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RESEARCH ARTICLE
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Abstract
Target-based screening is one of the major approaches in drug discovery. Besides the

intended target, unexpected drug off-target interactions often occur, and many of them

have not been recognized and characterized. The off-target interactions can be responsible

for either therapeutic or side effects. Thus, identifying the genome-wide off-targets of lead

compounds or existing drugs will be critical for designing effective and safe drugs, and pro-

viding new opportunities for drug repurposing. Although many computational methods

have been developed to predict drug-target interactions, they are either less accurate than

the one that we are proposing here or computationally too intensive, thereby limiting their

capability for large-scale off-target identification. In addition, the performances of most

machine learning based algorithms have been mainly evaluated to predict off-target inter-

actions in the same gene family for hundreds of chemicals. It is not clear how these algo-

rithms perform in terms of detecting off-targets across gene families on a proteome scale.

Here, we are presenting a fast and accurate off-target prediction method, REMAP, which is

based on a dual regularized one-class collaborative filtering algorithm, to explore continu-

ous chemical space, protein space, and their interactome on a large scale. When tested in

a reliable, extensive, and cross-gene family benchmark, REMAP outperforms the state-of-

the-art methods. Furthermore, REMAP is highly scalable. It can screen a dataset of 200

thousands chemicals against 20 thousands proteins within 2 hours. Using the recon-

structed genome-wide target profile as the fingerprint of a chemical compound, we pre-

dicted that seven FDA-approved drugs can be repurposed as novel anti-cancer therapies.

The anti-cancer activity of six of them is supported by experimental evidences. Thus,

REMAP is a valuable addition to the existing in silico toolbox for drug target identification,
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drug repurposing, phenotypic screening, and side effect prediction. The software and

benchmark are available at https://github.com/hansaimlim/REMAP.

Author Summary

High-throughput techniques have generated vast amounts of diverse omics and pheno-
typic data. However, these sets of data have not yet been fully explored to improve the
effectiveness and efficiencyof drug discovery, a process which has traditionally adopted a
one-drug-one-geneparadigm. Consequently, the cost of bringing a drug to market is
astounding and the failure rate is daunting. The failure of the target-based drug discovery
is in large part due to the fact that a drug rarely interacts only with its intended receptor,
but also generally binds to other receptors. To rationally design potent and safe therapeu-
tics, we need to identify all the possible cellular proteins interacting with a drug in an
organism. Existing experimental techniques are not sufficient to address this problem, and
will benefit from computational modeling.However, it is a daunting task to reliably screen
millions of chemicals against hundreds of thousands of proteins. Here, we introduce a fast
and accurate method REMAP for large-scale predictions of drug-target interactions.
REMAP outperforms state-of-the-art algorithms in terms of both speed and accuracy, and
has been successfully applied to drug repurposing. Thus, REMAPmay have broad applica-
tions in drug discovery.

Introduction

Conventional one-drug-one-genedrug discovery and drug development is a time-consuming
and expensive process. It suffers from high attrition rate and possible unexpectedpost-market
withdrawal [1]. It has been recognized that a drug rarely only binds to its intended target, and
off-target interactions (i.e. interactions between the drug and unintended targets) are common
[2]. The off-target interactionmay lead to adverse drug reactions (ADRs) [3], as demonstrated
by the deadly side effect of a Fatty Acid Amide Hydrolase (FAAH) inhibitor in a recent clinical
trial [4]. On the other hand, the off-target interactionmay be therapeutically useful, thus pro-
viding opportunities for drug repurposing and polypharmacology [2]. Therefore, identifying
off-target interactions is an important step in drug discovery and development in order to
reduce the drug attrition rate and to accelerate the drug discovery and development process,
and ultimately to make safer and more affordable drugs.

Many efforts have been devoted to developing statistical machine learningmethods for the
prediction of unknown drug-target associations by screening large chemical and protein data
sets [5]. One of the fundamental assumptions in applying statistical machine learningmethods
to drug-target interaction prediction is that similar chemicals bind to similar protein targets,
and vice versa. Based on this similarity principle, both semi-supervisedand supervised
machine learning techniques have been applied. The semi-supervisedlearningmethods either
build statistical models for the k nearest neighbors (k-NN) of the query compound with similar
compounds in the database (e.g. Parzen-Rosenblatt Window (PRW) [6] and Set Ensemble
Analysis (SEA) [7] are examples). Although a large number of 2D and 3D fingerprint represen-
tations of chemical structures have been developed, chemical structure similarity that is
measured by Tanimoto coefficient (TC) or other similarity metrics of fingerprints is not con-
tinuously correlated with the binding activity. Activity cliff exists in the chemical space, where
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a small modification of a chemical structure can lead to a dramatic change in binding activity
[8]. Thus, the chemical structural similarity alone is not sufficient to capture genome-wide tar-
get binding profile, as protein-chemical interaction is determined by both protein structures
and chemical structures. New deep learning techniques that can learn non-linear, hierarchical
relationships may provide new solutions for representing chemical space [9–12]. However, few
work has been done to incorporate protein relationships into the deep learning framework. It
remains to be seen whether the deep learning is applicable to genome-wide target prediction.

A number of techniques such as Gaussian Interaction Profile (GIP),Weighted Nearest
Neighbor (WNN), RegularizedLeast Squares (RLS) classifier [13, 14], and matrix factorization
[15–17] have been developed to integrate chemical and genomic space. Among them, Neigh-
borhoodRegularizedLogisticMatrix Factorization (NRLMF) [17] and Kernelized Bayesian
Matrix Factorization (KBMF) [16] are two of the most successfulmethods. However, several
drawbacks in these algorithms hinder their applications in genome-wide off-target predictions.
First, several algorithms with high performance such as KBMF are extremely time and mem-
ory-consuming. Second, these algorithms depend on a supervised learning framework that
requires negative cases.While publicly available biological and/or chemical databases (e.g.
ZINC [18], ChEMBL [19], DrugBank [20], PubChem [21], and UniProt [22]) have enabled
large-scale screening of drug-target associations, the known chemical-protein associations are
sparse, and the number of reported negative cases (i.e. chemical-protein pairs not associated) is
too small to optimally train a prediction algorithm [23]. Using randomly generated negative
cases will adversely impact the performance of these algorithms, and algorithmically derived
negative cases are often based on unrealistic assumptions [23]. Finally, these algorithms have
beenmainly evaluated for the prediction of off-targets within the same gene family (e.g.
GPCR) using a small benchmark with hundreds of drugs and targets. Their performances in
predicting off-target across gene families on a large scale are uncertain. Indeed, drug cross-
reactivity often occurs across fold spaces [2]. Thus, the development of in silico prediction
methods that are fast as well as accurate enough to explore the available data is urgent.

