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Bounds for the Derivatives of the Solution 
of the Neumann Problem 

By CLAIR G. MAPLE 

The Neumann problem requires the determination of a function 
0 which satisfies Laplace's equation in a domain V bounded by a 
closed surface B and is such that its normal derivative takes on 
assigned values f on B. It is assumed that f is piecewise continuous 
function of position on B and satisfies the condition f f dB = 0. 

'the method of the present paper was first developed in con­
nection with the Dirichlet problem,1 which is based on the idea of 
the hypercircle in function space introduced by W. Prager and J. L. 
Synge.2 The present work differs from that of Prager and Synge 
in that they were interested in obtaining bounds in the mean square 
sense for elastostatic boundary value problems, whereas we have 
as our present objective the determination of bounds at a point for 
the derivatives of the solution of the Neumann problem. 

In the present paper, it is assumed that the hypercircle has al­
ready been found. This in itself is a rather difficult task but has 
been carried out for the Neumann problem by Synge in a previous 
paper.3 However, once the solution has been located on a hyper­
circle the remainder of the work is relatively simple. There are 
certain weaknesses in the method, namely, that the method does 
not apply to a point on the boundary except in very special cases,4 

and that as the point at which bounds are being sought approaches 
the boundary the bounds become progressively weaker. Hence, we 
shall restrict the present work to apply only to points interior to 
the domain of definition of the problem. 

We may consider the problem in Euclidean N-space EN which 
enables us to treat simultaneously the two most interesting cases, 
N = 2, 3. Let V denote an open domain in EN, bounded by a closed 
surface B. We shall have occasion to make use of an N-dimensional 
sphere with center at a general point P contained in V and having 
radius a. The interior of any such sphere will be denoted by v and 
its bounding surface by b. The unit normal n (with components 
nh i = 1, 2, ... , N) will always be directed away from P on either 
B orb. 

1 C. G. Maple, The Dirichlet problem: bounds at a point for the solution and its de­
rivatives. Quart. App. Math .• 8, 213-228, (1950). 

2 W. Prager and J. L. Synge, Approximations in elasticity based on the concept of 
function space, Quart. App. Math., 5, 241-269 (1947). 

3 J. L. Synge, The method of the hypercircle in function space for boundary value 
problems, Proc. Roy. Soc. (London) A 191, 447-467 (1947). 

4 As an example of one such special case, see my paper on the Dirichlet problem. 
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The summation convention holds for repeated Latin suffixes and 
the range of such fodices is always 1, 2, ... , N. The coordinate 
system will be rectangular cartesian with origin at P and differ­
entiation with respect to a coordinate x1 is indicated by a comma 

( u, 1 = :~1 ) • Integration will be denoted by a single integral 

sign and the range indicated by the element of integration unless 
otherwise indicated. · 

We introduce the idea of function space F and distinguish vectors 
if F from those in EN by writing those in F in heavy type. A vector 
S in F is defined to be any vector field in V + B. The components 
p1 of this field are assumed to have continuous first derivatives. 

The scalar product of two vectors S and S' will be denoted by 
S. S' and defined by 

(1) S. S'= f P1P1' dV. 

If S = S', we get the metric for the space : 

(2) S2 =S. S= f P1P1 dV. 

The assumption that the solution vector S lies on a hypercircle r 
is expressed by writing 

(3) S=C+RJ, 

where C is a known vector representing the center of r and R, a 
known positive number, the radius of r. J is an arbitrary vector 
except for the restrictions 

(4) J.J=l,J.la=O, (a=l,2, ... ,m), 

where the vectors la form a set of known vectors satisfying the 
conditions of orthonormality la. I~ = ~a~. 

Let G be any vector in F and consider the scalar product of S. G, 
where S is the solution vector. We determine maximum and 
minimum values of S. G as S ranges over the hypercircle. We may 
represent G as the sum of its projections onto each of the unit 
vectors Ia and the subspace of the hypercircle ; that is, 

(S) G = M~ T % N"'I~ , 
where MJo (Jo. lo= 1) is the vector projection of G onto the plane 
of the hypercircle and 
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1950] SOLUTION OF THE NEUMANN PROBLEM 309 

( l>) N"' == I~ · Go( , 

M~ G2 
- t(I ·Gf M >O. 

°''I ol. I 
Now due to the fact that S is on the hypercircle, we have 

(7) S·G C·G =R J·G 
- RJ·(MJ T !N~I~J -

G(•i 

= RM J·~. 
Hence 

(8) IS·G-C·Cl~RM. 
We are interested in obtaining bounds at a point P for the deriva­

tive ~. P• where ~. P represents the derivative in the direction xP of 
the solution function ~- For this purpose, we define a function 

f 0) G<t» -N 
I = Xp-1' 7 

where r 2 = x1x1 is the square of the distance measured from the 
point P. The partial derivatives of this function given by ( 10) 
below form a vector field in V + B which is made to correspond to 
a vector G<Pl in function space. 

