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Bernoulli N u1nbers 
By R. B. MCCLENON 

The first appearance of the set of rational numbers of which I 
am speaking was in James Bernoulli's Ars Conjectandi. This work 
was published in 1713, eight years after the death of its author. 
In the 2nd chapter, Bernoulli deals with permutations and com
binations. He starts with the formula 

C(n,k)=C(l,k-1) +C(2,k-1) + ... +C(n-l,k-1) 

where naturally 

c ( r, s) = 0 for r < s; 

or 

Fork= 3, for instance, 

l:n was of course known, long before Bernoulli's time, to equal 
n(n+l) 

2 

Likewise, for k = 4, 
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316 IOWA ACADEMY OF SCIENCE [Vol. 57 

Bernoulli gives thus a table of the values of ~n" (the notation he 
used) as far as c = 10. Thereupon appears the remarkable gen
eralization: 

)t C+I 1'2C 

C.+) + ~ 
+ _c l c - l) ( c.-:i; -o. c - 3 

J.·3·'i 1/1'1 

+ f An c-t 

+ c(c-1 {c-~)(e-3 c-'1 C c-s-
~·3· lf· -~ n +"' 

in which A= 1/6, B=-1/30, C= 1/42, D=-1/30, E= 
5/66 ... , the first five of the numbers B2 , B4 , B6 •••• Bernoulli 
does not indicate how he obtained this generalization. It seems, 
however, from the coefficients which appear in the formulas as far 
as ~n10, that the discovery of the first five numbers should not be 
too difficult. But to arrive at any general formula, or recurrence 
relation, seems hopeless by merely following Bernoulli's tracks. 

Euler took a different line, and with his tremendous power of 
computation managed to determine the value of the first 15 non
vanishing values. 

Passing on at once to a relatively simple method for computing 
the numbers, the following has been published in various places and 
is perhaps the one most frequently used: 

x 
Starting with the function---;-- , which is certainly analytic in 

e-1 

2
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1950] BERNOULLI NUMBERS 317 

the vicinity of x = 0 if the value of f (0) is defined to be unity, we 
may write 

~ _x_.::-[ 
.e"-} 
Thus, 

so that B0 = 1, B1 =-! ... and in general (n > 1) 

J__ B + J_ B, -t J_ I B>- ' 
12 ! 0 l-n·I){ T( (11-'2}, ~ 1- , • 

+ ~ B">i - I ::::; 0 
I. C~t)T 

If we multiply by n !, we get 

I 

(1) 

or symbolically, (B + 1 )n- En= 0, replacing Bk by Bk. Return
ing to 

}(x) = e.,,~ I, f(-x}-t }= f(l+.t~J) 
X a - ~ 

k ~+I_ x fl"j_+~ ~ 
--~ --- :J.. .t. x - I :J.. .I. - l: 

e.~-£.. :J... 

(2) 

which is an even function. Thus B 3 = B 5 = ... = B 2k-1 = 0 and 
for a few of the others : 

3
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for n=2,(B+1) 2 -B2 =2B 1 +l=O 
n = 3, 3B2 + 3B1 + 1 = 0 B2 = 1/6 
n=4, 4B3 + 6B2 + 4B1 + 1 =0 B3 = 0 (known) 
n = 5, 5B4 + 10B3 + 10B2 + 5B1 + 1 = 0 B4 = - 1/30 
n = 7, 7B6 + 21B 3 + 36B4 + 35B3 + 21B 2 + 7B 1 + 1 =0 

B6 = 1/42 

The case n = 125 would seem to be a good problem for one of the 
super-machines now being constructed. For this would check what 
is, so far as I know, the last Bernoulli number to have been com
puted. 

The uses of the Bernoulli numbers are almost innumerable. 
Among the most interesting are the series expansions for tan x, 
cot x, and csc x. These are found without much difficulty, starting 
with (2). The results are 

X-J - I :l'"B .z. :i.""a " Lal,x - -- ~x + =..::::!t~ - +-, .. . 'II . 
~ c:2. .)..f(. ~ :;...~ 

+ (-1) ~k x + " ' 
{;I<)/ . 

- I- 1- ,.. ..L " ~ ' - 3 j( - fSA - fijS x - I •• 

(3) 
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1950] BERNOULLI NUMBERS 319 

x 
We have so far assumed that the B20 in the series for x 

e-1 
were the same B20 which Bernoulli gave as A, B, C ... in the ex
pansion of ~nx in powers of n. The proof of this is not very diffi
cult, since we have Euler's expansion of cot x in a series of partial 
fractions. From this we are led by a direct road to the identity 

Now for [ x [ < 2n each fraction can be expanded in powers of x, 
giving 

The double series ( 6) being absolutely convergent within its circle 
of convergence, can be summed "vertically" in powers of x, so that 

I I I e ...... *..-_-1-::::- ~ - ~ 

Thus 

<Y:> 

~-{ 
L n .. <-'L 
I 

and we have the connection between the Bernoulli numbers as 
obtained by their discoverer, and the coefficients in the expansion of 

x 
x 

e-1 
. Incidentally we note that the successive Bernoulli num-

bers increase greatly as r increases. 
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