Here, we make several contributions to address the aforementioned problems. First, we
present an efficientmethod, REMAP, which formulates the off-target predictions as a dual-reg-
ularizedOne Class Collaborative Filtering (OCCF) problem. Thus, negative data are not
needed for the training, but can be used if available. Secondly, REMAP is highly scalable with
promising accuracy, thus can be applied to large-scale off-target predictions. Thirdly, we intro-
duce a new benchmark set to evaluate the performance of drug-target interactions across gene
families. Finally, we apply REMAP to repurposing existing drugs for new diseases.We identi-
fied seven drugs that have anti-cancer activity. Six of them are supported by experimental
evidence.

Materials and Methods

Problem formulation

The problem we try to solve here is to predict how likely it is that a chemical interacts with a
target protein, using a chemical-protein association network, chemical-chemical similarity,
and protein-protein similarity information.We start by preparing a bipartite network for
chemical-protein associations as a sparse n ×mmatrix R, where n is the number of chemicals
andm is the number of proteins. Ri,j = 1 if the ith chemical is associated with the jth protein,
and Ri,j = 0, otherwise. The chemical-chemical similarity scores are in an n × n square matrix
C, with Ci,j representing the chemical-chemical similarity score between the ith and jth chemi-
cals (0� Ci,j� 1) for total n chemicals. The protein-protein similarity scores are in the same
format for totalm proteins (0� Ti,j� 1). We consider this problem an analog of user-item
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preferences such that users and items represent chemicals and proteins, respectively. Therefore,
the problem is to provide an n ×mmatrix P in which Pi,j is the prediction score for the interac-
tion between the ith chemical and the jth protein.

Overview of off-target prediction method REMAP

Our predictionmethod REMAP is based on a one-class collaborative filtering algorithm that
recommends the users’ preferences to the listed items [24]. It assumes that similar users will
prefer similar items, unobservedassociations are not necessarily negative, and user-item pref-
erences can be analogous to drug-target associations. Assuming that a fairly low number of fac-
tors (i.e. smaller number of features than the number of total chemicals or protein targets) may
capture the characteristics determining the chemical-protein associations, two low-rank matri-
ces,U (chemical side) and V (protein side), were approximated such that
Xn

i

Xm

j
fR � ðU � VTÞg is minimizedwhere R is the matrix for known chemical-protein

associations and VT is the transposition of the protein side low-rank matrix V. The two low
rank matrices,Un×r and Vm×r are obtained by iteratively minimizing the objective function,

minU;V�0

X

ði;jÞ
pwtðRði;jÞ þ pimp � Uði;:Þ � V

T
ðj;:ÞÞ

2
þ pregðkUk

2
þ kVk2

Þ þ pchemtrðU
TðDC � CÞUÞ

þ pprot trðV
TðDT � TÞVÞ

ð1Þ

All symbols used in the paper are summarized in Table 1, and the overall process of
REMAP is in Fig 1. Here, pwt is the penalty weight on the observedand unobservedassociations
which indicate the reliability of the assigned probability of true association, pimp is the imputed

Table 1. The symbols and the descriptions for numerical calculations

Symbol Definition and Description

R The adjacency matrix of the known drug-target associations

C, T The chemical-chemical and the target-target similarity matrices

C (c1 ;c2) The chemical-chemical similarity score for the chemicals c1 and c2

dTani (c1 ;c2) The Tanimoto dissimilarity coefficient for the chemicals c1 and c2

T(p1,p2) The target-target similarity score for the query protein p1 and the target protein p2

dbit(p1,p2) The bit score for the query protein p1 and the target protein p2

DC, DT The degree matrices of C and T, respectively

U, V The chemical-side and the target-side low-rank approximation matrices

R(i,j) The element of R at its ith row and jth column

R(i,;) The ith row of R

R(;,j) The jth column of R

RT The transpose matrix of R

tr(R) The trace of R

pwt The penalty weight on observed and unobserved associations which indicate the reliability of

assigned probability of true association

pimp The imputed value (i.e. the probability of unobserved associations as real associations

preg The regularization parameter to prevent overfitting

pchem The importance parameter for chemical-chemical similarity

pprot The importance parameter for protein-protein similarity

r The rank of the low-rank approximation matrices

piter The number of maximum iterations to minimize the objective function

p(i,j) The raw prediction score by REMAP for the ith chemical and the jth protein

doi:10.1371/journal.pcbi.1005135.t001
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value (i.e. the probability of unobservedassociations as real associations), preg is the regulariza-
tion parameter to prevent overfitting, pchem is the importance parameter for chemical-chemical
similarity, pprot is the importance parameter for protein-protein similarity, and tr(A) is the
trace of matrix A (Table 1). In this study, we use global weight and imputation. However, the
weight and imputation values may be determined by a priori knowledge or from the prediction
of other machine learning algorithms (i.e. pwt and pimp can bematrices with the same dimen-
sion as the matrix R). The raw predicted score for the ith chemical to bind the jth protein can
be calculated by Pði;jÞ ¼ UUPði;:Þ � VT

UPðj;:Þ. The raw scores were adjusted based on the ratio of
observedpositive and negative cases when the negative data are available (explained in the pre-
diction score adjustment section). Also, the matrixUn×r is referred to as a low-rank drug profile
since its ith row represents the ith drug’s behavior in the drug-target interaction network as well
as drug-drug similarity spaces compressed to r number of features. The REMAP code was orig-
inally written in Matlab and modified for drug-target predictions.

Fig 1. The overall process of REMAP. The rectangular boxes with capitalized symbols are matrices, and the smaller boxes and ovals are

chemicals and proteins, respectively, in the simplified network representation (top-left corner). Solid lines within the network represent

connectivity (edges), and the arrows represent mathematical processes. Red squares represent single similarity values, and blue bars in U and V

represent row and column vectors. Lower-case c and p represents chemicals and proteins, respectively. The letter symbols are annotated in Table 1.

doi:10.1371/journal.pcbi.1005135.g001
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Chemical-chemical similarity

Chemical-chemical similarity scores are one of the required inputs of REMAP. Although there
are a number of metrics developed for chemical-chemical similarity, a recent study showed
that Tanimoto coefficient-basedsimilarity is highly efficient for fingerprint-based similarity
measurement [25]. The fingerprint of choice in this study is the Extended Connectivity Finger-
print (ECFP), which has been successfully applied to chemical structure-based target predic-
tion method, PRW [6]. Thus, it allows for a fair comparison of REMAP with PRW. It is
interesting to compare the different fingerprints in the future study.

