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Problem and Purpose 

The U.S. Securities and Exchange Commission (SEC) maintains a publicly-accessible 

database of all required filings of all publicly traded companies.  Known as EDGAR (Electronic 

Data Gathering, Analysis, and Retrieval), this database contains documents ranging from annual 

reports of major companies to personal disclosures of senior managers.  However, the common user 

and particularly the retail investor are overwhelmed by the deluge of information, not empowered.  

EDGAR as it currently functions entrenches the information asymmetry between these retail 

investors and the large financial institutions with which they often trade.  With substantial research 

staffs and budgets coupled to an industry standard of “playing both sides” of a transaction, these 

investors “in the know” lead price fluctuations while others must follow.1,2 

In general, this thesis applies recent technological advancements to the development of 

software tools that will derive valuable insights from EDGAR documents in an efficient time period.  

While numerous such commercial products currently exist, all come with significant price tags and 

many still rely on significant human involvement in deriving such insights.  Recent years, however, 

have seen an explosion in the fields of Machine Learning (ML) and Natural Language Processing 

(NLP), which show promise in automating many of these functions with greater efficiency.  ML 

aims to develop software which learns parameters from large datasets as opposed to traditional 

software which merely applies a programmer’s logic.  NLP aims to read, understand, and generate 

language naturally, an area where recent ML advancements have proven particularly adept. 

                                                 

1 In securities markets, the “sell-side” are those that issue securities, whether this be debt (bonds) or equity 
(shares of stock).  The “buy-side” are investors looking to buy these securities.  A large financial institution typically has 
divisions on both sides and, while they technically do not collude, they do in practice.  

2 Tetlock, 2014, "Information Transmission in Finance." 
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Specifically, this thesis serves as an exploratory study in applying recent advancements in ML 

and NLP to the vast range of documents contained in the EDGAR database.  While algorithms will 

likely never replace the hordes of research analysts that now saturate securities markets nor the 

advantages that accrue to large and diverse trading desks, they do hold the potential to provide small 

yet significant insights at little cost.   

This study first examines methods for document acquisition from EDGAR with a focus on 

a baseline efficiency sufficient for the real-time trading needs of market participants. Next, it applies 

recent advancements in ML and NLP, specifically recurrent neural networks, to the task of 

standardizing financial statements across different filers.  Finally, the conclusion contextualizes these 

findings in an environment of continued technological and commercial evolution.   

Literature Review3 

There exists very little literature specific to the focus of this study, which in part helps to 

justify its exploratory nature.  This stems from three general factors.  First, as the introduction would 

suggest, a system that could efficiently analyze financial reports would bestow a marked advantage 

on any trader—an advantage they would rightfully refuse to publicize. Second, many of the 

algorithms this study will employ or the digital infrastructure on which they depend are on the 

bleeding edge of technology.  The first full version of software library on which a significant portion 

of this study depends became available only in February 2017 and one of the key methods employed 

was released publicly in March.  Finally, large financial institutions have little incentive to lead 

change in this domain, because they currently enjoy the benefits of large human research staffs.   

                                                 

3 This document is intended for all readers, including those without a background in securities markets or in 
machine learning.  As such, the majority of the Literature Review section eschews detailed descriptions and the 
complicated terminology they necessitate.  Technical readers may find this information in the Methodology section. 
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The remainder of this literature review contains four general sections. First, “Securities 

Filings and EDGAR” describes the various filings of interest to this study, their contents, and 

methods of accessing them.  Second, “XBRL and Filing Content” describes a specific format of 

filing content—financial statements—and their required reporting language.  Third, “Machine 

Learning and Natural Language Processing” describes various methods in general, notable 

applications outside the securities domain, and necessary modifications for the securities domain.  

Finally, “Automated EDGAR Analysis” describes previous attempts at the objectives of this study, 

primarily securities-specific machine learning applications. 

Securities Filings and EDGAR 

Publicly traded companies in the United States have significant financial reporting 

requirements, established through many different legislative acts over the past century.  While these 

forms range from the critical to the mundane, this study will focus specifically around four types: the 

4, 8-K, 10-Q, and 10-K.4 

Form 4 – Disclosure of trading by a company insider or significant owner. 

Form 8-K – Current report of events that may have a material impact on the financial 

performance of a company. 

Form 10-Q – Quarterly report summarizing a company’s financial performance. 

Form 10-K – Annual report summarizing a company’s financial performance. 

This study will focus initially on current (as of Quarter 3, 2016) members of the S&P 500 

and Russell 3000 Indices.  While “filers” to the SEC may have a variety of meanings ranging from 

companies to mutual funds to individuals, it is synonymous with “publicly traded company” in this 

study.  Filers prepare their documents internally, then upload them to the File Transfer Protocol 

                                                 

4 “Index to Forms, EDGAR Filer Manual Vol. II,” U.S. Securities and Exchange Commission, August, 2015.  
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(FTP) servers of EDGAR, from which the SEC copies them to web servers.   Most investors 

choose to view and download documents from these web servers, but automated collection typically 

gathers unformatted text through FTP. 

Attempts to analyze the usage and consequences of rapidly and freely available electronic 

filings diverge between a long-term and short-term focus.  While the latter seeks to employ EDGAR 

as a tool to obtain and act on material information before other investors, the former views 

EDGAR as a historical collection useful for developing long-term strategies and largely disregards 

consideration of real-time document retrieval. One particularly vital product of this research was the 

public release of EDGAR server logs from February 14, 2003 to September 30, 2015, as well as 

processing methods that these papers employed.5 

EDGAR as a historical long-term fundamental research tool has attracted attention in both 

accounting and finance literature.  In a series of three papers, Drake, Roulstone, and Thornock 

examine the EDGAR server logs for collection patterns of both current and historical documents 

while also comparing these patterns to those of Google searches around earnings 

announcements.6,7,8 They find that investors typically make few and infrequent requests for quarterly 

financial documents while a small number of investors—likely larger firms with established “big 

data” strategies—make many and frequent requests for a wide variety of forms.   

In somewhat similar analysis, Loughran and McDonald observe similar behavior patterns 

while coming to a rather premature conclusion that investors largely ignore EDGAR information 

                                                 

5 “EDGAR Log File Data Set,” U.S. Securities and Exchange Commission, December 23, 2015. 

6 Drake, Roulstone, and Thornock, 2014, “Investor Information Demand: Evidence from Google Searches 
Around Earnings Announcements.” 

7 Ibid., 2015, “The Determinants and Consequences of Information Acquisition via EDGAR.” 

8 Ibid., 2015, “The Usefulness of Historical Accounting Reports.” 
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for fundamental research.9  The authors intentionally ignore traffic they arbitrarily label as automated 

but do provide exceptionally clear descriptions of their methods.  This allows for useful 

modifications to their methods, namely a simple reversal to examine automated traffic relevant to 

short-term analysis. Furthermore, the authors admit that EDGAR logs fall short of a conclusive 

sample, as investors have a wide range of sources from which to gather information, even with the 

inclusion of Google search behavior.  A complete analysis would require inclusion of free aggregator 

data, such as from Google Finance/Yahoo Finance/Wall Street Journal Finance, as well as 

proprietary aggregator data, such as Bloomberg, Street Smart Edge, or Interactive Brokers (all ™).   

