unexpectedly found to 

be non-linear. However, the controllers were all designed based on a linear system. For 

each controller this resulted in process control degradation for feed rate reductions. It is 

believed that this is a solvable problem. It is recommended that for the Process 

Perfecter® system the artificial neural network models be trained to recognize and
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compensate for the non-linearity. It is recommended for the other MPC strategies that the 

control strategy be divided into two feed rate disturbance models, one for increasing feed 

rate and one for decreasing feed rate. The appropriate model algorithm would be applied 

depending on process conditions.

In order for the PLC-based MSF algorithm to become an efficient solution for 

widespread utilization, there needs to be some additional human interface tools 

developed. It is recommended that further study be commenced to develop an 

engineering interface that includes on-line model development, configuration tools for 

response targeting, and tuning tools for optimizing the installed controller. An operator 

interface should also be investigated. This interface should include typical operational 

interface tools to control the process, as well as financial tools to quantify the savings 

realized by utilizing the MPC strategy. The implementation of these interface tools may 

create a control package that can compete with the commercial PC-based MPC strategies.

Summary

It has been shown that model-based controllers can be used in specific processing 

applications to improve the existing control quality achieved using standard PID loop 

controllers. Model-based controllers can successfully control processes with relatively 

long response delays (deadtime) or processes that have randomly occurring disturbances 

such as changes in production rate. Other processes have controls that may frequently 

drift from a desired set point forcing system operators to use manual control to bring 

these processes back into correct specifications. Model predictive control can be used as 

a viable solution for these difficult control requirements.
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The model state feedback algorithm applied directly on an industrial PLC has 

successfully controlled the sugar cooking process with proficiency equal to the 

commercial PC-based strategies. This strategy has several benefits, such as requiring no 

external hardware and software, which results in less expensive implementation than the 

currently available commercial MPC strategies. It is recommended that this strategy be 

further developed and refined for general application throughout the food and beverage 

industry.
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In developing the model state feedback algorithm it is convenient to begin with the 

concept of a perfect controller. To do this it is assumed that there are no process 

disturbances or influences other than the external set point. A perfect controller is the 

exact inverse of the process to be controlled. Under these conditions the control system 

operates in open loop control. Equation A9 shows that the open loop transfer function 

equals one. Therefore the process variable follows the set point perfectly.

For model-based control the ideal model is a perfect replica of the process under 

control. For a first order lag plus deadtime process, such as the one found in this 

research, the model is determined by the process gain (K), time constant (t), and deadtime 

(0) as described in Chapter 2 and shown in Equation A10.

Again assuming a perfect controller, the model-based controller would be the 

inverse of the FOPDT model. However, inverting this model would result in two 

problems: (a) the inverse of the deadtime component generates an unrealizable prediction 

of future process disturbances or changes, and (b) the inverse of the (rs + 1) term in the 

numerator would require a pure differentiation of the process output that would result in 

excessive noise amplification and could potentially cause a numerical overflow or divide 

by zero error in the PLC. To generate a realizable controller the unrealizable demand that 

the controller would have to predict (anticipate) the operator’s intentions to change set

MPC = P '1 ■=> PV = (MPC • P)- SP (A9)

(A10)
TS +  1
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point in the future needs to be removed (Brosilow & Joseph, 2002). Equation A11 shows 

the closest realizable function to the FOPDT model inverse. In this controller, e is a 

tuning parameter chosen to avoid excessive noise amplification, compensate for modeling 

errors, and select the system response speed. Increasing e slows the response speed, 

while decreasing e increases the response speed. System robustness is increased with a 

higher the value of e (Rivera, 1999b).

TS +  1
MPC =

K(es + l)
(A ll)

In real applications there are always process disturbances and the controller is never 

a perfect inverse of the process. Therefore, it is necessary to use feedback to compensate 

for these discrepancies. Figure A23 depicts the closed loop control system. The system 

follows the standard closed loop transfer function, with the additional compensation for 

the difference between the process model and the actual process (see Equation A12).