To calculate a similarity score between two chemicals, c1 and c2, the Tanimoto dissimilarity
coefficientdTani ðc1 ;c2Þ was obtained using JChemwith the Tanimoto metric for the ECFP
descriptor type using the command in the Unix environment, “ChemAxon/JChem/bin/
screenmdtarget_smiquery_smi-k ECFP -g -c -M Tanimoto” [26]. The chemi-
cal-chemical similarity score, C ðc1 ;c2Þ is defined as C ðc1 ;c2Þ ¼ 1 � dTani ðc1 ;c2Þ. Briefly, two chemi-
cals have a higher similarity score if they have more of the same chemical moieties (e.g.
functional groups) at more similar relative positions. Chemical similarity scores below 0.5 were
treated as noise and set to 0.

Protein-protein similarity

Protein-protein similarity scores are also one of the required inputs for REMAP. The similarity
between two proteins was calculated based on their sequence similarity using NCBI BLAST
[27] with an e-value threshold of 1 × 10−5 and its default options (e.g. 11 for gap open penalty
and 1 for its extension, BLOSUM62 for the scoringmatrix, and so on). Based on our 10-fold
cross validation (see below), e-value thresholds from 1 to 1 × 10−20 did not significantly affect
the performance (S1 Fig). Therefore, we decided to use a moderately stringent threshold
(BLAST default is 1 × 10−3). A similarity score for query protein p1 to target protein p2 was cal-
culated by the ratio of a bit score for the pair compared to the bit score of a self-query. To be
specific, for the query protein p1 to the target protein p2, protein-protein the similarity score
was defined such that T(p1,p2) = dbit(p1,p2)/dbit(p1,p1).

Benchmark test and data preparation

For benchmark tests, ZINC data was filtered by IC50� 10 μM, which yielded 31,735 unique
chemical-protein associations for 12,384 chemicals and 3,500 proteins (ZINC dataset [18]).
Targets that are protein complexes or cell-based tests were excluded. Proteins whose primary
sequence is unavailable were also excluded. Protein sequences were obtained from UniProt
[22], and the whole protein sequences were used to calculate protein-protein similarity scores.

To assess the predictive power of our algorithm, we performed a 10-fold cross validation on
the ZINC dataset described above. We set the parameters as follows: pwt = pimp = preg = 0.1,
r = 300, pchem = 0.75, pprot = 0.1, and piter = 400. The optimized values determined by the
10-fold cross validation of benchmark are shown in S2 Fig. It is noted that the best perfor-
mance is achieved when pchem = 0.25 and pprot = 0.25. To further evaluate REMAP, we com-
pared its performance on the ZINC dataset with several methods: a chemical similarity-based
method (PRW [6]), the best performedmatrix factorizationmethods so far (NRLMF [17] and
KBMF with twin kernels (KBMF2K) [16]), combination of WNN and GIP (WNNGIP [14]),
and another type of matrix factorizationmethod (CollaborativeMatrix Factorization (CMF)
[15]) for different types of chemicals and proteins.

To obtain a detailed view of the performance of the methods, we divided the ZINC dataset
into 3 categories with 2 subcategories for each, based on the connectivity of known chemical-

Large-Scale Off-Target Prediction and Drug Repurposing
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protein associations and the degree of uniqueness of the chemicals. First, all the chemicals in
the dataset were classified into the chemicals having only one known target (NT1), two known
targets (NT2), or three or more known targets (NT3). Then, for the chemicals in each category,
they were further divided based on either the number of known chemicals (ligands) the target
proteins are associated with (number of ligands in increments of 5) or the maximum chemical-
chemical similarity score for the chemical in the dataset (the similarity score range increment
is 0.1). The label used in this paper for the dataset are NTaLb, or NTaMaxTcd, where ‘NT’
stands for the Number of known Target, ‘L’ for the number of known Ligand, and ‘Tc’ for the
maximum (Tanimoto coefficient-based)chemical-chemical similarity score for the given
chemical in the dataset, with NT = a, b� L� b +4, and d − 0.1< Tc � d. For instance, NT2L1
is the data set label for chemicals having two known targets and proteins having 1 to 5 ligands
in the dataset, and NT1Tc0.9 is for chemicals with the most similar chemicals between 0.8 and
0.9 of similarity scores and having one known target. Chemicals having more than three
known targets are included in the NT3 class, and proteins having more than twenty-one
known ligands were included in L21 (not limited to 25). The categories of the ZINC dataset
were then used to evaluate the performance of off-target prediction, and their labels mean the
number of known ligands (L) or the maximum structural similarity (Tc) with their correspond-
ing ranges. For example, ‘L21more’ stands for the dataset for proteins having 21 or more
known targets, and ‘Tc0.9to1.0’ stands for maximum structural similarity greater than 0.9 and
up to 1.0 (Tc0.5to0.6 is inclusive of 0.5). Note that NT1 is equivalent to chemicals without any
known target when they are tested for cross validation. Therefore, performances on NT1 data-
sets reflect the ability to address the cold start problem. In other words, when one known drug-
target association is intentionally hidden for the chemicals in the NT1 dataset, the tested chem-
icals will not have any known target in the training data, and they are less likely to be given a
good recommendation of targets. This is analogous to the new user or new item problem
reviewed by Su et al. [28].

Measuring prediction accuracy of REMAP by TPR vs. cutoff rank

A typical measure of prediction performance is the Receiver Operating Characteristic (ROC)
curve by which one can assess the reliability of the positively predicted results. However, it is
difficult to apply the ROC curve on our chemical-protein association datasets since the vast
majority of the chemical-protein pairs have not been tested, and thus it is unclear whether the
missing entries are actually unassociated or just not yet observed.

In order to assess how reliable the positively predicted results from REMAP are, we needed
to define a performancemeasurement that is analogous to ROC curve but not dependent on the

true negatives. Our primarymeasure of performance is the true positive rate (
P

True Positives
P

Condition Positives
;

Recall or Recovery) at the top 1% of predictions for each chemical. To be specific, the top 1% of
predictions includes up to the 35th-ranked predicted target protein for a chemical for our data-
sets (3,500 possible target proteins for each chemical). Thus, for instance, a TPR of 0.965 at the
35th cutoff rank (top 1%) means that 96.5% of the total tested positive pairs were ranked 35th or
better for the tested chemicals.

Scalability of REMAP as a matrix factorization algorithm

In order to assess the speed of REMAP for practical uses, we measured its running time by
varying the rank parameter or the size of dataset. On the ZINC dataset (12,384 chemicals and
3,500 proteins), up to r = 2,000 was tested, and at fixed r = 200, dataset sizes up to 200,000
chemicals and 20,000 proteins were tested. The number of iterations (piter) was fixed to 400. A

Large-Scale Off-Target Prediction and Drug Repurposing
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single node of CPU with 2.88 GB of memory in the City University of New York High Perfor-
mance Computing Center (CUNYHPCC) was used for REMAP running time tests. We also
compared the running times of different matrix factorizationmethods with ours. Due to the
large time complexity and memory requirement for other algorithms, a multi-core node with
up to 700 GB of shared memory system in CUNYHPCCwas used for them on the ZINC
dataset.