Contrary to these conclusions, Christensen, Heninger, and Stice find significant differences 

in price and analyst reactions to SEC filings before and after the widespread availability of EDGAR, 

suggesting that at least institutional investors may engage with the database in some way.10  

However, their observations could easily indicate a mere quickening of information flow in general 

rather than a broad and influential use of EDGAR information. 

While the use of EDGAR information in long-term applications remains in question, there 

remains the potential use of EDGAR data in short-term strategies.  The rise and prevalence of High 

Frequency Trading (HFT) demonstrates that what is essentially instantaneous to the human eye is 

appallingly slow to securities markets.  An advantage of mere microseconds with material 

information can deliver impressive—even astonishing—returns.  With this in mind, a number of 

researchers have explored the patterns of document requests and the delivery speed afforded to 

different requesters.   

                                                 

9 Loughran and McDonald, 2016, "The Use of EDGAR Filings by Investors." 

10 Christensen, Heninger, and Stice, 2013, "Factors Associated with Price Reactions and Analysts’ Forecast 
Revisions Around SEC Filings."  
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Two recent works highlight the modern realities of document retrieval, both focusing 

around an institutional advantage enjoyed by large firms. Jackson and Mitts observe considerable 

differences between posting times of documents on the EDGAR FTP servers and the SEC web 

servers, as well as significant but smaller lead times afforded institutional investors through the 

public dissemination service (PDS)—a commercial subscription allowing for the automated 

dissemination of EDGAR filings.11  Rogers, Skinner, and Zechman critique this work, noting that 

mere appearance of a document on an FTP server does not allow for immediate retrieval by a 

potential trader.12  More importantly, they describe an interview with SEC staff, who describe the 

process of document submission and seem to indicate that commercial PDS subscribers are 

intentionally afforded an information advantage over retail investors. 

As part of the groundwork for future research, this thesis implemented open-source 

programs for the automated collection and storage of historical and current EDGAR filings.13  Initial 

examination suggests FTP retrieval times could still obtain a reliable time advantage over web 

documents, contrary to Rogers, Skinner, and Zechman.  If such methods paralleled or even 

exceeded the advantage afforded PDS subscribers, such programs could reduce a significant 

institutional advantage and improve market liquidity immediately after key announcements.14 

Of significant importance to this thesis was a decision by the SEC to permanently shut down 

public FTP access, effective December 30, 2016.15 Announced through a small note on the relevant 

                                                 

11 Jackson and Mitts, 2014, "How the SEC Helps Speedy Traders." 

12 Rogers, Skinner, and Zechman, 2015, "Run EDGAR Run: SEC Dissemination in a High-Frequency World." 

13 The following works were referenced in the creation of the EDGAR data collection code, which is available 
at https://github.com/gioGats/EDGAR/crawling:  

- García and Norli, 2012, "Crawling Edgar." 
- Engelberg and Sankaraguruswamy, 2007, "How to Gather Data Using a Web Crawler.” 

14 Tetlock, 2014, "Information Transmission in Finance." 

15 “Accessing EDGAR Data,” U.S. Securities and Exchange Commission, March 17, 2017. 
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web page just five days prior, this decision came with no official explanation.  Evaluating the specific 

implications of this infrastructure change lies outside the scope of this thesis, but general large-scale 

data collection and analysis is significantly more difficult, if not impossible.  While other methods 

for large-scale historical data collection still exist, they likely violate the SEC’s terms of service.  A 

replacement feed for current documents, updated every 10 minutes, provides some of the previous 

functionality albeit with a delay that probably precludes any short-term trading strategy.  Although 

the data collection portion of this thesis completed prior to this shutdown, many of the data 

collection methods in this study are no longer applicable.  However, relevant historical data was 

successfully compressed and archived for future use. 

XBRL and Filing Content 

Beginning in 2009 the SEC required filings containing financial statements (primarily the 10-

Q and 10-K) to report this information in eXtensible Business Reporting Language (XBRL).16  This 

requirement aimed for transparency, because firms have many different names that may appear on 

statements for the same accounts.  XBRL combined a term (account names) with a definition in the 

XBRL taxonomy, with the intent of some degree of standardization and a larger degree of 

transparency. 

While laudable in intent, significant research indicates anything but the desired outcome.  

Financial ratio calculation, an important use of financial statement data, is no easier with XBRL, 

because tags lack a sufficient level of consistency.17  Analysis of institutional behavior following 

widespread XBRL adoption notes little change at the institutional level.  If institutions employ 

                                                 

16 “Structured Disclosure at the SEC: History and Rulemaking,” U.S. Securities and Exchange Commission. 
April 27, 2016. 

17 Williams, Wenger, and Elam, 2012, "Analysis of Actual Company Filings Using XBRL." 
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financial ratios in their strategies, they calculate these ratios independent of XBRL consistency.18   

Far afield from its objectives, some research suggests XBRL may have actually increased the 

complexity of financial statements, making such information even harder for retail investors to 

understand and apply.19   Despite these negative impacts, numerous proposals exist to improve 

standardization of XBRL, and existing analysis of the influence of public financial news suggests 

such improvement could greatly benefit investors and overall market health.20,21 

The mechanism for additions to the XBRL taxonomy is a key failure of the XBRL system.  

While companies may genuinely need new tags to capture nuance in their accounts, the SEC allows 

essentially unfettered additions to the taxonomy largely irrespective of necessity.  Many of the above 

papers share a common theme bemoaning the complexity of the XBRL system, most notably due to 

this proliferation of essentially identical tags.   

This degree of tag proliferation has shifted focus from forced standardization through 

regulatory changes to various forms of post-filing standardization.  A number of market information 

aggregation sites—namely Yahoo Finance and Google Finance—deployed methods intended to add 

standardized financial statements to their offerings.   These both employed proprietary methods 

similar to methods proposed in recent research, but were far from fully successful.22, 23  Both 

commercial and academic attempts failed to produce a standardization scheme sufficient for 

practical use. 

                                                 

18 Cho, Bhattacharya, and Kim, 2014, "XBRL Mandate and Access to Information." 

19 Hoitash and Hoitash, 2015, "Measuring Accounting Complexity with XBRL."   

20 Starr and Yount, 2013, "The State of SEC Reporting Using Structured Data.” 

21 Tetlock, 2010, "Does Public Financial News Resolve Asymmetric Information?" 

22 O'Riain, Curry, and Harth, 2012, "XBRL and Open Data for Global Financial Ecosystems.” 

23 Wang, et. al., 2013, “Semi-automatic Generation Model of Elements in XBRL Taxonomy.” 
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Yahoo Finance suffered a notable failure when their methods failed to connect the account 

for “Technology and Design” in Amazon’s financial statements with the conventional “Research 

and Development.”  For a number of quarters, Yahoo Finance reported $0 in Research and 

Development for Amazon, while the real figure was around $2bn/year and prefaced the rise of 

Amazon Web Services (now Amazon’s most profitable division).24 

Aside from standardization, XBRL presents a translation challenge in facilitating information 

exchange between international investors seeking data on American companies and international 

companies seeking American investors.  By employing a greater attention to detail and nuance often 

required of legal document translation, attempts at XBRL translation have had greater success.25  

The relative success of automated translation informs this study’s intended approach of 

applying recent advancements in machine translation to the task of standardization, whereby each 

term is treated as if it were in a foreign language and the remaining XBRL terms are the target 

language.  Each “foreign” term is then mapped to its nearest XBRL neighbor, and the link is 

preserved if the two are sufficiently close.  This approach is discussed in greater detail in 

“Methodology.” 