SP

cv PV

de

MPC

where,
MPC: model predictive process controller 
P: physical plant process to be controlled
M: mathematical process model

Figure A23. Model predictive controller with feedback.
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P .  M P C
PV = ---------------- SP (A12)

1 + (P -  M) • MPC

The controller shown in Figure A23 assumes that the calculated control effort has 

been applied and that any future calculated control efforts could be applied. However, the 

reality of the situation is that the controller output is limited and can become saturated if 

unrealized control efforts remain unaccounted. This leads to process overshoot and 

sluggish responses. To compensate, a high-low limiter (HLL) is applied to provide anti­

reset windup. The HLL function constrains the output effort to within the limits of the 

physical process. When the calculated control effort is outside these limits the controller 

updates the internal model states and predictions according to the actual output sent to the 

process and recalculates the control effort to comply with the imposed system output 

constraints (Coulibaly, Maiti, & Brosilow, 1992). This allows the controller to accurately 

control the process based on the applied control efforts.

Brosilow and Joseph (2002) explain how the MSF implementation is developed by 

splitting the model into its numerator and denominator, splitting the controller gain, and 

reworking the controller block diagram as shown in Figure A24. Equations A13 through 

A16 are the individual block components that make up the MSF controller. Ksp and Kf 

are the MSF gains and K is the process model gain determined from the step tests. Based 

on these calculations, the controller output (CV) is determined by Equation A17, where x 

is an internal model state (see Figure A24).
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DV

Pd1 Pd2

MPC
c v iSP

PV
HLLKsp

1/D

where,
Ksp: set point gain
Kf: state multiplier
P: physical plant process to be controlled
D, N: mathematical process model components 
HLL: high-low limiter 
P d l: measured process disturbance lag 
Pd2: unmeasured process disturbance lag

Figure A24. Feedback portion of the model state feedback controller.

N = Ke- 0 s (A13)

D = xs +1 (A14)

K,SP K s
(A 15)

Kf = — 1 
s

(A16)
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CV = Kf • x + KSP (SP -  de) = ”  + * -(SP -  de) (A17)
K(ss +1)

Once the feedback portion of the controller has been developed using these 

equations, the feed forward model is implemented to compensate for measured process 

disturbances. The feed forward FOPDT transfer function depends only on the process 

model (M) and measured process disturbance (Pdl) parameters. The process disturbance 

parameters are found in the same manner as the model parameters, and are in the form of 

Equation A10. Equation A18 gives the calculation for the feed forward compensator.

Pdl
FF = —— (A18)

P

For ratios of Pdl/M, where the deadtime of the feedback signal is longer than the 

deadtime of the feed forward signal, the model predictive feedback and feed forward 

components compensate for the same process disturbances. Therefore, the FM 

compensator must be included in the control scheme to bias the set point during transient 

responses to a process disturbance. Equation A19 gives the calculation for FM in this 

case. For instances where the deadtime of the feed forward signal is longer than the 

deadtime for the feedback signal the FM compensator is zero. Figure A25 shows the 

final MSF controller implementation.

F M  =  P d l  — F F  • P  f o r 0 P > 0 P d l  ( A 1 9 )
FM = 0 dp < $pdi
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DV

CV

PV

d e

HLL

FM

SP

1/D

Pd1 Pd2

where,
Ksp-' set point gain
Kf: state multiplier
P: physical plant process to be controlled
N, D: process model numerator and denominator components
FM: compensator
FF: feed forward function
HLL: high-low limiter
Pdl: measured process disturbance lag
Pd2: unmeasured process disturbance lag

Figure A25. Final MSF controller implementation.

It should be noted here that for the MSF controller to generate physically realizable 

control variable responses, it must satisfy the following criteria (Rivera, 1999b):

1. The controller must be stable. It must generate bounded responses to bounded 

inputs. To achieve this criterion all poles of the MSF controller must lie in the open left- 

half plane. The first-order MSF controller developed in this study contains no right-half 

plane poles (e > 0, K > 0) and is therefore stable. The process under control is also a 

first-order, self-regulating system that is inherently stable.
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2. The controller must be proper (either strictly proper or semi-proper), which 

avoids pure differentiation of signals. The MSF controller in this study meets this 

criterion because the limit as s approaches infinity of the controller is greater than zero, 

and the transfer function denominator order is equal to the numerator order (see Equation 

A ll). Thus the controller is semi-proper.