Genome-wide chemical-protein associations

Chemical-protein associations were obtained from the ZINC [18], ChEMBL [19] and Drug-
Bank [20] databases. To obtain reliable chemical-protein association pairs, binding assays rec-
ords with IC50 information were extracted from the databases, and the cutoff IC50 value of
10 μM was used where applicable. Two chemicals were considered the same if their InChI Keys
are identical, and two proteins were considered so if their UniProt Accessions are identical. For
records with IC50 in μg/L (found in ChEMBL), the full molecular weights of the compounds
listed on ChEMBLwere used to convert μg/L to μM. Chemical-protein pairs were considered
associated if IC50�10 μM (active pairs), unassociated if IC50>10 μM (inactive pairs), ambigu-
ous if records exist in both ranges (ambiguous pairs), and unobservedotherwise (unknown
pairs). A total of 198,712 unique chemicals and 3,549 unique target proteins were obtained
from the combination of ChEMBL and ZINC with 228,725 unique chemical-protein active
pairs, 76,643 inactive pairs, and 4,068 ambiguous pairs. Of the 198,712 chemicals, 722 were
found to be FDA-approved drugs. Furthermore, drug-target relationships were extracted from
the DrugBank and integrated into the ZINC_ChEMBLdataset above. A total of 199,338 unique
chemicals and 6,277 unique proteins were obtained from the combination of ZINC, ChEMBL,
and DrugBankwith 233,378 unique chemical-protein active pairs.

Drug-target interaction profile analysis for drug repurposing

Since REMAP showed promising performances on predicting off-targets for chemicals with at
least one known target, it is possible to use REMAP to suggest new purposes for some FDA
approved drugs. As the matrix product of UUP (chemical-side low-rank matrix) and VUP (pro-
tein side low-rank matrix) is the predicted drug-target interactionmatrix P, the ith row of UUP

contains the target interaction profile for the ith drug. Therefore, we analyzed the drug-drug
similarities based on the low-rank matrixUUP. We ran REMAP with the data combination of
three databases explained above, with the parameters used in the benchmark evaluations.
Then, we calculated drug-drug cosine similarities based on the matrixUUP. For each row of
UUP for FDA approved drugs, the cosine similarity of drug c1 and drug c2 can be calculated by,

Scos;ðc1 ;c2Þ ¼
� !
Uc1 �
� !
Uc2ffiffiffiffiffiffiffi

jUc1 j
p ffiffiffiffiffiffiffi

jUc2 j
p . To search for possibly undiscovered uses of the drugs, we focused on

drugs that are found to have high cosine similarity but low Tanimoto similarity (< 0.5). Mar-
kov Cluster (MCL) Algorithm [29, 30] was used to cluster drugs based on their cosine similar-
ity of a low-rank target profile. Drug-disease associations were obtained from the Comparative
Toxicogenomics Database (CTD) [31].

Prediction score adjustment

The raw prediction score (Pði;jÞ ¼ UUPði;:Þ � VT
UPðj;:Þ) can be adjusted to better reflect the real data

as well as to statistically discriminate the positive and negative predictions.We used the active,
inactive and ambiguous pairs obtained from the ChEMBL database to adjust the score.
REMAP prediction on the ZINC_ChEMBLdataset showed a clear division between the active
and inactive pairs, suggesting that predictions scored around 1.0 are highly likely to be positive
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(Fig 2A). As mentioned above, however, there is a large difference between the number of
active and inactive pairs, which is not likely to reflect the ratio of the actual positive and nega-
tive chemical-protein pairs. Greater accuracy is expected by adjusting the prediction scores to
reflect such a positive/negative ratio. To estimate the ratio, we first normalized the counts in
each bin in the histogram (Fig 2A) and calculated the weights that minimize the sum of error,
Esum. Esum(w1) = Si[Ai − {w1pi + (1 − w1)Ni}]2, where w1 and w2 are the weights on active and
inactive pairs, respectively (w1 + w2 = 1.0), and Ai, pi and Ni are the normalized counts in ith

bin of ambiguous, active and inactive pairs, respectively. The optimum adjustment weights
were approximately w1 = 0.16,w2 = 0.84 (Fig 2B). This implies that approximately 16% of total

observations are positive. Since the ratio of negative/positive is about 5.25 w2

w1
¼ 5:25

� �
, we

Fig 2. (A) REMAP score distributions for active (blue), inactive (orange), and ambiguous (green)

pairs. For each bin of raw prediction scores (x-axis, bin width = 0.05), the number of pairs found in the bin

was divided by the total of the type of data (total numbers in the plot). Raw prediction scores over 1.10 were

regarded as outliers and not included in the figure. Active pairs were obtained from the ZINC and the

ChEMBL databases, and inactive, and ambiguous pairs were obtained from the ChEMBL database. (B)

Adjusted scores for each bin of raw prediction scores (x-axis, same bin width as A). Adjustment by the counts

only (blue) and adjustment with weighted counts (orange). A weight of 5.25 was given for the counts of

inactive pairs as explained in the prediction score adjustment section.

doi:10.1371/journal.pcbi.1005135.g002
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increased the number of observations for inactive pairs in each bin by 5.25 times and rounded
down. The adjusted prediction score for each bin (Bi) was calculated using the increased nega-
tive counts.

Bi ¼

P
number of positive observations

P
number of positive observations þ 5:25 �

P
number of negative observations

ð2Þ

It is noted that the prediction score adjustment was not used in the benchmark study, where
no negative data were used.

Graphic analysis

Drug-drug clustered network was visualized using Cytoscape [32].

Results

REMAP is highly effective in predicting off-targets even for novel

chemicals

We evaluated the performances of algorithms for chemicals having one, two, or more than
three known targets with varyingmaximum chemical-chemical similarity ranges or with pro-
teins having a certain number of known ligands (dataset prepared as explained in the methods
and materials section). In general, the performances of both algorithms improve as the number
of known ligands per protein or the maximum chemical-chemical similarity value increases.

It was noticeable that REMAP performed significantly better than PRW when there was at
least one known target for a chemical whose targets are predicted (Figs 3 and 4). REMAP
showed greater than 90% recovery at the top 1% when the tested chemicals have at least one
known target. All algorithms are sensitive to the number of ligands per target. The more
ligands, the higher accuracy. While PRW also reached reasonably high recovery for some cate-
gories (e.g. more than 11 known ligands per proteins, or Cðc1 ;c2Þ > 0:6 of the most similar
trained chemicals), REMAP showed that it is reliable for testing chemicals without high simi-
larity to the trained chemicals (Figs 3B and 4B). In other words, REMAP is applicable to chem-
icals that are structurally distant to the chemicals already in the dataset. Except where the
target proteins have 1 to 5 known ligands, REMAP performed best among the three algorithms
in all cases with at least one known target for the tested chemicals (Figs 3 and 4). In the most of
cases, the differences in the performance between REMAP and other two algorithms are statis-
tically significant. Therefore, in practice, REMAP can predict potential drug targets for chemi-
cals with at least one known target as training data, even when the chemicals are structurally
dissimilar to the training chemicals.With the optimized parameters (see below), ROC-like
curves shows the general trend of performances of the three algorithms up to the top 10% of
predictions (S3 and S4 Figs).