Machine Learning (ML) and Natural Language Processing (NLP) 

Recent years—and even months—have seen an explosion in methods for and applications 

of Machine Learning, or programs that “learn” in the sense that they make decisions based on data 

analysis rather than explicit program logic.  Due in part to these advancements, Natural Language 

Processing, the semantic comprehension of text, is both faster and more reliable.  Given its 

exploratory nature, this research focuses primarily on the most recent methods, namely recurrent 

                                                 

24 Loughran and McDonald, 2016, "The Use of EDGAR Filings by Investors," 5-6. 

25 Thomas, et. al., 2014, "Semantically Assisted XBRL-Taxonomy Alignment Across Languages." 
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neural networks, convolutional neural networks, and other deep neural networks implemented 

through libraries that support parallel and graphics processing unit (GPU) processing. 

A neural network is a machine learning algorithm modelled after the human brain.  It 

contains a number of perceptrons—or simply nodes—organized into layers.  In each layer, each 

perceptron takes a range of inputs from the preceding layer, weighted according to some parameters.  

An activation function then converts these weighted inputs to a single output, which is passed to the 

next layer.  During training, a neural network varies weights to produce “correct” values.  At the risk 

of a gross overgeneralization, the non-technical reader may think of a trivially simple neural network 

as a kind of multi-layer linear regression.  Numerous variants of neural networks have proven 

tremendously powerful; Google has deployed deep neural networks in areas ranging from image 

captioning to translation to generating email replies.26,27  

This research will depend heavily on a wide range of software libraries.  Chief among these is 

TensorFlow, a software package released by Google in December, 2015.  It allows for “large-scale 

machine learning on heterogeneous distributed systems” by providing a framework for defining a 

series of computations, which the software then optimizes for the hardware available.28  By using 

TensorFlow, programs implemented in this research can be duplicated later on a wide range of 

hardware, including commercial deep learning clusters, thus allowing for reuse and improvement in 

later work. 

TensorFlow allows for the creation of intricate neural networks which include many layers 

(deep) featuring various complications.  This research will focus on two complications: recurrence 

and convolution.  Recurrent Neural Networks (RNNs) consider an input within the context of 

                                                 

26 Szegedy, et. al., 2014, “Going Deeper with Convolutions.” 

27 Corrado, 2015, “Computer, Respond to this Email.” 

28 Abadi, et. al., 2015, “TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.” 
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previous input, much like humans consider each word they read in the context of the previous word.  

Recent versions use the Long Short Term Memory (LSTM) model, in which special perceptrons 

randomly allow previous input to weigh on current input.  LSTM models have proven particularly 

well suited to the comprehension and generation of text.  Successful use in image captioning, 

machine translation, and even literary composition all demonstrate the tremendous potential of 

LSTM models.29, 30, 31, 32  

Convolutional Neural Networks (CNNs) mimic the structure of the animal visual cortex by 

arranging neurons to respond to overlapping “tiles” in the visual field.  This is the mechanism by 

which the human eye sees shapes, as opposed to a collection of individual pixels of color.  CNNs 

have proven particularly effective in computer vision, but recent applications include NLP.  These 

models use chunks of words in place of visual tiles, and have competitive performance in semantic 

parsing, search query retrieval, sentence modelling, classification, and prediction.33, 34, 35, 36, 37  Recent 

research describes an effective use of CNNs at character-level machine translation, a significant leap 

from word-level machine translation of RNNs.38 

Despite these advances, business-specific language presents a key issue for NLP within the 

securities domain.  Many terms that have a certain meaning or sentiment within a general context 

                                                 

29 Vinyals, et. al., 2015, “Show and Tell: A Neural Image Caption Generator.” 

30 Karpathy and Li, 2015, “Deep Visual-Semantic Alignments for Generating Image Descriptions.” 

31 Sutskever, et. al., 2014, “Sequence to Sequence Learning with Neural Networks.”  

32 Karpathy, 2015, “The Unreasonable Effectiveness of Recurrent Neural Networks.” 

33 Grefenstette, et. al., 2014, "A Deep Architecture for Semantic Parsing.” 

34 Shen, et. al., 2014, “Learning Semantic Representations Using Convolutional Neural Networks for Web 
Search.”  

35 Kalchbrenner, et. al., 2014, "A Convolutional Neural Network for Modelling Sentences,” 

36 Kim, 2014, "Convolutional Neural Networks for Sentence Classification.”  

37 Collobert, et. al., 2011, "Natural Language Processing (almost) from Scratch.” 

38 Lee, et. al., 2016, “Fully Character-Level Neural Machine Translation without Explicit Segmentation.”  
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may have opposite sentiment or a very different meaning within a business context.  As part of 

similar research, Loughran and McDonald produced a reference dictionary which redefines such 

words within a business context, greatly improving many simple NLP approaches.39  While it is 

unclear how much domain issues will plague deep neural networks, the availability of a specialized 

dictionary will aid in initial training stages. 

Automated EDGAR Analysis 

While strong financial incentives preclude the public release of previous similar work, a 

number of papers attempt steps towards automated processing of EDGAR filings.  Most pre-neural 

network NLP relied on the bag of words method, by which each word in a phrase carries a weight 

irrespective of position.  These methods bear some resemblance to early ML, although they warrant 

little comparison to modern ML.  While somewhat effective in a number of cases, these early NLP 

methods often fail to capture detailed nuance, a common occurrence in financial disclosures.  

However, limited attempts have had some degree of success, even in extrapolating NLP into market 

predictions. 

Previous papers fall into three general categories: narrow textual analysis, broader feature 

analysis, and market-level analysis.  The first of these use NLP to analyze a specific aspect of a 

document, such as management’s sentiment or financial constraint identification.  The second adds 

other features in addition to raw text, such as search patterns, filing timing or frequency, or media 

reaction.  The third comes closest to broad and artificially intelligent processing, combining many 

features including raw text into a broader analysis aimed at least in part at market prediction.  For 

brevity, relevant research in these areas is not directly cited, but listed by category in a “Works 

Consulted” section following “Works Cited.” 

                                                 

39 Loughran and McDonald, 2015, “The Use of Word Lists in Textual Analysis.” 
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A key resource of note, however, is CS 229: Machine Learning, a course at Stanford 

University that requires its students to publish a semester project via the course website.  This 

provides a wealth of undergraduate and graduate student research in applying various recent ML 

methods to a wide range of problems.  Whereas scholarly literature on applications of recent ML to 

financial markets is sparse, the CS 229 website lists 30 student papers on the topic in the preceding 

two years.40  Few of the student attempts had even a minor degree of success, but the papers do 

provide the results of a wide range of methods to avoid. 

Research Questions 

Given its exploratory nature, this thesis focuses first around general questions that seek to 

understand general possibilities and then on a specific question that serves primarily as a technology 

demonstrator.i 

Document Acquisition: Can individual users obtain filings in a sufficiently timely manner 

such that their automated analysis can inform trading decisions? 

Performance Considerations: Given the overarching objective of widely applicable usage, 

what reductions in data size and complexity are necessary for reasonable time performance 

on consumer-grade hardware?  Do these reductions alter results to such an extent that it 

invalidates the methodology?   