3. The controller must be causal, relying on previous and current plant 

measurements only, and not requiring prediction of future events. Using the controller 

function given in Equation A11 to approximate the inverse of the deadtime component in 

the FOPDT process meets this condition.

The MSF controller developed for this study meets the requirements for being 

stable, proper, and causal. The controller is therefore capable of generating physically 

realizable control responses to set point changes and process disturbances.

Tuning of the controller is reduced to selecting the desired transition speed between 

set points under closed loop conditions (setting the value of e). The maximum rate of 

change for the control effort may also be selected. The maximum rate of change is used 

as a safe guard against possible spikes in the control effort due to inaccurate sensor 

readings or other sudden changes to which the controller should not over react. The 

controller is tuned and the maximum rate of change is selected such that the rates of 

change limits are imposed only when these anomalies occur. Mhatre and Brosilow (n.d.), 

and Stryczek (1996) discuss several other algorithmic and heuristic methods for 

determining the value of e and timing the MSF controller.
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There are three associated ladder logic code routines, the main routine, input 

routine, and output routine. These routines perform a number of the necessary MPC 

functions. These functions are:

1. Calculates the model parameters of 1/D, N, Kf, Ksp, FF, FM based on the 

user-entered system gain, deadtime, and time constant. These parameters are calculated 

each controller scan (5 second intervals) prior to execution of the control algorithm.

2. Provides bumpless control transfer between the following control modes:

a. Automatic -  Calculates the modulating steam valve position based on 

temperature feedback and feed rate feed forward signals to control to the 

cooking temperature set point.

b. Manual -  The operator sets the steam valve position.

c. Tracking -  The model predictive controller tracks the actual steam valve 

position determined by another source (operator or other algorithm) to 

provide for bumpless transfer back to automatic mode when selected.

3. Initializes the controller after a processor restart or modifications in the 

program, such as adjustments to the gain, deadtime, or time constant.

4. Maintains the system heartbeat timer between the processor and other relevant 

systems (I/O, communications, and so forth). If the heartbeat fails then a communications 

alarm is set and the control defaults to a PID control mode.

5. Communicates to the system inputs and outputs (I/O).

6. Provides fault handling.

7. Calls the controller deterministic function block diagram.
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Main Routine

APC_Control_ON  MOV--------
 3  E-----------------------------------------------------------------------------------------------  Move

Source 1

Dest Sub_APC_Control Mode 
2

-MOV
Move
Source

APC C o n b o L p N ^ J ^ k ^ r ^ -MOV-
Move
Source 2

Dest Sub_APC_Control_Mode 
2

A PC C ontrolO N
i/E

Track On
-3/E—

-MOV-
Move
Source 0

Dest Sub_APC_Control_Mode 
2

-----------------------LEO----------------------
Less Than or Eql (A<=8)
Source A Sub_APC_Control_Mode

2
Source B 3

-JSR ---------------
Jump To Subroutine 
Routine Name Inputs

Controller Direction
Controller Direction 

Conf Direction
"1/F

-C PT -
Compute
Dest APC_PV 

-274.80002 
Expression -Sub_APC_PV

Compute
Dest

Expression

-CPT-

APC_SP
274.0 

Sub APC SP

Controller Direction 
Conf Direction

 3  E- - - - - - -
-CPT-

Compute
Dest APC_SP 

274.0
Expression -Sub_APC_SP

Compute
Dest

Expression

-CPT—

APC_PV 
-274.80002 

Sub APC PV
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MODEL STATE FEEDBACK SETPOINT MULTIPLIER 

With Divide by Zero Check

----------------- GRT-----------------
Greater Than (A>B)
Source A Conf_FB_FilterTC 

85.0
Source B 0

--------------------------------------CPT--------------------------------------
Compute
Dest Ksp.SourceB

0.40567952
Expression Conf_FB_TC/Conf_FB_FilterTC/Conf_FB_Gain

MODEL STATE FEEDBACK MULTIPLIER

With Divide by Zero Check

------------------ GRT------------------
Greater Than (A>B)
Source A Conf FB FilterTC 

85.0
Source B 0

------------------------------ CPT-------------------------------
Compute
Dest Kf.SourceB