As shown in Figs 3 and 4, REMAP outperforms the state-of-the-art NRLFM algorithm in
most of the tested cases. As NRLMF is sensitive to the rank parameter, we carried out optimiza-
tions to determine optimal rank and iterations for NRLMF (S5 Fig). The optimal rank and
iterations used in the evaluation were 100 and 300, respectively. Moreover, in the current
implementation, REMAP is approximately 10 times faster and uses 50% less memory than
NRLMF. Consistent with the results by Liu et al. [17], the accuracies of NRLFM are signifi-
cantly higher than KBMF2K, CMF, andWNNGIP in all of ZINC benchmarks. Overall,
REMAP is one of the best-performingmethods for the genome-wide off-target predictions.
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Fig 3. Performance comparison for REMAP (green), PRW (blue), and NRLMF (orange). NT2 (2 known targets per chemical) datasets used

for varying number of ligands (A) and chemical structural similarity (B). Performance measurement explained in the measuring prediction

accuracy of REMAP by TPR vs. cutoff rank section. (A) Performance comparison on the datasets with varying number of ligands per protein. For

example, the x-axis of L11to15 means that the proteins of interest have between 11 and 15 known chemicals to bind. (B) Performance

comparison on the datasets with the ranges of chemical structural similarity of the tested chemicals to the trained chemicals. For instance, the
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Chemical-chemical similarity based on Tanimoto coefficient significantly

helps REMAP’s performance, while protein-protein similarity information

contains significant noise

To test whether the chemical-chemical similarity matrix helps prediction, we performed
10-fold cross validation on the ZINC dataset with the contents of the chemical-chemical or the
protein-protein similarity matrix controlled. In other words, about half of the non-zero chemi-
cal-chemical similarity scores were randomly chosen and removed (set to 0) for the “half-filled
chemical similarity” matrix, and all entries are set to 0 for the “zero-filled chemical similarity”
matrix. The predictive power of REMAP showed noticeable improvement when all available
chemical-chemical similarity pairs were used, compared to the half-filled or the zero-filled sim-
ilarity matrix (Fig 5A). Similarly, the contents of the protein-protein similarity matrix were
controlled (e.g. half-filled protein similarity, and zero-filled protein similarity) while the full
chemical similarity matrix was used. Unlike the chemical-chemical similarity, the protein-pro-
tein similarity information did not necessarily improve REMAP’s predictive power. The per-
formance was best when a half of the protein-protein similarity information was used together
with the full chemical-chemical similarity matrix (Fig 5B). This suggests that there is significant
noise in the protein-protein sequence similarity matrix although the information does help
prediction. A careful examination of the BLAST-based protein-protein similarity matrix may
give an insight into the design of a novel protein-protein similarity metric for drug-target bind-
ing activities (see discussion section).

We also performed optimization tests for pchem and pprot on ZINC dataset. Although the
performance was slightly better when the chemical-chemical similarity importance was maxi-
mum (Fig 6A), the difference was too small to conclude that it is best to fix pchem = 1. Instead,
the predictionmay rely too much on the chemical-chemical similarity scores. Therefore, to
allow flexibility on chemical-chemical similarity information, we set pchem = 0.75 at which the
performance was almost as accurate as pchem = 1. On the other hand, the performance was best
when the protein-protein sequence similarity importance, pprot, was 0.1 (Fig 6B), further sup-
porting our claim that protein-protein sequence similarity is not an optimal choice for the pre-
diction of a drug-target interaction.When jointly optimizing pchem and pprot, their optimal
value is 0.25 and 0.25, respectively, in the 10-fold cross validation benchmark evaluation
(S2B Fig).

Our result supports a recent study [25] which showed that Tanimoto coefficient is efficient
for the chemical similarity calculation. Chemical fingerprint-based chemical-protein associa-
tion prediction has been studied by Koutsoukas et al [6]. By defining bins (target proteins) that
can contain certain chemical features based on the chemical fingerprints, Koutsoukas et al. suc-
cessfully demonstrated that their algorithm, PRW, can efficiently predict unknown chemical-
protein associations [6]. While the basic idea of dissecting chemical compounds into functional
groups is the same, it should be noted that PRW does not consider the information obtained
from proteins, as well as interactome.

REMAP is readily scalable for large chemical-protein data space

For all our tests, REMAP showed great speed without losing its accuracy. On our benchmark
dataset (ZINC; 12,384 chemicals and 3,500 proteins), it took approximately 120 seconds to run

x-axis of Tc0.6to0.7 means that for the tested chemicals, at least one trained chemical was found such that 0:6 < Cðc1 ;c2Þ
� 0:7 and no trained

chemical was found in greater similarity than 0.7. All TPR values are based on 10-fold cross validation. Error bars represents s.e.m. Asterisks

represents statistical significance based one t-test of the 10 TPR values (* for p < 0.05, ** for p < 0.001).

doi:10.1371/journal.pcbi.1005135.g003
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Fig 4. Performance comparison for REMAP (green), PRW (blue), and NRLMF (orange). NT3 (3 or more known targets per chemical)

datasets used for varying number of ligands (A) and chemical structural similarity (B). Performance measurement explained in the measuring

prediction accuracy of REMAP by TPR vs. cutoff rank section. (A) Performance comparison on the datasets with varying number of ligands per

protein. For example, the x-axis of L21more means that the proteins of interest have 21 or more known chemicals to bind. (B) Performance

comparison on the datasets with the ranges of chemical structural similarity of the tested chemicals to the trained chemicals. For instance, the
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400 iterations at the rank of 200 (r = 200, piter = 400). The time complexity is linearly depen-
dent on the rank (Fig 7A). The scalability of REMAP is superior when compared to KBMF2K,
a state-of the art matrix factorization algorithm that is implemented in Matlab and has been
extensively studied for predicting drug-target interactions [16]. KBMF2K tookmore than 10
days for the same size matrix using the same computer system in the ZINC benchmark.More-
over, REMAP was capable of higher rank factorization while KBMF2Kwas limited to rank 200
in our system due to the memory requirement (over 100 GB of memory). At a much higher
rank (r = 2,000), less than one hour was required for REMAP on the same dataset (Fig 7A).
Time complexity experiments on larger dataset showed that REMAP completed predictions on
a dataset with 200,000 rows and 20,000 columns within 2 hours on a single core computing sys-
tem with 2.88 GB of memory, demonstrating its ability to screen the whole human genome of
approximately 20,000 proteins in two hours (Fig 7B).

