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Abstract: The goal of this project was to map the surface temperature of the University of 

Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal 

camera with a spectral bandwidth of 3.0-5.0 µm was flown at the average altitude of 600 m, 

achieving ground resolution of 29 cm. Ground control data was used to construct the pixel-

to-temperature conversion model, which was later used to produce temperature maps of the 

entire campus and also for validation of the model. The temperature map then was used to 

assess the building rooftop conditions and steam line faults in the study area. Assessment 

of the temperature map revealed a number of building structures that may be subject to 

insulation improvement due to their high surface temperatures leaks. Several hot spots 

were also identified on the campus for steam pipelines faults. High-resolution thermal 

infrared imagery proved highly effective tool for precise heat anomaly detection on the 

campus, and it can be used by university facility services for effective future maintenance 

of buildings and grounds.  

 
Keywords: Thermal, infrared, aerial, remote sensing, buildings, steam lines, surface 

temperature 
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1. Introduction 
 

Heat loss detection is an important aspect of infrastructure maintenance. With fuel prices rising and 

ecology concerns gaining voice, managers and engineers face the problem of heat loss reduction. One 

of the common ways to improve energy efficiency is to identify temperature anomalies (“hot spots”) in 

the existing infrastructure. Defects in building insulation, leakage in underground pipelines and general 

insulation deterioration are good examples of heat loss sources. Thermal radiation is not perceived by 

the human eye, which complicates the process of hot spot detection. Thermal remote sensing makes 

thermal radiation visible, which makes it an excellent solution to the problem of locating hot spots. 

Thermal infrared sensors can be handheld or fixed on a platform such as an airplane, a satellite or a car. 

Each of these platforms has its own advantages and disadvantages. 

Ground level surveys are very flexible and can easily be performed on demand. They are, however, 

prohibitively time-consuming when dealing with a large study region [1]. Another problem is that the 

results of the ground survey cannot be easily integrated into modern GIS systems. Airborne and 

satellite-based surveys, on the other hand, provide data that can be easily georeferenced, imported into 

any GIS system and prepared for automated analysis as described by MacKay [2].  

Satellite systems have a number of advantages: they offer vast coverage, collect imagery at regular 

intervals and at lower cost. On the other hand, satellite imagery is not available on request because the 

orbital path is not easily adjustable. Also, the combination of limited pixel dwell-time and low level of 

signal in the infrared part of the spectrum only allows for spatial resolution of 60m or worse (60m for 

Landsat, Band #6 and 90m for Aster, Bands #10 to 14, according to NASA specifications). Finally, 

sun-synchronous satellites (such as Aster and Landsat) are not suitable for precise heat loss analysis, 

because it is the heat coming from inside the buildings that is of interest, not the re-emitted heat 

coming from the sun.  

Aerial imagery can be acquired on request (at any time of day and night) and with high spatial 

resolution because of the much lower altitude of flight. Several papers have demonstrated that aerial 

imagery can produce temperature measurements accurate to within 0.6-1.7°C [3-5]. A number of 

drawbacks, such as long deployment time (the plane needs to travel to the place of survey) and 

relatively high cost (costs of $200,000 for bigger projects are not unusual [6]) may become a barrier for 

smaller projects. However, the advantages of aerial imagery make it ideal for on-demand high-

resolution thermal infrared surveys.  

The goal of this project was to obtain aerial thermal infrared imagery for the campus of the 

University of the Northern Iowa and assess its usefulness from the position of temperature anomalies 

detection. High spatial resolution of the imagery, fully digital image-processing framework and an 

attempt to perform GIS-based analysis would differentiate this survey from other papers on aerial-

based infrared thermography. Analog, low-resolution infrared sensors and the lack of GIS integration 

significantly limit the potential of the thermal infrared research. 
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2. Data Collection 
 

2.1 Study Area 

 

The study area for this survey was the Campus of the University of Northern Iowa (UNI) in Cedar 

Falls, Iowa, USA (Figure 1). Despite its small area (about 2 km sq.), the UNI campus represents a wide 

variety of objects of interest, including flat rooftops, sloped rooftops, underground pipelines, heat 

exhausts and other infrastructure. Insufficient heat insulation of dormitories, on-campus apartments, 

classrooms and laboratories may cause an increased financial burden on UNI students. Therefore, such 

a study should be highly important for all campus residents. 