0.17647064
Expression Conf_FB_TC/Conf_FB_FilterTC-1

PPD HIGH / LOW LIMITER

The next 4 rungs calculate and se t the High Limit and Low Limit PPD values for the Feedback portion

----------------------------------- CPT----------------------------------
--------------------------------------------------------------------- Compute

Dest FB HLL.LowLimit
-22.896704

Expression Conf_MV_Min+FF_Gain_Bias_ADD.Dest

----------------------------------CPT----------------------------------
Compute
Dest FB_HLL.HighLimit

127.103294
Expression Conf_MV_Max+FF_Gain_Bias_ADD.Dest

-------------- MOV--------------
Move
Source Conf_MV_Min 

0.0
Dest PPD_HLL.LowLimit 

0.0

-------------- NEQ---------------
Not Equal
Source A Conf_FB_Gain 

2.9
Source B 0
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................... MOV——  --
Move
Source Cortf_MV_Max

150.0
Dest PPD HLL.HighLimit

150.0

FEEDBACK PPD RATE LIMITER 

Next two rungs load the Feedback Increasing and Decreasing Rate Limit value 

Rate Limt = 1 = 1 x 5  scan time = 5 PPD

-------------------MOV-----------------
------------------------------------------------------------------------------------  Move

Source Conf_FB Rate_Limit
100.0

Dest FB_RLIM.IncRate
100.0

-----------------MOV-----------------
Move
Source Conf FB_Rate_Limit

100.0
Dest FB RLIM.DecRate

100.0

FEEDFORWARD PPD RATE LIMITER

Next two rungs load the Feedforward Increasing and Decreasing Rate Limit value

-------------------MOV-----------------
----------------------------------------------------------------------------------------  Move

Source Conf_FF_Rate_Limit
100.0

Dest FF RLIM.IncRate
100.0

-----------------MOV-----------------
Move
Source Conf_FF Rate Limit

1 0 0 . 0

Dest FF_RLIM.DecRate
100.0

VARIABLE DEADTIME CALCULATION FOR FEEDBACK 

11! The Deadtime array size must be adjusted to match the maximum expected deadtime I ! I

Conf VarFB DT On
— ^  F —

--------------- CPT---------------
Compute
Dest Conf_FB_DT

25.0
Expression Conf_FB_DT
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Sets Max Limit for Feedback Deadtime

Conf VarFB DT On
— ^  F —=—

------------------- C3RT------------------- ----------------- MOV-----------------
Greater Than (A>B) Move
Source A Conf FB DT Source Conf FB DT Max

25.0 100.0
Source B Conf FB DT Max Dest Conf FB DT

100.0 25.0

Conf VarFB DT On

Sets Min Limit for Feedback Deadtime

------------------- LES------------------- -----------------MOV-----------------
Less Than (A<B) Move
Source A Conf FB DT Source Conf FB DT Min

25.0 0.0
SourceB Conf FB DT Min Dest Conf FB DT

0.0 25.0

Conf VarFF DT On
— ^-3

VARIABLE DEADTIME CALCULATION FOR FEEDFORWARD 

111 The Deadtime array size must be adjusted to match the maximum deadtime expected 111

-------------CPT-
Compute
Dest Conf FF_DT

40.0
Expression Conf_FF_DT

Conf VarFF DT On
— ^-3 —

Sets Max Limit for Feedforward Deadtime

-------------------GRT------------------- ----------------- MOV-----------------
Greater Than (A>B) Move
Source A Conf FF DT Source Conf FF DT Max

40.0 100.0
Source B Conf FF DT Max Dest Conf FF DT

100.0 40.0

Conf VarFF DT On
 ^ - 3  E ^ - ^ -

Sets Min Limit for Feedforward Deadtime 

— LES---------------
Less Than (A<B)
Source A Conf FF DT

40.0
Source B Conf_FF_DT_Min 

0.0

-MOV-
Move
Source Conf_FF_DT_Min 

" 0.0
Dest Conf_FF_DT

40.0
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VARIABLE GAIN FOR FEEDBACK