Large scale prediction of drug-target interactions

Since REMAP is scalable and shows superior accuracy based on our benchmark tests, we per-
formed large scale prediction of drug-target interactions on the ZCD dataset (explained in the
Materials and Methods section). As explained in the prediction score adjustment section, pre-
diction scores for the active pairs were mostly located between 0.75 and 1.0 (Fig 2A).

Low rank profile based drug-drug similarity analysis

As expected, the percentage of pairs of chemicals that share common targets decreases with the
decrease of the chemical structural similarity measured by the Tc of ECFP fingerprints (Cðc1 ;c2Þ).
The percentage of target-sharing chemical pairs drops below 50% and 0.5% when the Tc is
between 0.5 and 0.6, and less than 0.5, respectively (S6 Fig). Thus, it is less likely that the chem-
ical structural similarity alone can reliably detect novel binding relations between two chemi-
cals when the Tc is less than 0.5. It is interesting to see how REMAP performs when the
chemical structural similarity fails.

We analyzed the low-rank drug profile (matrixUUP) to check whether it represented the tar-
get-binding behavior of the drugs.When filtered by low chemical structure similarity
(Cðc1 ;c2Þ < 0:5Þ), there are 899,871 drug-drugpairs. Among them, the profile similarity score
(Scos;ðc1 ;c2Þ) of 91,888 pairs is higher than 0.3. With high profile similarity (0:99 � Scos;ðc1 ;c2Þ � 1Þ),
a total of 1,327 drug-drugpairs were found of which 1,033 pairs shared at least one common
known target. S7 Fig shows the percentage of pairs that share the common target in different
profile similarity bucket for FDA-approved drugs. This result suggests that REMAP is able to
provide a chemical-protein binding profile that cannot be captured by chemical structure simi-
larity alone.

When Scos;ðc1 ;c2Þ � 0:3, the percentage of two drugs that share a common target drops below
50% (S7 Fig). We constructed a drug-drug similarity network by filtering out drug pairs with
Scos;ðc1 ;c2Þ � 0:3, then applied the MCL algorithm on the drug-drugnetwork to find clusters of
similar drugs. The largest cluster of drugs contained a total of 313 drugs, and their relationships
to diseases were examined based on the known associations annotated in CTD [31]. As a
result, we found that the drugs are mostly related to mental disorders, including hyperkinesis,

x-axis of Tc0.5to0.6 means that for the tested chemicals, at least one trained chemical was found such that 0:5 � Cðc1 ;c2Þ
� 0:6 and no trained

chemical was found in greater similarity than 0.6. All TPR values are based on 10-fold cross validation. Error bars represents s.e.m. Asterisks

represents statistical significance based one t-test of the 10 TPR values (* for p < 0.05, ** for p < 0.001).

doi:10.1371/journal.pcbi.1005135.g004
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Fig 5. Performance of REMAP according to the amount of the chemical-chemical or the protein-protein similarity information

used for its 10-fold cross validation on the ZINC dataset. (A) True Positive Rate at the given cutoff rank. All available chemical and

protein similarity information included (blue), a half of chemical-chemical similarity was ignored (orange), and the entire chemical-chemical

similarity was ignored (green). (B) The blue line is the same as A. A half of protein-protein similarity matrix was ignored (gray), and the entire

protein-protein similarity was ignored (red).

doi:10.1371/journal.pcbi.1005135.g005
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Fig 6. Performance of REMAP according to the importance parameters for the chemical-chemical (pchem) or the protein-protein

(pprot) similarity information used for its 10-fold cross validation on the ZINC dataset. (A) The chemical-chemical similarity importance

parameter, pchem, was controlled while pprot = 0.1 fixed. (B) The protein-protein similarity importance parameter, pprot, was controlled while

pchem = 0.1 fixed.

doi:10.1371/journal.pcbi.1005135.g006
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dystonia, catalepsy, schizophrenia and basal ganglia diseases as the mostly related diseases. The
most frequent known protein targets by the drugs were GPCRs (S1 Table). It is comparable
that GPCRs were 1,924 times targeted while kinases were targeted only 55 times.While it is
interesting to further examine the cluster, validating all of the possible drug-target pairs in the
largest cluster may be inefficient.

Fig 7. Average running times of REMAP using a single core node with 2.88 GB of memory. All running

times are in seconds. (A) Average running times on the ZINC dataset (12,384 chemicals and 3,500 proteins)

according to the low-rank (r). The linear fit with R2 = 0.9856 (orange line). (B) Average running times according

to the number of proteins (columns) from 1,000 to 20,000. The number of chemicals (rows) were fixed to

200,000. Error bars represent s.e.m., with n� 15 for (A) and n� 30 for (B).

doi:10.1371/journal.pcbi.1005135.g007
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A smaller cluster of drugs contained a total of thirty-one FDA approved drugs twenty-six of
which are known to target kinases or interact with microtubule (Table 2). Seven drugs in the
cluster have not been used for cancer treatment and were found to be closely linked to the anti-
cancer drugs (Fig 8 and Table 2). Interestingly, several of them have been tested for their anti-
cancer activity. For example, colchicine (also known as colchine), an FDA approved drug for
gout treatment, has been shown to have anti-proliferative effects on several human liver cancer
cell lines at clinically acceptable concentrations [33]. Griseofulvin, an antifungal antibiotic
drug, appears to be effective as an anti-cancer drug when used together with other anti-cancer
drugs [34]. The three anthelmintic drugs, albendazole,mebendazole and niclosamide, have
been studied and repurposed for their anti-cancer effects on different types of cancers. Alben-
dazole has been shown to be effective in suppressing liver cancer cells both in vitro and in vivo
[35], and recently has been repurposed for ovarian cancer treatment with a bovine serum albu-
min-based nanoparticle drug delivery system [36]. Mebendazole showed anti-cancer activities
in human lung cancer cell lines [37] and human adrenocortical cell lines [38], and it has been
repurposed for colon cancer treatment [39]. Both niclosamide and mebendazole showed bene-
ficial effects in glioblastoma in different studies [40, 41]. It has been proposed to use aprepitant
in combination with other compounds to improve the efficiencyof temozolomide, the current
standard drug for glioblastoma treatment [42]. Anti-cancer activity of carbidopa hydrate have
not yet been reported. It will be interesting to experimentally validate the prediction.