 
Figure 1. UNI campus map. 

 
 

2.2 Aerial Data 

 

Aerial data was collected by the private contractor, AITScan (a division of Stockton Infrared 

Thermographic Services, located in Randleman, North Carolina) on April 04, 2007. The survey was 

performed between 11PM and 12AM to ensure maximum thermal contrast between the objects of 

interest (buildings, steam pipelines) and their surroundings [6, 7]. AITScan used the thermal infrared 

camera "Phoenix-Mid" manufactured by FLIR Systems. This camera has a resolution of 640 x 512 

pixels with a FOV of 14.6°. With the average flying height of 600 m above the ground level, ground 

resolution is approximately 0.29 m for the whole dataset. This camera has a radiometric resolution of 



Sensors 2008, 8                            

 

 

5058

14 bits and operates in the wavelength range of 3.0 - 5.0 µm. Cooling is provided by the on-board 

Stirling closed cycle cooler.  

Imagery is provided by AITScan in two formats, JPEG and SAF (Standard Archive Format). The 

JPEG file format in not capable of storing original 14 bit data (maximum bit depth is 8 bit for the gray 

channel). SAF files, on the other hand, contain full 14 bit camera output (stored in 16 bit form for 

convenience), as well as camera calibration coefficients that are used to convert pixel values to 

temperature and radiance. The SAF file is, in essence, an archive, that stores a time series of imagery in 

the single-file form. This survey produced 24 SAF files, corresponding to the 24 flight lines. With each 

flight line consisting of approximately 250 separate images, the resulting dataset contains about 6,000 

rasters. 

 

2.3 Ground Data 

 

In order to provide additional control over the results of the survey, ground-level temperature data 

was collected. A handheld infrared thermometer (“MT4 Minitemp” manufactured by RayTek) was 

used for ground-level temperature sampling. According to the manufacturer, the accuracy of “±2%, or 

±1.7°C, whichever is greater,” can be achieved. Previous to taking any measurements, this 

thermometer was tested and calibrated in a laboratory setup, as illustrated by Figure 2. 

 

Figure 2. Infrared thermometer calibration. 

  
 

A cup of cold water (around 1°C) was set up on a heater. A magnetic mixer at the bottom of the cup 

was constantly rotated by the magnetic field created by heater. The heater was turned on and as the 

temperature rose, simultaneous measurements were taken by the infrared and calibrated alcohol 

thermometer. Measurements were taken until the water reached 21°C. Then, the difference between 

two sets of temperatures was calculated. The differences were normally distributed with a mean of 

0.4°C and standard deviation of 0.16. This test demonstrated that in the temperature range of 5°C to 

20°C the accuracy was approximately ±0.3°C. 

A number of random temperature measurements were taken around the campus, using GPS to 

record their positions. In addition to these samples, two reference targets - two sheets of plywood, 2.5 

Precise alcohol 
thermometer 

MT4 Minitemp 

Heater  

Water with 
magnetic mixer 
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by 1.2 m, covered in black matte paint - were set up two hours before the start of the survey, 

approximately 1 m above the ground level, as far from expected sources of thermal pollution as 

possible [8]. These reference targets were later used in two different ways. First, both targets were used 

together with other ground samples to verify the pixel to radiance/temperature conversion model. In 

case the GPS positioning error would be too high to reliably identify the ground samples on the thermal 

imagery, two plywood targets would be a fall-back option to get at least some data for the model 

verification. Based on the proposed spatial resolution of 0.29 m, the size of the targets used would be 

enough for an accurate visual location. Second, the plywood targets were used to investigate the change 

of the temperature of the exposed objects overnight, if any. The sampling period was selected to match 

the data collection interval of the on-campus meteorology station. 

Data from the on-campus automatic meteorology station located on the rooftop of the Latham Hall 

were collected every 30 minutes and contained temperature, pressure, and relative humidity values. 

Data on wind direction and speed were obtained from the nearby (6 km) meteorology station in 

Waterloo, Iowa. Throughout the night, the ambient air temperature stayed close to -6 °C, with humidity 

of 79%. Wind direction and speed were stable for the whole time of the survey (330°, 8 m/s). Except 

for the wind speed, meteorological conditions were favorable for the thermal infrared survey – clear 

sky, low ambient temperatures and absence of precipitation all benefit thermal contrast [6, 8]. 