Conf_VarFB_Gain_On
Move
Source

Dest

-MOV-

Conf_FB_Gain
2.9

Conf FB_Gain
2.9

VARIABLE GAIN CALCULATION FOR FEEDFORWARD 

Variable Gain Calculation

Conf VarFF Gain On
- 3  E - Compute

Dest

-CPT-

Conf_FF_Gain 
- 0.8

Expression Conf_FF_Gain

Sets Max Limit for Feedforward Gain

Conf VarFF Gain On
 E— —

-------------------- GRT-------------------- ----- MOV------------------
Greater Than (A>B) Move
Source A Conf FF Gain Source Conf FF Gain Max

-0.8 -0.1
Source B Conf FF Gain Max Dest Conf FF Gain

-0.1 -0.8

Sets Min Limit for Feedforward Gain

--------------------LES-------------------- ------------------MOV------------------
Less Than (A<B) Move
Source A Conf FF Gain Source Conf FF Gain Min

-0.8 -0.5
Source B Conf FF Gain Min Dest Conf FF Gain

-0.5 -0.8

POPULATING BLOCK PARAMETERS MODEL AND TUNING CONSTANTS

---------------MOV-------------
-------------------------------------------------------------------------------------------  Move

Source Conf_FB Gain
2.9

Dest N Gain.SourceB
2.9

------------MOV-----------
Move
Source Conf_FB TC

100.0
Dest D.Lag

100.0
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MOV
Move
Source Conf FB DT

25.0
Dest N. Deadtime

25.0

------------MOV------------
Move
Source Conf_FF_TC

75.0
Dest FF LDLG.Lag

75.0

------------MOV------------
Move
Source Conf_FB_TC

100.0
Dest FF_LDLG.Lead

100.0

FEEDFORWARD GAIN MULTIPLIER

Calculation of FF gain multiplier

With Divide by Zero Check

---------------------------- CPT--------------------------
---------------------------------------  Compute

Dest FF_Mul Gain.SourceB
~ -0.27586207 

Expression Conf_FF_Gain/Conf_FB_Gain

BUMPLESS TRANSFER FEEDFORWARD GAIN CHANGE 

Calculates Feedforward Bias for bumpless transfer when Feedforward gain changes

-------------------- NEQ--------------------
Not Equal
Source A FF_Mul_Gain.SourceB 

-0 27586207 
Source B FF_Old_Gain

-0.27586207

------------------------------------------------ CPT------------------------------------------------
Compute
Dest FF_Bias

0.0
Expression FF_Old_Output-(APC_FF_Signal_Old*FF_Mul_Gain.SourceB)

---------------NEQ--------------
Not Equal
Source A Conf FB_Gain 

2.9
Source B 0
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FM COMPENSATION - DT FB > DT FF

Populating data if Deadtime of Feedback model > Deadtime of the Feedforward model

---------------MOV---------------
Move
Source Conf FF Gain 

-0.8
Dest FM LDLG.Gain 

-0.8

------------MOV------------
Move
Source Conf_FF_TC

75.0
Dest FM_LDLG.Lag

75.0

-------------MOV-------------
Move
Source Conf_FB DT

25.0
Dest FM_02.Deadtime

25.0

------------- MOV-------------
Move
Source Conf FF_DT

40.0
Dest FM_01 .Deadtime

40.0

------------------------ CPT------------------------
Compute
Dest DEDT Difference

15.0
Expression Conf_FF_DT-Conf_FB_DT

FEEDFORWARD CONTROLLER DEADTIME - DT FB > DT FF 

Moves Zero into Deadtime of the Feedforward controller

-GRT--------------
Greater Than (A>B) 
Source A Conf FB DT

25.0
Source B Conf_FF_DT

40.0

DEDT Compare
 T >

Move
Source

Dest FF DEDT.Deadtime
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FEEDFORWARD CONTROLLER DEADTIME - DT FB < DT FF 

Move the difference between the Feedback and Feedforward Deadtimes into the Deadtime of the Feedforward Controller 

^JD EC^C om pare^ ---------------MOV---------------
Move
Source DEDT_Difference

15.0
Dest FF_DEDT.Deadtime

15.0

MODE CHANGE BUMPLESS TRANSFER

Manual controller output tracks actual controller output in Auto mode [1]

----------------------- EQU------------------------ -----------------MOV----------------
Equal Move
Source A Sub APC Control Mode Source PPD HLL.Out