Financial Statement Standardization: Can an algorithm learn to standardize the XBRL 

taxonomy to then generalize financial statements for the automated calculation of financial 

ratios? 

  

                                                 

40 Ng and Duchi, “CS229: Machine Learning,” Stanford University, October 12, 2016. 
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Methodology 

This thesis incorporated three general phases, each addressing one of the three research 

questions.  Due to their general and exploratory nature, the first and second sections report their 

findings at the end of their sections in Methodology, reserving the entirety of Results for the third 

research question.  First, “Document Acquisition” discusses methods for the mass collection of 

historical SEC filings through the EDGAR database, the parsing of such text data efficiently, and 

storing large data for regular access and for archive.  Second, “Performance Considerations” 

discusses the hardware requirements of large datasets and various software tools for their efficient 

processing.  The general findings of this investigation have also been summarized in a blog post to 

help improve others’ attempts at building deep learning capable machines with consumer hardware, 

included in Appendix C.  Finally, “Financial Statement Standardization” discusses the methods, 

technical foundations, and assumptions underpinning the implemented software package that maps 

custom XBRL tags to standard XBRL tags. 

Document Acquisition 

Three document acquisition strategies were used or received serious consideration 

throughout the course of this thesis: file transfer protocol (FTP), web-based (HTTP), and pre-

parsed data.  Alternatives to the first were considered after the shutdown of FTP servers on 

December 30, 2016 left previous work unviable.  Regardless of the data acquisition strategies utilized 

for later portions of this research, there currently exists no method for rapid and programmatic 

access to a large batches of historical SEC filings. 

At the beginning of this thesis, FTP was the standard for programmatic collection of 

historical and current SEC filings.  The protocol enables the reliable and efficient transfer of files 
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across remote computers.41 By opening this protocol to consumers, the SEC allowed programmatic 

access to filings without the need for cumbersome webpage formatting while also dividing traffic 

between FTP clients (typically programs) and HTTP clients (typically humans). 

Despite an efficient protocol, a complex structure housed EDGAR FTP files.42  A large 

directory contained a sub-directory for each central identification key (CIK), a unique number 

assigned to every filer including every individual and corporation required to file documents with the 

SEC.  These CIK directories contained all relevant filings, some in multiple formats.  Separate index 

files allowed for accessing specific files by detailing information about the filer, form number, time 

of filing, and an access link for every filing in a quarter.  Available only as a compressed download, 

document collection scripts must first download the relevant quarterly index, sift through for desired 

documents, and then initiate an FTP transfer. 

The programs implemented as part of this thesis for document acquisition include three key 

adaptations to optimize time and network performance.  First, a deeper and narrower directory 

structure helped improve access performance.  Because CIK numbers have nine digits, there are 

theoretically one billion subdirectories in the EDGAR FTP structure.43  By dividing CIK numbers 

into three, three-digit blocks, each directory has a theoretical maximum of one thousand sub-

directories and practically has far fewer.  Current CIK numbers do not comprise even 1% of the 

available address space. 

Second, limiting transfers to only desired documents ensured storage and network 

requirements remained manageable.  EDGAR contains a vast range of filings, many of them 

                                                 

41 Postel and Reynolds, “File Transfer Protocol,” ISI, October, 1985. 

42 “Accessing EDGAR Data,” Securities and Exchange Commission, March 17, 2017. 

43 This structure probably masks an implementation detail of the EDGAR infrastructure and thus does not 
negatively impact EDGAR’s internal performance in the same way. 



Giarusso 16 

irrelevant to most users.  As such, implemented programs include settings files that limit document 

acquisition based on CIK, form type, and date range.  These files allow even non-programmers to 

quickly adjust their document acquisition based on research requirements. 

Limiting document acquisition required the use of multiple “target” lists.  Acquisition 

programs compare each row of an index file against user-defined values.  If the row’s values all 

match the user’s, the program queues the file for download.  Repeated scanning of potentially 

lengthy lists necessitated the third and final performance adaptation: self-balancing binary search (or 

simply AVL, after its inventors) trees.44  In an AVL tree, each node has 0, 1, or 2 child nodes (a 

property of all binary trees) while also maintaining balanced depth.  If a parent node has two 

children, the heights (or number of levels beneath the child) of those children differ by at most one.  

While a somewhat trivial implementation detail, AVL trees improved time performance by almost a 

factor of two. 

While deployed, programs limited access times to SEC-defined non-business hours, during 

which FTP servers allowed for unlimited download requests.  Outside of these hours, too many 

requests in a given time interval would earn the offending program a temporary ban.  Repeated 

violations, though unconfirmed, would likely result in a permanent ban of some kind.  These access 

windows made FTP ideal for the mass download of historical documents and for nightly downloads 

of a previous day’s filings. 

Current documents, however, require a narrower access window for effective use in modern 

markets.  With a 10-minute update interval, an existing Rich Site Summary (RSS) feed provided an 

upper-bound for FTP performance.45,46  If FTP could deliver access times under 10 minutes, it could 

                                                 

44  Adelson-Velsky and Landis, 1962, “An algorithm for the organization of information.” 

45 Libby, “RSS,” Netscape Communications, July 10, 1999. 

46 “Structured Disclosure RSS Feeds,” Securities and Exchange Commission, February 23, 2017.  
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deliver an information advantage to the user.  A narrower time window, as hypothesized in the 

literature review, was investigated carefully given the potential implications of loss of access.  Two 

methods emerged, but neither showed promise.   

First, identifying new filings of any filer required downloading and decompressing a quarterly 

index file.  With total time including time to update the index file, download time, decompression 

time, and search time (finding new entries and determining if they are within the defined collection 

net), this method would probably not outperform the RSS feed.  Searching for new filings of a 

specific CIK, however, required only listing the contents of the CIK-specific directory and scanning 

that list for new or updated files.  Such an approach could allow for an information advantage for a 

specific, highly-anticipated filing such as a quarterly earnings report.  However, the speed of this 

method was limited to the frequency of directory listing.  Because this operation is an FTP request, 

increasing this frequency to the speed required of modern trading often resulted in a temporary ban. 

With the shutdown of EDGAR FTP, these methods fell into obsolescence.  Index files, 

while still available, do not rival RSS performance.  With directory structures now opaque to the 

user, programs cannot wait for an anticipated filing.  Access URLs now depend on a filings’ 

ascension number, a unique identifier given at the time of filing.  Of greater consequence to this 

thesis, however, document acquisition programs lost their data source, necessitating a reexamination 

of sources and methods.   

EDGAR still allows for programmatic access to filings through Hypertext Transfer Protocol 

(HTTP), the protocol on which much of the modern internet relies.47  This approach is viable at 

least in theory.  Index files still list access URLs, from which HTTP programs such as wget can access 

                                                 

 

47 Fielding, et. al., “Hypertext Transfer Protocol,” ISI, June, 1999. 
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and download historical documents.48  At 10 minute intervals, such programs can download current 

documents from URLs provided via the RSS feed.  While many of these files now come in a web 

format (.html), more complicated programs can still parse these files for relevant data in a timely 

manner. 

However, two core limitations to this approach precluded serious investigation in this thesis 

and therefore the adaptation of FTP programs.  First, the mass download of millions of documents 

falls clearly within the intended use of FTP, not HTTP.  Placing such a burden on SEC servers often 

results in a temporary ban, as the SEC very openly prioritizes human users.  Second, current 

document collection with HTTP is firmly limited to the speed of the RSS feed.  For automated 

trading strategies, this 10-minute delay is simply not viable.  