 

2.4 GIS Data 

 

Thermal imagery requires significant amount of processing. Automated means of analysis must be 

found in order to fully employ the benefits of remote sensing approach. Using GPS coordinates as a 

spatial reference, ground control samples were transformed into a shapefile. Next, the raster extraction 

tool from the ESRI ArcGIS toolbox was used to extract matching pairs of aerial and ground 

measurements. Another shapefile with on-campus buildings was prepared by digitizing a high-

resolution raster image in ArcMap. This shapefile was used to analyze raster data separately for every 

building. Finally, a shapefile with the structure of the UNI steam pipeline network was provided by the 

facility services department. This shapefile was used to locate the segments of the steam network that 

were in any way obscured on the thermal image. 

 
3. Methodology 
 

3.1 Georeferencing and Mosaicing 

 

As was mentioned before, aerial data was provided in the form of SAF files, which is an archive that 

stores a time series of images in the single-file form. In order to access individual raster images, 

another format had to be used. Portable Network Graphics format was chosen because it supports 16-

bit grayscale data as well as lossless compression. An open-source software library, libpng, developed 

by Schalnat et al. [9] was used to create PNG rasters. Raw data was extracted from the SAF files with a 

small application written by the author of this paper in compliance with SAF specifications. 
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Before georeferencing and mosaicing, a histogram of the pixel values distribution was created 

(Figure 3). 

 
Figure 3. Pixel values distribution. 

  
 

From the histogram, it is clear that the majority of pixels belong to the range of values between 

1,300 and 2,100, which corresponds to less than 5% of the 16-bit range used by the camera. In order to 

improve visual contrast, the image histogram was stretched accordingly, using 850 and 2,835 as 

boundaries. Figure 4 is an example of an image before and after the histogram stretch. These boundary 

values were selected according to the Chebyshev’s Inequality, which guarantees that 99% of the dataset 

are within the range specified.  

 

Figure 4. An image before (left) and after (right) the histogram stretch. 

  
 

After stretching the histogram, raster images were mosaiced manually in the ERDAS Imagine 

software using existing high-resolution airborne imageries of the UNI Campus as a reference. RMSE 

for the resulting model were normally distributed with mean of 1.94 pixels and standard deviation of 

0.69. 
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3.2 Pixel to Radiance Conversion 

 

There are two common ways to convert pixel values to temperature. The first approach, utilized by 

MacKay [2], Kulacki, Mintzer and Winget [3] and Tanis and Sampson [10] is to convert pixel values 

into temperature directly. The second approach is to convert pixel values to radiance, then use the 

radiance values as an input to the Planck's formula, as was done by Schott and Wilkinson [8] and 

Schott et al. [9]. In this study, the second approach was used, because it provides additional control 

over the level of emissivity of the objects of interest. 

It was initially planned to convert pixel values into radiance by using conversion polynomials of the 

form 

∑ =
⋅= n

i

i
i pcR

0
 

 

where ci are calibration coefficients and p is the pixel value. Calibration data for the sensor was 

gathered on board the plane using a black body as a reference, as was done by MacKay [2], Tanis et al. 

[10] and Brown et al. [11]. However, the resulting polynomials produced erroneous temperatures that 

did not correspond to the ground truth. Instead, the dataset that was supposed to act as ground truth was 

used to create the regression model for the pixel to radiance conversion. 

The regression model was built in two steps. First, using Planck's Law: 
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k

hc
A = , 22hcB = , h is the Planck constant, k is the Boltzmann constant and c is the speed of 

light, the radiance of the ground samples was calculated as a function of their temperature. Only 

samples with well-known emissivity levels (concrete pavements) were used in this process. In the 

second step, ESRI ArcGIS was used to extract pixel values from the mosaiced thermal image at the 

locations of the ground samples. Then a linear regression model was built with the pixel values and 

radiance as variables. 