2 49.188725
Source B 1 Dest Sub_APC_MV Man 

49.1563

Internal feedback back-calculation in all modes

In Manual mode [0] "Sub_APC_MV_Man" is available to be changed by operator
------------------------ADD----------------------

----------------------------------------------------------------------------- Add
Source A Sub_APC MV_Man

~ 49.1563
Source B FF_Gain_Bias_AOD.Dest 

-22.896704
Dest APC Man FB

26.29202

TRACKING MODE 

Tracking output from other controller when in Tracking [2] Mode

-EQU-
Equal
Source A Sub_APC_Control_Mode

2
Source B 2

-MOV-
Move
Source Sub_APC_Track_Signal

49.1563
Dest Sub_APC_MV_Man

49.1563
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f  RACKING - MANUAL OR TRACKING MODES 

MPC Track if in Manual [0], or Tracking [2] Modes

-EQU-
Equal
Source A Sub APC_Control_Mode

2
Source B 0

Track 
-■< >

-EQU-
Equal
Source A Sub_APC_Control_Mode

2
Source B 2

PRE-INITIALIZATION

The next two rungs delay the Initialization by 10 seconds to ensure that tags are populated after the controller is either 
turned ON or is switched to Run Mode, then the one-shot starts the Initialization.

This ensures that the data is updated before it gets shifted into the arrays.

■ < jE N > »
■CDfO*

---------------TON---------------
Timer On Delay 
Timer lnit_Pre_Timer
Preset 10000
Accum 10000

Init Pre Timer.DN ------------------OSR-------------------
One Shot Rising —(OB}-----
Storage Bit lnit_OSR_SB
Output Bit lnit_Start

INITIALIZATION LATCH 

This rung holds the Initialization sequence until it is unlatched

Init Start

Sub APC Init Man 
----

Init

Init
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INITIALIZATION TIMER

The next two rungs create an Init pulse 10 seconds for Init Manual. 
This ensures that the data is updated before it gets shifted into the arrays.

- < E N > -  
—Cd n >—

r Timer On Delay 
Timer Init Timer

L

Preset 10000
Accum 0

Init Timer.DN

INITIALIZATION UN-LATCH 

This rung un-latches the Initialization sequence

Sub APC Init Man
<U>

Init
<U>

Init Start
- J E ­

FF BIAS ZERO INITIALIZATION 

This rung initializes the Feedforward Bias on lnit_Start only

-MOV-
Move
Source

Dest FF_Bias
0.0

LDLG AND RATE LIMITER INITIALIZATION 

This rung initializes the Lead / Lag and Rate Umit blocks making the Output = Input in the MPC Controller

Init
-3  E -

D.lnitialize
 c:>—

FF LDLG.Initialize
— ^ - o --------

FM LDLG.Initialize 
--------

FB RUM.ByPass
— = - o --------

FF RUM.ByPass
— = - o --------
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EXECUTE MODEL PREDICTIVE CONTROLLER (MPC)

---------------- JSR---------------
---------------------------------------------------------------------------- Jump To Subroutine

Routine Name MPC FB

DEADTIME ARRAY INITIALIZATION

The following 4 rungs initialize the dead time arrays in the MPC controller 
This is done to ensure that incorrect data is removed from the deadtime arrays for a  more bumpless transfer

! 1! Array LENGHT must match DT arrarys ! I !

DEADTIME ARRAY SIZE CALCULATION:

Deadtime Array Size = Max Expected Dead Time I Task Sample Rate

This System:

Deadtime Array Size = 1200 s / 5 s  = 240 registers

Init FAL_Control N.DN
-3 E— File Arith/Logical

Control
Length
Position
Mode

FAL Control_N 
100 

0
ALL

Dest N Array[FAL_Control N.POS] 
2S557787

Expression

—CEN’}---
- C d n > -  

—CefO—

D.Out

Init FAL Control FF.DN -FAL-
File Arith/Logical
Control
Length
Position
Mode

FAL_Control FF
lo o

0
ALL

Dest F F_DE DT_Array[FAL_Control_F F. POS] 
83.00055

Expression FF LDLG.Out

—CDN>—

—<EfO—

FAL Control FM 01.DN -FAL-
File Arith/Logical
Control
Length
Position
Mode

FAL_Control_FM_01
100

0
ALL

Dest FM_01_Array[FAL_Control_FM_01.POS]
-66.3997

Expression

—Cen .5-----

- C dn> -

CefO

FM LDLG.Out
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-FAL-
File Arith/Logical
Control
Length
Position
Mode