Discussion

REMAP improves the predictive power of off-target prediction and drug

repurposing

Our extensive benchmark studies show that REMAP outperforms existing algorithms in most
of the cases for the off-target prediction. Compared with other state-of-the-art matrix factori-
zation algorithms, the predictive power of REMAP comes from several improvements. First,
we formulated the drug-target prediction as a one-class collaborative filtering problem; thus
the negative data are not required for the training. Second, a priori knowledge including
known negative data can be incorporated into the matrix factorization with imputation and
weighting. Finally, using global imputation and weighting, the algorithm is computationally
efficient without significantly sacrificing its performance.

The efficiencyand effectiveness of REMAP allows us to predict proteome-wide target bind-
ing profiles of hundreds of thousands of chemicals. As the proteome-wide target binding profile
is more correlated with phenotypic response than a single target binding, REMAPwill facilitate
linkingmolecular interactions in the test tube with in vivo drug activity. When using a multi-tar-
get binding profile predicted by REMAP as the signature of a chemical compound, seven drugs
were found to be associated with anti-cancer therapeutics, although they do not have detectable
chemical structural similarity. Among them, the anti-cancer activity of six drugs was supported
by experimental evidences. Thus, REMAP could be a useful tool for drug repurposing.

Remaining issues and future directions

Although REMAP showed its high potential on genome-wide off-target predictions as dis-
cussed above, two issues remain: the cold start problem and suboptimal protein-protein simi-
larity metrics. Similar to matrix factorization algorithms such as NRLMF, REMAP suffers from
cold start problem, also known as new user or new item problem. In other words, it is difficult
to recommend a product for a new user if the new user has never purchased or reviewed a prod-
uct in the database [28]. For novel chemicals that do not have any known target in the dataset,
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Table 2. The known uses and target information for the anti-cancer drug cluster in Fig 8B obtained from DrugBank. The known targets are in Uni-

Prot Accession. The target information from UniProt is in S1 Table.

Drug name Approved treatment(s) Known binding target(s) Principal mode of action

Albendazole Parenchymal neurocysticercosis F1L7U3, Q71U36, P68371, P83223 Tubulin polymerization inhibitor

Aprepitant Antiemetic P25103 Substance P/Neurokinin NK1

receptor antagonist

Carbidopa

hydrate

Reduce adverse effects of levodopa in

Parkinson disease treatment

P20711 DOPA decarboxylase inhibitor

Colchine Gout Q9H4B7, P07437 N/A (depolymerize microtubule)

Griseofulvin Ringworm infection P10875, P87066, Q99456 N/A

Mebendazole Anthelmintic Q71U36, P68371 Tubulin polymerization inhibitor

Niclosamide Anthelmintic against tapeworm infections P40763, O60674, P12931 disrupt oxidative phosphorylation

Aza-

epothilone B

Breast cancer Q13509 Microtubule stabilizer

Bosutinib Chronic Myelogenous Leukemia P11274, P00519, P07948, P08631, P12931, P24941,

Q02750, P36507, Q9Y2U5, Q13555

Tyrosin kinase inhibitor

Cabazitaxel Prostate cancer P68366, Q9H4B7 Microtubule stabilizer

Crizotinib Non-small cell lung cancer Q9UM73, P08581 Anaplastic lymphoma kinase

inhibitor

Dabrafenib Metastatic melanoma P15056, P04049, P57059, Q8NG66, P53667 Inhibitor of some mutant BRAF

kinases

Dasatinib Chronic myeloid leukemia P00519, P12931, P29317, P06239, P07947, P10721,

P09619, P51692, P24684, P06241

BRC/ABL and Src family tyrosine

kinase inhibitor

Docetaxel Breast, ovarian and non-small cell lung

cancer

Q9H4B7, P10415, P11137, P27816, P10636,

O75469

Microtubule stabilizer

Erlotinib Non-small cell lung cancer, pancreatic

cancer

P00533, O75469 N/A (EGFR inhibitor)

Gefitinib Non-small cell lung cancer P00533 EGFR inhibitor

Imatinib Chronic myelogenous leukemia A9UF02, P10721, O43519, P04629, P07333,

P16234, Q08345, P00519, P09619

Tyrosine kinase inhibitor

Nilotinib Various leukemias (investigational) P00519, P10721 Tyrosine kinase inhibitor

Paclitaxel Lung, ovarian and breast cancers P10415, Q9H4B7, O75469, P27816, P11137,

P10636

Microtubule stabilizer

Pazopanib Renal cell cancer and soft tissue sarcoma P17948, P35968, P35916, P16234, P09619, P10721,

P22607, Q08881, P05230, Q9UQQ2

Tyrosine kinase inhibitor

Ponatinib Chronic myeloid leukemia P00519, P11274, P10721, P07949, Q02763,

P36888, P11362, P21802, P22607, P22455, P06239,

P12931, P07948, P35968, P16234

Bcr-Abl tyrosine kinase inhibitor

Regorafenib Metastatic colorectal cancer and

gastrointestinal stromal tumors

P07949, P17948, P35968, P35916, P10721, P16234,

P09619, P11362, P21802, Q02763, Q16832,

P04629, P29317, P04049, P15056, P15759, P42685,

P00519

Multiple kinases inhibitor

Ruxolitinib Myelofibrosis P23458, O60674 Janus Associated Kinases (JAK) 1

and 2 inhibitor

Sorafenib Renal cell carcinoma P15056, P04049, P35916, P35968, P36888, P09619,

P10721, P11362, P07949, P17948

Inhibitor of Raf kinase, PDGF,

VEGFR 2 and 3

Sunitinib Renal cell carcinoma and gastrointestinal

stromal tumor

P09619, P17948, P10721, P35968, P35916, P36888,

P07333, P16234

Multi-targeted receptor tyrosine

kinase inhibitor

Trametinib Metastatic melanoma Q02750, P36507 Allosteric inhibitor of mitogen-

activated extracellular signal

regulated kinase 1 and 2

Vandetanib Broad range tumor types P15692, P00533, Q13882, Q02763 Inhibitor of VEGFR

Vinblastine Breast, testicular cancers, lymphomas,

neuroblastoma

Q71U36, P07437, Q9UJT1, P23258, Q9UJT0,

P05412

N/A (inhibition of mitosis at

metaphase)

(Continued )
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REMAP did not show better performance than PRW. Moreover, if the target of the novel
chemical has 5 or fewer known ligands, the recovery of REMAP is lower than 0.5 (S8A Fig).
When the novel chemical is similar to those chemicals in the database, the recovery of REMAP
reached above 90% (S8B Fig). These results suggest that, in practice, existing matrix factoriza-
tion-basedmethods, including REMAP, are not the optimal choice if the chemicals of interest
do not have any known target. To resolve this issue, it is possible to design an algorithm that
combines the benefits of PRW or other algorithms with REMAP. The use of confidence
weights and a priori imputation makes it straightforward for REMAP to incorporate additional
information. In addition, the time and memory efficiencyof REMAPmakes it possible to
apply active learning to overcome the cold start problem [43–46].