 
290.01058838.3)( 4 −⋅⋅= − ppR  

 

The resulting model has a coefficient of determination (R2) of approximately 0.78. However, the model 

is only reliably defined for the range of pixel values between the coldest and the hottest object sampled 

(approximately -12°C and 2°C). Using the model produced in the steps above, as well as the inverted 

version of the Planck’s Law,  
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pixel values were converted into temperatures. The level of emissivity was fixed at 0.95, which is the 

emissivity of concrete, according to the ASTER Spectral Library.  

 

3.3 Model Validation 

 

Some of the ground samples were left for the model validation process. Temperature estimates 

produced by the model were compared with the ground measurements.  

 

4. Results and Discussion 
 

4.1 Thermal Map of the UNI Campus 

 

Figure 5 shows the surface temperature variation map of the campus. This map clearly depicts the 

hot spots on the campus. Areas covered in vegetation tend to exhibit lower temperatures, while man-

made pavements are relatively warm. Overall, places with lower height, tall vegetation or clusters of 

buildings tend to be warmer than high, open grounds, because they are better shielded from the cooling 

effect of the wind. Another easily spotted object is a small local stream (Figure 5, bottom right corner) 

- due to high thermal capacity of water, its warm stream is clearly outlined on the cool background. 

This study focused on two main objects of interest, on-campus buildings and underground steam 

pipelines mainly because of the facility services interests.  

 
Figure 5. Thermal map of the campus. 
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4.2 On-campus buildings 

 

In general, rooftops of the on-campus buildings are in good condition with no major leaks visible. A 

number of buildings in this region have roof temperatures elevated above the average level, as well as 

other issues. For example, Maucker Union (Figure 6) has the warmest rooftop. Latham Hall (Figure 7) 

has a signature hotspot on its rooftop that can probably be attributed to the moisture, captured under the 

insulation material [4]. McColum Science Hall (Figure 8) hosts a number of chemistry and physics labs 

that are well-ventilated. The heat exhaust from the ventilation system is unmistakable, along with the 

overall warm rooftop of this hall. 

 

Figure 6. Maucker Union. 

 

 

Figure 7. Latham Hall. 

 

 
 

Figure 8. McColum Science Hall. 

 

 
 

 

 

For all buildings on campus, a so-called halo effect is present. Two surveys [6, 12] mention possible 

relationship between the walls temperature and the halo intensity. This effect is attributed to the 

reflection and re-emission of thermal radiation by the ground surface. Treado & Burch [12] attempted 

to derive the temperature of the object using its halo, but no clear relationship was found. Nonetheless, 

this effect serves the purpose of illustrating the wind-sheltering effect [8] of the on-campus buildings. 

N N 

N 
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The direction and the speed of the wind remained steady throughout the night (330º, 8 m/s). As a 

result, the areas to the south of the structures are noticeably warmer than their northern counterparts. 

As was mentioned before, the halo effect is poorly suited for analysis of wall temperatures. The 

study by Baraniak and Williams [1] is an example of a ground-based thermal imaging survey that deals 

with the building's walls directly. That study demonstrated that a number of significant temperature 

anomalies can be found by examining the structures from the side view. Because of the sharp turns the 

plane was performing at the end of each flight line, a number of oblique images of the buildings in the 

vicinity of the campus were produced. One of the best examples is present in the Figure 9. The 

building shown is Cedar Falls High School, located about 1 km to the north of the campus. The high 

visual contrast between the rooftop and the walls is obvious. No data on the insulation levels of this 

building was collected at the time of this paper being written, neither were there any ground samples 

available for that particular location. It should be noticed that factors other than temperature, such as 

the directional emissivity of the surfaces as well as wind effects contribute significantly to the observed 

contrast. Nonetheless, it would be useful to investigate the possibility of automated analysis of oblique 

thermal imagery in the future. 

 

Figure 9. Oblique imagery. 

 

 
 

4.3 Steam pipelines 

 

Several papers [2, 6, 8] illustrate that aerial infrared imagery is convenient and cost-efficient when 

heat loss from buried pipelines is analyzed. As shown by MacKay [2], pipeline locations must be 

known during the analysis because of the vast range of surface types, which may completely mask the 

thermal trace. Compared to other objects on campus, steam pipelines stand out most vividly (Figure 

10). Combined with the shielding effect of the buildings, the heat coming from underground pipelines 
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is the most possible explanation of the elevated temperatures in the eastern part of the campus. 