As part of the early 2017 upgrade to its historical data offerings that shuttered FTP, the SEC 

compiled all financial statement data dating to 2009 into quarterly archives.  While the loss of FTP 

significantly reduced the applications of document acquisition programs, the availability of neatly 

structured, pre-parsed data proved a tremendous benefit for later attempts at financial statement 

standardization.  This data makes processing financial statements far easier, but two limitations make 

it a poor replacement to FTP.  Its quarterly update cycle leaves this data only valuable for historical 

research and largely useless for current documents or for trading strategies.  Furthermore, the 

removal of text that accompanies such financial statements precludes broader text mining and 

analysis, a previously stated objective of this thesis.   

With the loss of FTP access, much of the early work in document acquisition fell to the 

evolution of technology. Easily available and pre-formatted XBRL data made code revision or new 

document acquisition strategies immaterial to completing the initial research questions. HTTP 

                                                 

48 Scrivano and Nikšić, “GNU Wget,” Free Software Foundation, February 13, 2017. 
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presents new challenges, but if true market advantages exist through the collection and processing of 

historical EDGAR data, future research should certainly focus on this.  

Performance Considerations 

The average person has little comprehension of the vast complexity that underpins financial 

reporting.  In 2016 alone, filers used 285,102 unique tags to describe their accounts.  As such, 

analyzing a large number of similar financial statements to standardize some of this large number of 

tags presents serious performance concerns.  Problems of such a scale usually remain in the limited 

purview of large technology firms and cloud providers.  Yet for software developed in this thesis to 

remain widely accessible—a stated goal of the work—they must also remain within the capabilities 

of consumer grade hardware.  Two factors dominated performance considerations: the parallel 

nature of many methods and the size and accessibility requirements of data storage. 

Sequential computation has defined much of human and algorithmic history; when we do 

mathematics, we execute a series of steps.  Parallel computation stands in marked and 

counterintuitive contrast; in such problems, thousands or millions of computations do not depend 

on the results of others and thus can occur simultaneously.  A master program can spread a 

sufficiently parallel computation across a wide range of computation hardware, greatly increasing the 

overall computational performance.  First commercialized and popularized through MapReduce, 

parallel computation underpins much of the modern revolution in Machine Learning.49,50 

Like humans, programs default to sequential processing and require lengthy and deliberate 

consideration for effective parallelization.  Programs implemented in this thesis make use of parallel 

computation wherever possible as the single largest step to ensure acceptable performance.  This 

                                                 

49 Dean and Ghemawat, 2008, “MapReduce.”  

50 Brown, “Deep Learning with GPUs,” NVIDIA, June, 2015. 
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required numerous supporting software libraries, detailed in Appendix B.  Although parallelization 

can achieve suitable performance for end users, the experimentation required in this research 

necessitated hardware specialized for parallel computation. 

Because end users rarely need worry about parallelization, most consumer hardware does not 

perform well on such tasks.  Rather than rely on cloud computing to perform the bulk of 

calculations and violate the consumer-grade intent of this thesis, the author constructed a specialized 

computer for the relevant computation.  While generally outside the scope of this thesis, a guide to 

constructing a computer for massively parallel computations with consumer grade hardware is 

included for interested readers in Appendix C. 

Working with large and complex data posed significant storage requirements in both 

experimental and deployment environments.  Storage considerations typically pit size requirements 

against access speed.  Access speed was prioritized in the experimental environment, while size was 

prioritized in deployment.  Generally, specialized hardware downloaded large raw datasets, parsed 

raw data for specifically relevant information, saved this information in a highly accessible format, 

and heavily compressed the remaining raw data. 

Throughout the project, approximately 3 Terabytes of data were downloaded, collected, or 

processed into three datasets: historical filings (1.1TB), SEC server logs (1.5 TB), and XBRL data 

(100 GB).  By employing complementary compression algorithms, Long Range Zip and ZPAQ, the 

first two compressed to just 100GB and 150GB respectively for archival storage. 51, 52 This extreme 

compression ratio came at the cost of time, with each compression lasting just over 48 hours.  With 

                                                 

51 Kolivas, “Long Range Zip,” November 13, 2016. 

52 Mahoney, “ZPAQ,” August 17, 2016. 
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the closure of EDGAR FTP, however, an archived copy of a significant portion of its dataset may 

play an important role in future research. 

As for accessible data, the Hierarchical Data Format (HDF5) was selected for its efficient 

use of memory and a simple and forgiving interface. 53  While the size of data for computations is 

not a concern on experimentation hardware, few practical users of an XBRL mapping tool would 

appreciate a need to close all other applications prior to its use.  HDF5, with efficiently designed 

programs, allows for a regular file system to support near memory speeds by anticipating data needs 

during iterative operations.  This multi-tiered storage structure allowed maximal usage of parallel 

computation capabilities, combining to allow for a much wider range of experimentation than 

otherwise possible. 

Financial Statement Standardization 

As the primary experiment in this thesis, the algorithmic simplification of the XBRL 

taxonomy comprises the most substantive portion of the work.  This section details an overview of 

the software implemented for this experiment and a cursory overview of the theory underpinning 

supporting methods.  At a general level, the system must convert text to a mathematically 

meaningful representation, perform the actual mapping of custom XBRL terms to standard XBRL 

terms, and finally some form of simplification to keep the problem manageable.  These three tasks 

require vector embedding, vector space mapping, and unsupervised clustering, respectively.   

 

 

 

                                                 

53 “Hierarchical Data Format,” The HDF Group, 2017. 
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While the text on a computer screen is a software abstraction of a series of mathematical 

operations performed on ones and zeros, these representations have little mathematical meaning.  

For words to have a mathematical meaning implies the feasibility of a kind of word math.  For 

example, a proper representation should allow for the following equation:  

KING – MAN + WOMAN = QUEEN 

In plain English, we might say that we take away from the idea of “king” the idea of “man”.  To 

what remains, we add the idea of “woman” and arrive at the idea of “queen”.  In a mathematical 

sense, the system must convert the words to a numerical representation that, when the same 

mathematical operations are applied, produces a numerical representation sufficiently close to that 

generated by converting the right half of the equation.  Generally, this process is called vector 

embedding. 

 In 2013, a team of Google researchers proposed a word level embedding model, word2vec 

that showed remarkable promise.54 Subsequent research found that multi-layer long short-term 

memory (LSTM) cell neural networks could embed complete sequences by incorporating a degree of 

memory in computations.55, 56  In essence, the network learns that the meaning of the current work 

depends in part on the previous words.  While much of this research now focuses on sequence to 

sequence machine translation, these methods also allow for effective and efficient vector embedding 

in other applications. 

 Two serious concerns drove the design of the vector embedding approach for this system.  

First, to allow for a wider range of follow-on methods, embedding would be to a fixed length. 

Choosing this length, however, required a balance of performance and theoretical considerations.  A 

                                                 

54 Mikolov, et. al., 2013, “Distributed Representations of Words and Phrases and their Compositionality.” 

55 Sutskever, et. al., 2014, “Sequence to Sequence Learning with Neural Networks.” 

56 Wu, et. al., 2016, “Google's Neural Machine Translation System.” 
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shorter vector may not sufficiently embed the full meaning of a sequence, but an overly long vector 

will slow computations behind the realm of practicality.  Based on initial performance testing, vector 

lengths of 50, 100, 150, and 200 were selected for testing as maximum values that still provided 

adequate performance.  A freely available library, seq2vec, provided a wrapper class over a 

TensorFlow implementation of an LSTM network, effectively duplicating the method currently 

employed in Google Neural Machine Translation. 