The suboptimal performance of REMAPmay arise from the lack of molecular-level bio-
chemical details in deriving the protein-protein similarity metrics.When testing the ZINC
dataset, we found that REMAP performs better as lower weight was assigned for protein-pro-
tein sequence similarity data (Fig 6B). In addition, the predictive power of REMAP improved
when about half of the randomly selected protein-protein similarity scores were removed, fur-
ther confirming that noise confounds relating global sequence similarity to ligand binding (Fig
5B). It is not surprising that proteins with similar sequences do not necessarily bind to similar
chemicals, as protein-ligand interaction is governed by the spatial organization of amino acid
residues in the protein structure [47]. Amino acid mutations/post-translational modifications
and conformational dynamics may alter the binding of the ligand through direct modification
of the ligand binding site or allosteric interaction. A protein may also consist of multiple bind-
ing sites that accommodate different types of ligands. Thus, two proteins with high sequence
similarity do not necessarily bind the same ligands because the two proteins may possess differ-
ent 3D conformations, especially in their binding pockets [47]. In contrast, two proteins with
low sequence similarity can bind to the same ligands if their binding pockets are similar [48,
49]. The binding site similarity can be a more biologically sensitive measure of protein-protein
similarity for the off-target prediction [50–55]. Such work is on-going.

Conclusion

In silico drug-target screening is an essential step to reduce costly experimental steps in drug
development. In this study, we showed that dual-regularizedone-class collaborative filtering
algorithm, a class of computational methods frequently used in user-item preference recom-
mendations, may be applied to drug-target association predictions. Our study presents
REMAP, a collaborative filtering algorithm with capability of running whole human genome-
level predictions within two hours. Other studies on some types of cancer treatment support
our algorithm’s ability to capture drug-drug similarities based on both the drug-target interac-
tion profile and the chemical structural similarity. Our study shows the limitation of REMAP

Table 2. (Continued)

Drug name Approved treatment(s) Known binding target(s) Principal mode of action

Vincristine Acute lymphocytic leukemia, lymphomas,

neuroblastoma, rhabdomyosarcoma

P07437, P68366 N/A (inhibition of mitosis at

metaphase)

Vindesine Acute leukemia, malignant lymphoma,

Hodgkin’s disease, acute erythraemia,

acute panmyelosis

Q9H4B7 Inhibition of mitosis at metaphase

Vinorelbine Non-small cell lung carcinoma P07437 N/A (inhibition of mitosis at

metaphase)

doi:10.1371/journal.pcbi.1005135.t002
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Fig 8. (A) The drug clusters created based on the profile similarity with the anti-cancer drug cluster in the middle

(darker blue grid). (B) The clusters of FDA-approved anti-cancer drugs. A set of 25 known anti-cancer drugs (blue boxes),

and another set of 7 FDA-approved drugs that are closely linked to the former set but have not yet been approved for anti-

cancer treatment (darker blue boxes). Procedures explained in the drug-target interaction profile analysis for drug repurposing

section.

doi:10.1371/journal.pcbi.1005135.g008
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in evaluating new chemicals or accommodating biochemical details. Further development of
the computational tools for better prediction is needed.

Supporting Information

S1 Fig. True Positive Rate (TPR) determined in 10-fold cross validation of ZINC bench-
mark set.The e-value cutoffs for protein-protein similarity calculation based on BLAST
sequence comparison. The lower the cutoff, the more stringent in similarity detection.
(EPS)

S2 Fig. True Positive Rate (TPR) determined in 10-fold cross validation of ZINC bench-
mark set. (A) parameter selection for rank r and the number of maximum iterations. (B)
parameter selection for pchem and pprot.
(EPS)

S3 Fig. ROC-like curves comparing the performances of REMAP (green), PRW (blue), and
NRLMF (orange) based on the number of known ligands (L). True Positive Rate (TPR) at y-
axis vs. cutoff row-rank for the prediction up to the top 10% (350th).
(EPS)

S4 Fig. ROC-like curves comparing the performances of REMAP (green), PRW (blue), and
NRLMF (orange) based on themaximum chemical structural similarity (Tc). True Positive
Rate (TPR) at y-axis vs. cutoff row-rank for the prediction up to the top 10% (350th).
(EPS)

S5 Fig. The performance of NRLMF on the ZINC datasets with varyingparameters (r and
iter are equivalent to the low-rank parameter, r, and the number of iterations, piter, respec-
tively).The best performance was by r = 100, iter = 300 (yellow bars), which was chosen for
the optimized parameters. (A) The optimization on NT1 dataset with varying number of
ligands per target. (B) The optimization on NT2 dataset with varying number of ligands per
target. (C) The optimization on NT3 dataset with varying number of ligands per target.
(EPS)

S6 Fig. The percent of chemical-chemicalpairs that share at least one common target in
ZINC_ChEMBL_DrugBankdataset.The value for the first bar with the chemical-chemical
similarity range between 0.0 and 0.5 is 0.314%.
(EPS)

S7 Fig. The percent of FDA-approved drug-drugpairs that share at least one common tar-
get in ZINC_ChEMBL_DrugBank dataset. (A) The percent of drug-drugpairs for chemical
structure similarity ranges for all FDA-approved drug-drugpairs. (B) The percent of drug-
drug pairs for low-rank profile similarity ranges for drug-drugpairs having structure similarity
less than 0.5.
(EPS)

S8 Fig. Performance comparison for REMAP (green), PRW (blue), and NRLMF (orange).
NT1 (1 known target per chemical) datasets used for varying number of ligands (A) and chem-
ical structural similarity (B). Performance measurement explained in the measuring prediction
accuracy of REMAP by TPR vs. cutoff rank section. (A) Performance comparison on the data-
sets with varying number of ligands per protein. For example, the x-axis of L1to5 means that
the proteins of interest have 1 to 5 known chemicals to bind. (B) Performance comparison on
the datasets with the ranges of chemical structural similarity of the tested chemicals to the
trained chemicals. For instance, the x-axis of Tc0.5to0.6 means that for the tested chemicals, at
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least one trained chemical was found such that 0:5 � Cðc1 ;c2Þ
� 0:6 and no trained chemical

was found in greater similarity than 0.6. All TPR values are based on 10-fold cross validation.
Error bars represents s.e.m. Asterisks represents statistical significance based one t-test of the
10 TPR values (� for p< 0.05, �� for p< 0.001).
(EPS)

S1 Table. The drugs and target information for the largest cluster in Fig 7.
(XLSX)

S2 Table. The protein IDs and annotations for Table 2 and S1 Table. Obtained fromUni-
Prot.
(XLSX)
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