Estimating exact heat loss from underground pipelines requires precise knowledge of the burial depth 

and insulation levels of the pipeline. However, this information is usually obtained only after the line is 

dug out for maintenance or repair (most of the data available to the planning facilities of UNI is 

obsolete). However, thermal maps are still valuable as an excellent tool to locate segments of the steam 

network that require attention and, possibly, improvement. 

 

Figure 10. Pipelines and wind effect. 

 

 
 

4.4 Automated analysis 

 

One of the issues not addressed in many papers is automated analysis of the imagery. As was 

mentioned in the Methodology section, a shapefile with vector representation of on-campus buildings 

was created. Using this shapefile and the extraction tool from the ESRI ArcGIS Toolbox, separate 

imagery datasets for each of the buildings were created. Pixel values from each dataset were extracted 

and used for simple statistical analysis, such as histogram plots. A number of examples are presented in 

Figure 11 (polygons from the shapefile are shown in red). Histogram peaks define the most frequent 
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pixel values (or temperatures, for that matter). This approach allows for numerical comparison of the 

average temperatures between pairs of buildings automatically. For the UNI Campus the benefits are 

not so obvious, given the low number of buildings. For surveys of large residential areas, however, 

automation is important. 

 
Figure 11. Individual Buildings’ Temperature Histograms. 

  

  

 
 

 

 

Temperature estimates produced by the model were compared with the ground measurements. The 

results of the validation are presented in Table 1. The mean temperature error is -0.25°C, standard 

deviation is 0.58°C. This makes the model accurate to within ±1.2°C. 
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Table 1. Error Estimation. 

Model Temp. Ground Temp. Error 

-8.1 -8.1 0.00 

-5.2 -5.0 -0.17 

-8.1 -7.8 -0.28 

-6.9 -6.7 -0.28 

-8.1 -8.9 0.78 

-5.8 -5.0 -0.78 

-4.9 -3.9 -1.06 

 
5. Conclusions and Future Directions 

 

In this study, a high-resolution thermal infrared map of the Campus of the University of Northern 

Iowa was produced. Inspection of the temperature map revealed a number of buildings that may be 

subject to insulation improvement due to their high rooftop temperature, as well as a number of smaller 

leaks, mostly related to ventilation exhaust. Most of the heat anomalies on the campus, however, are 

caused by poorly insulated steam pipelines. In particular, the large hot spot in the eastern of the campus 

is the result of high concentration of steam pipelines in the region as well as the shielding effect of the 

buildings. Overall, high-resolution thermal infrared imagery proved to be a highly useful tool for heat 

anomalies detection. 

The observation conditions mentioned in the beginning of the paper – cold, dry and clear April night 

– played a critical part in the success of this survey. First of all, this ensured maximum thermal contrast 

between the objects of interest (buildings, steam pipelines) and their surroundings. Second, the 

combination of the low flying altitude and a cold dry atmosphere reduced the absorption and emission 

of the infrared energy by the column of air between the sensor and the objects of interest. In this paper, 

no corrections were made for the influence of the atmosphere, but this approach would not suffice for a 

survey with different observation conditions. A significant limitation of this study is absence of on-

plane camera calibration. The ground control data was used to construct the pixel-to-temperature 

conversion model instead, which resulted in a much smaller validation dataset. Another limitation is 

that for the present moment, no correction for the emissivity values of the objects in question was 

done. An assumption was made that the UNI pavements fall into the generic “concrete” category 

mentioned in the ASTER Spectral Library, which would introduce a certain degree of error into the 

radiance to temperature conversion. Provided that the selection of the emissivity level does influence 

the derived temperature values directly, this is an important consideration. However, with the help of 

the Campus Planning Facilities, it would be possible to obtain the samples and exact types of all on-

campus building materials, which would improve the accuracy of temperature retrieval. With the help 

of GIS data, emissivity correction can be applied to individual objects, instead of calibrating the whole 

map to a single level of emissivity. This work is reserved for a future paper. Finally, the oblique 

imagery obtained in this survey can be georeferenced and processed in the manner similar to the nadir 

imagery. As it was mentioned earlier, it would be necessary to account for the anisotropic nature of 
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emissivity as well as the directional wind effects. This might be an opportunity to analyze the heat 

anomalies present in the buildings’ walls.  
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