 Once embedded as fixed length vectors, a wide range of algorithms are available.  However, 

data limitations significantly narrowed the range of available methods, with three noteworthy 

characteristics.  First, XBRL data is unlabeled, meaning that it does not include the “right” answer (it 

would be frivolous to define a custom tag and then state that it merely duplicates another).  This 

stands in stark contrast to many of the greatest recent advances in ML, which rely on labeled data 

for supervised learning, or simply a training procedure in which the program makes a guess, checks 

its answer, and adjusts itself accordingly to produce the correct answer next time.   

The second most common training procedure, reinforcement learning, requires a reward 

function.  This method uses repeated trial and error in a scenario to learn tendencies that maximize a 

specified goal.  Yet similarly, no objective goal function could reward an algorithm for correctly 

mapping a tag.  With the two most common methods unavailable, only the very frontier of ML 

remained: unsupervised learning. 

In unsupervised learning, programs generally do not compute correct or incorrect answers, 

but instead identify generalized patterns or associations within a large dataset.  While by far the most 

challenging learning approach, the fundamental objectives of this thesis required working with 

unlabeled data.  To invest significant time and resources in correctly labelling data by hand amounts 

to little more than a high-tech take on existing investment research firms and poses an 

insurmountable challenge to the resources of a single researcher.  This decision to work with 
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unlabeled data narrowed the range of available methods, forcing a focus on methods with a 

mathematical basis for results absent pre-ordained correct answers.  This led to vector distances as 

the metric for mapping decisions. 

In this design, a program takes a novel custom tag and embeds it into a vector space that 

already contains the embeddings of standard tags.  It then maps the custom tag to the nearest 

standard tag, based on a distance metric.  This potentially high dimensional space allows for 

numerous distance calculation methods.  Yet because these computations will run many millions—if 

not billions—of times even the smallest inefficiencies can quickly compound.  With this in mind, 

only distance functions with exceptionally efficient implementations were considered because low-

level implementation improvements fell outside the scope of this research.  Experiments tested the 

performance of two distance metrics, Euclidean and Cosine.  In the former, the magnitude of a 

vector plays a key role; in the latter, all vectors are scaled to the unit vector and only direction is 

considered. 

The considerable number of terms and the computational limits to the dimensionality of the 

vector space and to the problem set in general necessitated a certain degree of simplification.  A 

number of dataset simplifications and unsupervised clustering were used to this end. First, while data 

dating to 2009 was available, only 2016 data was considered.  The SEC updates its taxonomy every 

year with small tweaks, meaning a simple mapping of terms from year to year could produce an 

excellent 7-fold decrease in tag volume—while actually having little impact at all.  Moreover, there 

are likely few significant changes in custom tags between years.  Massaging accounts may be general 

practice, but inventive accounting is the post-Enron kiss of death.   

Second, XBRL tags come with a number of data fields that describe their general nature, 

such as if the account is a credit or debt or if the value is numeric of not.  To maintain the focus on 

NLP, tags were presorted into categories based on these objective properties.  While this, to some 
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extent, does the algorithm’s job, it makes little sense to make a difficult problem even more so.  This 

effectively shrinks the problem from a single one of 285,000 tags, to a series of nine problems with 

between 600 and 70,000 tags.   

Beyond these dataset simplifications, unsupervised clustering played an important role in 

shrinking the scope of required computations.  The selected algorithm, KMeans, randomly selects k 

(a specified parameter) points at random as cluster centroids.57  It then assigns each point in the 

dataset to the nearest cluster, and moves the centroids to the center of these new clusters.  The 

process repeats until the cluster inertia, or the sum of the distances between all points and the 

nearest centroid, ceases to improve.  This algorithm is prone to falling into local minima and 

producing a sub-optimal result, so each trial is run 10 times and the best result reported.  Selecting 

the number of clusters implies some general structure of the data, so a wide range of k values were 

tested and inertia at each reported.  Broader computations, however, were run at 1000 clusters only 

for performance concerns.  This implies that 1000 tags can adequately convey the necessary 

variation in each category. 

In addition to theoretical considerations, the nature of the real-world environment 

represented in XBRL plays a key role in understanding the limitations of the model.  XBRL data 

may seem mundane, but the ideas it expresses can have serious implications in financial markets.  In 

current market conditions, firms that miss quarterly earnings targets can expect significant losses in 

their stock price, sometimes exceeding 10% in a single day.  Firms desperately try to make their 

earnings-per-share (EPS) appear as high as possible and few refuse to employ a certain level of 

maneuvering within their accounts to do so.  Given such realities, XBRL data probably contains 

some degree of deception. 

                                                 

57 Lloyd, 1982, “Least Squares Quantization in PCM’s.” 
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While entirely within the bounds of regulation, attempts to massage the balance sheet of a 

large firm probably motivate a large degree of the expansion of XBRL custom tags.   To a large 

extent, such largely unnecessary expansion motivates this research.  However, it also presents a 

unique challenge and limitation when compared to other NLP problems.  Most NLP involves 

generally honest and forthcoming data.  By applying NLP methods to potentially deceptive data, this 

thesis stretches the application of these methods to new domains both potentially expanding the 

field and delivering less than ideal results. 

  Finally, the narrow and specific nature of XBRL tags—a subset of corporate accounting, a 

subset of general accounting, and a subset of the business world in general—means the XBRL text 

that programs will encounter shares little with the general English text in large training databases 

used for most NLP problems.  This will require algorithms to generalize to an entirely new set of 

information, including words that may mean something very different in an XBRL tag than they do 

in general English.  These limitations will test the limits of sequence to vector embedding tools.   

With these data and performance limitations in mind, a complete system for standardizing 

XBRL tags was designed, supporting libraries were selected, and experimental variables and their 

ranges were identified.  As shown in figure 1, the system first sorts XBRL tags into categories.  It then 

uses a sequence encoder to transform text into a fixed-length vector.  To reduce the complexity of 

the problem, it is assumed that any one category requires no more than 1,000 standard tags or, if 

there are fewer than 1,000 tags in the initial data, 50% of the original number.  To reduce standard 

tags to these benchmarks, a KMeans algorithm is used.  Finally, each custom tag is tested against the 

standard clusters of its category, and assigned to the closest cluster.   All but the last step can be 

processed in advance and saved, allowing distributed software to quickly process a mapping of a 

user-defined custom tag.  A number of freely-available software libraries played important roles in 
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the implementation of this system.  A full list is detailed in the appendices with details of their use 

and reference links.   

 

 

FIGURE 1 – SYSTEM OVERVIEW 
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Results 

Reports from experiments performed with this data indicate a two-part story.  In direct 

reference to the original research questions, the experimental model did not show sufficient 

performance with any mixture of values that would satisfy the information needs of a professional 

investor.  However, several indications suggest the approach is valid.  As is often the case in 

Machine Learning, the model concept is easy; the fine-tuning is perilous.  This section first discusses 

experimental results that validate assumptions of broader system design and finishes with select 

best- and worst-case examples of actual term mapping. 