FAL_Control FM 02
Too

0
ALL

Dest FM_02_Array[FAL_Control_FM_Q2 POS] 
-66.3997

Expression FM LDLG.Out

—CdnD—

BUMPLESS TRANSFER FEEDFORWARD GAIN DATA MOVE

The following rungs moves old values into the next scan to calculate the bumpless transfer values

----------------------MOV--------------------
-------------------------------------------------------------------------------------------  Move

Source FF_Gain_Bias_ADD.Dest 
-22.896704

Dest FF Old_Output
"-22.896704

------------------ MOV------------------
Move
Source FF_Mul_Gain.SourceB 

-0.27586207 
Dest FF_Old_Gain

-0.27586207

----------------- MOV-----------------
Move
Source Sub_APC_FF_Signal

83.0
Dest APC FF_Signal_Old

83.0

-LEQ- 
Less Than or Eql (A<=8)
Source A Sub_APC_Control_Mode

2
Source B 3

----------------JSR----------------
Jump To Subroutine 
Routine Name Outputs
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------------------------ MOV------------------------
Move
Source APC Feed_Pump RPM_Status

83.0
Dest Sub_APC FF Signal

83.0

------------------------MOV-----------------------
Move
Source APC Hoh Bridge TEMP_TT4

274.80002
Dest Sub_APC_PV

274.80002

------------------- MOV-------------------
Move
Source APC_TEMP SP_FINAL 

274
Dest Sub APC_SP

274.0

------------------------ MOV-------------------------
Move
Source APC Steam_Valve Pos_Actua1

49.1563
Dest Sub_APC Track_Signal

49.1563

Output Subroutine

Sub APC Output MV OnOff
■ ----------------

Sub APC Output C as OnOff
- F ---------

-------------MOV-------------
Move
Source Sub APC MV 

“  49.1563 
Dest APC_Pres_SP1

75.0

--------------------MOV-------------------
Move
Source Sub_APC_MV

49.1563
Dest APC_Valve Position CMD 

”  30.0
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MODEL STATE FEEDBACK PLC FUNCTION BLOCKS
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Model State Feedback Controller Function Block Subroutine 

There are two function block code subroutines used in the MPC implementation. 

The first routine represents the model state feedback controller. The inputs to the 

controller routine are the temperature set point (APC_SP), the current temperature value 

(APC_PV), the feed forward component (FF), the feedback component (P Model), and 

the FM contribution (Pd Corr). The modulating steam valve percent open position 

(Sub_APC_MV) is the output from the controller routine. This value is sent directly to 

the output ladder logic routine for transfer to the valve.

Sub_APC_MV

-c( MSP

Ksp_MSP_SUB

Multiply

Multiply
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Feed Forward Compensation Function Block Subroutine 

The feed forward compensator is the second routine. It takes the product feed rate 

(Sub_APC_FF_Signal) as the primary input. The FM compensation switch 

(DEDT_Compare) is also used as an input. The outputs from the feed forward 

compensator are the feed forward signal (FF) and the FM contribution (Pd_Corr). Both 

signals are sent to the MSF controller subroutine to contribute to the final output to the 

modulating steam valve.

Multiply

|"  DEDT^Com patt —

The key function blocks used to generate the model predictive controller were: 

Lead/Lag (LDLG), Deadtime (DEDT), Selector (SEL), Gain multiplication (MUL), 

Addition (ADD), Subtraction (SUB), and High/Low limit (HLL). These are all standard 

function blocks in the ControlLogix® PLC programming library.
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APPENDIX D 

SUMMARIZED TRIAL DATA FOR ANALYSIS OF VARIANCE
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Table D12

Summary o f  Temperature Rise Time fo r  Production Trials

Control Method Rise Time (seconds)

PID Controller 1931
1589
1589
1703
1813

MANTRA® Controller 976
808
852
852
872

BrainWave® Controller 312
312
343
349
329

Process Perfecter® Controller 479
496
510
526
502

Model State Feedback Controller 416
432
347
384
401
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Summary o f  Temperature Overshoot fo r  Production Trials