0 _,.,, < a. 
) 

3

Maple: Bounds for the Derivatives of the Solution of the Neumann Problem

Published by UNI ScholarWorks, 1950



t 
310 IOWA ACADEMY OF SCIENCE [Vol. 57 

In defining the vector field as given by ( 10), we have cut out its 
singularity in V so that the scalar product S. G'P 1 has meaning. 
Using Green's theorem, this scalar product may be written 

{II) 

The last integral in ( 11) is zero due to the fact that ~ is harmonic 
in V and the integral over the surface B is calculable since ~. 1n1 = f 
is known on B. The integral over b may be expressed in terms of 
the value of ~.Pat the point P by use of a mean value theorem for 
harmonic functions. 5 Thus by (9) and Green's theorem, we have 

where 

( 13) 

We note that LN is independent of the radius a and that L2 =:rt and 
L 3 = 4rc/3. Hence, the scalar product S. G 1Pl may be expressed in 
terms of a calculable integral and the value of ~' P at the point P: 

5 Cf. 0. D. Kellogg, Potential Theory (Berlin, 1929) p. 224. 
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This may now be combined with the inequality (8) to give the re­
sults which are summarized in the following theorem. 

TmtoREM. Let ~ be a function which is harmonic in V and 
such that its nonnal derivative assumes assigned values on the 
boundary B of V. Let P be any interior point of V. Then bounds 
for~' P (P) are given by the inequality 

,,~) u f c'~)dB - C·G")., LN f,/ PJ 1 ~ RM~ 
where C and R represent the center and radius respectively of the 
hypercircle and 

(1/,,) G'J:» -N ::: x + 
,., ' L - ITN/"-

N - r( ~ +1) ' 
:t 

(G'tl) - t (I°' ·G'N) .. 
It may also be desirable to have bounds for a second derivative 

~' pq at a point P. In this case, it is convenient to define a function 

(17) G(f>'l) -N-:-J., 
= X~X'1.-+' 

and obtain a vector field in V by differentiation of this function in 
each of the coordinate directions. We define this vector field in 
V as follows : 

(/8) 

= 0 , 
and make the vector Glpq> in F correspond to ( 18). By means of a 
procedure similar to that used in the preceding case, it is now pos­
sible to express the scalar product S. Glpql (Sis the solution vector) 
in terms of calculable integrals and the value of ~' pq at the point P. 
Explicitly, 
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Here we have made use of Green's theorem and the harmonic char­
acter of 0 to transform the above volume integral into integrals 
over the bounding surfaces. Now the integral over B is calculable ; 
so we turn our attention to the remaining integral, which depends 
on the radius a. Substitution of ( 17) into this integral and use of 
Green's theorem gives 

= (,l-N-~](¢,tx'b + 1,i xP} dv-. 

Let us set 

and differentiate J with respect to a. We get 

= a fr!. dV"' = aN+I LN ¢pq(.P) 
0ri ) u ' 

since 0 is a harmonic function. Integration of this last form gives 
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where the constant of integration is zero (cf. equa. (21)). Using 
these results, the scalar product ( 19) may be written 

- N:J.. LN ¢, ri( P). 
When we substitute this expression in ( 8), we get the following 
theorem: 

Tm<:oREM. Let !i) be a function which is harmonic in V and 
such that its normal derivative assumes assigned values on the 
boundary B of V. Let P be any interior point of V. Then bounds 
for !i), PQ (P) are gi·ven by 

(~S) 

I J f CPJB -C · G'PJ~ N!2. LN ~ 1'$(P) I ~ /? M crJ; 
where C and R represent the center and radius respectively of the 
hypercircle and G(pq) is defined by (17) and M(pql by (6). 

It may be noted that the Green's vectors given by ( 10) and ( 18) 
in the two preceding cases are defined in such a way that only the 
particular derivatives of !i) for which bounds are sought enter into 
the scalar product of the solution vectors and the Green's vectors. 
This property does not persist for derivatives of higher order than 
the second when the function which leads to the vector field in V 
is defined in a manner analogous to (9) and ( 17). However, it is 
possible to select a function from which a vector field may be ob­
tained by differentiation in such a way as to preserve this property. 
In the case of a third order derivative, say !i), pqs, one such function 
may be obtained by differentiation of the fundamental solution of 
Laplace's equation once with respect to each of the variables xp, Xq 
and x.. This of course leads to a much more complicated expres­
sion for the vector field in V and consequently to a more elaborate 
procedure in the evaluation of the scalar product of the solution 
vector and the Green's vector corresponding to this field. 

IowA STATE CoLLEGE 

AMES, IOWA 
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