Per Unit Final Inertia 

Clustering algorithms seek to minimize per unit final inertia, or the average distance from 

vectors to the center of their assigned cluster.  To validate the use of clustering in reducing the set of 

standard terms, per unit final inertia is compared across various cluster sizes.  Fewer clusters should 

almost always result in higher per unit final inertia.  Yet if the data actually describes a set of various 

(but unknown) categories, per unit final inertia should increase at a relatively slow rate when number 

of clusters is more than actual categories and at a relatively high rate when number of clusters is less 

than actual categories.  Summarized in the language of calculus, the per unit final inertia curve 

should have an inflection point. 

The per unit final inertia graphs (Graphs 1 A and B) show this pattern emerging, with an 

inflection approximately when allowing 1% of the data size as clusters.  If all XBRL tags were truly 

unique and therefore necessary, they should occupy a unique portion of the vector space.  Clustering 

to 50% should leave significant inertia, much less 5%. This behavior, common to datasets with some 

form of underlying structure, supports the idea that even standard XBRL tags have some degree of 

redundancy.  Graph 1B shows a second promising trend, a significant improvement in performance 

by increasing vector length to 200.  A second series of vector length tests, probably requiring 
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increased parallelization to handle the computational load, could help to identify a more optimal 

length.   

 

GRAPH 1(A) – PER UNIT FINAL INERTIA BY CATEGORY 

 

GRAPH 1(B) – PER UNIT FINAL INERTIA BY VECTOR LENGTH 
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N-Best Performance Analysis 

 Without a unit of measurement, distances in a high-dimensional vector space have little 

concrete meaning, particularly when compared across multiple different high-dimensional vector 

spaces.  In the absence of a ground truth performance metric, a novel measurement is used to verify 

expected behavior within the vector space.  Each custom term is mapped to the nearest n clusters 

for n in {1, 5, 10}, and the average distance to the n clusters is recorded.  If a custom term vector is 

arbitrarily close to many clusters, average distance will remain constant as n increases.  If instead the 

custom vector is mapped to a unique cluster, average distance will increase with n.  This behavior is 

confirmed across all variations of the data, once the Monetary-Unknown-Duration category is 

removed (due to distortions from small sample size).  The one notable exception is the Monetary-

Debit-Point category, which similarly suffered from small sample size.   
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GRAPH 2(A) – N-BEST ANALYSIS OF VECTOR LENGTH 

  

GRAPH 2(B) – N-BEST ANALYSIS OF DISTANCE FUNCTION 
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GRAPH 2(C) – N-BEST ANALYSIS OF CATEGORY 
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Select Term Mapping Examples 

Finally, select instances of nearest and farthest vector mappings show examples of system 

success and failure.  While cherry-picked, searching all mapped terms would require some form of 

ground truth accuracy metric.  Unfortunately, constructing such a metric with unlabeled data would 

require manual labelling—an undertaking far beyond this scope.  Examples are presented with their 

original term and any portion of their definition that serves important clarification. 

Issuance of shares for cash Stock Issued During Period 

Series A Convertible preferred stock, shares 
available to be issued 

Preferred Stock, Shares Issued, Total number of 
nonredeemable preferred shares (or preferred 
stock redeemable solely at the option of the 
issuer) issued to shareholders. 

TABLE 1(A) –BEST EXAMPLES 

 

Accounts Payable settled in Common Stock Research and Development Expense 

Depreciation, Depletion and Amortization, 
Including Other Property, Plant, And 
Equipment 

Exploration Expense 

TABLE 1(B) – WORST EXAMPLES  
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Conclusions 

Without a ground truth accuracy metric, gauging the overall success of the system is perilous 

at best. Many of the metrics report expected behavior, and a number of example mappings make 

intuitive sense.  For a high-level overview of financial statements, “Issuance of shares for cash” and 

“Stock issues during period” are effectively equivalent.  However, many more bear no resemblance 

at all, suggesting this model remains far from its original—if lofty—objectives. 

However, developments likely to come in the next six to twelve months promise marked 

improvements in the underlying tools that power this analysis.  First among these is the open-source 

release of Google sequence-to-sequence (seq-2-seq) models and TensorFlow APIs to train custom 

embedders and encoders, which occurred on April 11, 2017 (between the conclusion of research and 

the final submission of this work).  This would allow for much more accurate vector space 

embeddings by applying accounting-specific understandings of English language to the sequences 

rather than simply general English. 

Second is a series of expected updates to libraries that will allow for more parallelized and 

heterogeneously distributed operations.  A disconcerting portion of the code in this research had no 

parallelization at all, as many of the relevant libraries require community updates to accommodate 

recent updates to TensorFlow.  Parallelization will in turn allow for faster analysis, longer vector 

embeddings, and broader experimentation.  Within the next twelve months, the scope of practical 

analysis could very well expand by a factor of 100 while overall speed improves by a factor of 200. 

In direct response to the research questions, this thesis has demonstrated the following:  

Document Acquisition: Can individual users obtain filings in a sufficiently timely manner such that 

their automated analysis can inform trading decisions? 
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EDGAR filings are not a suitable information source for High Frequency Trading given 

various sources of information delay.  Furthermore, it is perilously difficult to even rival the 

access times of PDS subscribed institutions.  However, ML-enabled document processing 

certainly has the potential to review filings faster and more completely than a human reader.  

While EDGAR has little place in an HFT strategy, it has a very real place in a fundamental 

strategy, performing a broad range of advanced valuation methodologies far faster than an 

individual human could. 

Performance Considerations: Given the overarching objective of widely applicable usage, what 

reductions in data size and complexity are necessary for reasonable time performance on consumer-

grade hardware?  Do these reductions alter results to such an extent that it invalidates the 

methodology?   

Hardware is not the limitation; software is the limitation.  Running massive vector 

operations sequentially on consumer hardware will require dataset reductions that negatively 

impact results, as indicated in comparisons of per-unit-final-cluster-inertia across various 

vector lengths.  By running the same operations in parallel, however, the same hardware 

would require significantly less problem reduction—certainly not enough to invalidate 

methodology. 

Financial Statement Standardization: Can an algorithm learn to standardize the XBRL taxonomy 

to then generalize financial statements for the automated calculation of financial ratios? 

An effective commercial deployment remains a distant prospect.  The problem reductions 

required for the scope of this research effectively traded nuance for performance, but if 

expected advances in supporting software do occur, both performance and nuance are 

attainable. 
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Appendix A – Definition of Acronyms and Esoteric Terms 

XBRL – eXtensible Business Reporting Language, a term/definition taxonomy for financial 
statements. 

SEC – Securities and Exchange Commission, the regulatory body overseeing securities markets in 
the United States. 

EDGAR – Electronic Data Gathering, Analysis, and Retrieval; the SEC database of historical and 
current filings. 

PDS – Public Distribution Service, a commercial subscription available primarily to institutions 
which provides a near-real-time feed of EDGAR documents as they are submitted—often before 
the general public has access. 

FTP – File Transfer Protocol 

HTTP – Hypertext Transmission Protocol 

HFT – High Frequency Trading 

RNN – Recurrent Neural Network 

LSTM – Long Short-Term Memory, a special kind of perceptron that allows a neural network to 
have a concept of time and memory. 