Control Method Overshoot (°F)

PID Controller 4.4
11.0
8.0

11.0
8.7

MANTRA® Controller 0.4
0.32
0.1
0.2
0.18

BrainWave® Controller 1.0
1.0
1.9
3.0
1.7

Process Perfecter® Controller 0.6
1.7
1.4
1.5
1.7

Model State Feedback Controller 2.0
2.9
1.9
2.3
2.2
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Table D14

Summary o f  Disturbance Rejection Trials fo r  PID

Trial No._______ Feed Rate (RPM)_______ Temperature Error (°F)

83 0.850586715
93 2.256871645

103 3.385865602
83 2.963414972
73 3.291371303
63 3.171158723
83 3.865528291
83 0.860403922
93 1.651436312

103 1.351937821
83 2.297625016
73 1.512637003
63 2.664458795
83 3.408226486
83 0.454345149
93 0.998766581

103 0.361718534
83 1.128385059
73 1.163041902
63 0.909466283
83 0.977871763
83 0.815302097
93 2.075335697

103 3.243902921
83 2.737835765
73 3.070804659
63 2.972442518
83 3.682607569
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Table D15

Summary o f  Disturbance Rejection Trials fo r  MANTRA®

Trial No._______ Feed Rate (RPM)_______ Temperature Error (°F)

83 1.155396226
93 0.987128708

103 0.566589493
83 0.833478039
73 1.06149213
63 1.714329868
83 2.158712404
83 1.153130744
93 0.984182056

103 0.565313391
83 0.831727035
73 1.058067962
63 1.709956577
83 1.889957044
83 0.91723617
93 0.833830376

103 0.44046924
83 0.700540081
73 0.857261414
63 1.416900456
83 1.82710153
83 1.393556283
93 1.140427041

103 0.692709746
83 0.966415998
73 1.265722846
63 2.01175928
83 2.490323277
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Table D16

Summary o f  Disturbance Rejection Trials fo r  BrainWave®

Trial No.________ Feed Rate (RPM)_______ Temperature Error (°F)

83 0.431635924
93 0.522377763

103 0.541143876
83 0.927050158
73 0.915396041
63 1.348273417
83 1.099177833
83 0.431279532
93 0.521549906

103 0.540282181
83 0.925619525
73 0.913740713
63 1.346063132
83 1.084668704
83 1.130779594
93 0.801319181

103 0.758057549
83 1.636808811
73 1.385973884
63 1.06080535
83 1.855554996
83 0.510562923
93 0.633212015

103 0.629302432
83 1.10153759
73 1.090975466
63 1.568712779
83 1.302871578
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Table D17

Summary o f  Disturbance Rejection Trials fo r  Process Perfecter®

Trial No.___________Feed Rate (RPM)_______ Temperature Error (°F)

83 0.622641509
93 0.83079922

103 0.652099237
83 0.65557554
73 0.676
63 1.016611296
83 0.824952741
83 0.62173913
93 0.829182879

103 0.650857143
83 0.654398564
73 0.674650699
63 1.014925373
83 0.827580071
83 0.877829457
93 0.610720887

103 0.3536
83 0.825966851
73 0.657805907
63 0.965432099
83 0.839482759
83 0.567343336
93 0.84040404

103 0.335041322
83 1.017723577
73 1.586303191
63 0.951547352
83 0.85872891
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Table D18

Summary ofDisturbance Rejection Trials fo r  Model State Feedback

Trial No.__________Feed Rate (RPM)_______ Temperature Error (°F)

83 0.504412972
93 0.517357719

103 0.943076533
83 1.954494728
73 0.740339924
63 0.843171872
83 0.772836531
83 0.782781956
93 0.515567554

103 0.941008383
83 1.948660416
73 0.7377958
63 0.840561433
83 0.775498697
83 1.273370782
93 0.735239937

103 0.476781979
83 1.060183866
73 0.742489555
63 0.967708057
83 0.709143894
83 0.78000234
93 0.398246469

103 0.724226199
83 0.878741597
73 1.082839761
63 0.78163012
83 0.686333672
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