CNN – Convolution Neural Network 

Bag of Words – A simple method of NLP in which a phrase is treated like a bag of words; each 
word is equal, regardless of position.  For example, bag of words regards “the cat ran” and “ran the 
cat” as the same phrase.   

Vectorize – Most machine learning models take vectors as input.  To handle complicated real-world 
problems, input data must be converted to a vector representation.  This may be a simple numerical 
mapping, a one-hot adaptation for categorical variables, or a more complex approach such as with 
text. 

Appendix B – Supporting Libraries 

Library Usage Reference 

numy Highly optimized array computations http://www.numpy.org/ 

seq2vec Sequence embedding class https://github.com/Yoctol/seq2vec 

joblib Parallelzation of iterative proceedures https://github.com/joblib/joblib 

tensorflow Large-scale, heterogeneous, and distributed 
machine learning 

https://www.tensorflow.org/ 

h5py HDF5 data storage and access interface http://www.h5py.org/ 

scipy Vector distance functions: euclidean, cosine, 
cdist (distance between every vector x in set a 
and every vector y in set b) 

https://www.scipy.org/ 

pandas Array aggregation and formatting for csv 
output 

http://pandas.pydata.org/ 

scikit-learn KMeans clustering implementation http://scikit-learn.org/ 
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Appendix C – Deep Learning on Consumer Hardware 

Overview 

So you think you want to build a deep learning rig?  Before you get started, there are a few things 
you should consider.  First, professional deep learning takes professional hardware at a professional 
cost.  You won’t be rivaling Google any time soon.  Second, don’t discount the cloud.  Google 
Cloud Platform offers a great combination of performance and price, but you sacrifice the warmth 
of your own silicon space heater.  Third, remember that custom-built also means custom-support 
and custom-sysadmin.  Be prepared to spend countless hours troubleshooting and tweaking, but if 
it’s a labor of love, it’s worth it.  Finally, recognize that most of these algorithms take hours if not 
days to run, meaning your new box is a server first and a client second.  You’ll need a different daily 
driver. 

 

If you’re still bent on a custom-built deep learning rig, great.  I was too.  You’ll want to keep a few 
design considerations in mind.  First, take the online build-a-pc communities with a grain of salt.  
Most of these builders are looking for gaming performance or, in rare cases, workstations or 
enterprise servers.  While some aspects of performance apply across use cases, getting the most 
performance per dollar requires a dedicated design.  Second, remember that computation is a 
process.  Especially in deep learning, speed is limited by the slowest link—or bottleneck.  You may 
find that no CPU in the world can overcome overwhelmed GPU memory (as I did…).  Finally, just 
as most pc builders are focused on different use cases, so too are most manufacturers.  You’ll have 
to peer a bit through the marketing to really see the value of components in deep learning. 

 

In general, a deep learning rig needs to do three things well: 

1. Most computation is done on GPU, so raw power largely depends on the GPU and the 
system’s ability to get data to and from that GPU. 

2. Deep learning requires big datasets, so system memory and storage can play a crucial role in 
deciding which problems you can tackle and how. 

3. It takes forever, so cooling and noise over extended peak operation matter, particularly if 
you’re planning to sleep next to a panting rig. 

 

Component Breakdown 

CPU – While the clock speed and thread count are less important than in other uses, clock speed 
can be valuable to the novice programmer (who doesn’t multithread much) and thread count can be 
particularly useful in server environments where many processes are running at once.  Most 
importantly, however, is PCIe lane support.  GPUs need at least 8x PCIe-3 lanes.  You’ll probably 
want some PCIe based storage, and perhaps even additional networking or RAID support.  If you’re 
looking towards a multi-GPU setup, higher end CPUs with 40x PCIe lanes may be a requirement. 

CPU Cooler – In pursuit of PICe lanes, the CPU will probably be plenty fast without overclocking.  
But that isn’t to say extreme cooling can’t help, particularly if you plan to throttle the CPU for hours 
on end while you’re trying to sleep. 

Motherboard – All of those cool devices that drive up the PCIe lane count also drive up the 
motherboard requirements.  Not all boards support multi-GPU configurations, and many have 
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secret tradeoffs found only in the user manual.  The board might have two USB 3.0 headers, but you 
must deactivate two SATA ports to use the second (happened on mine!).  Design the system, and 
then consult the user’s manual carefully to ensure everything will function together.  Rear I/O 
requirements can vary – probably not going to need dozens of USB peripherals and might not even 
need Ethernet (if you plan on installing a stand-alone NIC).   

Memory – There are few reasons for most users to go up to or beyond 32GB of memory, but deep 
learning almost requires it.  Lifting the ceiling on the size of dataset you can manipulate without 
dealing with file-system operations can be a lifesaver.  That said, it depends on problem type.  You 
could spend a fortune to install 128GB, but that’s still not a big dataset by deep learning standards.  
If you’re resigned to file-system operations, there isn’t much reason to go above 32GB. 

Storage – Tiered storage is key, because it allows for a range of speed/space tradeoffs.  PCIe based 
SSDs make great caching drives for larger HDD RAID arrays.  One of the great things about deep 
learning is that the program knows exactly the next chunk of data it will need, allowing caching to 
work like a breeze—effectively bringing a RAID 5 array to PCIe speeds when training.  Because 
some datasets, particularly if you plan on archiving old ones, can require huge amounts of storage, 
Network Attached Storage may become a necessity.  In that case, 10Gb/s networking may become a 
necessity.  Try transferring 4TB at 1Gb/s.   

GPU – It’s the bread and butter, so keep three things in mind.  First, the performance that matters is 
FLOPS (floating-point-operations per second).  Too few cores at too high a clock rate, and you have 
an expensive CPU. This is a parallel computing device, so let it be massively parallel.  Second, GPU 
memory is the killer of most algorithms.  Gaming doesn’t require much, so consumer GPUs lack the 
memory capabilities of their commercial counterparts.  Carefully evaluate the memory requirements 
of the models you expect to use.  You may decide to give up and flee for the cloud.  Finally, most 
deep learning software libraries only support Nvidia CUDA, not open-CL.  If you’re after deep 
learning and you don’t want to know how to write GPU code, you’re stuck with team green. 

Power Supply – A combination of a RAID array, multiple GPUs, and assorted whistles can require a 
lot of juice, particularly under load.  While the absolute best isn’t a necessity, the system does need 
reliable power delivery at the top end of its range.  Whether you accomplish this with a higher 
wattage or better performance is a pretty moot point.   

Extras – Just like any other server deployment, a UPS is probably essential.  If your rig loses power 
in the middle of a week-long training, it’s back to square one.  Don’t worry much about other 
peripherals; this isn’t a daily-driver.   
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i These questions have been modified since the original thesis proposal on October 28, 2016. 

After parsing text data, the author discovered the sheer volume of XBRL data (285,102 different 

tags in 2016 alone).  While storage requirements were minor, computational complexity quickly 

outpaced all but high-end cloud infrastructure.  In the interest of keeping work accessible and 

duplicable, the question regarding “Performance Considerations” was introduced. 

Additionally, the following research question was removed due to the shutdown of EDGAR 

FTP servers on December 30, 2016.  While it remains possible to analyze and parse documents 

collected prior to the shutdown, this is an inconsequential exercise without regular and 

programmatic access to the previous dataset. 

Intra-Document Retrieval (removed): Can an algorithm learn to identify relevant sections 

of a document and parse its content first for human readers and ultimately as input for 

another algorithm? 
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